八年级数学下册(新版北师大版)精品导学案【第五章_分式与分式方程】[1]

合集下载

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。

教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。

2.引入分式的概念,让学生举例说明分式的实际应用。

提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。

2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。

理论课(30分钟)1.分式的定义和性质。

2.分式的约分、通分和加减法。

3.分式与整式的加减法。

实践课(50分钟)1.分式的变形:分解、合并及简化。

2.分式方程的概念及解法。

3.通过实例让学生掌握分式方程的解法。

课堂总结(10分钟)1.小结本节课的重点内容。

2.引导学生对本节课的学习成果进行分享。

作业布置1.抄写本节课的重点内容以及实例。

2.完成课后练习。

教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。

在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。

北师大版初二数学下册第五章 分式与分式方程 认识分式(一)

北师大版初二数学下册第五章 分式与分式方程    认识分式(一)

第五章 分式与分式方程大邑中学 牟军1.认识分式(一)一、教学目标:1、了解分式的概念,明确分式和整式的区别;2、让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.3、培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.二、教学重难点:重点:理解分式的概念难点:分式在什么条件下有意义三、教学过程第一环节 知识准备问题:下列子中那些是整式?a , -3x 2y 3, 5x -1, x 2+xy +y 2, abc m a a y xy n m ,3,19,,2-- 学生通过观察,比较分式与整式的区别从而获得分式的概念。

第二环节 自主探索以小组的形式对前面出现的分式进行讨论后得出分式的概念,体会分式的意义. 讨论内容:对前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?活动目的: 让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念. 注意事项:学生通过观察、类比,及小组激烈的讨论,基本能得出分式的定义,对于分式的分母不能为0,有的小组考虑了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解,还可理解为字母是可以表示任何数的。

这样获得的知识,理xa b x x -+,32400,2400解的更加透彻,掌握的更加牢固,运用起来会更灵活。

第三环节 例题探究例题(1)当 a =1,2时,分别求分式 的值;(2)当 a 取何值时,分式 有意义?通过例题讲解,让学生从两方面来理解,一是分式分式中的字母可以表示使分式有意义的任何数;二是分式可与分数类比,分式的分母也不能为零。

学生基本能够通过计算出分式的值。

第四环节 课堂反馈1、下列各式中,哪些是整式?哪些是分式?2、x 取什么值时,下列分式无意义? 第五环节 自我小结这节课你有哪些收获?让可能多的学生谈谈自己的收获,只要积极的正确的都要给予肯定,并及时鼓励。

y x xy x x b a a b 221)4(41)3(2)2(,2)1(+-+-+32)1(-x x 1051)2(+-x x a a 21+a a 21+。

北师版八年级下册数学第5章 分式与分式方程 异分母分式的加减法

北师版八年级下册数学第5章 分式与分式方程 异分母分式的加减法
(n≥3且n为
整1数)+,其1结+果为1__+____+_____1____. 1 3 2 4 3 5 n(n+2)
3n2+5n 4(n+1)(n+2)
知1-练
感悟新知
知识点 2 分式加减的应用及分式混合运算
知2-练
例2 小刚家和小丽家到学校的路程都是3km,其中小丽走的是 平路,骑车速度是2vkm/h.小刚需要走1km的上坡路、 2km的下坡路,在上坡路上的骑车速度为vkm/h,在下 坡路上的骑车速度为3vkm/h.那么 (1)小刚从家到学校需要多长时间? (2)小刚和小丽谁在路上花费的时间少?少用多长时间?
知1-讲
特别解读: 通分的关键是确定最简公分母,分式与分式相加减时的最简 公分母是各分母的所有因式的最高次幂的积.
感悟新知
例1 计算:
(1) (32) (3a) 15 ; a 5a
1 1; x3 x3
知1-练
2a 1
a2
4
a
. 2
解:(1) 3 a 15 15 a 15 15 a 15 a 1 ;
(2)分式加减运算的结果要约分,化为最简分式(或整式).
课堂小结
异分母分式的加减 法
某学生化简分式出1现了+错误1 ,解答过程如下:
原式
x+1 x2-1
=(x+1)1(x-1)+(x+1)2(x-1)(第一步)
=(x+1)1+(2 x-1)(第二步)

3 x2-1
.(第三步)
课堂小结
异分母分式的加减 法
C.D.
-x x+2
x x- 2
知1-练
感悟新知
3. 计算的结a2+果2是ab(+b2 -) b
A
a2-b2 a-b

北师大版数学八年级下册《第五章 分式与分式方程 1 认识分式 第1课时 分式的概念》教学课件

北师大版数学八年级下册《第五章 分式与分式方程 1 认识分式 第1课时 分式的概念》教学课件
第五章 分式与分式方程 1 认识分式
第1课时 分式的概念
北师版 八年级下册
新课导入
面对日益严重的土地沙漠化问题,某县决定在
一定期限内固沙造林2400hm2,实际每月固沙造林
的面积比原计划多30hm2 ,结果提前完成原计划的
任务.如果设原计划每月固沙造林xhm2,那么
(1)原计划完成造林任务需要多少月? 2 4 0 0
b a x
上面问题中出现了代数式 2 4 0 0 , 2 4 0 0 ,
35a 45b , b
x
x + 30
,它们有什么共同特征?
ab a x
观察下列两组式子,它们都是整式吗? 它们有什么特点? (1)a,-3x2y3,5x-1,x2+xy+y2 (2) 2 ,y,a ,c
m-n x 9a-1 ab
x2
A. ±2
B.2 C. -2
D.4
分析 分式的值为零,即分子为零且分母不为零. 根据题意,得x2-4=0且x-2≠0, 解得x=-2.
3.有下列式子:①x; ②y2; ③5; ④x2 .
3 y x2
其中是分式的有( B )
A. 1个
B.2个 C. 3个
D.4个
课后小结
一般地,.只要分母不 等于零,分式就有意义;
(2)有关求分式有意义、无意义的条件的问题, 常转化为不等式的问题.
分式的值为零的条件
分式的值为零的条件:分子为零,分母不为零. 用式子表示:B A=0A=0且B0 例 当x为何值时,分式 x 2 9 的值为零.
x3
[分析] 分式的值为零 分 分子 母= 00xx239 解出x的值.
解 依题意,得
x 2 9 = 0 ①

