辽宁省公务员考试备考技巧:排列组合的解题方法(二)
2016辽宁公务员考试行测排列组合速解技巧:隔板法

2016辽宁公务员考试行测排列组合速解技巧:隔板法
在历年辽宁公务员考试中,行测考试题量都很大,两个小时的时间大部分考生做不完所有题目。
而对于申论而言,考生往往写不完作文。
因此,如何在这有限的时间内最大限度取得高分是考生最为关心的。
下面,中公教育专家就告诉考生如何利用有效的辽宁公务员解题技巧来获得高分。
想第一时间了解公职考试解析吗?请点击>>>辽宁公职辅导讲座资讯
排列组合问题是公务员考试中常考的一类题型。
对于考生们来说,貌似是掌握了很多种做法,却依然做不好排列组合的题目。
今天,中公教育专家给各位考生提供一种速解排列组合问题的方法——隔板法。
以上就是会用到隔板法的题型,不论题干怎么变化,只要分辨清楚题干是符合隔板法的三个应用条件,直接套公式即可。
中公教育专家希望各位考生能够真正掌握这种方法,在考场上以不变应万变,争取拿到这宝贵的一分。
在懂得了解题方法后想看书强化自己请参考辽宁公务员考试辅导教材这里有最权威的公职考试用书、最实用的模拟密押题!
中公教育公务员考试培训与辅导专家提醒您,备考有计划,才能在公考大战中拔得头筹!中公行测频道帮助各位考生取得面试最后的胜利!。
行测排列组合技巧

行测排列组合技巧在行测中,排列组合是一个重要的数学知识点,也是考生们经常会遇到的题型。
掌握好排列组合技巧,可以帮助我们更快更准确地解题,提高做题效率。
下面将介绍一些行测中常用的排列组合技巧,希望对大家备考有所帮助。
首先,我们来了解一下排列和组合的概念。
在数学中,排列是指从n个不同元素中取出m个元素,按照一定顺序排列的方式。
排列通常用P(n,m)来表示。
组合是指从n个不同元素中取出m个元素,不考虑顺序的方式。
组合通常用C(n,m)来表示。
在行测中,排列组合常用的技巧有以下几点:1. 确定排列组合的题目类型:在做题时,首先要明确题目中是考察排列还是组合,根据题目要求来确定解题思路。
排列题目一般要求考生考虑元素的顺序,组合题目则不考虑元素的顺序。
2. 排列的计算方法:在排列中,当元素没有重复时,排列的计算方法为P(n,m) = n!/(n-m)!,其中n表示总的元素个数,m表示取出的元素个数,!表示阶乘。
如果元素有重复的情况,需要根据重复元素的个数进行调整。
3. 组合的计算方法:在组合中,组合的计算方法为C(n,m) = n!/(m!(n-m)!),其中n表示总的元素个数,m表示取出的元素个数,!表示阶乘。
组合题目中一般要求考生不考虑元素的排列顺序。
4. 排列组合的应用:在实际题目中,排列组合常常和概率、数列等知识点结合,需要考生综合运用多种技巧来解题。
在做题时,要注意题目中的条件,灵活运用排列组合知识,找到合适的解题方法。
5. 多做练习:排列组合是一个需要大量练习的知识点,只有通过不断的练习,才能熟练掌握排列组合的技巧。
建议考生多做排列组合的题目,提高解题能力。
总的来说,排列组合是行测中常见的数学题型,掌握好排列组合的技巧,可以帮助我们更好地解题,提高解题效率。
希望以上介绍的排列组合技巧对大家有所帮助,祝大家在行测中取得好成绩!。
公考 逻辑推理 组合排列 技巧

