湖北省武汉市八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.2 菱形的判定教学设计

合集下载

魏县第九中学八年级数学下册 第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形第1课

魏县第九中学八年级数学下册 第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形第1课

( 3) 30 m 5mn 24 n ( 4n2 )
请计算 : 25 36
类比分数的通分与约分你能联想 分式的通分与约分是怎样的吗 ?
∴菱形的周长=4×5=20(cm).
课堂小结
菱形的性质:
1.菱形的四条边都相等. 2.菱形的对角都相等. 3.菱形的两条对角线互相垂直平分,并 且每一条对角线平分一组对角. S菱形= 对角线乘积的一半F. 求证: ∠AEF=∠AFE.
证明:如图,连接AC, ∵四边形ABCD为菱形, ∴BC=CD,∠ECA=∠FCA. 又∵BE=DF,∴EC=FC. ∴△AEC≌△AFC, ∴AE=AF,∴∠AEF=∠AFE.
结束
语 八年级数学下册 第十八章 平行四边形18.2 特殊
的平行四边形18.2.2 菱形第1课时 菱形的性质课 件 (新版)新人教版-八年级数学下册第十八章平 行四边形18.2特殊的平行四边形18.2.2菱形第1课 时菱形的性质课件新版新人教版
八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形18.2.2 菱形第1 课时 菱形的性质课件 (新版)新人教
版同-学八年们级,数下学课下休册息第十十分八钟章。平现行在四是边休形 18.2息特时殊的间平,行你四们边休形息1一8.2下.2眼菱睛形,第1课
时菱形的性质课件新版新人教版
看看远处,要保护好眼睛哦~站起来
知识点 2 菱形性质的应用
比较菱形的对角线和平行四边形的对角 线,我们发现,菱形的对角线把菱形分成4个 全等的直角三角形,而平行四边形通常只被 分成两对全等三角形.
由菱形两条对角线的长 ,你能求出它的面积吗?
1 S菱形ABCD=2 AC ·BD
例3 如图,菱形花坛ABCD的边长为20 m, ∠ABC=60°,沿着菱形的对角线修建了两条小路 AC和BD.求两条小路的长(结果保留小数点后两 位)和花坛的面积(结果保留小数点后一位).

人教版八年级数学下册18.2 特殊的 平行四边形第二课时 矩形的性质课件

人教版八年级数学下册18.2  特殊的   平行四边形第二课时  矩形的性质课件

(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又∵∠AOB=2∠OAD,∠AOB=∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC=AO+OC=2AO,BD=BO+OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
(2)解:设∠AOB=4x,∠ODC=3x, 则∠OCD=∠ODC=3x. ∵∠DOC+∠OCD+∠CDO=180°, ∴4x+3x+3x=180°,解得x=18°, ∴∠ODC=3×18°=54°, ∴∠ADO=90°-∠ODC=90°-54°=36°.
(1)证明:方法一 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE,∴四边形ACED是平 行四边形. ∵AB=AE,∴DC=AE, ∴四边形ACED是矩形.
证明:方法二 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE, ∴四边形ACED是平行四边形. ∵AB=AE,BC=CE, ∴AC⊥BE,∴∠ACE=90°, ∴四边形ACED是矩形.