北师大版八年级数学初二下册第5章《分式与分式方程》5.1认识分式5.2分式的乘除法优秀PPT课件

北师大版八年级数学初二下册第5章《分式与分式方程》5.1认识分式5.2分式的乘除法优秀PPT课件

a 1 11 解:(1)当a=1时, 2. 2a 1 2 1 a 1 2 1 1. 当a=2时, 2a 1 4 1 a 1 1 1 0. 当a=-1时, 2a 1 2 1
(2)当分母的值为零时,分式没有 意义,除此以外,分式都有意义.
b by (1) (y≠0); 2 x 2 xy
〔解析〕
(2)
ax a . bx b
据分式的基本性质,分子b 也要乘y,才能得到 2 xy .(2)
b (1) 的分母2x乘y才能化为2xy,为保证分式的值不变,根 2x by
得到a,所以分母bx也需要除以x得到b.在这里,由于已知 解:(1)因为y≠0,所以
ax 的分子ax除以x bx ax
的值为0的条件是x2-1=0且x+1≠0,所以x=1.故填1.
无意义.试求m,n的值.
x m n1 4.对于分式 ,已知当x=-3时,分式的值为0;当x=2时,分式 m 2n 3m
解:∵当x=-3时,分式的值为0,
3 m n 0, m+n -3, 即 m 2n 9 0, m 2n 9.
问题2
如图(2)所示,面积为1的长方形平均分成了2份,则阴影
部分的面积是多少?
问题3 这两块阴影部分的面积相等吗?
请看下面的问题:
问题1
如图(1)所示,面积为1的长方形,长为a,那么长方形
的宽怎么表示呢? 问题2 如图(2)所示,两个图(1)中的长方形拼接在一起, 它的宽怎么表示呢? 问题3 两图中长方形的宽相等吗?
2.若分式
2x 1 有意义,则x的取值范围是 3x 5

5 3
.
5 解析:依题意得3x+5≠0,解得x≠- 5 ,因此x的取值范围是x≠5 填x≠- . 3 3

北师大版八年级下册数学 第五章 分式与分式方程(知识点)

北师大版八年级下册数学  第五章 分式与分式方程(知识点)

第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。

如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。

分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。

分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。

字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。

3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。

字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。

最简分式:分子与分母没有公因式的分式,叫做最简分式。

5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。

通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。

北师大版八年级数学初二下册第5章《分式与分式方程》5.4分式方程优秀PPT课件

北师大版八年级数学初二下册第5章《分式与分式方程》5.4分式方程优秀PPT课件

2 1.(2014· 重庆中考)关于x的方程 x 1 1 的解是
A.x=4 B.x=3 C.x=2 D.x=1 2.(2014· 湘潭中考)分式方程
检测反馈
( B )
5 3 x2 x
的解为 ( C )
A.x=1
B.x=2
C.x=3
D.x=4 的根是 x=2
3.(2015·温州中考)方程
的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件
文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设 B型包装箱每个可以装x件文具,根据题意列方程为 A. 1080 1080 12 x x 15
1080 1080 12 B. x x 15
1080 1080 12 D. x x 15
[知识拓展]
1.把分式方程化为整式方程的方法是去掉分式方程中的分 母.如何去掉分式方程中的分母是解分式方程的“关键”步骤.
2.用分式方程中各式的最简公分母分别乘方程的两边,从而约 去分母.但要注意用最简公分母乘方程两边的每一项,切勿漏项.
3.解分式方程可能产生使最简公分母为零的增根,因此检 验是解分式方程必要的步骤.
(2)以往学过的方程中,分母中含有字母吗?
归纳:分式方程的重要特征:
(1)含分母; (2)分母中含有未知数. 分式方程与整式方程的区别:分式方程中的分母含 有未知数,而整式方程中的分母不含有未知数.
1 1 x ( x 1) 【想一想】方程 3 6
是分式方程吗?
不是分式方程,分母中不含有未知数.
动装所需要的时间,由题意列出等量关系.故选B.
第五 章 分式与分式方程
(教材例1)解方程
1 3 . x2 x

八年级数学下册第五章分式与分式方程2分式的乘除法教案(新版)北师大版

八年级数学下册第五章分式与分式方程2分式的乘除法教案(新版)北师大版

2 分式的乘除法1.类比分数的乘除运算法则,探究分式的乘除法法则,研究分式的运算算理.2.会利用分式的乘除法运算法则,进行简单的分式的乘除法运算.3.提升学生的思维迁移能力,发展符号运算水平.重点会进行简单的分式的乘除法运算.难点解决一些与分式有关的简单的实际问题.一、情境导入有一次,鲁班的手不慎被一片小草割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.鲁班在这里就运用了“类比”的思想方法,“类比”也是数学学习中常用的一种重要方法.上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?今天我们研究“分式的乘除法”.(板书课题)二、探究新知1.探究分式的乘法法则(1)计算,并说出分数的乘法法则:①23×45; ②57×29. 分数乘分数,用分子的积作为积的分子,分母的积作为积的分母.(2)猜一猜:b a ×d c=________. 你能总结分式的乘法法则吗?与同伴交流.b a ×dc =b×d a×c. 分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.2.探究分式的除法法则(1)计算,并说出分数的除法法则.①23÷45; ②57÷29. 分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)猜一猜:b a ÷d c=________. 你能总结分式的除法法则吗?与同伴交流.b a ÷dc =b a ×cd =b×c a×d. 分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.三、举例分析例1 计算:(1) 3a 4y ·2y 23a 2; (2) a +2a -2·1a 2+2a. 处理方式:师生共同完成解题过程.解:(1) 3a 4y ·2y 23a 2=3a·2y 24y ·3a 2=y 2a .(2)a +2a -2·1a 2+2a =a +2(a -2)·a(a +2)=1a 2-2a. 注意:①分子、分母有多项式的,一般是分子和分母先分解因式,并在运算过程中约分;②运算结果要化成最简分式.例2 计算:(1) 3xy 2÷6y 2x; 处理方式:学生自主完成计算过程.解:3xy 2÷6y 2x =3xy 2·x 6y 2=3xy 2·x 6y 2=12x 2. 提出问题:就计算过程谈谈你的想法?引导学生得出计算分式除法的步骤:① 除法变乘法; ②再按乘法法则运算;③结果为最简分式.(2) a -1a 2-4a +4÷a 2-1a 2-4. 处理方式:师生共同完成计算过程.解:原式=a -1a 2-4a +4·a 2-4a 2-1=(a -1)(a 2-4)(a 2-4a +4)(a 2-1)=(a -1)(a +2)(a -2)(a -2)2(a -1)(a +1)=a +2(a -2)(a +1). 注意:①分式的分子和分母是多项式,先要对分子和分母进行因式分解;②结果要化为最简分式或整式.四、练习巩固1.计算:(1)b a 2-9·a +3b 2-b ;(2)a a -b ·(b -a b)2. 2.购买西瓜时,人们总是希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的,西瓜皮的厚度都是d ,已知球的体积公式为V =43πR 3 (其中R 为球的半径).那么(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积的比是多少?(3)你认为买大西瓜合算还是买小西瓜合算?与同伴交流.3.对于a÷b·1b ,小明是这样计算的:a÷b·1b= a÷1=a.他的计算过程正确吗?为什么?五、课堂小结通过这节课的学习,你学到了哪些知识?要注意什么问题?六、课外作业1.教材第115页“随堂练习”.2.教材第116页习题5.3第1、2、4题.本节课中的运算法则的运用不难,但有的学生在运用法则计算时遇到单项式乘单项式、单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差.另外,部分学生在结果的化简上存在问题,化简意识不够,因此在本节课的教学中应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识.还有些学生因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关联的,所以课前有必要巩固分式的约分和因式分解这两方面的知识,进行有针对的练习.。

