高中物理机械能及其守恒定律典型例题剖析
高中物理机械能及守恒定律专题及解析
高中物理机械能及守恒定律专题及解析高中物理机械能及守恒定律专题及解析一、机械能的概念及计算公式机械能是指一个物体同时具有动能和势能的能量,它是物体运动时的总能量。
机械能可以通过以下公式计算:机械能 = 动能 + 势能其中,动能的公式为:动能 = 1/2 ×质量 ×速度²势能的公式为:势能 = 质量 ×重力加速度 ×高度二、机械能守恒定律的表述及应用机械能守恒定律指的是,在一个封闭系统中,如果只有重力做功,没有其他非保守力做功,那么该系统的机械能守恒,即机械能的总量不会发生变化。
这一定律可以通过以下实验进行验证:将一个小球从一定高度上自由落下,当小球下落到一定高度时,用一个弹性绳接住小球,使其反弹上升,然后再次自由下落。
实验结果表明,当小球反弹的高度恰好等于初始下落高度时,机械能守恒定律成立。
在实际应用中,机械能守恒定律常常用于解决与能量转换和效率有关的问题。
例如,我们可以利用机械能守恒定律计算斜面上物体的滑动速度或滑动距离,来评估机械装置的效率。
此外,机械能守恒定律还可以用于解决弹簧振子、单摆等周期性运动问题。
三、机械能守恒定律的应用实例分析1. 斜面上物体滑动问题假设一个物体从斜面的顶端自由滑下,忽略空气阻力和摩擦力,那么当物体滑到斜面的底端时,动能和势能的变化可以用机械能守恒定律来表达。
设物体的质量为m,斜面的高度差为h,斜面的倾角为θ。
假设物体在斜面上的速度为v,那么动能和势能的变化可以表示为:动能的变化:ΔK = K(终) - K(始) = 1/2 × m × v² - 0 = 1/2 × m ×v²势能的变化:ΔU = U(终) - U(始) = m × g × h × sinθ - 0 = m × g× h × sinθ根据机械能守恒定律,动能的变化等于势能的变化,即:1/2 × m × v² = m × g × h × sinθ通过求解上述方程,可以得到物体在斜面上的滑动速度v的数值。
高中物理---机械能守恒定律-----典型例题(含答案)【经典】
第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是( ).答案D A.500 J B.4 500 J C.5 000 JD.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。
完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中( ) 选DA.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则( ).答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍 4.(单选)质量分别为2m 和m 的A 、B 两种物体分别在水平恒力F 1和F 2的作用下沿水平面运动,撤去F 1、F 2后受摩擦力的作用减速到停止,其v -t 图象如图所示,则下列说法正确的是( ).答案 CA .F 1、F 2大小相等B .F 1、F 2对A 、B 做功之比为2∶1C .A 、B 受到的摩擦力大小相等D .全过程中摩擦力对A 、B 做功之比为1∶25. (单选)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C6.如所示,建筑工人通过滑轮装置将一质量是100 kg 的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L 是4 m ,若不计滑轮的质量和各处的摩擦力,g 取10 N/kg ,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。
高一物理机械能及其守恒条件试题答案及解析
高一物理机械能及其守恒条件试题答案及解析1.在下列所述实例中,若不计空气阻力,机械能守恒的是A.石块自由下落的过程B.在竖直面内做匀速圆周运动的物体C.电梯加速上升的过程D.木箱沿粗糙斜面匀速下滑的过程【答案】A【解析】物体机械能守恒的条件是只有重力或者是弹力做功,根据机械能守恒的条件逐个分析物体的受力的情况,即可判断物体是否是机械能守恒.石块自由下落的过程,只受重力,所以石块机械能守恒,故A正确。
在竖直面内做匀速圆周运动过程中动能不变,重力势能在变化,所以机械能不守恒,B错误。
电梯加速上升的过程,动能增加,重力势能增加,故机械能增加,故C错误。
木箱沿粗糙斜面匀速下滑的过程,动能不变,重力势能减小,所以机械能减小,故D错误。
【考点】考查了机械能守恒2.下列说法正确的是()A.物体机械能守恒时,一定只受重力作用B.物体处于平衡状态时机械能一定守恒C.若物体除受重力外还受到其他力作用,物体的机械能也可能守恒D.物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功【答案】CD【解析】物体机械能守恒的条件是受重力与弹力,故A中说一定只受重力作用是不对的;物体处于平衡状态时也可能是竖直向上或向下做匀速直线运动,我们知道此时的机械能是不守恒的,故B也不对;物体除受重力外,如果还受弹力的作用,则它的机械能也是守恒的,故C是正确的;如果物体的动能与重力势能的和增大,则必定有重力以外的其他力对物体做功是正确的,故D也对。
【考点】机械能守恒的条件。
3.神舟号载人飞船在发射至返回的过程中,以下哪些阶段返回舱的机械能是守恒的A.飞船升空的阶段B.飞船在椭圆轨道上绕地球运行的阶段C.返回舱在大气层外向着地球做无动力飞行阶段D.降落伞张开后,返回舱下降的阶段【答案】BC【解析】根据机械能守恒的条件,只有重力(或引力)做功时机械能守恒。
飞船升空的阶段,燃料要对火箭产生动力,对火箭做正功,火箭的机械能增加;飞船在椭圆轨道上绕地球运行的阶段,只有地球引力做功所以机械能守恒;返回舱在大气层外向着地球做无动力飞行阶段,也是只有地球引力做功,机械能守恒;降落伞张开后,返回舱下降的阶段,除重力做功外还有空气阻力做功,所以机械能减少。
高一物理机械能守恒解析及典型例题
高一物理机械能守恒解析及典型例题(1)只有重力做功时机械能守恒.设一个质量为m 的物体自然下落,经过高度为1h 的A 点(初位置)时速度为1v ,下落到高度为2h 的B 点(末位置)时速度为2v (图8-42),由动能定理得:21222121mv mv W G -=.又由重力做功与重力势能的关系得:21mgh mgh W G -= 则2121222121mgh mgh mv mv -=-或2221212121mgh mv mgh mv +=+ 这表明,在自由落体中,物体的动能与重力势能之和保持不变,则机械能守恒.事实上,上面推导过程中涉及重力做功与动能变化、势能变化的关系,与物体的运动轨迹形状无关,因而物体只受重力作曲线运动(如平抛运动、斜抛运动等)时,机械能也一定守恒.(2)只有弹力作用时机械能守恒.如图8-43所示,一个质量为m 的小球被处于压缩状态的弹簧弹开,速度由1v 增大到2v ,由动能定理得:1221222121k k N E E mv mv W -=-= 由弹力做功与弹性势能的关系得:21p p N E E W -= 则2112p p k k E E E E -=-即2211p k p k E E E E +=+,物体的动能与弹性势能之和保持不变,机械能守恒.(3)既有重力做功,又有弹力做功,并且只有这两个力做功时,机械能也守恒.如图8—44所示,一根轻弹簧一端固定在天花板上,另一端固定一质量为m 的小球,小球在竖直平面内从高处荡下,在速度由1v 增大到2v 的过程中,由动能定理得21222121mv mv W W N G -=+ 又由重力做功与重力势能的关系得21p p G E E W -= 由弹力做功与弹性势能的关系得''21p p N E E W -= 则212221212121mv mv 'E 'E E E p p p p -=-+- 即2222211121'21'mv E E mv E E p p p p ++=++,物体的动能、重力势能和弹性势能之和保持不变,机械能守恒.(4)有除重力和弹力之外的力做功,将使机械能增大或减小,机械能不守恒.例如,升降机匀速提升重物时,重物的动能不变,势能在增大,总的机械能不守恒,原因是除重力做功外,升降机也对重物做功,且做正功,通过做功将电能转化为重物的机械能.