第一学期北师大版九年级上册数学第三章《概率的进一步认识》单元测试卷
第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)
第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。
北师大版数学九年级上册第三章《概率的进一步认识》单元测试试卷含答案
北师大版数学九上第三章《概率的进一步认识》单元测试试卷、答案一、选择题(共12小题;共36分)1. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率.其试验次数分别为次,次,次,次,其中试验相对科学的是A. 甲组B. 乙组C. 丙组D. 丁组2. 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率3. 让图6-7-1中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是的倍数或的倍数的概率等于A. B. C. D.4. 某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是A. B. C. D.5. 中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽取一项;从米、米往返跑、米中随机抽取一项.恰好抽中实心球和米的概率是A. B. C. D.6. 某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是A. B. C. D.7. 在一个不透明的盒子里有个分别标有数字,,的小球,它们除数字外其他均相同.充分摇匀后,先摸出个球不放回,再摸出个球,那么这两个球上的数字之和为奇数的概率为A. B. C. D.8. 一个口袋中有个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了次,其中次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有A. 个B. 个C. 个D. 个9. 同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是A. B. C. D.10. 在一个暗箱里放有个除颜色外其他完全相同的球,这个球中红球只有个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在%,那么可以推算出大约是A. B. C. D.11. 从长为,,,的四条线段中任选三条,能够组成三角形的概率是A. B. C. D.12. “上升数”是一个数中右边数字比左边数字大的自然数(如,,).任取一个两位数,这个两位数是“上升数”的概率是A. B. C. D.二、填空题(共6小题;共24分)13. 如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到).投篮次数投中次数投中频率14. 频率:在次重复试验中,不确定事件发生了次,则比值称为事件发生的频率.15. 已知一次函数,从,中随机取一个值,从,,中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为.16. 从到这个自然数中任取两个数,两数和是的倍数的概率是.17. 某学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了名女生和名男生,则从这名学生中,选取名同时跳绳,恰好选中男女的概率是.18. 同时抛枚质地均匀的正方体骰子,所得的点数之和是的概率是.三、解答题(共7小题;共60分)19. (8分)小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.20. (8分)甲、乙两个人做游戏:在一个不透明的口袋中装有张相同的纸牌,它们分别标有数字,,,.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是的倍数,则甲胜,否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.21. (10分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字,,,现从中任意摸出一个小球,将其上面的数字作为点的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点的纵坐标.(1)写出点的坐标的所有可能的结果;(2)求点的横坐标与纵坐标之和是偶数的概率.22. (8分)小红和小明在操场做游戏,他们先在地上画了半径分别为和的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷人圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方,来估算非规则图形的面积呢?”.请你设计方案'解决这一问题(要求画出图形,说明设计步骤、计算方法).23. (8分)小美周末来到公园,发现在公园一角有一种“守株待兔“游戏.游戏设计者提供了一只兔子和一个有,,,,五个出人口的兔笼,而且笼内的兔子从每个出人口走出兔笼的机会是均等的.规定:①玩家只能将小兔从,两个出人口放入;②如果小兔进人笼子后选择从开始进人的出人口离开,则可获得一只价值元的小兔玩具,否则应付费元.(1)小美得到小兔玩具的机会有多大?(2)假设有人次玩此游戏,估计游戏设计者可赚多少元?24. (10分)某县农科研究所进行某种油菜籽在相同条件下的发芽试验,结果如下表所示.每批粒数发芽的粒数发芽的频率(1)请将数据表补充完整;(2)观察上表可以发现,随着试验次数的增多,油菜籽的发芽频率匹稳定于(3)你知道这种油菜籽在试验中发芽的概率吗?25. (8分)如图①在一个不透明的袋子中装有四个球,分别标有字母,,,,这些球除了字母外完全相同.此外,有一面白色、另面黑色、大小相同的四张正方形卡片,每张卡片两面的字母相同,分别标有字母,,,.最初,摆成如图②的样子,,是黑色,,是白色.操作:①从袋中任意取一个球;②将与取出的小球字母相同的卡片反过来;③将取出的球放回袋中.两次操作后观察卡片的颜色.(如:第一次取出,第二次取出,此时卡片的颜色变成)(1)求四张卡片变成相同颜色的概率.(2)求四张卡片变成两黑两白并且恰好形成各自颜色的矩形的概率.答案第一部分1. D2. D 【解析】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数来估计事件的概率.3. C4. B5. D6. B 【解析】画树状图如图所示(数学史、诗词赏析、陶艺三门校本课程分别用A,B,C 表示),由树状图知共有种等可能的结果数,其中小波和小睿选到同一课程的结果数为,所以小波和小睿选到同一课程的概率为.7. A8. C9. D10. A【解析】过大量重复摸球试验后发现,摸到红球的频率稳定在,可以估计摸到红球的概率是,那么解方程可得,故选A11. C12. B第二部分13.【解析】随着投篮次数的增加,投中的频率越来越接近,且在附近摆动,所以投中的概率约为.14.15.16.17.18.第三部分19. 画树状图为:共有种等可能的结果,其中两次摸到的球颜色相同的结果数为,所以游戏者获得纪念品的概率.20.所以,甲胜,乙胜,因为,所以游戏不公平.21. (1)点的坐标可能为,,,,,,,,.(2)列表如下:由上表知,点的横坐标与纵坐标之和共有种等可能的结果,其中和为偶数的有种,所以点的横坐标与纵坐标之和是偶数的概率.22. (1)不公平.阴影,即小红胜率为,小明胜率为,游戏不公平.(2)(答案不唯一,合理即可)示例:能利用频率估计概率的方法估算非规则图形的面积.设计方案:①设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为).如图所示:②往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不做记录);③当掷点数充分大(如万次)时,记录并统计结果,设掷人正方形的为次,其中次掷人非规则图形内;④设非规则图形的面积为,用频率估计概率,即频率掷人非规则图形内概率掷人非规则图形内,故,所以.23. (1)画树状图如图所示.小美得到小兔玩具的概率.(2)人次玩此游戏,估计有人次会获得玩具,花费元,估计将有人次要付费,估计游戏设计者可赚(元).24. (1),,,,,,,(2)(3)当试验次数很多时,事件的频率稳定于概率附近,则发芽25. (1)依题意画如下树状图.可看出,两次操作有:种等可能的结果,其中将四张卡片变成相同颜色的有种.所以两次操作后四张卡片变成相同颜色.(2)由(1)中的树状图可知,两次操作后,四张卡片变成两黑两白并且恰好形成各自颜色的矩形.。
北师大版数学九年级上册第三章概率的进一步认识单元测试卷(有答案)
概率的进一步认识单元测试卷(满分100分,时间60分钟) 一、选择题(每小题3分,共30分)1. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率是( ) A.61 B.31 C.21 D.32 2. 下列说法正确的是( )A .在一次抽奖活动中,“中奖的概率是1001”表示抽奖100次就一定会中奖 B .随机抛一枚硬币,落地后正面一定朝上 C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大、小王的扑克牌中任意抽一张,抽到的牌是6的概率是131 3. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为( )A.2B.4C.12D.16 4. 让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域, 则这两个数的和是2的倍数或是3的倍数的概率等于( ) A.163B.83C.85D.1613 5. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其试验次数分别为10次,50次,100次,200次,其中试验相对科学的是( ) A .甲组 B .乙组 C .丙组 D .丁组 6. 某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( ) A.101B.91C.31D.217. 在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400 次,其中88次摸到黑球,估计盒中大约有白球( )A. 28个B. 30个C. 36个D. 42个 8. 某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:A.20001 B.5001 C. 5003 D.20019. 青青的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过多次摸球试验,发现摸到红球、黄 球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球( )A.5个B.10个C.15个D.30个 10. 一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把 杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是( ) A.31 B.21 C. 61 D.121二、填空题(每小题3分,共18分)11. 某长途汽车站的显示屏,每隔五分钟显示某班次汽车的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示该班次信息的概率是 .12. 一个不透明的袋子中只装有2个红球和2个蓝球,它们除颜色外其余都相同.现随机从袋中摸出两个球,颜色能配成紫色的概率是 .13. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:成活的棵数m8651365222035007056131701758026430成活的频率nm0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为__________.14. 现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相 同的概率是 .15. 若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________.16. 为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记 的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.三、解答题(4小题,共52分)17. (12分) 在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n 很大时,摸到白球的频率将会接近 (精确到0.01),假如你摸一次,你摸到白 球的概率为 ;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为35,需要往盒子里再放入多少个白球?18. (11分)新年联欢会,班里组织同学们进行才艺展示如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏,每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.19. (14分) 小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色,此时小刚得1分,否则小明得1分.(1)用列表(或树状图)法分别求出小明和小刚的得分;(2)这个游戏公平吗?请说明理由;如果不公平,如何修改规则才能使游戏双方公平?20.(15分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次. (1)请利用树状图列举出三次传球的所有可能情况; (2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大.答案一、1-5 BDBCD 6-10 ABCCC二、11、61 12、32 13、 0.881 14、31 15 、65 16、 800 三、解答题.17. (1)根据题意得:当n 很大时,摸到白球的概率将会接近0.50;假如你摸一次,你摸到白球的 概率为0.5;(2)40×0.5=20,40﹣20=20;答:盒子里白、黑两种颜色的球分别有20个、20个; (2)设需要往盒子里再放入x 个白球;根据题意得:534020=++x x ,解得:10=x ;经检验,10=x 是原方程的解. 答:需要往盒子里再放入10个白球.18. 解:转动转盘两次所有可能出现的结果列表如下:(树状图同样得分)。