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘.四、板书设计。

八年级数学下册第5章分式与分式方程分式方程第2课时分式方程的解法课件(新版)北师大版

八年级数学下册第5章分式与分式方程分式方程第2课时分式方程的解法课件(新版)北师大版

A.2(x-8)+5x=16(x-7) B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7)
D.2(x-8)-5x=8
2.若关于x的分式方程
的值为 ( D )
A.-1,5
B.1
C.-1.5或2 D.-0.5或-1.5
无解,则m
3.解方程
2 3. x3 x
解: 方程两边乘x(x-3),得
第五章 分 式
5.4 分式方程
第2课时 分式方程的解法
学习目标
1.掌握可化为一元一次方程的分式方程的解法; (重点)
2.理解分式方程产生增根的原因,掌握分式方程验 根的方法.(难点)
导入新课
复习引入
1. 解一元一次方程的步骤: 移项,合并同类项,未知数系数化为1. 2. 解一元一次方程 x x 1 1.

去分母后所得整式方程的解却不是
原分式方程的解呢?
我们再来视察去分母的过程:
90 60 30+x 30 x
两边同乘(30+x)(30-x) ① 当x=6时,(30+x)(30-x)≠090(30-x)=60(30+x)
真相揭秘: 分式两边同乘了不为0的式子,所得整式方 程的解与分式方程的解相同.
x 1
∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,
∴a的取值范围是a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示), 然后根据解的正负性,列关于未知字母的不 等式求解,特别注意分母不能为0.
例3 若关于x的分式方程 求m的值.
无解,
解析:先把分式方程化为整式方程,再分 两种情况讨论求解:一元一次方程无解与分 式方程有增根.

八年级数学下册第五章分式与分式方程认识分式(第2课时)课件(新版)北师大版

八年级数学下册第五章分式与分式方程认识分式(第2课时)课件(新版)北师大版

B.
x x2
1 1
D.
x2 x2
xy y2
(B)
2.将分式
x 1
__x__1__.
x2 2x 1化为最简分式,所得结果是
x2 1
【火眼金睛】
化简:
m2 3m 9 m2
.
正解:
m2-3m 9-m2
3
m(m-3)
m(3-m)
- m m
3
.
【一题多变】 已知x2-4xy+4y2=0,那么分式 x y 的值等于多少?
(1)82aba2
a 1 1 a
(. 2)a
2
4ab 4b2 a2 4b2
.
【自主解答】(1)
2a a 1 8ab2 1 a
1 4b2
.
(2)a 2
4ab 4b2 a2 4b2
a
a 2b2 2ba 2b
a 2b . a 2b
【学霸提醒】 关于约分的三点说明 (1)根据:分式的基本性质. (2)关键:确定分式分子与分母的公因式. 确定公因式的步骤:
--A -B
-A . B
【基础小练】
请自我检测一下预习的效果吧! 1.分式变形 x = A 中的整式A=___x_2-_2_x___,变形
x 2 x2 4
的根据是 _分__式__的__分__子__与__分__母__乘__(_或__除__以__)_同__一__个__不__等__于__0_的__整__式__,_ _分__式__的__值__不__变__.
bm
(2)符号表示: b b m , b =__a___m__(m≠0).
a am a
2.约分 (1)概念:把一个分式的分子和分母的___公__因__式____约 去. (2)约分的关键:找出分子、分母的___公__因__式____; 约分的根据:分式的基本性质;