又例如,在水平面上运动的汽车刹车后,逐渐减速并停止,汽车的重力势能不变,动能在减小,总的机械能在减少,原因是汽车受到摩擦力做功,且做负功,通过做功将机械能转化为内能.(5)有除重力和弹力之外的力做功,但力所做功的代数和为零,则机械能守恒.例如,汽车在水平面上匀速行驶时,虽然受牵引力与摩擦力的作用,但其动能和势能均不变,机械能守恒.原因是牵引力与摩擦力做功的代数和为零例2 一轻绳通过无摩擦的定滑轮与在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m ,物体m 2由静止从AB 连线为水平的位置开始下滑1m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物体做的功等于( )A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和4.一个质量为0.3 kg 的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv =0B .Δv =12 m/sC .W =0D .W =10.8 J5.将一物体由地面竖直上抛,如果不计空气阻力,物体能够达到的最大高度为H ,当物体在上升过程中的某一位置时,它的动能是重力势能的2倍,则这一位置的高度为( )A .32H B .2H C .3H D .4H6 、(2010·成都市摸底测试)如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m =2 kg 的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小;(2)满足设计要求的木箱质量.1.如图8—51所示,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩至最短,若不计弹簧的质量和空气阻力,小球由a →b →c 的运动过程中A .小球的动能逐渐减小B .小球的重力势能逐渐减小C .小球的机械能守恒D .小球的加速度逐渐减小2.两个质量相同的小球A 、B ,分别用细线悬挂在等高的 、 1O 、2O 点,A 球的悬线比B球的长,如图8—52所示,把两球均拉到与悬线水平后由静止释放,以悬点所在平面为参考平面,到两球经最低点时的A. A球的速度等于B球的速度B.A球的动能等于B球的动能C.A球的机械能等于B球的机械能D.A球对绳的拉力等于B球对绳的拉力1.下列叙述中正确的是( )A.合外力对物体做功为零的过程中,物体的机械能一定守恒B.做匀速直线运动的物体机械能一定守恒C.做匀变速运动的物体机械能可能守恒D.当只有重力对物体做功时,物体的机械能守恒2.从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们( )A.所具有的重力势能相等B.所具有的动能相等C.所具有的机械能相等D.所具有的机械能不等3.如下图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态.现用平行于斜面向下的力拉物体,第一次直接拉到B点,第二次将物体先拉到C点,再回到B点.则这两次过程中( )A.重力势能改变量相等B.弹簧的弹性势能改变量相等C.摩擦力对物体做的功相等D.弹簧弹力对物体做功相等5.物体由静止出发从光滑斜面顶端自由滑下,当所用时间是下滑到底端所用时间的一半时,物体的动能与势能(以斜面底端为零势能参考平面)之比为( )A.1∶4B.1∶3C.1∶2D.1∶210.如下图所示,ABC是一段竖直平面内的光滑的1/4圆弧形轨道,圆弧半径为R,O为圆心,OA水平,CD是一段水平光滑轨道.一根长2R、粗细均匀的细棒,开始时正好搁在轨道两个端点上.现由静止释放细棒,则此棒最后在水平轨道上滑行的速度为 .11.如下图所示,在细线下吊一个小球,线的上端固定在O点,将小球拉开使线与竖直方向有一个夹角后放开,则小球将往复运动,若在悬点O的正下方A点钉一个光滑小钉,球在从右向左运动中,线被小钉挡住,若一切摩擦阻力均不计,则小球到左侧上升的最大高度是( )A.在水平线的上方B.在水平线上C.在水平线的下方D.无法确定12.如下图所示,OA、OB、BC均为光滑面,OA=OB+BC,角α>β,物体从静止由O点放开,沿斜面到A点所需时间为t1,物体从静止由O点放开沿OBC面滑到C点时间为t2,A、C 在同一水平面上,则关于t1与t2的大小的下述说法中正确的是( )A.t1=t2B.t1>t2C.t1<t2D.条件不足,无法判定13.如下图所示,有许多根交于A点的光滑硬杆具有不同的倾角和方向.每根光滑硬杆上都套有一个小环,它们的质量不相等.设在t=0时,各小环都由A点从静止开始分别沿这些光滑硬杆下滑,那么这些小环下滑速率相同的各点联结起来是一个( )A.球面B.抛物面C.水平面D.不规则曲面16.如下图所示,分别用质量不计不能伸长的细线与弹簧分别吊质量相同的小球A、B,将二球拉开使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A、B二球,二球在运动中空气阻力不计,到最低点时二球在同一水平面上,关于二球在最低点时速度的大小是( )A.A球的速度大B.B球的速度大C.A、B球的速度大小相等D.无法判定19.如下图所示,一轻质杆上有两个质量相等的小球A、B,轻杆可绕O点在竖直平面内自由转动.OA=AB=l,先将杆拉至水平面后由静止释放,则当轻杆转到竖直方向时,B球的速度大小为 .3.22.如上图所示,质量相等的重物A 、B 用绕过轻小的定滑轮的细线连在一起处于静止状态.现将质量与A 、B 相同的物体C 挂在水平段绳的中点P ,挂好后立即放手.设滑轮间距离为2a ,绳足够长,求物体下落的最大位移.1.一物体从高处同一点沿不同倾角的光滑斜面滑到同一水平面,则( )A.在下滑过程中,重力对物体做的功相同B.在下滑过程中,重力对物体做功的平均功率相同C.在物体滑到水平面的瞬间,重力对物体做功的瞬时功率相同D.在物体滑到水平面的瞬间,物体的动能相同3.质量为m 的汽车以恒定功率P 在平直公路上行驶,汽车匀速行驶的速率为υ1,若汽车所受阻力不变,则汽车的速度为υ2(υ2<υ1=时,汽车的加速度大小是( ) A.2m v P B. 1m vP C. 2121)(v m v v v P - D. )()(22121v v m v v P +- 6.如下图所示,木块A 放在木块B 上左端,用恒力F 将A 拉至B 的右端,第一次将B 固定在地面上,F 做功为W 1,生热为Q 1;第二次让B 可以在光滑地面上自由滑动,这次F 做的功为W 2,生热为Q 2,则应有( )A.W 1<W 2,Q 1=Q 2B.W 1=W 2,Q 1=Q 2C.W 1<W 2,Q 1<Q 2D.W 1=W 2,Q 1<Q 29.如下图所示,小球做平抛运动的初动能为6J ,不计一切阻力,它落到斜面P 点时的动能为( )A.10JB.12JC.14JD.8J8.有一槽状的光滑直轨道,与水平桌面成某一倾角固定.一可视为质点的滑块,从轨道顶端A 点由静止开始下滑,经中点C 滑至底端B 点.设前半程重力对滑块做功的平均功率为P 1,后半程重力对滑块做功的平均功率为P 2,则P 1∶P 2等于( ) A.1∶1 B.1∶2 C.1∶2 D.1∶(2+1)。
高中物理(机械能守恒定律)习题训练与答案解析
基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。
2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。
3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。
2.计算功率的公式有、,若求瞬时功率,则要用。
3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。
2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。
四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。
重力对物体所做的功等于物体的减小量。
即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。