北师大版九年级数学上册第三章概率的进一步认识测评卷含答案
第三章测评卷(时间:45分钟,满分:100分)一、选择题(本大题共7小题,每小题5分,共35分.下列各题给出的四个选项中,只有一项符合题意)1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ).A.16B.13C.12D.232.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是( ).A.49B.13C.29D.193.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球.如果袋中有3个红球且摸到红球的概率为14,那么袋中球的总个数为( ).A .15B .12C .9D .3 4.现有4条线段,长度依次是2,4,6,7,从中任选三条,能组成三角形的概率是( ).A.14B.12C.35D.34 5. 将右面两个转盘各随意转动一次(若指针恰好指在等分线上,当作指向右边的扇形),则得到的数字之和为3的概率是( ).A.16B.17C.19D.112 6.甲、乙两个不透明的布袋都装有红、白两种小球,两袋球总数相同,两种小球仅颜色不同,甲袋中,红球个数是白球个数的2倍,乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( ).A .512B .712C .1724D .257.假设你班有男生24名,女生26名,班主任要从班里任选一名红十字会的志愿者,则你被选中的概率是( ).A.1225B.1325C.12D.150 二、填空题(每小题4分,共16分)8.在一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有 颗.9.在四边形ABCD 中,①AB ∥CD ;②AD ∥BC ;③AB=CD ;④AD=BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是 .10.在一个不透明的袋中装有3个红球、1个白球,它们除了颜色以外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后再随机摸出一球,两次都摸到红球的概率是 .11.在一个不透明的布袋中装有两个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是45,则n= .三、解答题(共49分)12.(12分)端午节放假期间,小明和小华准备到景点A 、景点B 、景点C 、景点D 中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)小明选择去景点A 游玩的概率为 ;(2)用画树状图或列表的方法求小明和小华都选择去景点B 游玩的概率.13.(12分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号分别为A,B,C,D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是 ;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用画树状图或列表的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D 表示).14.(12分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有两个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则如下:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用画树状图法或列表法说明理由.15.(13分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小强从布袋里随机取出一个小球,记下数字为x,小芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y).(1)利用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.第三章测评卷一、选择题1.D2.A3.B4.B5.A6.C7.D二、填空题8.149.2310.91611.8三、解答题12.(1)14(2)画树状图或列表略.小明和小华都选择去景点B游玩的概率为116.13.(1)14(2)画树状图或列表略,16.14.此游戏规则对双方不公平.理由略.15.(1)画树状图或列表略,点M(x,y)所有可能的坐标为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)14.。
度第一学期北师大版九年级数学_第三章_概率的进一步认识_单元过关检测试题(有答案)
2019-2019学年度第一学期北师大版九年级数学第三章概率的进一步认识单元过关检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 9 小题,每小题 3 分,共 27 分)1.甲、乙两盒中各放入分别写有数字,,的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是的概率是()A. B. C. D.2.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有个,黄、白色小球的数目相同、为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是()A.个B.个C.个D.个3.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A. B. C. D.4.某人在做抛掷硬币试验中,抛掷次,正向朝上有次(正面朝上的频率是),则下列说法正确的是()A.(正面朝上)一定等于B.(正面朝上)一定不等于C.多投一次,(正面朝上)更接近D.投掷次数逐渐增加,(正面朝上)稳定在附近5.连续两次抛掷一枚硬币,第一次正面朝上,第二次反面朝上的概率是()A. B. C. D.6.假定鸡蛋孵化后,鸡雏为雌或雄的羝概率相同,如果两个鸡蛋全部成功孵化,则两只鸡雏均为雄鸡的槪率是()A. B. C. D.7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球次,其中次摸到黑球,估计盒中大约有白球()A.个B.个C.个D.个8.如图,两个转盘分别被分成等份和等份,分别标有数字、、和、、、,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为或的概率是()A. B. C. D.9.小王家新锁的密码是位数,他记得前两位数是,后两位数是,中间两位数忘了,那么他一次按对的概率是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)10.在一个不透明的口袋中有个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在左右,则口袋中的白球大约有________个.11.一个不透明的文具袋装有型号完全相同的支红笔和支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是________.12.两个装有乒乓球的盒子,其中一个装有个白球个黄球,另一个装有个白球个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.13.一水塘里有鲤鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为,则水塘有鲢鱼________尾.14.在一个不透明的盒子中装有个小球,他们只有颜色上的区别,其中有个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于,那么可以推算出大约是________.15.一个布袋里装有只有颜色不同的个球,其中个红球,个白球.从中任意摸出个球,记下颜色后放回,搅匀,再任意摸出个球,摸出的个球都是红球的概率是________.16.分别从、、、四个数中随机取两个数,第一个作为十位数字,第二个作为个位数字,组成一个两位数,则这个两位数是的倍数的概率是________.17.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.18.从下面的张牌中,任意抽取两张.其点数和是奇数的概率是________.第 1 页19.小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是________. 三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )20.把 张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出 张.请用列表或画树状图的方法表示出上述实验所有可能结果. 求这 张图片恰好组成一张完整风景图概率. 21.对一批西装质量的抽检情况如下:从这批西装中任选一套是正品的概率是多少? 若要销售这批西装 件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装? 22.小华有 张卡片,小明有 张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为 的概率. 23.在一个袋子中装有大小相同的 个小球,其中 个蓝色, 个红色. 从袋中随机摸出 个,求摸到的是蓝色小球的概率; 从袋中随机摸出 个,用列表法或树状图法求摸到的都是红色小球的概率; 在这个袋中加入 个红色小球,进行如下试验:随机摸出 个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在 ,则可以推算出 的值大约是多少? 24.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共 只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:“摸到白球”的概率的估计值是________(精确到 );试估算口袋中黑、白两种颜色的球各有多少只?25.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验. 他们在一次实验中共掷骰子 次,试验的结果如下: ②小红说:“根据实验,出现 点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.26.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在 , 、 、 , 这五个数字中:请用列表法或树状图表示出他们写和猜的所有情况;如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率; 如果甲写的数字记为 ,把乙猜的数字记为 ,当他们写和猜的数字满足 ,则称他们“心有灵犀”,求他们“心有灵犀”的概率. 答案 1.B 2.B 3.C 4.D 5.D 6.C 7.A 8.C 9.D 10. 11.12.13. 14.15.16.17.18.19.20.解:用、表示一张风景图片被剪成的两半,用、表示另一张风景图片被剪成的两半,画树状图为:共有种等可能的结果数,其中张图片恰好组成一张完整风景图的结果数为,所以张图片恰好组成一张完整风景图的概率.21.解:答案为:;;;;;;从这批西装中任选一套是正品的概率是;为了方便购买次品西装的顾客前来调换,所进西装的件数(件).22.解:或∴ (抽取的两张卡片上的数字和为).23.解: ∵ 个小球中,有个蓝色小球,∴ (蓝色小球);画树状图如下:共有种情况,摸到的都是红色小球的情况有种,(摸到的都是红色小球); ∵大量重复试验后发现,摸到红色小球的频率稳定在,∴摸到红色小球的概率等于,∴,解得:.24.由摸到白球的概率为,所以可估计口袋中白种颜色的球的个数(个),黑球(个).答:黑球个,白球个.25.解: ① ;②说法是错误的.在这次试验中,“ 点朝上”的频率最大并不能说明“ 点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率..26.解:如图所示:则他们“心灵相通”的概率为:.根据甲写的数字记为,把乙猜的数字记为,当他们写和猜的数字满足,则称他们“心有灵犀”,满足条件的事件是,可以列举出所有的满足条件的事件,第 3 页①若,则,;②若,则,,;③若,则,,;④若,则,,;⑤若,则,;总上可知共有种结果,∴他们“心有灵犀”的概率为:.。
北师大九年级上《第三章概率的进一步认识》单元测试题(含答案)