八年级数学下册 第五章 分式与分式方程 4 分式方程教案 (新版)北师大版

八年级数学下册 第五章 分式与分式方程 4 分式方程教案 (新版)北师大版

4 分式方程第1课时一、教学目标 1.知识与技能(1)理解分式方程的概念;(2)能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. 2.过程与方法体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. 3.情感态度及价值观在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力. 二、教学重点、难点重点:能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义. 难点:能根据实际问题中的等量关系列出分式方程. 三、教具准备 课件. 四、教学过程(一)创设情境,引入新课[师]在这一章的第一节《认识分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要x2400个月,实际完成一期工程用了302400+x 个月.根据题意,可得方程x 2400-302400+x =4.(1)我们说x 2400,302400+x 分母中含有字母,我们现在知道它们是不同于整式的代数式——分式.可是,我们也是第一次遇到这样的方程,它和我们学过的一元一次方程一样能刻画现实世界,是一种反映现实世界的数学模型. 接下来,我们再来看几个这样的例子. (二)讲授新课列出刻画现实世界的数学模型——方程.(多媒体出示) 1.[小麦实验田问题]有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦 9 000 kg 和15000 kg .已知第一块试验田每公顷的产量比第二块少3 000 kg ,分别求这两块试验田每公顷的产量.你能找出这一问题中所有的等量关系吗?如果设第一块试验田每公顷的产量为x kg ,那么,第二块试验田每公顷的产量是____________kg .根据题意,可得方程_________ ___.[师]在这个问题中涉及到了哪几个基本量?它们的关系如何?[生1]涉及到三个基本量:总产量,每公顷试验田的产量,试验田的面积.其中总产量=每公顷试验田的产量×试验田的面积. [师]你能找出这一问题的所有等量关系吗?[生2]第一块试验田的面积=第二块试验田的面积.(a ) [生3]还有一个等量关系是:第一块试验田每公顷的产量+3000 kg=第二块试验田每公顷的产量(b )[师]我们接着回答下面的问题:如果设第一块试验田每公顷的产量为x kg ,那么第二块试验田每公倾的产量是多少千克呢?[生]根据等量关系(b ),可知第二块试验田每公顷的产量是(x +3000)kg . [生]根据题意,利用等量关系(a ),可得方程:x 9000=300015000+x .(2) [师]x 9000,300015000+x 的实际意义是什么呢? [生]它们分别表示第一块试验田和第二块试验田的面积.[师]有没有别的方法列出方程呢?同学们可以以小组为单位讨论,交流,我们看哪一个组思维最敏捷.[生]根据等量关系(a ),我们可以设两块试验田的面积都为x 公顷,那么x9000表示第一块试验田每公顷的产量,x15000表示第二块试验田每公顷的产量,根据等量关系(b )可列出方程:x 9000+3000=x15000.(3) [师]接下来,我们再来看一个问题.(多媒体出示) 2.[电脑网络培训问题]王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元.原定的人数是多少? 这一问题中有哪些等量关系?如果设原定是x 人,那么每人平均分摊____________元;人数增加到原定人数的2倍后,每人平均分摊____________元. 根据题意,可得方程____________. [师]我们先来审题,找到题中的等量关系. [生]由题意,可知:实际参加活动的人数=原定人数×2倍.(c ) [生]还有一个等量关系为:原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元.(d ) [师]同学们已经过审题,找到了题中的等量关系,接下来该干什么呢? [生]设出未知数,列出方程,将具体实际的问题转化为数学模型.[师]很好!下面同学们就分组来完成刚才这位同学所说的,你有几种列方程的方法呢? 讨论后,各小组可选代表回答上面的问题.[生]我代表第一小组回答.我们设未知数的方法采用中方法: 设原定是x 人,那么每人平均分摊x 300元;人数增加到原来人数的2倍后,每人平均分摊x2480元,根据题意,利用等量关系(d ),得方程x 300-4=x2480.(4) [生]我们组没有按照投影片上的设法,而是设原定每人平摊y 元,那么原定人数为y300;实际参加活动的每个同学平摊(y -4)元,那么实际参加活动的人数为4480-y ,根据题意,利用等量关系(c ),得方程2×y 300=4480-y .(5) [师]上面两个组的回答都很精彩,鼓励一下他们.(鼓掌)从同学们的表现不难看出,用方程这样的数学模型刻画现实世界的情境,同学们掌握得很好. 观察方程:x 2400-302400+x =4 (1) x 9000=300015000+x (2) x 9000+3000=x15000 (3) x 300-4=x2480 (4) 2×y 300=4480-y (5) 上面所得到的方程有什么共同特点?[生]方程中的未知数都含在分母中,不是一元一次方程.[师]是的.这就是我们今天要认识的一种新的方程——分式方程即分母中含有未知数的方程.(三)随堂练习1.已知鱼塘中有x 千克鱼,每千克鱼的捕捞费用是x+102000元.现从鱼塘中捕捞101千克鱼花了捕捞费用200元,求x 满足的方程.分析:题中的等量关系是:101千克鱼×每千克鱼的捕捞费用=200元. 解:x 满足的方程是101×x+102000=200.2.某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1∶4,那么应抽调的管理人员数x 满足怎样的方程?解:抽调管理人员x 人后,管理人员有(40-x )人,销售人员有(80+x )人,根据题意得x x +-8040=41.(四)课堂小结这节课我们从现实情境问题中建立方程这一重要的数学模型,认识了一种新的方程——分式方程. (五)教学反思第2课时教学目标 1.知识与技能(1)掌握解分式方程的一般步骤; (2)理解检验分式方程的根的必要性. 2.过程与方法(1)通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤; (2)使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径. 3.情感态度及价值观(1)培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度; (2)运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.二、教学重点、难点重点:(1)解分式方程的一般步骤; (2)检验分式方程的根的必要性. 难点:明确解分式方程验根的必要性. 三、教具准备 课件. 四、教学过程(一)提出问题,引入新课[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程:213-x +325+x =2-624-x[师生共解]解:去分母,方程两边同乘分母的最小公倍数6,得 3(3x -1)+2(5x +2)=6×2-(4x -2), 去括号,得9x -3+10x +4=12-4x +2, 移项,得9x +10x +4x =12+2+3-4, 合并同类项,得23x =13, 系数化为1,得x =2313. (二)讲解新课,探索分式方程的解法[师]刚才我们一同回忆了解一元一次方程的步骤.下面我们来看一个分式方程. [例1]解方程:21-x =x3. (1) [师]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢? [生]可以.[师]同学们可以接着讨论,方程两边同乘什么样的整式(或数),可以去掉分母呢? [生]乘分式方程中所有分母的公分母.[生]解一元一次方程,去分母时,方程两边同乘分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘分母的最简公分母,去分母也比较简单.[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢? [生]x (x -2).[师生共析]方程两边同乘x (x -2),得x (x -2)·21-x =x (x -2)·x3, 整理,得x =3(x -2). (2)[师]我们可以发现,采用去分母的方法把分式方程转化为了整式方程,而且是我们曾学过的一元一次方程.再往下解,我们就可以像解一元一次方程一样,解出x .即去括号,得x =3x -6.移项、合并同类项,得2x =6.系数化为1,得x =3.[师]x =3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论. (教师可参与到学生的讨论中,倾听学生的说法)[师]x =3是由一元一次方程x =3(x -2)(2)解出来的,x =3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x =3代入方程(1)的左边=231-=1,右边=33=1,左边=右边,所以x =3是方程(1)的解. [师]请同学们用同样的方法完成例2的解答. [例2]解方程:x 300-x2480=4. (由学生在练习本上试着完成,然后师生共同解答). 解:方程两边同乘2x ,得600-480=8x. 解这个方程,得x =15.检验:将x =15代入原方程,得左边=4,右边=4,左边=右边, 所以x =15是原方程的根.[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯.我这里还有一个题,我们再来一起解决一下.(多媒体出示,先隐藏小亮的解法) 议一议: 解方程:32--x x =x-31-2. (可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并共同分析)[师]我们来看小亮同学的解法:32--x x =x-31-2. 解:方程两边同乘(x -3),得2-x =-1-2(x -3) 解这个方程,得x =3.[生]小亮解完没检验x =3是不是原方程的解. [师]检验的结果如何呢?[生]把x =3代入原方程中,使方程的分母x -3和3-x 都为零,即x =3时,方程中的分式无意义,因此x =3不是原方程的根. [师]它是去分母后得到的整式方程的根吗? [生]x =3是去分母后的整式方程的根.[师]为什么x =3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.(教师可参与到学生的讨论中,倾听同学们的想法)[生]在解分式方程时,我们在分式方程两边都乘最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根. 在把分式方程转化为整式方程的过程中会产生增根,那么是不是就不要这样解?或采用什么方法补救?[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗? 学生先思考,教师再讲解.[师]产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误. (三)应用,升华 1.解方程:(1)13-x =x 4;(2)1210-x +x215-=2. 2.回顾,总结想一想:解分式方程一般需要经过哪几个步骤? [师]同学们可根据例题和练习题的步骤,讨论总结.[生]解分式方程分三大步骤:(1)方程两边都乘最简公分母,约去分母,化分式方程为整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根. 3.解分式方程: (1)x 9000=300015000+x ; (2)x h 2=xa a -(a ,h 常数).(四)课堂小结[师]同学们这节课的表现很活跃,一定收获不小.[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可.[生]我明白了分式方程转化为整式方程为什么会产生增根.[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程.(五)教学反思第3课时一、教学目标1.知识与技能会利用分式方程的数学模型反映、解决现实情境中的实际问题.2.过程与方法经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力;3.情感态度及价值观(1)经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣;(2)培养学生的创新精神,从中获得成功的体验.二、教学重点、难点重点:(1)审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.(2)根据实际意义检验解的合理性.难点:寻求实际问题中的等量关系.三、教具准备课件.四、教学过程(一)提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.(二)讲授新课做一做(多媒体出示)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?[师]现在我们一起来寻求这一情境中的等量关系.[生]第二年每间房屋的租金=第一年每间房屋的租金+500元.(1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租? [生]问题也可以是:这两年每年房屋的租金各是多少?[师]很好,下面我们就来先解决第一个问题:每年各有多少间房屋出租? [师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x96000元,第二年每间房屋的租金为x 102000元.根据题意,得x 102000=x96000+500. 解这个方程,得x =12.经检验x =12是原方程的解,也符合题意. 所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得 第一年每间房屋的租金为1296000=8 000(元), 第二年每间房屋的租金为12102000=8 500(元). [师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x +500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得 x 96000= 500102000+x . 解得x = 8000.x +500=8 500(元).经检验,x =8 000是原分式方程的解,也符合题意. 所以这两年每间房屋的租金分别为8 000元,8 500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.[例]某自来水公司水费计算办法如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m 3的部分每立方米收费多少元?[师]解决实际情境问题,最关键的是什么呢? [生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表).[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费. [师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水每立方米收费为x 元,则1月份张家超出5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x55.15.17⨯- m 3,总用水量为5+x55.15.17⨯- m 3;李家超出5 m 3部分的水费为(27.5-1.5×5)元,超出5 m 3的用水量为x55.15.27⨯- m 3,总用水量为(5+x55.15.27⨯-)m 3.根据等量关系,得x 55.15.17⨯-+5=(x55.15.27⨯-+5)×32.解这个方程,得x =2. 经检验x =2是所列方程的根.所以超出5 m 3部分的水每立方米收费2元. (三)随堂练习小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本每本的价格各是多少?[师]我们先来找到题中的等量关系.[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本;硬皮本的价格=软皮本的价格×(1+21). [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本每本的价格为x 元,则硬皮本每本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )211(15+本.根据题意,得,x 15=x )211(15++1 解得x =5.经检验x =5是原方程的根,也符合题意.所以(1+21)x =23×5=7.5(元). 答:软皮本每本的价格为5元,硬皮本每本的价格为7.5元.(四)课堂小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.(五)教学反思。