大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。
习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。
高中力学中的机械能守恒定律有哪些典型例题
高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。
它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。
下面,我们就来一起探讨一些机械能守恒定律的典型例题。
例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。
解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。
初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。
因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。
这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。
例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。
解析:物体竖直上抛时,动能逐渐转化为重力势能。
在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。
由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。
这个例题与自由落体运动相反,是动能转化为重力势能的过程。
例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。
解析:物体在斜面上运动时,重力势能转化为动能。
初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。
因为斜面光滑,没有摩擦力做功,机械能守恒。
根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。
所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。
这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。
高中物理机械能及其守恒定律专题及解析
机械能守恒定律专题及解析1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg 的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2)F2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,问:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?3.质量是2kg的物体,受到24N竖直向上的拉力,由静止开始运动,经过5s;求:①5s内拉力的平均功率②5s末拉力的瞬时功率(g取10m/s2)4.一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.图5-3-1hh图5-4-45.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶,用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ?8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R =0.4m ,一小球停放在光滑水平轨道上,现给小球一个v 0=5m/s 的初速度,求:小球从C 点抛出时的速度(g 取10m/s 2).图5-4-2ABRV 0 图5-4-8图5-3-2HA BR图5-5-119.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?10.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?12.如图5-5-12所示,两质量相同的小球A 、B ,分别用线悬线在等高的O 1、O 2点,A 球的悬线比B 比球的悬线长,把两球的悬线均拉到水平后将小球无初速释放,则经过最低点时(悬点为零势能( )A .A 球的速度大于B 球的速度 B .A 球的动能大于B 球的动能C .A 球的机械能大于B 球的机械能D .A 球的机械能等于B 球的机械能图5-5-1BAO A B C D0 7.8 17.6 31.4 49.0 (mm)13.如图5-5-13所示,小球自高为H 的A 点由静止开始沿光滑曲面下滑,到曲面底B 点飞离曲面,B 点处曲面的切线沿水平方向.若其他条件不变,只改变h ,则小球的水平射程s 的变化情况是( )A .h 增大,s 可能增大B .h 增大,s 可能减小C .h 减小,s 可能增大D .h 减小,s 可能减小14.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则有( ) A .人对小球做的功是221mvB .人对小球做的功是mgh mv -221C .小球落地时的机械能是221mvD .小球落地时的机械能是mgh mv -22115.“验证机械能守恒定律”的实验采用重物自由下落的方法.(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是 .(3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .22hhAB22hhCD2v 22v 2参考答案1、【解析】利用w =Fs cos a 求力F 的功时,要注意其中的s 必须是力F 作用的质点的位移.可以利用等效方法求功,要分析清楚哪些力所做的功具有等效关系.物体受到两个力的作用:拉力F '和重力mg ,由牛顿第二定律得ma mg F =-'所以=+='ma mg F 10×10+10×2=120N 则力2F F'==60N 物体从静止开始运动,3s 内的位移为221at s ==21×2×32=9m 解法一: 力F 作用的质点为绳的端点,而在物体发生9m 的位移的过程中,绳的端点的位移为s /=2s =18m ,所以,力F 做的功为=='=s F s F W 260×18=1080J解法二 :本题还可用等效法求力F 的功.由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F’对物体做的功相等.即='=='s F W W F F 120×9=1080J2、【解析】(1) 当汽车达到最大速度时,加速度a=0,此时mg f F μ== ① m Fv P = ②由①、②解得s m mgPv m /12==μ (2) 汽车作匀加速运动,故F 牵-μmg =ma ,解得F 牵=7.5×103N 设汽车刚达到额定功率时的速度为v ,则P = F 牵·v ,得v =8m/s 设汽车作匀加速运动的时间为t ,则v =at 得t =16s3、【解析】物体受力情况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有F -mg=ma 解得 =a 2m/s 2 5s 内物体的位移221at s ==2.5m所以5s 内拉力对物体做的功 W =FS =24×25=600J 5s 内拉力的平均功率为5600==t W P =120W 5s 末拉力的瞬时功率 P =Fv =Fat =24×2×5=240W4、【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.5、【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0 即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【点拨】如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.6、【解析】取水平地面为零势能的参考平面,阀门关闭时两桶内液体的重力势能为:2)(2)(22111hsh h sh E P ρρ+= )(212221h h gs +=ρ 阀门打开,两边液面相平时,两桶内液体的重力势能总和为221)(21212h h g h h s E P +⋅⋅+=ρ由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功 22121)(41h h gs E E W P P G -=-=ρ 7、以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力. 