九年级数学下册知识点总结--人教新课标版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学下册知识点总结 第二十六章 二次函数

1、二次函数定义:

一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。自变量的取值范围是全体实数。 ★易错点:

二次函数和一元二次方程类似,二次项系数0a ≠,而b c

,可以为零.二次函数的定义

域是全体实数.

2、二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,

,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 3、二次函数各种形式之间的变换

二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

二次函数由特殊到一般,可分为以下几种形式: ①2ax y =;②()k h x a y +-=2

;③c bx ax y ++=2

二次函数解析式的表示方法

一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

4、二次函数2y ax bx c =++图象的画法

五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,

、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,

,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). ★重难点:画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数2

ax y =的性质

二次函数()2

y a x h k =-+的性质

5、抛物线

的三要素:开口方向、对称轴、顶点. a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同.

对称轴:平行于y 轴(或重合)的直线记作2b

x a

=-.特别地,y 轴记作直线0=x .

顶点坐标:),(a

b a

c a b 4422

--

6、求抛物线的顶点、对称轴的方法

公式法:a b ac a b x a c bx ax y 44222

2

-+

⎪⎭

⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a

b

x 2-=.

配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2

的形式,得到顶

点为(h ,k ),对称轴是直线h x =.

运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 7、用待定系数法求二次函数的解析式

一般式:c bx ax y ++=2

.已知图像上三点或三对x 、y 的值,通常选择一般式. 顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式.

交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 8、直线与抛物线的交点

y 轴与抛物线c bx ax y ++=2得交点为(0, c ).

与y 轴平行的直线h x =与抛物线c bx ax y ++=2

有且只有一个交点

(h ,c bh ah ++2

).

9、抛物线与x 轴的交点

二次函数c bx ax y ++=2

的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二

次方程02

=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:

①有两个交点⇔0>∆⇔抛物线与x 轴相交;

②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.

10、一次函数与二次函数的交点

一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交

点,由方程组 2

y kx n

y ax bx c =+⎧⎨=++⎩

的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.

11、抛物线与x 轴两交点之间的距离

若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程

02=++c bx ax 的两个根,故

a

c

x x a b x x =

⋅-=+2121,()

()

a a ac

b a c

a b x x x x x x x x AB ∆=-=-⎪⎭

⎫ ⎝⎛-=--=

-=

-=44422

212

212

2121

12、二次函数图象的平移

平移步骤:

⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,

; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

★重难点:平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

13、实际问题与二次函数

在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

先用配方法或公式法将一元二次函数变形,然后求最值。

★中考常考题型:

相关文档
最新文档