八年级数学下册第五章4分式方程第1课时分式方程的概念及解法作业课件北师大版.ppt

八年级数学下册第五章4分式方程第1课时分式方程的概念及解法作业课件北师大版.ppt

4.甲、乙工程队分别承接了160米、200米的管道铺设任务, 已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同, 问甲每天铺设多少米? 设甲每天铺设x米,根据题意可列出方程:___1_x6_0_=__x_2+_0_05___.
5.(荆州中考)解分式方程x-1 2-3=2-4 x时,去分母可得( B ) A.1-3(x-2)=4 B.1-3(x-2)=-4 C.-1-3(2-x)=-4 D.1-3(2-x)=4 6.(哈尔滨中考)方程21x=x+2 3的解为( D ) A.x=-1 B.x=0 C.x=35 D.x=1
(3)xx-+23-x-3 3=1. 解:去分母,得 x2-5x+6-3x-9=x2-9.解得 x=34. 检验:当 x=34时,(x+3)(x-3)≠0,∴原方程的解为 x=34
14.当 x 为何值时,分式32--xx的值比分式x-1 2的值大 3? 解:列方程得32- -xx-x-1 2=3.解得 x=1.经检验,x=1 是原方程的根. 所以 x 的值为 1
3.(阜新中考)甲、乙两地相距 600 km,乘高铁列车从甲地到乙地比乘 特快列车少用 4 h,已知高铁列车的平均行驶速度是特快列车的 3 倍, 设特快列车的平均行驶速度为 x km/h,根据题意可列方程为( C ) A.60x0+630x0=4 B.630x0-60x0=4 C.60x0-630x0=4 D.6x00-630x0=4×2
16.先阅读下面的材料,然后解答问题:通过观察,发现方程: x+1x=2+12的解为 x1=2,x2=12; x+1x=3+13的解为 x1=3,x2=13; x+1x=4+14的解为 x1=4,x2=14;…
第五章 分式与分式方程
5.4 分式方程
第1课时 分式方程的概念及解法