小球在圆形轨道最高点A 时满足方程Rv m N mg AA 2=+ (1)根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程2221221B A mv R mg mv =+ (2) 解(1),(2)方程组得A B N mRgR v +=5当N A =0时,v B 为最小,v B =gR 5.所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A. 8、【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221Cmv R mgh mv += 解得 =C v 3m/s9、【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.10、【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k=∆.机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=-在最低点时绳对小球的拉力大小NN mg mg mg lv m mg T 2101.022)60cos 1(202=⨯⨯==-+=+= 通过以上各例题,总结应用机械能守恒定律解决问题的基本方法.11、【解析】以小球和地球为研究对象,系统机械能守恒,即221Amv mgH = ………………………① R mg mv mgH B 2212+=…………②小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供 在最高点A :Rv m mg F A A2=-…………③在最高点B : Rv m mg F B B 2=+………④由①③解得: RH mg mg F A2+=由②④解得:)52(-=RH mg FBmg F F B A 6=-6=-∴mgF F BA 12、ABD 13、ABCD 14、BC15、【解析】(1)初速度为0, 2mm.(2)0.59m/s, 0.174J, 0.176J, 在实验误差允许的范围内机械能守恒. (3)C.。
高中物理机械能及其守恒定律典型例题剖析
图5-3-1机械能守恒定律复习资料1.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsin αμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ2.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J3.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 【正解】以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力.小球在圆形轨道最高点A 时满足方程Rv m N mg AA 2=+ (1)根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程2221221B A mv R mg mv =+ (2) 图5-3-2图5-4-2解(1),(2)方程组得A B N mR gR v +=5 当N A =0时,v B 为最小,v B =gR 5.所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A.4.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R =0.4m ,一小球停放在光滑水平轨道上,现给小球一个v 0=5m/s 的初速度,求:小球从C 点抛出时的速度(g 取10m/s 2).【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221Cmv R mgh mv += 解得 =C v 3m/s5.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.6.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球图5-5-1BRV 0 图5-4-8图5-5-11通过最低点时,细绳对小球拉力多大?取g=10m/s 2.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k=∆.机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=-在最低点时绳对小球的拉力大小NN mg mg mg lv m mg T 2101.022)60cos 1(202=⨯⨯==-+=+=7.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?【解析】以小球和地球为研究对象,系统机械能守恒,即221Amv mgH = ………………………① R mg mv mgH B 2212+=…………② 小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供 在最高点A :Rv m mg F A A2=-…………③在最高点B : Rv m mg F B B 2=+………④由①③解得: RH mg mg F A2+=由②④解得:)52(-=RH mg FBmg F F B A 6=-6=-∴mgF F BAO A B C D0 7.8 17.6 31.4 49.0 (mm)13.如图5-5-13所示,小球自高为H 的A 点由静止开始沿光滑曲面下滑,到曲面底B 点飞离曲面,B 点处曲面的切线沿水平方向.若其他条件不变,只改变h ,则小球的水平射程s 的变化情况是( )A .h 增大,s 可能增大B .h 增大,s 可能减小C .h 减小,s 可能增大D .h 减小,s 可能减小 ABCD14.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则有() A .人对小球做的功是221mvB .人对小球做的功是mgh mv -221C .小球落地时的机械能是221mvD .小球落地时的机械能是mgh mv -221 BC15.“验证机械能守恒定律”的实验采用重物自由下落的方法.(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是 .(3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .【解析】(1)初速度为0, 2mm.(2)0.59m/s, 0.174J, 0.176J, 在实验误差允许的范围内机械能守恒. (3)C.22hhAB22h0 hCD2v 22v 2。
高中物理机械能守恒和动量守恒问题解析
高中物理机械能守恒和动量守恒问题解析在高中物理学习中,机械能守恒和动量守恒是两个重要的概念。
理解这两个概念对于解题非常关键。
本文将通过具体题目的举例,分析和说明机械能守恒和动量守恒的考点,并提供解题技巧,帮助高中学生和家长更好地理解和应用这些知识。
一、机械能守恒问题解析机械能守恒是指在没有外力做功的情况下,系统的机械能保持不变。
在解决机械能守恒问题时,我们需要考虑势能和动能的转化。
例如,一道常见的题目是:一个质量为m的物体从高度为h处自由落下,落地后弹起到高度为h/2。
求物体弹起的最高点离地面的高度。
解题思路:首先,我们可以根据机械能守恒定律,将物体在自由落下和弹起过程中的机械能相加,即势能和动能之和保持不变。
在自由落下过程中,物体的势能转化为动能;在弹起过程中,动能转化为势能。