第三章 概率的进一步认识 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.三张外观相同的卡片上分别标有数字1,2,3,从中随机一次性抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A.13B.23C.16D.192.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是( )A.12B.13C.16D.193.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A.16B.29C.13D.234.有3个整式x ,x +1,2,先随机取一个整式作为分子,再从余下的整式中随机取一个作为分母,恰能组成分式的概率是( )A.13B.12C.23D.565.在物理课上,某实验的电路图如图1所示,其中S 1,S 2,S 3表示电路的开关,L 表示小灯泡,R 为保护电阻.若闭合开关S 1,S 2,S 3中的任意两个,则小灯泡L 发光的概率为( )图1A.16B.13C.12D.236.如图2,两个转盘分别自由转动一次,当它们都停止转动时,两个转盘的指针都指向2的概率为( )图2A.12B.14C.18D.1167.在一个不透明的口袋里装了只有颜色不同的黄球、白球若干只.某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复这一过程.下表是活动中的一组数据,则摸到黄球的概率约是( ) 摸球的次数n100 150 200 500 8001000摸到黄球的次数m 52 69 96 266 393 507摸到黄球的频率m n0.520.460.480.530.490.51A.0.4 B .0.5 C .0.6 D .0.78.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是( )试验次数100200300500800 1000 2000频率0.3650.3280.330.3340.3360.3320.333A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率9.为了估计不透明的袋子里装有多少个球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有球( )A .10个B .20个C .100个D .121个10.有A ,B 两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷骰子A ,朝上的数字记作x ;小张掷骰子B ,朝上的数字记作y .在平面直角坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王、小张各掷一次所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A.23B.512C.12D.712 请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分 答案第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.一个不透明的袋子中装有2个红球,1个绿球,这些球除颜色不同外其余都相同,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个小球,则一次摸到红球一次摸到绿球的概率为________.12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为________.13.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).14.点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是________.15.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取到白色棋子的概率是25.若再往盒中放进3颗黑色棋子,则取到白色棋子的概率变为14,原来围棋盒中有白色棋子______颗.16.如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.三、解答题(共72分)17.(6分)不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支.(1)从文具袋中随机抽取1支笔芯,求恰好抽到的是红色笔芯的概率;(2)从文具袋中随机抽取2支笔芯,求恰好抽到的都是黑色笔芯的概率.(请用画树状图法或列表法求解)18.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出1个球,放回盒中再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:无记号有记号球的颜色黄红色黄色红色色摸到的次18 28 2 2数由上述摸球试验可推算:(1)盒中红球、黄球占总球数的百分比分别是多少?(2)盒中有红球多少个?19.(8分)甲、乙、丙三名同学站成一排进行毕业合影留念,请用列表或画树状图的方法列出所有可能的情形,并求出甲、乙两人相邻的概率是多少.20.(8分)九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的价格为2元/支,铅笔的价格为1元/支,且每种笔至少买一支.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.21.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明将“求助”留在第二题使用,请用画树状图或者列表的方法来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”?22.(10分)小明、小芳做一个“配色”的游戏.如图3是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或画树状图的方法表示此游戏所有可能出现的结果;(2)此游戏规则对小明、小芳公平吗?试说明理由.图323.(12分)一个暗箱中有大小相同的1个黑球和n个白球(记为白1、白2、…、白n),每次从中取出一个球,取到白球得1分,取到黑球得2分,甲从暗箱中有放回地依次取出2个球,而乙从暗箱中一次性取出2个球.(1)若n=2,分别求甲取得3分的概率和乙取得3分的概率;(请用“画树状图”或“列表”等方式给出分析过程)(2)若乙取得3分的概率小于120,则白球至少有多少个?(请直接写出结果)24.(12分)五一假期,某公司组织部分员工分别到A,B,C,D 四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A 地的车票的概率是多少?(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用列表或画树状图的方法分析这个规则对双方是否公平.图4详解详析1.A [解析] 列表如下:第一张结果 第二张 1231 2,1 3,12 1,23,2 31,3 2,3卡片上的数字都小于3的情况有2种,∴P(两张卡片上的数字都小于3)=26=13.解题突破从m(m >2)张卡片中一次性抽出两张卡片,可以理解为先抽出一张,再从剩下的里面抽出一张,即属于“抽出不放回”试验问题,可见为两步试验问题,可用列表法求解.2.B [解析] 列表如下:小睿小波 数诗陶数 数,数 数,诗 数,陶 诗 诗,数 诗,诗 诗,陶 陶陶,数 陶,诗 陶,陶共有9有3种,所以其概率为39=13.故选B .3.C [解析] 画树状图如下:一共有6种情况,“一红一黄”的情况有2种, ∴P(一红一黄)=26=13.故选C .4.C [解析] 画树状图如下:共有6种等可能的结果,其中恰能组成分式的结果数为4种, 所以恰能组成分式的概率为46=23.5.B [解析] 列表如下:S 1 S 2S 3S 1(S 1,S 2)(S 1,S 3) S 2 (S 2,S 1)(S 2,S 3)S 3 (S 3,S 1)(S 3,S 2)共有613L 才发光,即小灯泡L 发光的概率是26=13.故选B .6.D [解析] 列表如下:1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)的只有1种结果,∴两个转盘的指针都指向2的概率为116.故选D .7.B [解析] 观察表格得:通过多次摸球试验后发现摸到黄球的频率稳定在0.5左右,则P(摸到黄球)=0.5.8.B [解析] A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C .抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D .抛一枚硬币,出现反面的概率为12,不符合题意.故选B .9.C10.B [解析] 画树状图如下:∵共有36种等可能的结果,小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的有15种情况,∴小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的概率是1536=512.故选B .11.49[解析] 画树状图如下:∵共有9种等可能的结果,一次摸到红球一次摸到绿球的有4种情况,∴一次摸到红球一次摸到绿球的概率是49.12.16[解析] 画树状图如下: ∵共有12种等可能的结果,点落在第一象限的可能是(1,2),(2,1)两种情形,∴该点在第一象限的概率为212=16.13.公平 [解析] 两人写的数共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数的概率为24=12,一奇一偶的概率也为24=12,所以这个游戏对双方公平. 14.15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15.15.216.17 [解析] 依题意知m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有3×7=21(种).∵方程x 2+nx +m =0有两个相等的实数根,∴Δ=n 2-4m =0,有(0,0),(1,2),(1,-2)三种可能,∴关于x 的方程x 2+nx +m =0有两个相等实数根的概率是321=17. 17.[解析] (1)由不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到的都是黑色笔芯的情况,再利用概率公式即可求得答案.解:(1)∵不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,∴恰好抽到的是红色笔芯的概率为33+2=35.(2)画树状图如下:∵共有20种等可能的结果,恰好抽到的都是黑色笔芯的只有2种情况,∴恰好抽到的都是黑色笔芯的概率为220=110.18.解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,所以红球所占百分比为20÷50×100%=40%,黄球所占百分比为30÷50×100%=60%.答:盒中红球占总球数的40%,黄球占总球数的60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100,所以红球有40%×100=40(个).答:盒中有红球40个. 19.解:用树状图分析如下:∵一共有6种等可能的情况,甲、乙两人相邻的有4种情况, ∴甲、乙两人相邻的概率是46=23.20.解:(1)设买圆珠笔x 支,铅笔y 支, 则2x +y =15,所以y =15-2x.当x =1时,y =13; 当x =2时,y =11; 当x =3时,y =9; 当x =4时,y =7; 当x =5时,y =5; 当x =6时,y =3; 当x =7时,y =1. 所以共有7种购买方案.(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与铅笔数量相等)=17.21.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是13.故答案为:13.(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示第二道单选题剩下的3个选项.画树状图如下:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为19.(3)∵如果在第一题使用“求助”,小明顺利通关的概率为18,如果在第二题使用“求助”,小明顺利通关的概率为19,∴建议小明在第一题使用“求助”. 解题突破(1)直接利用概率公式求解;(2)此问属于两次试验概率问题,注意第二次试验时只有三种可能;(3)比较第一题使用“求助”小明顺利通关的概率与第二题使用“求助”小明顺利通关的概率的大小,把“求助”用在通关概率大的那一次上.22.解:(1)用列表法将所有可能出现的结果表示如下:转盘B转盘A 红蓝黄红 (红,红) (红,蓝) (红,黄) 蓝 (蓝,红) (蓝,蓝) (蓝,黄) 红 (红,红) (红,蓝) (红,黄) 黄(黄,红) (黄,蓝) (黄,黄)(2)不公平.理由:上面等可能出现的12种结果中,有3种情况能配成紫色,故配成紫色的概率是312,即小芳获胜的概率是14;但只有2种情况能配成绿色,故配成绿色的概率是212,即小明获胜的概率是16.而14>16,故小芳获胜的可能性大,这个“配色”游戏规则对双方是不公平的.23.解:(1)得3分,即为取到黑球、白球各1个.甲从暗箱中有放回地依次取出2个球,画树状图如下:∴甲取得3分的概率为49;乙从暗箱中一次性取出2个球,画树状图如下:∴乙取得3分的概率=46=23.(2)若乙取得3分的概率小于120,则2n +1<120,∴n >39,∴白球至少有40个.24.解:(1)设去D 地的车票有x 张,则x =(x +20+40+30)×10%,解得x =10.答:去D 地的车票有10张. 补全条形统计图如图所示.(2)小胡抽到去A 地的车票的概率为2020+40+30+10=15.答:员工小胡抽到去A 地的车票的概率是15.(3)列表如下: 小李掷得的数字小王掷得的数字1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4) 4(4,1)(4,2)(4,3)(4,4)李掷得着地一面的数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),∴小王掷得着地一面的数字比小李掷得的着地一面数字小的概率为616=38.则小王掷得着地一面的数字不小于小李掷得的着地一面数字的概率为1-38=58.∵58≠38,∴这个规则对双方不公平.。
北师大版九年级数学上册第三章概率的进一步认识单元测试题(含答案)
参考答案
一、选择题(每小题 3 分,共 30 分)
1.在一个不透明的盒子中装有 12 个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一 个球是白球的概率是13,则黄球的个数为( C )
A.18
B.20
C.24
D.28
5 / 11
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
20.(10 分)有 3 张形状材质相同的不透明卡片,正面分别写有 1、2、-3,三个数字.将这三张卡片背面朝上 洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数 y=kx+b 中 k 的值;第二次从余下的两 张卡片中再随机抽取一张,上面标有的数字作为 b 的值.