北师大版初二数学下册第五章 分式与分式方程 回顾与思考

北师大版初二数学下册第五章 分式与分式方程  回顾与思考

北师大版八年级(下)数学第五章回顾与思考(一)教学设计西安高新第一学校车大鹏一、教材分析本节是第五章《分式与分式方程》的最后一节,占两个课时,这是第一课时,它主要让学生回顾在学习分式的基本概念与分式的运算时用到的几种法则,熟练掌握分式的运算法则,通过螺旋式上升的认识,让学生逐步熟悉运用分式运算的基本技能,培养学生的代数表达能力,通过本节课的教学使学生对分式的运算能有更深的认识.二、教学目标●知识与技能(1)学生进一步熟悉分式的意义及分式的运算;(2)提高学生分式的基本运算技能.●过程与方法(1)通过制作思维导图,将头脑中零散的知识点用思维导图有机地组合起来,形成知识网络。

(2)通过典例分析,学生在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用。

●情感、态度与价值观(1)提高学生的运算能力,发展学生的合情推理能力;(2)注重学生对分式的理解,提高学生分析问题的能力.三、教学重点、难点教学重点:进一步熟悉分式的意义及分式的运算;教学难点:提高学生分式的基本运算技能.四、教学方法●学生学习现状分析学生的技能基础:学生已经学习了分式及分式的运算等有关概念,对分式及其运算有了初步的认识,但对技巧性较高的运算题还不熟悉.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论等活动方法,获得了解决实际问题所必须的一些数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.●教法分析在本章的学习中,学生已经掌握了分式的概念与分式加减乘除法的运算,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用。

因此采用“回顾、反思、应用”有机结合的教学法。

北师大版八年级数学下册第五章分式与分式方程课件

北师大版八年级数学下册第五章分式与分式方程课件

X=-3
(4) X2 -1 X2 +2x+1 X=1
6.当x为何值时,分式 2x (x-2) 5x (x+2)
(1) 有意义
(2) 值为 0
X≠0且x≠-2
X=2
7.要使分式 -2 的值为正数,则x的取值范围是 X>1 1-x
8.当x <-2 时,分式 X2+1 的值是负数. X+2
9.当x ≥7
依题意得:
180
240
=
x
x5
请完成下面的过程
甲:15 乙:20
1
x2
的值.
变:已知 x+ 1 =3 ,求
x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达:
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
用符号语言表达:
(1)
4 3
x y
y 2x
3
ab3 5a2b2 (பைடு நூலகம்) 2c2 4cd
4
2
2
x
1
解:原方程可化为 1 4x 2 1
NNoox 2 (x 2)(x 2) x 2
两边都乘以 (x 2)(x 2) ,并整理得;
IImmaaggee x2 3x2 0 解得 x1 1, x2 2
检验:x=1是原方程的根,x=2是增根
∴原方程的根是x=1
例2
已知
x3 (x 2)2
1.约分: 把分子、分母的最大公因式(数)约去。 2.通分:
把分母不相同的几个分式化成分母相同的分式。

北师大版八年级数学下册第五章分式与分式方程章末复习课件(共53张)

北师大版八年级数学下册第五章分式与分式方程章末复习课件(共53张)
第五章 分式与分式方程
章末复习
第五章 分式与分式方程
章末复习
知识框架 归纳整合 素养提升 中考链接
章末复习
知识框架
分母不为零
分式有意义 的条件
分子为零, 且 分式的值为
分母不为零
零的条件
分式的 基本性 质
分式的约分
分式的通分
分式的 概念
分式的 性质
分式 的运 算
分式的乘 法运算
分式的除 法运算
分式的乘 方
章末复习
素养提升
专题 运用“整体思想”求分式的值
【要点指点】 当题目按常规解法不易求解或不能求解时 , 可以利 用整体代入法解题 , 也就是说先把条件和待求的式子进行整理 , 寻求两者相同的部分 ,代入求值. 在求分式的值时 , 可以恰当运用整体思想 , 把复杂问题简单化 .
有意义.
要使分式
无意义 , 则应满足 ( x + 3)( x - 4) = 0 , 解
得 x=- 3且 x = 4 .所以当 x =- 3 且 x = 4 时 , 分式 无意义.
章末复习
相关题1 (1)在分式
中 , 当 x =- m时 , ( C ) .
A .分式的值为零
B .分式无意义
C .且 m ≠ 时 , 分式的值为零
章末复习
分析 设(1) 设乙队单独完成此项任务需 x 天 , 则甲队单独完成此项任务需
( x + 10) 天 , 所以乙队的工作效率为 , 单独施工 30 天的工作量为 , 甲
队的工作效率为
, 单独施工 45 天的工作量
, 根据等量关系构
造方程求解. (2) 根据题意有不等关系:甲队的工作量 ≥ 乙队的工作量

北师大版八年级数学下册《第五章分式与分式方程》单元测试卷(带答案)

北师大版八年级数学下册《第五章分式与分式方程》单元测试卷(带答案)