因此,我们可以列出等式:mgh = mgh/2通过简化计算,得出最高点离地面的高度为h/4。
这道题目的考点是机械能守恒的应用。
学生需要理解机械能的定义和转化过程,并能正确列出等式进行计算。
在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。
二、动量守恒问题解析动量守恒是指在没有外力作用的情况下,系统的总动量保持不变。
在解决动量守恒问题时,我们需要考虑物体的质量和速度变化。
例如,一道常见的题目是:一个质量为m1的物体以速度v1向右运动,与一个质量为m2的物体以速度v2向左运动碰撞,碰撞后两个物体分别以v3和v4的速度运动。
求碰撞后两个物体的速度。
解题思路:根据动量守恒定律,我们可以列出等式:m1v1 + m2v2 = m1v3 + m2v4通过化简计算,可以得出碰撞后两个物体的速度。
这道题目的考点是动量守恒的应用。
学生需要理解动量的定义和守恒定律,能够正确列出等式进行计算。
在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。
三、解题技巧和应用在解决机械能守恒和动量守恒问题时,有一些常用的解题技巧和应用方法可以帮助学生更好地理解和应用这些知识。
机械能守恒知识点总结及典型例题分析
机械能守恒一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )"θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正;当2πθ=时,即力与位移垂直,力不做功,功为零;当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
:7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tWP =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W;4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
机械能守恒典型例题带详解【范本模板】
第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。
解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。
(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。
在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。
由以上两式解得104204220⨯==g v h m=10m. 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。
本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。
例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。
解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==.根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。
解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。
重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。
机械能守恒定律·典型题剖析
机械能守恒定律·典型题剖析例1 关于机械能是否守恒的叙述,正确的是 [ ]A.作匀速直线运动的物体的机械能一定守恒.B.作匀变速运动的物体机械能可能守恒.C.外力对物体做功为零时,机械能一定守恒.D.只有重力对物体做功,物体机械能一定守恒.分析机械能守恒的条件是除重力或弹性力对物体做功外,没有其他外力对物体做功,或其他外力对物体做功的代数和等于零.D正确.当物体作匀速直线运动时,除重力对物体做功外,可能还有其他外力做功.如降落伞在空中匀速下降时,既有重力做功,又有阻力做功,机械能不守恒.A错.物体作匀变速运动时,可能只有重力对物体做功,如自由落体运动,此时物体的机械能守恒.B正确.因物体所受的外力,指的是包括重力在内的所有外力,当外力对物体做功为零时,可能是处于有介质阻力的状态,如匀速下降的降落伞,所以机械能不一定守恒.C错.答 B,D.例2 a、b、c三球自同一高度以相同速率抛出,a球竖直上抛,b球水平抛出,c球竖直下抛.设三球落地的速率分别为v a、v b、v c,则[ ]A.v a>v b>v c.B.v a=v b>v c.C.v a>v b=v c.D.v a=v b=v c.分析小球抛出后,只有重力对它做功,所以小球从抛出到落地过程中的机械能守恒.设抛出的速率为v0,抛出处高度为h,取地面为零势能位置,由得落地速率可见,它仅与抛出时的速率及离地面的高度有关,与抛出的方向无关.答 D.说明由本题解答可知,从一定高度h以一定大小的初速度v0抛出的物体,落地时的速度大小恒为它与抛出时的方式——竖直上抛、下抛、平抛、斜上抛、斜下抛等无关,不同的抛出方式只影响着物体在空中的具体路径、运动时间以及落地速度的方向.例3 用一根长l的细线,一端固定在顶板上,另一端拴一个质量为m 的小球.现使细线偏离竖直方向α角后,从A处无初速地释放小球(图4-21).试问:(1)小球摆到最低点O时的速度?(2)小球摆到左方最高点的高度(相对最低点)?向左摆动过程中能达到的最大高度有何变化?分析小球在摆动过程中,受到两个力作用:重力和线的拉力.由于小球在拉力方向上没有位移,拉力对小球不做功,只有重力做功,所以小球在运动过程中机械能守恒.解答(1)设位置A相对最低点O的高度为h,取过O点的水平面为零势能位置.由机械能守恒得(2)由于摆到左方最高点B时的速度为零,小球在B点时只有势能.由机械能守恒E A=E B即 mgh=mgh'.所以B点相对最低点的高度为h'=h.(3)当钉有钉子P时,悬线摆至竖直位置碰钉后,将以P为中心继续左摆.由机械能守恒可知,小球摆至左方最高点B1时仍与AB等高,如图4-22所示.说明第(3)小题中的钉子在竖直线上不同位置时,对小球的运动是有影响的.当钉子位于水平线AB上方时,小球碰钉后总能摆到跟AB同一高度处.若钉子继续下移,碰钉后的运动较为复杂,有兴趣的读者可自行研究.讨论1.机械能守恒定律的研究对象机械能的转化和守恒是指系统而言.动能与重力势能的转化是指物体与地球组成的系统机械能守恒;动能与弹性势能的转化是指物体与弹簧组成的系统机械能守恒.通常说某物体的机械能守恒是一种简化的不严格的说法.前面介绍的动能公式,则是对单个物体(质点)而言的.2.机械能守恒定律的应用特点应用机械能守恒定律时,只需着重于始末两状态的分析,不需考虑中间过程的细节变化,这是守恒定律的一大特点.如例2中没有从具体的抛出方式的不同规律出发,但根据机械能守恒却很容易求解.机械能守恒定律及其应用·典型例题精析链,则当铁链刚挂直时速度多大?[思路点拨] 以铁链和地球组成的系统为对象,铁链仅受两个力:重力G和光滑水平桌面的支持力N,在铁链运动过程中,N与运动速度v垂直,N 不做功,只有重力G做功,因此系统机械能守恒.铁链释放前只有重力势能,但由于平放在桌面上与悬吊着两部分位置不同,计算重力势能时要分段计算.选铁链挂直时的下端点为重力势能的零标准,应用机械能守恒定律即可求解.[解题过程] 初始状态:平放在桌面上的部分铁链具有的重力势能mv2,又有重力势能根据机械能守恒定律有E1=E2.所以E p1+E p2=E k2+E p2,故[小结] (1)应用机械能守恒定律解题的基本步骤由本题可见一斑.①根据题意,选取研究对象.②明确研究对象在运动过程中受力情况,并弄清各力做功情况,分析是否满足机械能守恒条件.③恰当地选取重力势能的零势能参考平面,确定研究对象在过程的始、末状态机械能转化情况.④应用机械能守恒定律列方程、求解.(2)本题也可从线性变力求平均力做功的角度,应用动能定理求解,也可应用F-h图线(示功图)揭示的功能关系求解,请同学们尽可发挥练习.[例题2] 如图8-54所示,长l的细绳一端系质量m的小球,另一端固定于O点,细绳所能承受拉力的最大值是7mg.