几何语言
∵四边形ABCD是平行四边形 且AC=BD ∴四边形ABCD是矩形
A
D
O
B
C
小试牛刀
1.如图,下列条件不能判定四边形ABCD是矩形的是( C )
A.∠DAB=∠ABC=∠BCD=90° B.AB∥CD,AB=CD,AB⊥AD C.AO=BO,CO=DO D.AO=BO=CO=DO
2.如图 ABCD 中, ∠1= ∠2中.此时四边形ABCD是矩
解:∵四边形ABCD是平行四边形,
∴OA=OC=
1 2
AC,OB=OD= 1

八年级数学下册第十八章平行四边形特殊的平行四边形正方形教案新人教

八年级数学下册第十八章平行四边形特殊的平行四边形正方形教案新人教

18.2.3 正方形一、教学目的1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.二、重点、难点1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.三、例题的意图分析本节课安排了三个例题,例1是教材P111的例4,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?④能说“四条边都相等的四边形是正方形”吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?四、课堂引入1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?正方形定义:有一组邻边相等叫做正方形.............的平行四边形......并且有一个角是直角指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形(菱形)(2)有一个角是直角的平行四边形(矩形)2.【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以,正方形具有矩形的性质,同时又具有菱形的性质.五、例习题分析例1(教材P111的例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.证明:∵四边形ABCD是正方形,∴ AC=BD, AC⊥BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO ≌△BCO≌△CDO≌△DAO.例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.证明:∵四边形ABCD是正方形,∴∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).又 DG⊥AE,∴∠EAO+∠AEO=∠EDG+∠AEO=90°.∴∠EAO=∠FDO.∴△AEO ≌△DFO.∴ OE=OF.例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN ⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形.分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.证明:∵ PN⊥l1,QM⊥l1,∴ PN∥QM,∠PNM=90°.∵ PQ∥NM,∴四边形PQMN是矩形.∵四边形ABCD是正方形∴∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角).∴∠1+∠2=90°.又∠3+∠2=90°,∴∠1=∠3.∴△ABM≌△DAN.∴ AM=DN.同理 AN=DP.∴ AM+AN=DN+DP即 MN=PN.∴四边形PQMN是正方形(有一组邻边相等的矩形是正方形).六、随堂练习1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.2.下列说法是否正确,并说明理由.①对角线相等的菱形是正方形;()②对角线互相垂直的矩形是正方形;()③对角线垂直且相等的四边形是正方形;()④四条边都相等的四边形是正方形;( )⑤四个角相等的四边形是正方形.( )1. 已知:如图,四边形ABCD 为正方形,E 、F 分别 为CD 、CB 延长线上的点,且DE =BF . 求证:∠AFE =∠AEF .4.如图,E 为正方形ABCD 内一点,且△EBC 是等边三角形, 求∠EAD 与∠ECD 的度数.七、课后练习1.已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且DE=BF . 求证:EA ⊥AF .2.已知:如图,△ABC 中,∠C=90°,CD 平分∠ACB ,DE ⊥BC 于E ,DF ⊥AC 于F .求证:四边形CFDE 是正方形.3.已知:如图,正方形ABCD 中,E 为BC 上一点,AF 平分∠DAE 交CD 于F ,求证:AE=BE+DF .A B CDEF2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x 及方差S 2如下表所示:甲 乙 丙 丁 x85 93 93 86 S 2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( ) A .赵研B .钱进C .孙兰D .李丁2.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .223.