北师大版八年级数学下册《第五章分式与分式方程》单元测试卷(带答案)一、单选题(共10小题,满分40分)1.已知15a a +=,则221a a +的值为( ) A .-5 B .27 C .23 D .252.下列函数中,自变量x 的取值范围是x≥2的函数是( )A .y =1﹣2xB .y 2x -C .y 2x -D .y =12x - 3.若分式211x x -+的值为 0,则 x 的取值为( ) A .x = 1B .x = -1C .x = ±1D .无法确定 4.在代数式:中,分式的个数是( ) A .2 B .3 C .4 D .55.从-2、-1、0、2、5这一个数中,随机抽取一个数记为m ,若数m 使关于x 的不等式组22141x m x m >+⎧⎨--≥+⎩无解,且使关于x 的分式方程2122x m x x -+=---有非负整数解,那么这一个数中所有满足条件的m 的个数是( ) A .1 B .2 C .3 D .46.若关于x 的一元一次不等式组12(35)334333x a x x ⎧--≤⎪⎪⎨+⎪>+⎪⎩无解,且关于y 的分式方程223211y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .7B .8C .14D .15 71x +x 的取值范围是( ) A .1x ≠-B .0x ≠C .1x >-且0x ≠D .1x ≥-且0x ≠8.若关于x 的分式方程52122x a x x x --=+--有正整数解,且关于y 的一元一次不等式组33240y y y a -⎧>-⎪⎨⎪-≤⎩的解集为y a ≤,则所有满足条件的整数a 的和为( )A .8B .7C .3D .29.若关于x 的分式方程262433x a x x --=---解为正数,且关于y 的不等式组()()12323331y y y a y ⎧-≤-⎪⎨⎪-≥-⎩恰有五个整数解,则所有满足条件的整数a 的和为( )A .22B .30C .32D .4010.x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( )A .﹣7B .﹣6C .﹣5D .﹣4二、填空题(共8小题,满分32分)11.代数式23x x -有意义,则实数x 的取值范围是 . 12.在中,分式的个数是 个. 13.若2310x x -+=,则 42218x x x++= . 14.解方程2142242x x x x +=+-- 解:方程两边同时乘以(x+2)(x -2)…(A)(x+2)(x -2)142(2)(2)2(2)(2)2x x x x x x x ⎡⎤+=⨯--⎢⎥++--⎣⎦化简得:x -2+4x=2(x+2)….. (B)去括号、移项得:x+4x -2x=4+2…(C)解得:x=2…..(D)原方程的解是x=2….(E)问题:①上述解题过程的错误在第 步,其原因是 ①该步改正为: 15.方程11233x x x--=--的解是 . 160的x 值是 .17.若关于x 的一元一次不等式组2133x x x a -⎧<+⎪⎨⎪+≤⎩至少有2个整数解,且关于y 的分式方程1122y a y y -+=---的解是正整数,则所有满足条件的整数a 的值之积是 . 18.满足222210105,4b a a b a b a b+=+=++的整数对(),a b 的组数为 ;三、解答题(共6小题,每题8分,满分48分)19.先化简,再求值:21(1)x x x x -⎛⎫-÷- ⎪⎝⎭,其中x =5. 20.已知关于x 的分式方程25311x m x x--=--的解是正数,求m 的取值范围 21.当x 为何值时,分式2369x x x --+的值为0? 22.解方程或方程组: (1)解方程组:32146x y x y +=⎧⎨-=-⎩; (2)解方程2303x x-=-. 23.(1)已知其中23a =-,化简求值2214411a a a a a -+⎛⎫-÷ ⎪--⎝⎭; (2)已知()22111m m n n ++=,探究m 与n 的关系. 24.已知p 、q 都是正实数,且3p q ≠.(1)3p q 和3p q p q ++之间; (2)请问:p q 和3p q p q++3 (3)请你再写出一个式子,使得它的值比p q 和3p q p q ++3 参考答案1.C2.C3.A4.B5.B6.C7.D8.D9.A10.D11.3x ≠12.313.114. E 没有进行检验 15.616.17.3-18.219.1x x - 54. 20.8m <且7m ≠/7m ≠且8m < 21.3x =-22.(1)12x y =-⎧⎨=⎩(2)x =923.(1)1;(2)0m n +=24.(1)11;(2)p >时,3p qp q ++p <时,p q (3)3q p q +。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 分式与分式方程第一节 认识分式(一)【学习目标】1、了解分式的概念,明确分式和整式的区别;2、能用分式表示简单问题数量之间的关系;3、会判断一个分式何时有意义;4、会根据已知条件求分式的值。

【学习重难点】重点:掌握分式的概念;难点:正确区分整式与分式。

【学习方法】自主探究与小组合作交流相结合. 【学习过程】模块一 预习反馈 一、学习准备1、分式的概念:整式A 除以整式B ,可以表示成AB的形式,如果 中含有字母,那么我们称AB为__________ 2、分式与整式的区别:分式一定含有分母,且分母中一定含有 ;而整式不一定...含有分母,若含有分母,分母中一定不含有字母。

3、分式有意义、无意义或等于零的条件: (1)分式AB有意义...的条件:分式的 的值不等于零; (2)分式AB无意义...的条件:分式的 的值等于零; (3)分式AB的值为零的条件:分式的 的值等于零,且分式的 的值不等于零; 4、阅读教材:第一节《认识分式》 二、教材精读5、理解分式的概念253817233312y x x x xy y x y x y x x -++-, , ,-,-, , , ?些是整式?哪些是分式 在下列式子中,哪例π分析:区分整式与分式的唯一标准就是看分母,分母中不含字母的是整式,分母中含有字母的是分式。

提示:π是一个常数,而不是字母。

解:注意:理解分式的概念,应把握以下三点:(1)分式AB中,A 、B 是两个整式,它是两个整式相除的商,分数线由括号和除号两个作用,如nm nm -+可以表达成()()n m n m -÷+;(2)分式A B 中B 一定含有字母,而分子A 中可以含有字母,也可以不含字母;(3)分式中,分母的值是零,则分式没有意义,如分式11-y 中,.1,01≠≠-y y 即6、有意义?取何值时, 当例112-x x 分析:根据分式有意义的条件进行计算,此题即为求分母不等于零时x 的取值范围。

模块二 合作探究 7、 下列代数式:132m -,31,x π,1x ,1xx -,32(1)x y x x --,其中是分式的有:_________________________________ _________.8、当x 取何值时,下列分式有意义?()x 211 ()3x 71x 32-- ()1x x 32+9、当x 取何值时,下列分式无意义?()2x5x 1- ()5x 61x 22-+ ()2x 3x 3+-10、当x 取何值时,下列分式的值为零?()xx +21 ()x x 342- ()45233-+x x()33||4+-x x ()86452+-x x模块三 形成提升1、下列各式中,哪些是整式?哪些是分式?①5x -7,②3x 2-1,③123+-a b ,④7)(p n m +,⑤72,⑥1222-+-x y xy x ,⑦c b +54答:______________________________.(填序号)2、当x 取何值时,分式2132x x +-无意义?3、当x 为何值时,分式 232-+x x 的值为正?4、若分式2242x x x ---的值为零,则x 的值是____________。