现将小球拉至水平并由静止释放,又知图中O′点有一小钉,为使小球可绕O′点做竖直面内的圆周运动.试求OO′的长度d与θ角的关系(设绳与小钉O′相互作用中无能量损失).[思路点拨] 本题所涉及问题层面较多.除涉及机械能守恒定律之外,还涉及圆周运动向心力公式.另外还应特别注意两个临界条件:①要保证小球能绕O′完成圆周运动,圆周半径就不得太长,即OO′不得太短;②还必须保证细绳不会被拉断,故圆周半径又不能太短,也就是OO′不能太长.本题的研究中应以两个特殊点即最高点D和最低点C入手,依上述两临界条件,按机械能守恒和圆运动向心力公式列方程求解.[解题过程] 设小球能绕O′点完成圆周运动,如图8-54所示.其最高点为D,最低点为C.对于D点,依向心力公式有(1)其中v D为D点速度,v D可由机械能守恒定律求知,取O点为重力势能的零势能位置,则(2)将(1)式与(2)式联立,解之可得另依题意细绳上能承受的最大拉力不能超过7mg,由于在最低点C,绳所受拉力最大,故应以C点为研究对象,并有(3)其中v C是C点速度,v C可由机械能守恒定律求知(4)将(3)式与(4)式联立,解之可得[小结] (1)本题中小球在圆运动中,由于绳的拉力与运动方向相互垂直不会做功,只有重力做功,故机械能守恒.求解竖直面内的圆周运动问题是机械能守恒定律的重要应用之一,并由此可以推导出些有价值的结论.例如:从光滑斜面滑下的小球,进入竖直光滑的圆环(半径为R),在细绳作用下在竖直面内做圆周运动,在最低点和最高点,绳上拉力的差,应等于6mg,等等.(2)从本题的结论入手,我们还可以对本题进行挖掘,请考虑如果我们改变一下绳上所承受拉力的最大值,原题是否还一定有解呢?答案应是否定的.当T m=6mg时,O′点的位置将不再是范围,而是一个定点;当T m=5mg 时,本题将根本无解.[例题3] 如图8-55所示,半径为r,质量不计的圆盘盘面与地面垂直,圆心处有一个垂直盘面的光滑水平定轴O,在盘的右边缘固定的小球B,放开盘让其自由转动.问:(1)当A转到最低点时,两小球的重力势能之和减少了多少?(2)A球转到最低点时的线速度是多少?(3)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?[思路点拨] 两小球重力势能之和的减少,可选取任意参考平面为零势能参考平面进行计算.由于圆盘转动过程中,只有两小球重力做功,根据机械能守恒定律可列式算出A球的线速度和半径OA的最大偏角.[解题过程] (1)以通过转轴O的水平面为零势能面,开始时两球重力势能之和为当A球转至最低点时两球重力势能之和为E p2=E pA+E pB=-mgr+0=-mgr,故两球重力势能之和减少了(2)由于圆盘转动过程中,只有两球重力做功,机械能守恒,因此两球重力势能之和的减少一定等于两球动能的增加,设A球转至最低点,A、B两球的线速度分别为v A,v B,则因A、B两球固定在同一圆盘上,转动过程中的角速度ω相同.由(3)设半径OA向左偏离竖直线的最大角度为θ,如图8-56,该位置系统的机械能与开始时的机械能分别为由系统机械能守恒定律E1=E3,即两边平方得 4(1-sin2θ)=1+sin2θ+2sinθ,所以 5sin2θ+2sinθ-3=0,[小结] 系统的始态、末态的重力势能,因参考平面的选取会有所不同,但是重力势能的变化却是绝对的,不会因参考平面的选取而异.机械能守恒的表达方式可以记为E k1+E p1=E k2+E p2,也可以写作:ΔE k增=ΔE p减.本题采用的就是这种形式.[例题4] 如图8-57所示,A、B两个物体放在光滑的水平面上,中间由一根轻质弹簧连接,开始时弹簧呈自然状态,A、B的质量均为M=0.1kg,一颗质量m=25g的子弹,以v0=45m/s的速度水平射入A物体,并留在其中.求在以后的运动过程中,(1)弹簧能够具有的最大弹性势能;(2)B物体的最大速度.[思路点拨] 由题意可知本题的物理过程从以下三个阶段来分析:其一,子弹击中物体A的瞬间,在极短的时间内弹簧被压缩的量很微小,且弹簧对A的作用力远远小于子弹与A之间的相互作用力,因此可认为由子弹与A物体组成的系统动量守恒,但机械能不守恒(属完全非弹性碰撞).其二,弹簧压缩阶段,子弹留在木块A内,它们以同一速度向右运动,使弹簧不断被压缩.在这一压缩过程中,A在弹力作用下做减速运动,B在弹力作用下做加速运动.A的速度逐渐减小,B的速度逐渐增大,但v A>v B.当v A=v B时,弹簧的压缩量达最大值,弹性势能也达到最大值.以后随着B的加速,A的减速,则有v A<v B,弹簧将逐渐恢复原长.其三,弹簧恢复阶段.在此过程中v B>v A,且v B不断增大而v A不断减小,当弹簧恢复到原来长度时,弹力为零,A与B的加速度也刚好为零,此时B的速度将达到最大值,而A的速度为最小值.根据以上三个阶段的分析,解题时可以不必去细致研究A、B的具体过程,而只要抓住几个特殊状态即可.同时由于A、B受力均为变力,所以无法应用牛顿第二定律,而只能从功能关系的角度,借助机械能转化与守恒定律求解.[解题过程] (1)子弹击中木块A,系统动量守恒.由弹簧压缩过程.由子弹A、B组成的系统不受外力作用,故系统动量守恒且只有系统内的弹力做功,故机械能守恒.选取子弹与A一起以v1速度运动时及弹簧压缩量最大时两个状态,设最大压缩量时弹簧的最大弹性势能为E pm,此时子弹A、B有共同速度v共,则有代入数据可解得 v共=5m/s,Epm=2.25J.(2)弹簧恢复原长时,v B最大,取子弹和A一起以v1速度运动时及弹簧恢复原长时两个状态,则有代入数据可解出B物体的最大速度 v=10m/s.Bm[小结] 本题综合了动量守恒与机械能守恒定律的应用.A、B运动过程中受变力作用,除不断进行动能与弹性势能的相互转化外,还始终遵循系统动量守恒.选取特殊状态,建立两守恒方程是解决本题的关键.关于这两个守恒之间的关系应加以注意,初学者常有人将两守恒的条件混淆、等同或企图用一个代替另一个.例如有人认为:系统动量守恒,则系统的合外力为零;而合外力为零,合外力的功也为零,故系统的机械能也守恒.类似错误还可列举很多.实际上它们是完全不同的守恒问题,各自具有严格的成立条件,绝不可等同或替代,请同学们在学习中认真理解.。
高中的物理机械能和守恒定律典型例题剖析(教师用)
机械能守恒定律复习资料班别: 姓名: 学号:1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2【解析】利用w =Fscos a 求力F 的功时,要注意其中的s 必须是力F 作用的质点的位移.可以利用等效方法求功,要分析清楚哪些力所做的功具有等效关系.物体受到两个力的作用:拉力F '和重力mg ,由牛顿第二定律得ma mg F =-'所以=+='ma mg F 10×10+10×2=120N 则力2F F '==60N 物体从静止开始运动,3s 内的位移为221at s ==21×2×32=9m解法一: 力F 作用的质点为绳的端点,而在物体发生9m 的位移的过程中,绳的端点的位移为s /=2s =18m ,所以,力F 做的功为=='=s F s F W 260×18=1080J解法二 :本题还可用等效法求力F 的功.由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F’对物体做的功相等.即='=='s F W W F F 120×9=1080J2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,问:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s 2的加速度作匀加速直线运动,这一过程能维持多长时间?【解析】(1) 当汽车达到最大速度时,加速度a=0,此时mg f F μ== ① m Fv P = ②由①、②解得s m mgPv m /12==μ (2) 汽车作匀加速运动,故F 牵-μmg =ma ,解得F 牵=7.5×103N 设汽车刚达到额定功率时的速度为v ,则P = F 牵·v ,得v =8m/s 设汽车作匀加速运动的时间为t ,则v =at 得t =16s3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)【解析】物体受力情况图5-3-1如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有F -mg=ma解得 =a 2m/s25s 内物体的位移221at s ==2.5m 所以5s 内拉力对物体做的功 W =FS =24×25=600J 5s 内拉力的平均功率为5600==t W P =120W 5s 末拉力的瞬时功率 P =Fv =Fat =24×2×5=240W4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsinαμc o s 1m g lW f -= 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.