(1)k 的值为正数的概率是________; (2)用画树状图或列表法求所得到的一次函数 y=kx+b 的图象经过第一、三、四象限的概率.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
北师大版九年级数学上册第三章概率的进一步认识单元测试题
(时间:120 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分)
1.在一个不透明的盒子中装有 12 个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一 个球是白球的概率是13,则黄球的个数为( )
A.18
B.20
C.24
D.28
2.在一个口袋中有 4 个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放 回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )
1
3
1
A.16
B.16
C.4
5 D.16
3.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后, 指针所指颜色相同的概率为( )
北师大版九年级数学上册 第3章 《概率的进一步认识》 单元测试卷 含答案
北师版数学九年级上册第三章概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A.19 B.16 C.13 D.232. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( ) A.112 B.110 C.16 D.253. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5254. 小明有2件上衣,分别为红色和蓝色;有3条裤子,其中2条为蓝色,1条为棕色.小明任意拿出1件上衣和1条裤子穿上,则小明穿的上衣和裤子恰好都是蓝色的概率是( ) A.13 B.12 C.23 D.345. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是( ) A.19 B.127 C.59 D.136. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) A.12 B.13 C.59 D.497. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.128.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A.12B.13C.23D.569.小兰和小潭分别用掷A ,B 两枚正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( )A.16B.118C.112D.1910. 如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ) A.12 B.13 C.14 D.15第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.12. 有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为________.13. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为_________.14. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.15.2018年10月14日,韵动中国·2018广安国际红色马拉松赛激情开跑.上万名跑友在小平故里展开激烈的角逐.某校从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是_______.16.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是_______.17.如图所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是_________18.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是________三.解答题(共8小题,66分)19.(6分) 一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.20.(6分) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图或列表的方法给出分析过程)21.(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙同学的方案公平吗?(只回答,不用说明理由).22.(8分)有2部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择1部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.24.(8分) 在四张背面完全相同的纸牌A ,B ,C ,D 中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.25.(10分) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.26.(12分) 小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:1-5CACAA 6-10DDABB11. 2312.41513. 4914. 100 15. 3516. 1317.12518. 2919. 解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P =39=1320. 解:列表如下:由表可知共有4种等可能的结果,其中恰好抽到由男生甲、女生丙和这位班主任一起上场比赛的情况只有1种,∴其概率为1421. 解:(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即甲同学的方案不公平(2)不公平22. 解:(1)甲选择A 部电影的概率=12(2)画树状图为:共有8种等可能的结果,其中甲、乙、丙3人选择同1部电影的结果有2种,所以甲、乙、丙3人选择同1部电影的概率为28=1423. 解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024. 解:(1)画树状图如图所示:则共有12种等可能的结果(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为212=1625. 解:(1)12(2)画树状图得:则共有12种等可能的结果.列表得:∴乙获胜的概率为51226. 解:(1)1个(2)画树状图如图,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。
北师大版九年级数学上册第三单元概率的进一步认识 检测试题 含答案
单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总10 20 30 60 90 120 180 240 330 450(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下:小亮 小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表 A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。
第一学期北师大版九年级上册数学第三章《概率的进一步认识》单元测试卷
第一学期北师大版九年级上册数学第三章《概率的进一步认识》单元测试卷二、选择题(共 10 小题,每小题 3 分,共30 分)11.分别用写有“金华”、“文明”、“城市”的字块拼句子,那么能够排成“金华文明城市”或“文明城市金华”的概率是()A.16B.14C.13D.1212.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球有4个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是()A.16B.12C.4D.313.在一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,由此可判断袋子中黑球的个数为()A.2个B.3个C.4个D.5个14.元旦联欢会上,小明、小华、小聪各准备了一个节目,若他们出场先后的机会是均等的,则按“小明-小华-小聪”顺序演出的概率是()A.6B.3C.12D.315.一个不透明的袋中装有除颜色外其余都相同的1个白球和2个黑球.先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()A.12B.13C.14D.1616.程老师要从包括小张在内的10名学生中,随机选取2名学生参加执勤,小张被选中的概率是()A.12B.14C.15D.1617.一箱灯泡的合格率是87.5%,小刚由箱中任意买一个,则他买到次品的概率是()A.124B.87.5% C.14D.1818.在一次班会活动中,男生、女生各派一个代表进行了一次摸球游戏,输方表演节目,游戏规则是:用布袋装进4个珠子,其中两个红色,两个蓝色,除颜色外其余特征相同,若同时从此袋中任取两个珠子,那么摸到都是同色珠子的就获胜,则男生表演节目的概率是()A.2B.3C.4D.619.某校决定从两名男生和三名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.1520.有A、B两只不透明口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了”细“”致“的字样,B袋中的两只球上分别写了”信“”心“的字样,从每只口袋里各摸出一只球,刚好能组成”细心“字样的概率是()A.14B.13C.23D.34三、解答题(共 6 小题,每小题 10 分,共60 分)21.一只箱子中装有红、黑两种圆珠笔共8000支,为了估计出其中红色圆珠笔的数量,随机抽出20支圆珠笔,记下其中红色圆珠笔的数量再放回,作为一次试验,重复上述试验多次,发现平均每20支圆珠笔中有5支红色圆珠笔,请你由此估计箱子中红色圆珠笔的数量.22.小华有3张卡片,小明有2张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为6的概率.23.一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.(1)当n=l时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同?________(填“相同”或“不相同”)(2)从袋中随机摸出1个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于0.25,则n的值是________;(3)当n=2时,请用列表或画树状图的方法求两次摸出的球颜色不同的概率(摸出一个球,不放回,然后再摸一个球).24.在一个不透明袋子中有1个红球和3个白球,这些球除颜色外都相同.(1)从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率;(2)在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.25.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在1,2、3、4,5这五个数字中:(1)请用列表法或树状图表示出他们写和猜的所有情况;(2)如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率;(3)如果甲写的数字记为a,把乙猜的数字记为b,当他们写和猜的数字满足|a−b|≤1,则称他们“心有灵犀”,求他们“心有灵犀”的概率.26.A口袋中装有2个分别标有数字1和2的小球,B口袋中装有3个分别标有数字3、4和5的小球.每个小球除数字外其他均相同.甲、乙两人玩游戏,从A、B两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若数字之和为奇数,则乙赢.(1)用画树状图或表格的方法求甲获胜的概率.(2)你认为这个游戏规则对甲、乙双方公平吗?请简要说明理由.答案1.92.193.164.135.206.157.9258.169.1910.1311-20: CABAB CDBBA21.解:∵每20支圆珠笔中有5支红色圆珠笔,∴箱子中红色圆珠笔占520=14,∴估计箱子中红色圆珠笔有:8000×14=2000支.22.解:或小华和小明22346675778∴P(抽取的两张卡片上的数字和为6)=26=13.23.相同,3;(3)当n=2时,即不透明袋子中有1个红球和2个白球,画树状图为:共有6种等可能的结果数,其中两次摸出的球颜色不同的结果数为4,所以两次摸出的球颜色不同的概率=46=23.24.解:(1)树状图如下所示:由树形图可知所有可能情况共12种,其中2个球颜色不同的数目有6种,所以2个球颜色不同的概率=612=12;(2)由题意可得:3+x4+x=0.95,解得:x=16,经检验x=16是原方程的解,所有x的值为16.25.解:(1)如图所示:甲乙12345 1(1, 1)(1, 2)(1, 3)(1, 4)(1, 5) 2(2, 1)(2, 2,)(2, 3)(2, 4)(2, 5) 3(3, 1)(3, 2)(3, 3)(3, 4)(3, 5) 4(4, 1)(4, 2)(4, 3)(4, 4)(5, 4) 5(5, 1)(5, 2)(5, 3)(5, 4)(5, 5) (2)根据图表即可得出,他们写和猜的数字相同的情况一共用5种,则他们“心灵相通”的概率为:525=15.(3)根据甲写的数字记为a,把乙猜的数字记为b,当他们写和猜的数字满足|a−b|≤1,则称他们“心有灵犀”,满足条件的事件是|a−b|≤1,可以列举出所有的满足条件的事件,①若a =1,则b =1,2;②若a =2,则b =1,2,3;③若a =3,则b =2,3,4;④若a =4,则b =3,4,5;⑤若a =5,则b =4,5;总上可知共有2+3+3+3+2=13种结果, ∴他们“心有灵犀”的概率为:1325.26.解:(1)画树状图得:数字之和共有6种可能情况,其中和为偶数的情况有3种,和为奇数的情况有3种.∴P (甲获胜)=12;(2)由(1)可知甲获胜的概率为12,而P (乙获胜)=12,故游戏对甲、乙双方是公平的.。