在平面直角坐标系中,平行四边形ABCO 的顶点A C ,的坐标分别是()8, 0,()3, 4 ,点, D E 把线段OB 三等分,延长, CD CE 分别交, OA AB 于点, F G ,连接FG , 则下列结论:OF AF =①;OFD②BEG ③四边形DEGF 的面积为203;④453OD =,其中正确的有( ).A .①②③④B .①②C .①③D .①③④4.若关于x 的一元二次方程ax 2+bx ﹣1=0(a≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( ) A .12019B .2020C .2019D .20185.下列各式从左到右是分解因式的是( ) A .a(x+y)=ax+ay B .10x 2﹣5x =5x(2x ﹣1)C .8m 3n =2m 3•4nD .t 2﹣16+3t =(t+4)(t ﹣4)+3t 6.下列关系式中:y =﹣3x+1、3y x =、y =x 2+1、y =12x ,y 是x 的一次函数的有( ) A .1个B .2个C .3个D .4个7.如图,AD 是ABC ∆的角平分线,,DF AB ⊥,垂足分别为点,F DE DG =,若ADG ∆和ADE ∆的面积分别为50和39,则DEF ∆的面积为( )A .11B .7C .5.5D .3.58.二次根式3x ?+在实数范围内有意义, 则x 的取值范围是( ) A .x ≥-3B .x ≠3C .x ≥0D .x ≠-39.下列各式:15(1﹣x ),43x π-,222x y -,25x x,其中分式共有( )A .1个B .2个C .3个D .4个10.乒乓球是我国的国球,也是世界上流行的球类体育项目.我国乒乓球名将与其对应身高如下表所示: 乒乓球名将 刘诗雯 邓亚萍 白杨 丁宁 陈梦 孙颖莎 姚彦 身高()160155171173163160175这些乒乓球名将身高的中位数和众数是( ) A .160,163 B .173,175C .163,160D .172,160二、填空题11.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________. 12.下表是某校女子羽毛球队队员的年龄分布: 年龄/岁 13 14 15 16 人数1121则该校女子排球队队员年龄的中位数为__________岁.13.已知3x =是分式方程2121mx m x x--=-的根,那么实数m 的值是__________. 14.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为________.15.《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).16.如图,点O 是矩形ABCD 的对角线AC 的中点,//OM AB 交AD 于点M ,若2OM =,6BC =,则OB 的长为______.17.计算:a ba b a b+=++_________ 三、解答题18.已知:如图,在▱ABCD 中,AD =4,AB =8,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于点G . (1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,求四边形AGBD 的面积.19.(6分)已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E在上,点在的延长线上,求证:DM=ME,DM⊥.ME简析:由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,在DC的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点E在直线CD上,则DM= ;若点E在直线BC上,则DM= .20.(6分)(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.求证:四边形AFF′D是菱形.21.(6分)先化简22144111x xx x-+⎛⎫-÷⎪--⎝⎭,然后在0、±1、±2这5个数中选取一个作为x的值代入求值.22.(8分)如图,已知:在平行四边形ABCD中,AB=2,AD=4,∠ABC=60°,E为AD上一点,连接CE,AF∥CE且交BC于点F.(1)求证:四边形AECF为平行四边形.(2)证明:△AFB≌△CE D.(3)DE等于多少时,四边形AECF为菱形.(4)DE等于多少时,四边形AECF为矩形.23.(8分)某市篮球队到市一中选拔一名队员,教练对王亮和李刚两名同学进行5次3分投篮测试,一人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写下表;姓名平均数众数方差王亮7李刚77 2.8(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.24.(10分)如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.25.(10分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据平均数和方差的意义解答.【详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:B.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.2.B【解析】直接利用平行四边形的性质得出AO=CO ,BO=DO ,DC=AB=6,再利用已知求出AO+BO 的长,进而得出答案. 