图5-3-2图5-4-4【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【点拨】如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶,用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?【解析】取水平地面为零势能的参考平面,阀门关闭时两桶内液体的重力势能为:2)(2)(22111hsh h sh E P ρρ+= )(212221h h gs +=ρ 阀门打开,两边液面相平时,两桶内液体的重力势能总和为221)(21212h h g h h s E P +⋅⋅+=ρ由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功 22121)(41h h gs E E W P P G -=-=ρ 7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 【错解】如图5-4-2所示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点B 时的动能(以B 点作为零势能位置),所以为2212Bmv R mg =⋅从而得gR v B 2=【错因】小球到达最高点A 时的速度v A 不能为零,否则小球早在到达A 点之前就离开了圆形轨道.要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足Rv m N mg AA 2=+式中,N A 为圆形轨道对小球的弹力.上式表示小球在A 点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供.当N A =0时,图5-4-2v A 最小,v A =gR .这就是说,要使小球到大A 点,则应使小球在A 点具有速度v A gR≥【正解】以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力. 小球在圆形轨道最高点A 时满足方程Rv m N mg AA 2=+ (1)根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程2221221B A mv R mg mv =+ (2) 解(1),(2)方程组得A B N mRgR v +=5 当N A =0时,v B 为最小,v B =gR 5.所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A.8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R =0.4m ,一小球停放在光滑水平轨道上,现给小球一个v 0=5m/s 的初速度,求:小球从C 点抛出时的速度(g 取10m/s 2).【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221Cmv R mgh mv += 解得 =C v 3m/s9.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =图5-5-1图5-4-8图5-5-11根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.10.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k=∆.机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=-在最低点时绳对小球的拉力大小NN mg mg mg lv mmg T 2101.022)60cos 1(202=⨯⨯==-+=+= 通过以上各例题,总结应用机械能守恒定律解决问题的基本方法.11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?【解析】以小球和地球为研究对象,系统机械能守恒,即221Amv mgH = ………………………① R mg mv mgH B 2212+=…………② 小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供在最高点A :Rv m mg F A A2=-…………③在最高点B : Rv m mg F B B 2=+………④由①③解得: RH mg mg F A2+=由②④解得:)52(-=RH mg FBmg F F B A 6=-6=-∴mgF F BA 12.如图5-5-12所示,两质量相同的小球A 、B ,分别用线悬线在等高的O 1、O 2点,A 球的悬线比B 比球的悬线长,把两球的悬线均拉到水平后将小球无初速释放,则经过最低点时(悬点为零势能(ABD )A .A 球的速度大于B 球的速度 B .A 球的动能大于B 球的动能C .A 球的机械能大于B 球的机械能D .A 球的机械能等于B 球的机械能13.如图5-5-13所示,小球自高为H 的A 点由静止开始沿光滑曲面下滑,到曲面底B 点飞离曲面,B 点处曲面的切线沿水平方向.若其他条件不变,只改变h ,则小球的水平射程s 的变化情况是(ABCD ) A .h 增大,s 可能增大 B .h 增大,s 可能减小 C .h 减小,s 可能增大 D .h 减小,s 可能减小14.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则有( BC ) A .人对小球做的功是221mvB .人对小球做的功是mgh mv -221C .小球落地时的机械能是221mvD .小球落地时的机械能是mgh mv 22115.“验证机械能守恒定律”的实验采用重物自由(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是 .(3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .【解析】(1)初速度为0, 2mm.(2)0.59m/s, 0.174J, 0.176J, 在实验误差允许的范围内机械能守恒. (3)C.2 B20CD2。
机械能守恒定律典型例题剖析
机械能守恒定律典型例题剖析例1、如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m 的小球,为使轻质硬棒能绕转轴O 转到最高点,则底端小球在如图示位置应具有的最小速度v= 。
解:系统的机械能守恒,ΔE P +ΔE K =0因为小球转到最高点的最小速度可以为0 ,所以,例 2. 如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。
一柔软的细线跨过定滑轮,两端分别与物块A 和B 连结,A 的质量为4m ,B 的质量为m ,开始时将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升。
物块A 与斜面间无摩擦。
设当A 沿斜面下滑S 距离后,细线突然断了。
求物块B 上升离地的最大高度H.解:对系统由机械能守恒定律4mgSsin θ – mgS = 1/2× 5 mv 2∴ v 2=2gS/5细线断后,B 做竖直上抛运动,由机械能守恒定律mgH= mgS+1/2× mv 2 ∴ H = 1.2 S例 3. 如图所示,半径为R 、圆心为O 的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m 的重物,忽略小圆环的大小。