度第一学期北师大版九年级数学上册_第三章_概率的进一步认识_单元测试题
度第一学期北师大版九年级数学上册_第三章_概率的进一步认识_单元测试题21.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.22.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.(1)请用画树状图或列表的方法列出所有可能出现的结果;(2)求两次都摸到白球的概率.23.一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.(1)当n=l时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同?________(填“相同”或“不相同”)(2)从袋中随机摸出1个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于0.25,则n的值是________;(3)当n=2时,请用列表或画树状图的方法求两次摸出的球颜色不同的概率(摸出一个球,不放回,然后再摸一个球).24.把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.25.端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.26.小明想本周末去看电影,爸爸建议通过一个游戏决定小明能否去,规则为:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,√2,2√2(每张卡片除了上面的实数不同以外其余均相同).爸爸让小明从中随机取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能去看电影的概率;(2)小明想了想,和爸爸重新约定游戏规则,自己从盒子中随机抽取两次,每次随机抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就去,否则就不去,请你用列表或树状图法求出按照此规则小明本周末能看电影的概率.答案1.A2.A3.B4.C5.C6.A7.C8.C9.A10.C11.2012.1313.10014.51615.1516.1417.25182918.1219.1220.2321.解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:14;(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:212=16.22.解:(1)画树状图得:则共有9种等可能的结果;(2)∵两次都摸到白球的有4种情况,∴两次都摸到白球的概率为:49.23.相同,3;(3)当n=2时,即不透明袋子中有1个红球和2个白球,画树状图为:共有6种等可能的结果数,其中两次摸出的球颜色不同的结果数为4,所以两次摸出的球颜色不同的概率=46=23.24.画树状图如下:由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是奇数的有4种结果,∴两次抽取的卡片上的数字都是奇数的概率为49.25.记两个是大枣味的粽子分别为A1,A2,两个火腿味的分别为B1,B2.树状图如图所示,由(1)可知,一共有12种可能,小红拿到的两个粽子刚好是同一味道有4种可能,所以P同一味道=412=13.26.解:(1)小明能去看电影的概率=13;(2)画树状图为:(用A表示3,B表示√2,C表示2√2)共有9种等可能的结果数,抽取的两数之积是有理数的结果数为5,所以按照此规则小明本周末能看电影的概率=59.。
度第一学期北师大版九年级数学上册_第三章_概率的进一步认识_单元评估检测试题
2019-2019学年度第一学期北师大版九年级数学上册第三章概率的进一步认识单元评估检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.如图,图中的两个转盘分别被均匀地分成个和个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A. B. C. D.2.一个不透明的盒子里有个除颜色外其它完全相同的小球,其中有个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在,那么可以推算出大约是()A. B. C. D.3.月日为中国旅游日,宁波推出“读万卷书,行万里路,游宁波景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从奉化溪口、象山影视城、宁海浙东大峡谷中随机选择一个地点;下午从宁波动物园、伍山石窟、东钱湖风景区中随机选择一个地点游玩,则王先生恰好上午选中宁海浙东大峡谷,下午选中东钱湖风景区这两个地的概率是()A. B. C. D.4.一个不透明的袋子中装有张卡片,卡片上分别标有数字,,,,它们除所标数字外完全相同,摇匀后从中随机摸出两张卡片,则两张卡片上所标数字之积是正数的概率是()A. B. C. D.5.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A. B. C. D.6.茗茗做抛掷硬币的游戏,抛一枚硬币三次,出现两正一反的概率是()A. B. C. D.7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则口袋中白色球的个数可能是()A. B. C. D.8.在同一平面内,从① ,② ,③ ,④ .这四个条件中任选两个能使四边形是平行四边形的选法有()A.种B.种C.种D.种9.某口袋里现有个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验次,其中有个红球,估计绿球个数为()A. B. C. D.10.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.随机掷两枚硬币,落地后全部正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的个小球,其中有个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球,…通过多次试验后,发现摸到黑球的频率稳定于,则的值大约是________.13.有红黄蓝三种颜色的小球各一个,它们除颜色外完全相同,将这三个小球随机放入编号为①②③的盒子中,若每个盒子放入一个小球,且只放入一个小球,则黄球恰好被放入③号盒子的概率为________.14.一个不透明的口袋里有个黑球和若干个黄球,从口袋中随机摸出一球记下其第 1 页颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.15.标有,,,,,六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为,朝下一面的数为,得到平面直角坐标系中的一个点.已知小华前二次掷得的两个点所确定的直线经过点,则他第三次掷得的点也在这条直线上的概率为________.16.同学们,你们都知道猜“石头、剪子、布”的游戏吧!如果你和某同学两人做这个游戏,随机出手一次,你获胜的概率是________.17.小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是________.18.一只不透明的袋子中装有个白球和个红球,这些球除颜色外都相同.搅匀后,从中任意摸出一个球,恰好是红球的概率是________;搅匀后,从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.①求两次都摸到红球的概率;②经过了次“摸球-记录-放回”的过程,全部摸到红球的概率是________.19.学校安排三辆车,组织九年级学生团员去敬老院慰问老人,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在一个不透明的盒子里,装有四个分别写有数字、、、的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,然后搅匀,再从盒子里随机取出一个乒乓球,记下数字.请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;求两次取出乒乓球上的数字之和等于的概率.22.在一个箱子里放有个白球和个红球,它们除颜色外其余都相同.判断下列甲乙两人的说法,认为对的在后面括号内答“ ”,错的打“ ”.甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件________;乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球________;小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为,你认同吗?请画树状图或列表计算说明.23.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有、、三种型号,乙品牌有、两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.写出所有的选购方案(用列表法或树状图);如果在上述选购方案中,每种方案被选中的可能性相同,那么型器材被选中的概率是多少?24.在一个不透明的盒子里装有三个分别写有数字,,的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于的概率.25.用如图所示的,两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.26.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购物满元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得元的购物券.求转动一次转盘获得购物券的概率;转转盘和直接获得购物券,你认为哪种方式对顾客更合算?答案1.B2.D3.A4.A5.A6.B7.C8.B9.B10.C11.12.13.14.15.16.17.18.. ①画树状图得:∵共有种,它们出现的可能性相同.所有的结果中,满足“两次都是红球”(记为事件)的结果只有种,∴;②∵经过了次“摸球-记录-放回”的过程,共有种等可能的结果,全部摸到红球的有种情况,∴全部摸到红球的概率是:.故答案为:.19.20.21.解:画树形图得:所以两次取出乒乓球上的数字相同的概率由可知:两次取出乒乓球上的数字之和等于的概率.不认同.画树状图得:∵共有种等可能的结果,摸出的球中有白球的有种情况,∴ (摸出的球中有白球).故不认同.23.解:如图所示:所有的情况有种,型器材被选中情况有中,概率是.24.解:第 3 页(两数和大于)25.解:游戏不公平,理由如下:游戏结果分析如下:“ ”表示配成紫色,“ ”表示不能够配成紫色.(配紫色),(没有配紫色),∵,∴这个游戏对双方不公平.26.解:整个圆周被分成了份,转动一次转盘获得购物券的有种情况,所以转动一次转盘获得购物券的概率;根据题意得:转转盘所获得的购物券为:(元),∵ 元元,∴选择转盘对顾客更合算.。
度第一学期北师大九年级数学上册:第三章概率的进一步认识单元测试卷及答案
度第一学期北师大九年级数学上册:第三章概率的进一步认识单元测试卷及答案A.m n 一定等于12B.m n 一定不等于12C.m n 一定大于12D.投掷的次数很多时,m n 稳定在12附近7.鹰城中学“春雨文学社”为了便于开展工作,社长将全部社员随机分成4组进行活动,则小明和小华被分在一组的概率是( )A.23B.13C.12D.14 8.甲、乙两人进行象棋比赛,比赛规则为3局2胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是( )A.12B.23C.14D.34 9.一箱灯泡的合格率是87.5%,小刚由箱中任意买一个,则他买到次品的概率是( )A.124B.87.5%C.14D.18 10.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出两个球都是绿球的概率是()A.4 7B.310C.35D.23二、填空题(共10 小题,每小题 3 分,共30 分)11.“六•一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.12.同时抛掷两枚均匀的“硬币”,出现“两个正面朝上”的机会是________;出现“一正一反”的机会是________.13.在一次摸球试验中,袋中共有红球白球50个,在10次摸球实验中,有4次摸到红球,则摸到红球的概率是________.14.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为________.15.学校组织团员同学参加实践活动,共安排2辆车,小王和小李随机上了一辆车,结果他们同车的概率是________.16.在一个不透明的布袋中装有除颜色外其余都相同的红、黄、蓝球共200个,墨墨通过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在25%和55%,则口袋中可能有黄球________个.17.某商场为了促销,凡购买1000元商品的顾客获抽奖券一张.抽奖活动设置了如下的电翻奖牌,一张抽奖券只能有一次机会在9个数字中选中一个翻牌,其对应的反面就是奖品(重新启动会自动随机交换位置),有两张抽奖券翻奖牌,两张抽奖券是“谢谢参与”的概率是________.翻奖牌正面123456789翻奖牌反面一台电风扇一台收音机谢谢参与谢谢参与一副球拍一个U盘两张电影票谢谢参与一副球拍18.在研究抛掷分别标有1,2,3,4,5,6的质地均匀的正六面体骰子时,提出了一个问题:连续抛掷三次骰子,正面朝上的点数是三个连续整数的概率有多大假设下表是几位同学抛掷骰子的实验数据.