【详解】∵四边形ABCD 是平行四边形, ∴AO=CO ,BO=DO ,DC=AB=6, ∵AC+BD=16, ∴AO+BO=8,∴△ABO 的周长是:1. 故选B . 【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解. 3.C 【解析】 【分析】① 根据题意证明ODFBDC △△,得出对应边成比例,再根据, D E 把线段OB 三等分,证得1122OF BC OA ==,即可证得结论; ② 延长BC 交y 轴于H ,证明OA≠AB ,则∠AOB≠∠EBG ,所以△OFD ∽△BEG 不成立; ③ 利用面积差求得,根据相似三角形面积比等于相似比的平方进行计算并作出判断; ④ 根据勾股定理,计算出OB 的长,根据三等分线段OB 可得结论. 【详解】作AN ⊥OB 于点N ,BM ⊥x 轴于点M ,如图所示:在平行四边形OABC 中,点A C ,的坐标分别是()8, 0,()3, 4 , ∴(11,4),137B OB =又∵, D E 把线段OB 三等分, ∴12OD BD = 又∵CB OF ∥,∴ODF BDC △△ ∴12OF OD BC BD == ∴1122OF BC OA ==即OF AF =,①结论正确;∵()3,4C ,∴5OC OA =≠∴平行四边形OABC 不是菱形,∴,DOF COD EBG ODF COD EBG ≠=≠==∠∠∠∠∠∠∵()4,0F∴CF OC =∴CFO COF ∠>∠∴,DFO EBG ≠∠∠故△OFD 和△BEG 不相似,故②错误;由①得,点G 是AB 的中点,∴FG 是△OAB 的中位线,∴FG OB ∥,12FG OB ==又∵, D E 把线段OB 三等分,∴3DE = ∵1118416222OAB S OB AN OA BM ===⨯⨯=△ ∴1162AN OB =∵DF FG∴四边形DEGH 是梯形∴()551202121223DEGF DE FG hS OB h OB AN -====四边形,故③正确;13OD OB ==,故④错误;综上:①③正确,故答案为C.【点睛】此题主要考查勾股定理、平行四边形的性质、相似三角形的判定与性质、线段的中点,熟练运用,即可解题.4.B【解析】【分析】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.【详解】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1,所以at2+bt-1=0,而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,所以at2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=1,所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是乘法交换律,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选B.【点睛】本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.B【解析】【分析】形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:函数y =﹣3x+1,3y x =,y =x 2+1,y =12x 中,y 是x 的一次函数的是:y =﹣3x+1、y =12x ,共2个. 故选:B .【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.7.C【解析】【分析】作DM=DE 交AC 于M ,作DN ⊥AC ,利用角平分线的性质得到DN=DF ,将三角形EDF 的面积转化为三角形DNM 的面积来求.【详解】作DM=DE 交AC 于M ,作DN ⊥AC 于点N ,∵DE=DG ,∴DM=DG ,∵AD 是△ABC 的角平分线,DF ⊥AB∴DF=DN ,在Rt △DEF 和Rt △DMN 中,DN DF DM DE==⎧⎨⎩ , ∴Rt △DEF ≌Rt △DMN(HL),∵△ADG 和△AED 的面积分别为50和39,∴S △MDG=S △ADG−S △ADM=50−39=11,S△DNM=S△EDF=12S△MDG=12×11=5.5.故选C.【点睛】此题考查全等三角形的判定与性质,角平分线的性质,解题关键在于作辅助线8.A【解析】【分析】根据二次根式中被开方数大于等于0即可求解.【详解】解:由题意可知,3+0x≥,解得3x≥-,故选:A.【点睛】此题主要考查了二次根式有意义的条件,即被开方数要大于等于0,正确把握二次根式有意义的条件是解题关键.9.A【解析】【分析】分式即AB形式,且分母中要有字母,且分母不能为0.【详解】本题中只有第五个式子为分式,所以答案选择A项.【点睛】本题考查了分式的概念,熟悉理解定义是解决本题的关键.10.C【解析】【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;【详解】解:把数据从小到大的顺序排列为:155,1,1,2,171,173,175;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是2,那么由中位数的定义可知,这组数据的中位数是2.故选:C.【点睛】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键.