(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图).在 两个小圆环间绳子的中点C 处,挂上一个质量M = m 的重物,使两个小圆环间的绳子水平,然后无初速释放重物M .设绳子与大、小圆环间的摩擦均可忽略,求重物M 下降的最大距离.(2)若不挂重物M .小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些l mg l mg v m mv 22212122⋅+⋅=⎪⎭⎫ ⎝⎛+gl gl v 8.4524==∴2位置时,系统可处于平衡状态?解:(1)重物向下先做加速运动,后做减速运动,当重物速度为零时,下降的距离最大.设下降的最大距离为h ,由机械能守恒定律得解得(另解h=0舍去)(2)系统处于平衡状态时,两小环的可能位置为a.两小环同时位于大圆环的底端.b.两小环同时位于大圆环的顶端.c.两小环一个位于大圆环的顶端,另一个位于大圆环的底端.d.除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧α角的位置上(如图所示).对于重物,受绳子拉力与重力作用,有T=mg对于小圆环,受到三个力的作用,水平绳的拉力T、竖直绳子的拉力T、大圆环的支持力N.两绳子的拉力沿大圆环切向的分力大小相等,方向相反得α=α′, 而α+α′=90°,所以α=45 °例 4. 如图质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-3-1
机械能守恒定律复习资料
1.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.
【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsin αμcos 1mgl W f -=
物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.
式中S 1为斜面底端与物体初位置间的水平距离.故
S
h
S S h =+=
21μ
2.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.
【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0
即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J
3.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 【正解】以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力.
小球在圆形轨道最高点A 时满足方程
R
v m N mg A
A 2
=+ (1)
根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程
图5-3-2
图5-4-2
222
1221B A mv R mg mv =+ (2) 解(1),(2)方程组得
A B N m
R
gR v +
=5 当N A =0时,v B 为最小,v B =gR 5.
所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A.
4.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R =0.4m ,一小球停放在光滑水平轨道上,现给小球一个v 0=5m/s 的初速度,求:小球从C 点抛出时的速度(g 取10m/s 2).
【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.
即 2202
1221C
mv R mgh mv += 解得 =C v 3m/s
5.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?
【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.
因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列R
v m mg c 2
= 得
gR m R v m c 2
212
=
在圆轨道最高点小球机械能:
mgR mgR E C 22
1
+=
在释放点,小球机械能为: mgh E A =
根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=
同理,小球在最低点机械能 22
1B
B mv E = gR v E E B C
B 5==
小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列
mg F R
v m
mg F B 62
==-
据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.
图5-5-1
R
V 0 图5-4-8
H
A
B
R
图5-5-11
6.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.
【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量22
1mv E k
=∆.机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv
整理得)60cos 1(202
-=mg l v m 又在最低点时,有l
v m mg T 2
=-
在最低点时绳对小球的拉力大小
N
N mg mg mg l
v m mg T 2101.022)60cos 1(202
=⨯⨯==-+=+=
7.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小
球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?
【解析】以小球和地球为研究对象,系统机械能守恒,即
22
1A
mv mgH = ………………………① R mg mv mgH B 22
12
+=
…………② 小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供 在最高点A :R
v m mg F A A
2
=-…………③
在最高点B : R
v m mg F B B 2
=+………④
由①③解得: R
H mg mg F A
2+=
由②④解得:)52(
-=R
H mg F
B
mg F F B A 6=-
O A B C D
0 7.8 17.6 31.4 49.0 (mm)
6=-∴
mg
F F B
A 13.如图5-5-13所示,小球自高为H 的A 点由静止开始沿光滑曲面下滑,到曲面底
B 点飞离曲面,B 点处曲面的切线沿水平方向.若其他条件不变,只改变h ,则小球的水平射程s 的变化情况是( )
A .h 增大,s 可能增大
B .h 增大,s 可能减小
C .h 减小,s 可能增大
D .h 减小,s 可能减小 ABCD
14.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则有() A .人对小球做的功是22
1mv
B .人对小球做的功是mgh mv -22
1
C .小球落地时的机械能是22
1mv
D .小球落地时的机械能是mgh mv -221 BC
15.“验证机械能守恒定律”的实验采用重物自由下落的方法.
(1)用公式mv 2
/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .
(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重
力势能减少量是 ,因此可得结论是 .
(3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2
v 2
为纵轴,以h 为横轴画出的
图线应是图5-8-9中的 .
【解析】(1)初速度为0, 2mm.
(2)0.59m/s, 0.174J, 0.176J, 在实验误差允许的范围内机械能守恒. (3)C.
2
2
h
h
A
B
2
2
h
0 h
C
D
2
v 2
2
v 2。