请你根据这些数据估计上面问题的答案大约是________.(0.09∼0.095之间的任意一个数值答案有多个)12345678投掷情况投掷次数100150200250300350400450正面朝上的点数是1012202225333641三个连续整数的次数19.某校食堂有A、B两层,学生可以任意选择楼层就餐,则甲乙丙三名学生中至少有两人在同一楼层就餐的概率是________.20.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是________.三、解答题(共 6 小题,每小题10 分,共60 分)21.一个不透明的布袋里装有3个完全相同的小球,每个球上面分别标有数字−1、0、1,小明先从布袋中随机抽取一个小球,然后放回搅匀,再从布袋中随机抽取一个小球,求第一次得到的数与第二次得到的数绝对值相等的概率(请用“画树状图”或“列表”等方法写出分析过程).22.一个口袋中有除颜色外其余均相同的12个白球和若干个黑球,在不允许将球倒出来数的情况下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,求口袋中黑球的个数.23.为了估计某鱼塘中的鱼数,养鱼者首先从鱼塘中捕获100条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,经过一段时间后,再从鱼塘中打捞出若干条,分别数出标有记号的条数.进行重复试验,试验数据如下表:4080120160200240280320每次打捞鱼数(n)43589131416每次打捞鱼中带记号鱼数(m)m0.1000.0380.0420.0500.0440.0540.0500.050 n(1)根据表中的数据,频率m的值稳定在哪个常数n附近?(结果用小数表示,精确到0.01)(2)请你估算出这个鱼塘中鱼数有多少条?24.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1、2、3的小球,乙口袋中装有分别标有数字4、5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.请用列表或树状图的方法(只选其中一种)求出两个数字之和能被3整除的概率.25.在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图(树形图)法求小明两次摸出的球颜色不同的概率.26.对某工厂生产的大批同类产品进行合格率检查,分别抽取5件、10件、60件、150件、600件、900件、1200件、1800件,检查结果如下表所示:抽取的件数/n 5106015060090012001800合格件数/ m 5853*********1091163.1合格频10.80.8830.8730.9130.9110.9090.906率(m/n)求该厂产品的合格率.答案1.B2.D3.C4.D5.A6.D7.D8.B9.D10.B11.20012.141 213.0.414.11615.1216.4017.1918.0.0919.120.1221.解:树状图如下:所有可能出现的结果共有9种,其中满足条件的结果有5种∴P(所得的两数的绝对值相等)=5.9或列表格如下:第一次第二次−101−1(−1, −1)(−1, 0)(−1, 1)0(0, −1)(0, 0)(0, 1)1(1, −1)(1, 0)(1, 1)所有可能出现的结果共有9种,其中满足条件的结果有5种,∴P(所得的两数的绝对值相等)=59,.22.解:∵(0.4+0.1+0.2+0.1+0.2)÷5= 0.2,∴口袋中球的总数为:12÷0.2=60,∴口袋中共有黑球:60−12=48个.故口袋中黑球一共48个.23.解:(1)mn的值稳定在0.05附近.(2)100÷0.05=2000(条),∴估计这个鱼塘中有2000条鱼.24.解:画树状图为:共有6种等可能的结果数,其中两个数字之和能被3整除的结果数为2,所以两个数字之和能被3整除的概率=26=13.25.解:画树状图得:∵共有9种等可能的结果,小明两次摸出的球颜色不同的有6种情况,∴小明两次摸出的球颜色不同的概率为:69=23.26.解:从上表的数据可看到,当抽取件数(即重复试验次数)n越大,“一件产品合格”事件发生的频率mn就越接近常数0.9,所以“一件产品合格”的概率约为0.9,我们通常说该厂产品的合格率为90%.。
度第一学期北师大版九年级上数学_第三章_概率的进一步认识_单元测试题
第 1 页2021-2021学年度第一学期北师大版九年级数学第三章 概率的进一步认识 单元测试题考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题〔共 10 小题 ,每题 3 分 ,共 30 分 〕1.在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全一样.小明通过屡次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,那么口袋中红色球可能有〔 〕 A.5个 B.10个 C.15个 D.45个2.在一个袋子中装有4个黑球和假设干个白球,每个球除颜色外都一样,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,那么估计袋子中白球的个数大约是〔 〕 A.12 B.16 C.20 D.303.某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是〔 〕 A.12B.13C.14D.164.在课外活动时间,小王、小丽、小华做“互相踢毽子〞游戏,毽子从一人传到另一人就记为踢一次.假设从小丽开场,经过两次踢毽后,毽子踢到小华处的概率是〔 〕 A.14B.13C.12D.165.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上〞的频率约为0.44,那么可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上〞的概率约为〔 〕 A.0.22 B.0.44 C.0.50 D.0.566.同时投掷2颗均匀的股子,朝上一面点数的和是偶数的概率是〔 〕A.0B.14C.12D.1 7.某人在做掷硬币实验时,投掷m 次,正面朝上有n 次〔即正面朝上的频率是p =nm 〕.那么以下说法中正确的选项是〔 〕A.P 一定等于12 B.P 一定不等于12C.多投一次,P 更接近12 D.投掷次数逐渐增加,P 稳定在12附近8.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均一样,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,那么两次都摸到红球的概率是〔 〕 A.25B.23C.45D.4259.小明与两位同学进展乒乓球比赛,用“手心、手背〞游戏确定出场顺序.设每人每次出手心、手背的可能性一样.假设有一人与另外两人不同,那么此人最后出场.三人同时出手一次,小明最后出场比赛的概率为〔 〕 A.12B.13C.14D.1510.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,那么两个骰子向上的一面的点数和为8的概率为〔 〕 A.19B.536C.16D.736二、填空题〔共 10 小题 ,每题 3 分 ,共 30 分 〕 11.某同学练习定点投篮时记录的结果如表:那么这位同学投篮一次,投中的概率约是________〔结果保存小数点后一位〕. 12.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是________.13.在一次统计中,调查英文文献中字母E 的使用率,在几段文献,统计字母E 的使用数据得到以下表中局部数据:(1)请你将下表补充完好.加,这种规律愈加明显,所以估计字母E 在文献中使用概率是________.14.如图,一方形花坛分成编号为①、②、③、④四块,现有红、黄、蓝、紫四种颜色的花供选种.要求每块只种一种颜色的花,且相邻的两块种不同颜色的花,假如编号为①的已经种上红色花,那么其余三块不同的种法有________ 种.15.国庆节期间,小红的妈妈经营的玩具店进了一纸箱除颜色外都一样的散装塑料球共 1000个,小红将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…屡次重复上述过程后,发现摸到红球的频率逐渐稳定在0.3,由此可以估计纸箱内红球的个数约是________个.16.一不透明的布袋中放有红、黄球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回袋中摇匀,再摸出一个球,小明两次都摸出红球的概率是________.17.一个口袋里有25个球,其中红球、黑球、黄球假设干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有________个.18.在平面直角坐标系中有A(−1, 2),B(1, 2)两点,现从(−2, −2)、(2, 6)、(1, −2)、(0, 6)四点中,任选两点作为C、D,那么以A、B、C、D四个点为顶点所组成的四边形中是平行四边形的概率是________.19.在同样条件下对某种小麦种子进展发芽实验,统计发芽种子数,获得如下频数分布表:20.你喜欢玩游戏吗?现请你玩一个转盘游戏.如下图的两上转盘中指针落在每一个数字上的时机均等,现同时自由转动甲、乙两个转盘,转盘停顿后,指针各指向一个数字,用所指的两个数字作乘积.所有可能得到的不同的积分别为________;数字之积为奇数的概率为________.三、解答题〔共 6 小题,每题 10 分,共 60 分〕21.在一个不透明的箱子里,装有2个红和2个黄球,它除了颜色外均一样.(1)随机地从箱子里取出1个球,那么取出红球的概率是多少?(2)小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规那么如下:随机地从该箱子里同时取出2个球,假设两球颜色一样,小明去;假设两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进展分析.22.本校有A、B两个餐厅,甲、乙两名学生各自随机选择其中一个餐厅用餐,请用列表或画树状图的方法解答:(1)甲、乙两名学生在同一餐厅用餐的概率;(2)甲、乙两名学生至少有一人在B餐厅的概率.23.小颖有20张大小一样的卡片,上面写有1∼20这20个数字,她把卡片放在一个盒子中搅匀,(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?24.如下图,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、−3、−4、假设将转盘转动两次,每一次停顿转动后,指针指向的扇形内的数字分别记为a、b〔假设指针恰好指在分界限上,那么该次不计,重新转动一次,直至指针落在扇形内〕.请你用列表法或树状图求a与b的乘积等于2的概率.25.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差异.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性________.〔填“一样〞或“不一样〞〕;(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,那么n的值是________;(3)在(2)的条件下,从袋中随机摸出两个球,请用树状图或列表方法表示所有等可能的结果,并求出摸出的两个球颜色不同的概率.26.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差异.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,假设有2个白球,小明用画树状图的方法寻求他两次摸球〔摸出一球后,不放回,再摸出一球〕的所有可能结果,如图是小明所画的正确树状图的一局部,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.答案1.C2.A3.D4.A5.D6.C7.D8.D9.C10.B11.0.812.7813.0.1230.0800.0980.1020.990.1010.10.114.2115.30016.1417.15第 3 页18.25 19.0.9520.1,2,3,4,5,6,8,9,10,12,15,16,18,20,241421.解:(1)∵在一个不透明的箱子里,装有2个红和2个黄球,它除了颜色外均一样, ∴随机地从箱子里取出1个球,取出红球的概率是:24=12;(2)不公平,如下图:一共有12中情况,两球颜色一样的有4种情况, 故P 〔小明胜〕=13,P 〔小亮胜〕=23.22.解:(1)画树形图得:∵甲、乙两名学生在餐厅用餐的情况有AB 、AA 、BA 、BB ,∴P 〔甲、乙两名学生在同一餐厅用餐〕=24=12;(2)由(1)的树形图可知P 〔甲、乙两名学生至少有一人在B 餐厅〕=34.23.解:(1)0.25,0.33,0.28,0.33,0.32,0.30,0.28,0.31,0.31,0.31;(2)观察可知频率稳定在0.31左右;(3)大量反复试验下频率稳定值即概率,故从盒中摸出一张卡片是3的倍数的概率估计是0.31;(4)从盒中摸出一张卡片是3的倍数的概率应该是为620=0.3.总共有16种结果,每种结果出现的可能性一样,其中ab =2的结果有2种, ∴a 与b 的乘积等于2的概率是18.25.一样;(2)利用频率估计概率得到摸到绿球的概率为0.25,那么11+1+n =0.25,解得n =2,故答案为2;(3)画树状图为:共有12种等可能的结果数,其中两次摸出的球颜色不同的结果共有10 种, 所以两次摸出的球颜色不同的概率=1012=56.26.2;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的球的颜色不同的结果共有10 种, 所以两次摸出的球颜色不同的概率=1012=56.。
度第一学期北师大版九年级数学上册_第三章_概率的进一步认识_单元检测试卷