二、填空题11.2【解析】【分析】根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.所以这5个数据分别是x,y,2,1,1,且x<y<2,当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,所以这组数据可能的最大的和是0+1+2+1+1=2.故答案为:2.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.12.15.【解析】【分析】中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.【详解】解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.故答案为:15【点睛】本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).13.1【解析】【分析】将3x =代入到方程中即可求出m 的值.【详解】解:将3x =代入,得3212133m m --=- 解得:2m =故答案为:1.【点睛】此题考查的是根据分式方程的根求分式方程中的参数,掌握分式方程根的定义是解决此题的关键. 14.1【解析】【分析】由DE 是AB 边的垂直平分线,可得AE=BE ,又由在直角△ABC 中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC 的长,继而由△ACE 的周长=AC+BC ,求得答案.【详解】解:∵DE 是AB 边的垂直平分线,∴AE=BE ,∵在直角△ABC 中,∠BAC=90°,AB=8,AC=6,∴,∴△ACE 的周长为:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.故答案为:1.【点睛】本题考查,线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与转化思想的应用. 15.1.【解析】【分析】根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.【详解】设该矩形的宽为x 步,则对角线为(50﹣x )步,由勾股定理,得301+x 1=(50﹣x )1,解得x =16故该矩形的面积=30×16=480(平方步),480平方步=1亩.故答案是:1.【点睛】考查了勾股定理的应用,此题利用方程思想求得矩形的宽.16【解析】【分析】可知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.【详解】解:∵四边形ABCD 是矩形,∴∠D=90°,∵O 是矩形ABCD 的对角线AC 的中点,OM ∥AB ,∴OM 是△ADC 的中位线,∵OM=2,∴DC=4,∵AD=BC=6,∴由于△ABC 为直角三角形,且O 为AC 中点∴BO=11=22AC因此OB .【点睛】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.17.1【解析】【分析】根据同分母的分式相加减的法则计算即可.【详解】原式=1a b a b+=+. 故答案为:1.【点睛】本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.三、解答题18.(1)详见解析;(2)【解析】【分析】(1)根据SAS 证明△ADE ≌△CBF 即可.(2)证明四边形ADBG 是矩形,利用勾股定理求出BD 即可解决问题.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DA =BC ,∠DAE =∠C ,CD =AB ,∵E 、F 分别为边AB 、CD 的中点,∴AE =12AB ,CF =12CD ,∴AE =CF ,∴△ADE ≌△CBF (SAS ).(2)解:∵四边形ABCD 是平行四边形,∴AD ∥BG ,∵BD ∥AG ,∴四边形ADBG 是平行四边形,∵四边形BEDF 是菱形,∴DE =BE ,∴AE =EB ,∴DE =AE =EB ,∴∠ADE =∠EAD ,∠EDB =∠EBD ,∵∠EAD+∠EDA+∠EDB+∠EBD =180°,∴∠EDA+∠EDB =90°,∴∠ADB =90°,∴四边形ADBG 是矩形,∵BD =2243AB AD -=,∴S 矩形ADBG =AD•DB =163.【点睛】本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.19.(1)等腰直角;(2)结论仍成立,见解析;(3)2或42,17.【解析】【分析】(1)结论:DM ⊥EM ,DM=EM .只要证明△AMH ≌△FME ,推出MH=ME ,AH=EF=EC ,推出DH=DE ,因为∠EDH=90°,可得DM ⊥EM ,DM=ME ;(2)结论不变,证明方法类似;(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1) △AMN ≌ △FME ,等腰直角.如图1中,延长EM 交AD 于H .∵四边形ABCD 是正方形,四边形EFGC 是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴//AD EF ,∴MAH MFE ∠=∠,∵AM MF =,AMH FME ∠=∠,∴△AMH ≌△FME ,∴MH ME =,AH EF EC ==,∴DH DE =,∵0EDH 90∠=,∴DM ⊥EM ,DM=ME .