模块四 小结评价 一、本课知识点: 1、分式的概念:__________________________________________________________________ 2、分式有意义、无意义或等于零的条件: (1)分式AB 有意义...的条件:分式的 的值不等于零; (2)分式AB无意义...的条件:分式的 的值等于零; (3)分式AB的值为零的条件:分式的 的值等于零,且分式的 的值不等于零; 二、本课典型例题:三、我的困惑:第五章 分式与分式方程第一节 分式(二)【学习目标】1、让学生初步掌握分式的基本性质;2、掌握分式约分方法,熟练进行约分;3、了解什么是最简分式,能将分式化为最简分式;【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:掌握分式的概念及其基本性质;难点:正确区分整式与分式,以及运用分式的基本性质来化简分式。

【学习过程】模块一 预习反馈 一、学习准备1.分式的基本性质:分式的 和 都同时乘以(或除以)同一个不等于零的整.........式.,分式的值不变。

用字母表示为:A A M B B M ⨯=⨯,A A MB B M÷=÷(M 是整式,且M ≠0)。

2.约分:(1)概念:把一个分式的分子和分母的公因式约去,这种变形称为__________ (2)约分的关键..:找出分子分母的公因式; 约分的依据..:分式的基本性质; 约分的方法..:先把分子、分母分解因式(分子、分母为多项式时),然后约去它们的公因式,约分的最后结果是将一个分式变为最简分式或整式。

3.最简分式:分子与分母没有____________的分式叫做最简分式。

二、教材精读()()()() ; 质填空: 利用分式的基本性例yx x xy x b a ab b a +=+=+222211分析:解有关分式恒等变形的填空题,一般从分子或分母的已知项入手,观察变化方式,再把未知项作相应的变形。

本题中0,0≠≠x a 是隐含条件。

注意:(1)要深刻理解“都”与“同”的含义,“都”的意思是分子与分母必须同时乘(或除以)同一个整式,“同”说明分子与分母都乘(或除以)的整式必须是同一个整式。

(2)在分式的基本性质中,要重视0≠M这个条件,如y xxy=,隐含着0≠x 这个条件,所以等式是正确的,但xyy x =1,分子、分母同乘y ,由于没有说明0≠y 这个条件,所以这个等式变形不正确。

(3)若原分式的分子或分母是多项式,运用分式的基本性质时,要先把分式的分子或分母用括号括上,再乘或除以整式M ,如:y x y x y x y x y x y x y x yx 4015301260)3241(60)2151(324121513241212.0+-=⨯+⨯-=+-=+-。

(4)分式的分子、分母或分式本身的符号,改变其中任意两个,分式的值不变,如:BAB A B A B A --=--=--=;若只改变其中一个的符号或三个符号,则分式的值变成原分式的值的相反数,如BAB A B A B A B A -=---=--=-=-. 模块二 合作探究4、填空:(1) x x x 3222+= ()3+x (2) 32386bb a =() 33a (3)c a b ++1=()cn an +(4) ()222y x y x +-=() y x - 5、约分:(1)c ab b a 2263 (2)2228mn nm (3)532164xyz yz x - (4)x y y x --3)(26、代数式①2224(2)a b a b -+,②23ab b-,③22x y x y ++,④2222x y x y -+中,是最简分式的是___________________ .(填序号) 模块三 形成提升1、填空:(1)()2a b ab a b += (2) ()22x xy x yx ++= 2、不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135xa -- (4) mb a 2)(-- 解:3、判断下列约分是否正确: (1)c b c a ++=b a ( ) (2)22y x y x --=y x +1( ) (3)nm n m ++=0( )4、把分式2aba b+中的,a b 都扩大为原来的3倍,则分式的值变为原来的 倍。

5、⑴化简分式2239m m m -- ⑵已知345x y z==,求23x y x y z +-+的值。

模块四 小结评价一、本课知识点: 二、本课典型例题:第五章 分式与分式方程第二节 分式的乘除法【学习目标】1、经历探索分式的乘除法法则的过程,并结合具体情境说明其合理性;2、会进行简单分式的乘除法计算,具有一定的化归能力;3、在学知识的同时学到类比转化的思想方法,受到思维训练,能解决与分式有关的简单实际问题;【学习方法】自主探究与小组合作交流相结合. 【学习重难点】重点:掌握分式的乘除法法则;难点:熟练地运用法则进行计算,提高运算能力。

【学习过程】模块一 预习反馈 一、学习准备1、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的 ,把分母相乘的积作为积的 ;两分式相除,把除式的分子和分母颠倒位置后再与被除式 。

2、分式乘除法运算步骤和运算顺序:(1)步骤:对分式进行乘除运算时,先观察各分式,看各分式的分子、分母能否分解因式,若能分解因式的应先分解因式。

当分解因式完成以后,要进行____________,直到分子、分母没有______________时再进行乘除。

(2)顺序:分式乘除法与整式乘除法运算顺序相同,一般从左向右,有除法的先把除法转化为乘法。

二、教材精读3、()222244229164311y x xy y xy x y x x y y x +-∙+--∙2 ) 计算:(例 分析:(1)题中分子、分母都是单项式,可直接运用法则计算;(2)应先分解因式,然后约分,但需注意符号的变化。

模块二 合作探究 4、计算:(1)222c a b ab c ⋅ (2)223425n m m n -⋅ (3)2222412144a a a a a a --⋅-+++(4)285yxy x-÷ (5) 27y x x ⎛⎫÷- ⎪⎝⎭ (6) 269(3)2y y y y -+÷-+5、计算:)22(22)1(11)1(1)1(22222ab abb a a b ab ab a x x x x -÷-÷+--+∙-÷--) (模块三 形成提升1、计算:(1)231x y x y ⎛⎫⋅- ⎪⎝⎭(2)2510321b bc ac a ⎛⎫÷- ⎪⎝⎭ (3)222432a b ab ab a b -⋅-(4)x y y x x y y x -÷-⋅--9)()()(3432 (5)22222)(x y x xy y xy x x xy -⋅+-÷-2、计算: (1))6(4382642z yx yx y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a(3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(模块四 小结评价 一、本课知识点:1、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的 ,把分母相乘的积作为积的 ;两分式相除,把除式的分子和分母颠倒位置后再与被除式 。

相关文档
最新文档