度第一学期北师大版九年级数学上册_第三章_概率的进一步认识_单元检测试卷三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a ,b ,c ,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.22.(1)如图,将A 、B 、C 三个字母随机填写在三个空格中(每空填一个字母),求从左往右字母顺序恰好是A 、B 、C 的概率;(2)若在如图三个空格的右侧增加一个空格,将A 、B 、C 、D 四个字母任意填写其中(每空填一个字母),从左往右字母顺序恰好是A 、B 、C 、D 的概率为________. 23.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.24.把分别标有数字2、3、4、5的四个小球放入A 袋内,把分别标有数字13、13、14、15、16的五个小球放入B 袋内,所有小球的形状、大小、质地完全相同,A 、B 两个袋子不透明、(1)小明分别从A 、B 两个袋子中各摸出一个小球,求这两个小球上的数字互为倒数的概率;(2)当B 袋中标有16的小球上的数字变为________时(填写所有结果),(1)中的概率为14.25.一个袋子中装有3个红球和两个黄球,它们除颜色外,其他都相同. (1)求从袋中摸出一个球是红球的概率;(2)将n 个绿球(与红、黄球除颜色外,其他都相同)放入袋中摇均匀,从袋中随机摸出一个球,记下颜色,再把它放回袋中,不断重复上述的过程,共摸了500次,其中60次摸到红球.请通过计算估计n 的值.26.在一个口袋中有5个球,其中2个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球. (1)求取出一个球是红的概率;(2)把这5个小球中的两个标号为1,其余分别标号为2,3,4,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.答案1.C2.B3.A4.B5.B6.D7.B8.C9.A10.C11.812.11613.5814.稳定概率15.1316.12717.1318.1319.1820.71021.解:画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的结果数为3种, 所有小玲两次抽出的卡片上的字母相同的概率=39=13.22.124.23.口袋中约有30个白球.24.12或13或14或15.25.解:(1)从袋中摸出一个球是红球的概率=35; (2)根据题意得3n+5=60500 ∴解得:n =20∴n 的值为20.26.解:(1)∵在一个口袋中有5个球,其中2个是白球,其余为红球, ∴取出一个球是红的概率为:5−25=35;(2)画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:9.20。
度第一学期北师大版九年级数学上册_第三章_概率的进一步认识_单元检测试题
度第一学期北师大版九年级数学上册_第三章_概率的进一步认识_单元检测试题0.6200.6050.5920.6040.599摸到白球的频率nm20.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是________.三、解答题(共 6 小题,每小题10 分,共60 分)21.一个袋子中装有9个红色的小球和若干个绿色的小球,它们除颜色外,其他都相同.从口袋中随机摸出一个小球,记下颜色,把它放回袋中,不断重复上述的过程共500次,其中60次摸到红球,请估计口袋中大约有多少个绿球?22.某城市体育中考项目分为必测项目和选测项目,必测项目为:跳绳、立定跳远;选测项目为50米、实心球、踢毽子三项中任选一项.(1)每位考生将有________种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.23.把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.24.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性________.(填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是________;(3)在(2)的条件下,从袋中随机摸出两个球,请用树状图或列表方法表示所有等可能的结果,并求出摸出的两个球颜色不同的概率.25.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?26.有两个可以自由转动的质地均匀转盘A、B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,如图所示.转动转盘A、B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向下方的扇形).(1)小明同学转动转盘A,小华同学转动转盘B,他们都转了30次,结果如下:指针停靠的扇形内的数字123456出现的次数x18651015 (II)计算A盘中“指针停靠的扇形内的数字为2”的频率;(2)小明转动A盘一次,指针停靠的扇形内的数字作为十位数字,小华转动B盘一次,指针停靠的扇形内的数字作为个位数字,用列表或画树状图的方法求出“所得的两位数为5的倍数”(记为事件A)的概率.答案1.C2.C3.C4.C5.C6.D7.C8.A9.B10.D11.912.1213.380014.144515.4016.25%左右17.91618.1219.0.620.1221.解:设总共有m个球,红球的概率为60500=9m得m=75.故口袋中大约有75−9=66(个)绿球.22.3;(2)画树状图得:∵共有9种等可能的结果,小颖和小华将选择同种方案的有3种情况,∴小颖和小华将选择同种方案的概率为:39=13.23.解:(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,画树状图为:(2)共有12种等可能的结果数,其中2张图片恰好组成一张完整风景图的结果数为4,所以2张图片恰好组成一张完整风景图的概率=412=13.24.相同;(2)利用频率估计概率得到摸到绿球的概率为0.25,则11+1+n=0.25,解得n=2,故答案为2;(3)画树状图为:共有12种等可能的结果数,其中两次摸出的球颜色不同的结果共有10种,所以两次摸出的球颜色不同的概率=1012=56.25.解:(1)画树状图得:则共有16种等可能的结果;(2)∵某顾客参加一次抽奖,能获得返还现金的有6种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:616=38.26.解:(1)(I)根据表所给的数据得:x=30−18−6=6;(II)∴A盘中“指针停靠的扇形内的数字为2”的频率是:1830=35;(2)列表如下:AB123 4142434 5152535 6162636所以所得的两位数为5的倍数”(记为事件A)的概率是:P(A)=13;。
第一学期新北师大版九年级数学上册_第三章_概率的进一步认识_单元过关检测试题(有答案)
第一学期新北师大版九年级数学上册_第三章_概率的进一步认识_单元过关检测试题(有答案)D.逐渐增加实验次数,该事件发生的频率就和14逐渐接近7.为了有效保护环境,某居委会倡议居民将生活垃圾进行可回收的、不可回收的和有害的分类投放,一天,小林把垃圾分装在三个袋中,则他任意投放垃圾,把三个袋子都放错位的概率是()A.1 2B.14C.13D.238.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计9.同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的面的点数中,一个点数能被另一个点数整除的概率是()A.7 18B.34C.1118D.233610.如图,两个转盘分别被分成3等份和4等份,分别标有数字1、2、3和1、2、3、4,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为3或5的概率是()A.1 6B.14C.512D.712二、填空题(共10 小题,每小题 3 分,共30 分)11.两个装有乒乓球的盒子,其中一个装有2个白球1个黄球,另一个装有1个白球2个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有________个黄球.13.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为________.14.均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是________.15.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球4000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.6附近波动,据此可以估计黑球的个数约是________.16.从3位男同学和2位女同学中任选2人参加志愿者活动,所选2人中恰好是一位男同学和一位女同学的概率是________.17.现有点数为2,3,4,5的四张扑克牌背面朝上,洗匀后,从中任意抽出两张牌,这两张牌上的数字之和能被3整除的概率是________.18.同学们,你们都知道猜“石头、剪子、布”的游戏吧!如果你和某同学两人做这个游戏,随机出手一次,你获胜的概率是________.19.从某鱼塘捕鱼200条后做好标记放回,隔一段时间再捕30条鱼,发现其中带标记的有3条,那么鱼塘中约有________条鱼.20.把同一副扑克中的红桃2,3,4,5有数字的一面朝下放置,洗匀后甲先抽取一张,记下数字后将牌放回,洗匀后乙再抽取一张.设先后两次抽得的数字分别记为x和y,则|x−y|≥2的概率为________.三、解答题(共 6 小题,每小题10 分,共60 分)21.一个口袋中装有6个红色的小正方块和若干个黄色的小正方块,小正方块除了颜色外其他都相同.从口袋中随机摸出一球,记下颜色,再把它放回口袋中,不断重复上述过程,共摸了300次,其中105次摸到红色的正方块.请问口袋大约有多少黄色小正方块?22.一个布袋里装有4个只有颜色不同的球,其中3个红球,一个白球.从布袋里摸出一个球,记下颜色后放回,搅匀,再摸出1个球.求下列事件发生的概率:(1)事件A:摸出一个红球,1个白球.(2)事件B:摸出两个红球.23.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为________;(2)求他们三人在同一个半天去游玩的概率.24.4件同型号的产品中,有1件不合格品和3件合格品(1)从这4件产品中随即抽取2件进行检测,列表或画树状图,求抽到都是合格品的概率.(2)在这4件产品中加入x件合格品后,进行如下试验:随即抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.9,则可以推算出x的值大约是多少?25.在一个布袋中装有2个红球和2个篮球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,不放回继续再摸第二个球,求两次都摸到红球的概率;(2)在这4个球中加入x个用一颜色的红球或篮球后,进行如下试验,搅匀后随机摸出1个球记下颜色,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到红球的概率稳定在0.80,请推算加入的是哪种颜色的球以及x的值大约是多少?26.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?答案1.A2.A3.B4.C5.D6.C7.C8.A9.C10.C11.597 912.1513.1414.1415.240016.3517.1318.1319.200020.3821.解:∵共摸了300次,其中105次摸到红色的正方块,∴摸到红色正方块的概率为:105300=720,∵一个口袋中装有6个红色的小正方块和若干个黄色的小正方块,∴小正方块总数为:6÷720≈17,∴口袋中有17−6=11(个)黄色小正方块.22.解:(1)画树状图得:∵共有16种等可能的结果,摸出一个红球,1个白球的有6种情况,∴P(事件A)=616=38;(2)∵摸出两个红球的有9种情况,∴P(事件B)=916.23.14(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=28= 14.24.解:(1)将不合格记为A,3件合格的记为B1、B2、B3A B1B2B3A B1A B2A B3AB1AB1B2B1B3B1B2AB2B1B2B3B2B3AB3B1B3B2B3共12种情况,其中两个B的有6种,∴P(B,B)=612=12,即抽到都是合格品的概率为12;(2)∵大量重复试验后发现,抽到合格品的频率稳定在0.9,∴抽到合格品的概率等于0.9,根据题意得:x+3=0.9(4+x),解得:x=6.25.解:(1)画树状图为:共有12种等可能的结果数,其中两次都摸到红球的结果数为2种,所以两次都摸到红球的概率=212=16;(2)根据题意得抽到红球的概率为0.8,则x+24+x=0.8,解得x=6,所以加入的是红颜色的球,x的值大约为6.26.解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2中,概率是26=13.。
度第一学期北师大版九年级数学上册_第三章_概率的进一步认识_单元评估测试卷