公考逻辑推理组合排列技巧
以下是一些常用的排列组合技巧:
- 优限法:对于有限制条件的元素(或位置)的排列组合问题,优先考虑这些元素(或位置),再去解决其他元素(或位置)。
- 捆绑法:在解决某几个元素要求相邻的问题时,优先整体考虑,将要求相邻的元素进行捆绑视作一个大元素,与其他元素进行排序,然后再考虑大元素内部各元素间顺序。
- 插空法:用来解决某几个元素必须不在一起或不相邻的情况,解题时候,可以先将没有限制条件的其余元素先进行排序,然后再将不相邻的元素插入他们的间隙或者两端位置。
行测数量关系中排列组合问题的七大解题策略

行测数量关系中排列组合问题的七大解题策略排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。
解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。
一、排列和组合的概念排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
二、七大解题策略1.特殊优先法特殊元素,优先处理;特殊位置,优先考虑。
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A)280种(B)240种(C)180种(D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。
2.科学分类法问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。
对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。
同时明确分类后的各种情况符合加法原理,要做相加运算。
例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。
行测:数量关系中排列组合问题的七大解题策略

行测:数量关系中排列组合问题的七大解题策略
中公教育研究与辅导专家邹继阳
排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。
解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。
一、排列和组合的概念
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
二、七大解题策略
1.特殊优先法
特殊元素,优先处理;特殊位置,优先考虑。
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )
(A) 280种 (B)240种 (C)180种 (D)96种
正确答案:。
公务员行测考试—排列组合问题

排列组合问题I一、知识点: 1分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++L 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯L 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示 5.排列数公式:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤) 6 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.10.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==L 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且11 组合数的性质1:m n n m n C C -=.规定:10=n C ;2:m n C 1+=m n C +1-m n C二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊优先法 对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)科学分类法 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)插空法 解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.(答案:240)排除法从总体中排除不符合条件的方法数,这是一种间接解题的方法. b、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条.(答案:30)三、讲解范例:例1(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数2、4、6必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将1、3、5、7四个数字排好有44P种不同的排法;第二步将2、4、6三个数字“捆绑”在一起有33P种不同的“捆绑”方法;第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有15P种不同的“插入”方法根据乘法原理共有153344PPP••=720种不同的排法所以共有720个符合条件的七位数解(2):因为三个偶数2、4、6互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将1、3、5、7四个数字排好,有44P种不同的排法;第二步将2、4、6分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有35P种“插入”方法根据乘法原理共有3544PP•=1440种不同的排法所以共有1440个符合条件的七位数例2将A、B、C、D、E、F分成三组,共有多少种不同的分法?解:要将A、B、C、D、E、F分成三组,可以分为三类办法:(1-1-4)分法、(1-2-3)分法、(2-2-2)分法下面分别计算每一类的方法数:第一类(1-1-4)分法,这是一类整体不等分局部等分的问题,可以采用两种解法解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有46 C解法二:从六个元素中先取出一个元素作为一个组有16C种选法,再从余下的五个元素中取出一个元素作为一个组有15C种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以2 2 P所以共有221516PCC•=15第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有16C种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有25C种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有2516CC•=60种不同的分组方法第三类(2-2-2)分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有26C种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有24C种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以33P,因此共有332426PCC•=15种不同的分组方法根据加法原理,将A、B、C、D、E、F六个元素分成三组共有:15+60+15=90种不同的方法例3一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有66P种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有35C种不同的“插入”方法根据乘法原理共有3566CP•=7200种不同的坐法排列组合问题II一、相临问题——整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
公务员考试逻辑判断技巧之:排列组合题型解题技巧

公务员考试逻辑判断技巧之:排列组合题型解题技巧排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合问题是历年国家公务员考试行测的必考题型,“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。
一、试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。
例、将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( ) A6 B.9 C.11 D.23解析:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。
一共有9种填法,故选B二、不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。
三、合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
四、消序例、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。
解析:先在7个位置中任取4个给男生,有种排法,余下的3个位置给女生,只有一种排法,故有种排法。
五、顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
六、对应例、在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比几场?解析:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故赛99场。
七、分排问题用直接法:把几个元素排成若干排的问题,可采用统一排成一排的排方法来处理。
公务员考试用方法化繁为简:行测排列组合问题四种常用方法

公务员考试用方法化繁为简:行测排列组合问题四种常用方法
公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。了解公务员成绩计算方法,可以让你做到心中有数,认真备考。
总结:当题目中要求的正面考虑情况又多又复杂,而对立面情况较少时,采用间接法。即把对立面(不符合要求的数量)求出来,总数求出来,然后用总数减去对立面的数量,得到符合要求的数量。
以上就是我们解排列组合问题的四种常用的方法,能够直接套用解决相当量的题目,但是在碰到具体的题目时,同学们还是一定要看清楚题干的要求,抓住问题的本质特征,才能运用恰当的方法得出正确答案。同时中公教育希望同学们在学习、做题的过程中多多思考多多总结,自己也能找到更加简便快速的做题方法。
方法一:优限法
例1:甲、乙、丙、丁、戊五个人排队,甲必须在排头或者排尾,有多少种不同的排法。
总结:当题目中某些元素对位置有绝对要求时,采用优限法。即优先考虑这些对位置有绝对要求的元素,再去解决其他元素。
方法二:捆绑法
例2:甲、乙、丙、丁、戊五个人排队,甲和乙必须相邻,有多少种不同的排法。
总结:当题目中某些元素要求必须相邻时,采用捆绑法。即把要求相邻的元素首先捆绑在一起当做一个新的大元素再与剩下的元素一起排列。(这里需要注意的是若干要求相邻的元素捆绑在一起,我们也需要考虑捆绑内部的顺序)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ln.huatu.com
辽宁公务员 | 国家公务员 | 事业单位 | 政法干警 | 公安招警 | 村官三支一扶 | 党政公选 |
医学考试 | 教师招聘 | 银行招聘信用社 | 选调生 | 军转干
辽宁省公务员考试备考技巧:排列组合的解题方法(二)
排列组合是公务员行测考试中的重点题型,也是让很多人感觉头疼的
题目,大家经常会碰到这样的困惑:同一类型的题目,当表达形式有所变
化后,就不知道如何求解了,从而降低了学习效率。在此,掌握合适的方
法对于解决这类题比较重要。
【例1】由1、2、3组成没有重复数字的所有三位数之和是多少?
A.1222 B.1232
C.1322 D.1332
【解析】解法一:由1、2、3组成的没有重复的三位数共有 个,这6
个数字分别为123、132、213、231、312、321,6个数字之和为1332。因
此,答案选择D选项。
解法二:由1、2、3形成的三位数中,百位数为3的数字有两个,为
1和为2的也都是两个;同理,十位数和个位数为1、2、3的都有两个,因
此所有的三位数之和为(3+2+1)×2×(100+10+1)=1332。因此,本题答案选
择D项。
【例2】(2006-黑龙江-68题)某校下午2点整派车去某厂接劳模作报
告,往返须1小时,该劳模在下午1点整就离厂步行向学校走来,途中遇
到接他的车,便坐上车去学校,于下午2点40分到达,问汽车的速度是劳
模的步行速度的多少倍?( )
A.5倍 B.6倍
ln.huatu.com
辽宁公务员 | 国家公务员 | 事业单位 | 政法干警 | 公安招警 | 村官三支一扶 | 党政公选 |
医学考试 | 教师招聘 | 银行招聘信用社 | 选调生 | 军转干
C.7倍 D.8倍
【解析】由于汽车往返需要1小时,推出单次需要30分钟,由于2点
40回来,说明单次少行驶了10分钟,即2点20遇到劳模。由于劳模1点
出发,故劳模行走了80分钟。根据汽车少行驶的10分钟路程劳模花费了
80分钟行走,可知汽车的速度是劳模的8倍。因此,本题答案为D选项。
以上是排列组合的几种常见形式,希望对大家的备考助一臂之力。