2019-2019学年度第一学期北师大版九年级数学上册第三章概率的进一步认识单元评估测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和概率最大的和等于()A. B. C. D.2.袋子里有个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸次,其中摸到红球次数是次,则袋子里蓝球大约有()A. B. C. D.3.有两只口袋,第一只口袋中装有红、黄、蓝三个球,第二只口袋中装有红、黄、蓝、白四个球,求分别从两只口袋中各取一个球,两个球都是黄球的概率()A. B. C. D.4.盒子中有白色乒乓球个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复次,摸出白色乒乓球次,则黄色乒乓球的个数估计为()A.个B.个C.个D.个5.一个不透明的袋子中装有个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在,则可判断袋子中黑球的个数为()A.个B.个C.个D.个6.甲、乙两人进行象棋比赛,比赛规则为局胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第局,那么最后甲获胜的概率是()A. B. C. D.7.一个口袋里有黑球个和白球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验次,其中有次摸到黑球,由此估计袋中的白球有()A.个 B.个 C.个 D.个8.三月是传统的学习雷锋月,某校号召全校学生“学雷锋精神,做雷锋传人”,并组织各班级代表(每班两人)交流感受,九班小强、小斌和小远都希望作为代表参加.现随机选其中两人参加,则小强和小斌同时入选的概率是()A. B. C. D.A. B. C. D.10.在一个不透明的箱子中,共装有白球、红球、黄球共个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是,摸出白球的频率是,那么盒子中黄球的个数很可能是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在一个不透明的盒子里装有个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球次,其中次摸到黑球,则估计盒子中大约有________个白球.12.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有到的点数,掷得面朝上的点数之和是的倍数的概率是________.13.学校图书馆有甲、乙两名同学担任志愿者,他们二人各自在周六、日两天中任意选择一天参加图书馆的公益活动,则该图书馆恰好周六、周日都有志愿者参加公益活动的概率是________.14.在一个不透明的布袋中装有黑白两种颜色的小球,每个球除颜色外都相同,其中黑球有个,白球有若干个,为了估计白球的个数,每次从口袋中随机摸出一球,记下颜色后,再把它放回口袋中摇匀,不断重复上述过程,如果共摸了次,其中摸到白球有次,则可估计口袋中大约有白球________个.15.在一个不透明的袋子里装着质地、大小都相同的个红球和个绿球,随机从中摸出一个球,不再放回袋中,充分搅匀后再随机摸出一球,则两次都摸到红球的概第 1 页率是________.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.17.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率是________.18.某口袋中有红色、黄色、蓝色玻璃球共个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为、和,估计口袋中黄色玻璃球有________个.19.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在和,则口袋中白色球的个数很可能是________个.20.有,两个黑色布袋,布袋中有两个完全相同的小球,分别标有数字,,布袋中有三个完全相同的小球,分别标有数字,,.小明从布袋中随机取出一个球记录其标有的数字为,再从布袋中随机取出一个球,记录其标有的数字为,这样就确定点的一个坐标为,点落在直线上的概率是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级请用树形图列举出选手获得三位评委评定的各种可能的结果;求选手晋级的概率.22.一只不透明的袋子中装有个相同小球,分别标有不等的自然数、、、,小丽每次从袋中同时摸出个小球,并计算摸出的这个小球上数字之和,记录后将小现“和为 ”的概率;根据中结论,求出自然数的值.23.某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有个球,其中红球个,兰球个,黄球个,白球个,并规定购买元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到元、元、元、元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷元.每摸一次球所获购物卷金额的平均值是多少?你若在此商场购买元的货物,你应选择哪种方式?为什么?小云在家里也准备同样的箱子和小球,他摸球次,共得购物卷元,他认为还是不摸球直接领取购物卷合算,你同意小云的说法吗?为什么?24.箱中装有张相同的卡片,它们分别写有数字,,;箱中也装有张相同的卡片,它们分别写有数字,,;现从箱、箱中各随机地取出张卡片,请你用画树形(状)图或列表的方法求:两张卡片上的数字恰好相同的概率;如果取出箱中卡片上的数字作为十位上的数字,取出箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被整除的概率.25.在一个布袋中装有个红球和个篮球,它们除颜色外其他都相同.搅匀后从中摸出一个球记下颜色,不放回继续再摸第二个球,求两次都摸到红球的概率;在这个球中加入个用一颜色的红球或篮球后,进行如下试验,搅匀后随机摸出个球记下颜色,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到红球的概率稳定在,请推算加入的是哪种颜色的球以及的值大约是多少?26.初三年班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘(每个转盘分别被四等分和三等分),由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)答案1.C2.B3.D4.B5.B6.B7.A8.B9.B10.C11.12.13.14.15.16.17.18.19.20.21.解:画出树状图来说明评委给出选手的所有可能结果:; ∵由上可知评委给出选手所有可能的结果有种.并且它们是等可能的,对于选手,晋级的可能有种情况,∴对于选手,晋级的概率是:.22.解:根据实验次数最多的出现更接近频率,∴和为的概率是:;一共有种可能的结果,由知,出现和为的概率约为,∴和为出现的次数为,若,则,不符合题意,若,则,不符合题意.若,则,此时(和为),符合题意.所以.23.解: ∵每摸一次球所获购物券的概率、、、、∴每摸一次球所获购物券金额的平均值为:(元); ∵ 元元∴应选择摸球方式.不同意小云的说法.因为每摸一次球所获购物券金额的平均值元元,而小云做同样的摸球实验次获奖券金额的平均值小于元,不能说明获奖事件发生的频率就小,只有当实验次数足够大时,该事件发生的频率才稳定在事件发生的概率附近.24.解:由题意可列表:∴两张卡片上的数字恰好相同的概率是;由题意可列表:第 3 页∴两张卡片组成的两位数能被整除的概率是.25.解:画树状图为:共有种等可能的结果数,其中两次都摸到红球的结果数为种,所以两次都摸到红球的概率;根据题意得抽到红球的概率为,则,解得,所以加入的是红颜色的球,的值大约为.26.解:小明的选择不合理;列表得其中出现奇数的次数是次,概率为,出现偶数的次数为次,概率为,∵,即出现奇数的概率较大,∴小明的选择不合理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章概率的进一步认识单元检测试题
一、填空题(共10 小题,每小题 3 分,共30 分)
1.有副残缺的扑克牌中只有红心和黑桃两种花色的牌,并且缺张,通过若干次抽取试验知,红心和黑桃出现的频率分别为和,则共有________张红心牌.
2.小红、小明在一起做游戏,需要确定做游戏的先后顺序,他们约定用“剪刀、包袱、锤子”的方式确定.在一个回合当中两个人都出“包袱”的概率是________.
3.一枚质地均匀的正方体骰子的六个面分别刻有到的点数,将这枚骰子掷两次,其点数之和是的概率为________.
4.“五一”期间,小明与小亮两家准备从古黄河入海口、马荡风景区、金沙沪旅游度假区中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是________.
5.在一个不透明的口袋中装有除颜色外其余都相同的个黑球和若刚红球,通过多次摸球试验后发现,摸到黑球的频率稳定在附近,则口袋中红球可能有________个.
6.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.
7.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是________.
8.已知、可以取、、、中任意一个值,则直线的图象不经过第四象限的概率是________.
9.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字,,,,,).记甲立方体朝上一面上的数字为,乙立方体朝上一面上的数字为,这样就确
定点的一个坐标,那么点落在双曲线上的概率为________.
10.从、、、中随机抽取一个数记为,再从剩下的三个数中任取一个记为,则点
恰好在反比例函数的图象上的概率是________.
二、选择题(共10 小题,每小题 3 分,共30 分)
11.分别用写有“金华”、“文明”、“城市”的字块拼句子,那么能够排成“金华文明城市”或“文明城市金华”的概率是()
A. B. C. D.
12.在一个暗箱里放有个除颜色外其它完全相同的球,这个球中红球有个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在,那么可以推算出大约是()
A. B. C. D.
13.在一个不透明的袋子中装有个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在,由此可判断袋子中黑球的个数为()
A.个
B.个
C.个
D.个
14.元旦联欢会上,小明、小华、小聪各准备了一个节目,若他们出场先后的机会是均等的,则按“小明-小华-小聪”顺序演出的概率是()
A. B. C. D.
15.一个不透明的袋中装有除颜色外其余都相同的个白球和个黑球.先从袋中摸出一个球
后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()
A. B. C. D.
16.程老师要从包括小张在内的名学生中,随机选取名学生参加执勤,小张被选中的概率是()
A. B. C. D.
17.一箱灯泡的合格率是,小刚由箱中任意买一个,则他买到次品的概率是()
A.B.
C. D.
18.在一次班会活动中,男生、女生各派一个代表进行了一次摸球游戏,输方表演节目,游戏规则是:用布袋装进个珠子,其中两个红色,两个蓝色,除颜色外其余特征相同,若同时从此袋中任取两个珠子,那么摸到都是同色珠子的就获胜,则男生表演节目的概率是()
A. B. C. D.
19.某校决定从两名男生和三名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()
A. B. C. D.
20.有、两只不透明口袋,每只口袋里装有两只相同的球,袋中的两只球上分别写了”
细“”致“的字样,袋中的两只球上分别写了”信“”心“的字样,从每只口袋里各摸出一只球,刚好能组成”细心“字样的概率是()
A. B. C. D.
三、解答题(共6 小题,每小题10 分,共60 分)
21.一只箱子中装有红、黑两种圆珠笔共支,为了估计出其中红色圆珠笔的数量,随机抽出支圆珠笔,记下其中红色圆珠笔的数量再放回,作为一次试验,重复上述试验多次,发现平均每支圆珠笔中有支红色圆珠笔,请你由此估计箱子中红色圆珠笔的数量.22.小华有张卡片,小明有张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为的概率.
23.一个不透明袋子中有个红球和个白球,这些球除颜色外无其他差别.
当时,从袋中随机摸出个球,摸到红球与摸到白球的可能性是否相同?________(填“相同”或“不相同”)
从袋中随机摸出个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于,则的值是________;
当时,请用列表或画树状图的方法求两次摸出的球颜色不同的概率(摸出一个球,不放回,然后再摸一个球).
24.在一个不透明袋子中有个红球和个白球,这些球除颜色外都相同.
从袋中任意摸出个球,用树状图或列表求摸出的个球颜色不同的概率;
在袋子中再放入个白球后,进行如下实验:从袋中随机摸出个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在左右,求的值.
25.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在,、、,这五个数字中:
请用列表法或树状图表示出他们写和猜的所有情况;
如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率;
如果甲写的数字记为,把乙猜的数字记为,当他们写和猜的数字满足,则称他们“心有灵犀”,求他们“心有灵犀”的概率.
26.口袋中装有个分别标有数字和的小球,口袋中装有个分别标有数字、和的小球.每个小球除数字外其他均相同.甲、乙两人玩游戏,从、两个口袋中随机地各取出个小球,若两个小球上的数字之和为偶数,则甲赢;若数字之和为奇数,则乙赢.用画树状图或表格的方法求甲获胜的概率.
你认为这个游戏规则对甲、乙双方公平吗?请简要说明理由.
答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11-20:CABAB CDBBA
21.解:∵每支圆珠笔中有支红色圆珠笔,
∴箱子中红色圆珠笔占,
∴估计箱子中红色圆珠笔有:支.
22.解:
∴(抽取的两张卡片上的数字和为).
23.相同,;当时,即不透明袋子中有个红球和个白球,
画树状图为:
共有种等可能的结果数,其中两次摸出的球颜色不同的结果数为,
所以两次摸出的球颜色不同的概率.
24.解:树状图如下所示:
由树形图可知所有可能情况共种,其中个球颜色不同的数目有种,
所以个球颜色不同的概率;由题意可得:,
解得:,
经检验是原方程的解,
所有的值为.
25.解:如图所示:
则他们“心灵相通”的概率为:.根据甲写的数字记为,把乙猜的数字记为,当他
们写和猜的数字满足,则称他们“心有灵犀”,
满足条件的事件是,可以列举出所有的满足条件的事件,
①若,则,;②若,则,,;
③若,则,,;④若,则,,;
⑤若,则,;
总上可知共有种结果,
∴他们“心有灵犀”的概率为:.
26.解:画树状图得:
数字之和共有种可能情况,其中和为偶数的情况有种,和为奇数的情况有种.
∴甲获胜;由可知甲获胜的概率为,而乙获胜,
故游戏对甲、乙双方是公平的.。