(2)结论仍成立.如图,延长EM 交DA 的延长线于点H,∵四边形ABCD 与四边形CEFG 都是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴AD ∥EF,∴MAH MFE ∠=∠.∵AM FM =,AMH FME ∠=∠,∴△AMF ≌△FME(ASA), …∴MH ME =,AH FE=CE =,∴DH DE =.在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴=DM EM ,DM ⊥EM.(3)①当E 点在CD 边上,如图1所示,由(1)的结论可得三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时DE EC DC 532=-=-=,所以2DM =; ②当E 点在CD 的延长线上时,如图2所示,由(2)的结论可得三角形DME 为等腰直角三角形,则DM 2DE ,此时DE DC CE 538=+=+= ,所以42DM = ; ③当E 点在BC 上是,如图三所示,同(1)、(2)理可得到三角形DME 为等腰直角三角形, 证明如下:∵四边形ABCD 与四边形CEFG 都是正方形, 且点E 在BC 上∴AB//EF ,∴HAM EFM ∠=∠,∵M 为AF 中点,∴AM=MF∵在三角形AHM 与三角形EFM 中:HAM EFM AM MFAMH EMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMH ≌△FME(ASA),∴MH ME =,AH FE=CE =,∴DH DE =.∵在三角形AHD 与三角形DCE 中:090AD DC DAH DCE AH EF =⎧⎪∠=∠=⎨⎪=⎩, ∴△AHD ≌△DCE(SAS),∴ADH CDE ∠=∠,∵∠ADC=∠ADH+∠HDC=90°,∴∠HDE=∠CDE+∠HDC=90°,∵在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时在直角三角形DCE 中2222DE DC CE 5334=+=+= ,所以DM=17【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.20.(1)C ;(2)详见解析.【解析】【分析】(1)根据矩形的判定可得答案;(2)利用勾股定理求得AF=5,根据题意可得平行四边形AFF′D 四边都相等,即可得证.【详解】解:(1)由题意可知AD 与EE′平行且相等,∵AE ⊥BC ,∴四边形AEE′D 为矩形故选C ;(2) ∵AD =5,S □ABCD =15,∴AE =3,又∵在图2中,EF =4,∴在Rt △AEF 中,AF 5==,∴AF =AD =5,又∵AF ∥DF′,AF =DF′,∴四边形AFF′D 是平行四边形,又∵AF =AD ,∴四边形AFF′D 是菱形.21.12x x +-,-12【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式=22(1)(1)11(2)2x x x x x x x -+-+⋅=---, 当x=0时,原式=-12. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22. (1)见解析;(2)见解析;(3)DE=2;(4)DE=1.【解析】【分析】(1)根据两组对边分别平行的四边形是平行四边形进行证明即可得;(2)根据ABCD 为平行四边形,可得AB=CD , AD=BC ,再根据AECF 为平行四边形,可得AF=CE ,AE=FC ,继而可得DE=BF ,根据SSS 即可证明△AFB ≌△CED ;(3)当DE=2时,AECF 为菱形,理由:由AB=DC=2,∠ABC=∠EDC=60°可得△EDC 为等边三角形,继而可得到AE=EC ,根据邻边相等的平行四边形是菱形即可得;(4)当DE=1时,AECF 为矩形,理由:若AECF 为矩形则有∠DEC=90°,再根据DC=2,∠D=60°,则可得∠DCE=30°,继而可得DE=1.【详解】(1)∵ABCD 为平行四边形,∴AD BC ,即AE FC ,又∵AF CE (已知),∴AECF 为平行四边形;(2)∵ABCD 为平行四边形,∴AB CD =, AD BC =,∵AECF 为平行四边形,∴AF CE AE FC ==,,∴DE AD AE BC CF BF =-=-=,在AFB 与CED 中,AB CD AF CE BF DE =⎧⎪=⎨⎪=⎩,∴AFB CED ≌;(3)当DE 2=时,AECF 为菱形,理由如下:∵AB DC 2ABC EDC 60,∠∠====︒,∴EDC 为等边三角形,EC 2=,AE AD ED 2=-=,即:AE EC =,∴平行四边形AECF 为菱形;(4)当DE 1=时,AECF 为矩形,理由如下:若AECF 为矩形得:DEC 90∠=︒,∵DC 2=,D 60∠=︒,∴DCE 30∠=︒,∴DE 1=.【点睛】本题考查了平行四边形的判定与性质、菱形的判定、矩形的判定与性质等,熟练掌握相关的性质与定理是解题的关键.23.(1)王亮5次投篮的平均数为7,方差为0.4,(2)见解析,(3)见解析.【解析】【分析】(1)根据平均数的定义,计算5次投篮成绩之和与5的商即为王亮每次投篮平均数,再根据方差公式计算王亮的投篮次数的方差;根据众数定义,李刚投篮出现次数最多的成绩即为其众数; (2)方差越小,乘积越稳定. (3)从平均数、众数、方差等不同角度分析,可得不同结果,关键是看参赛的需要.【详解】解:(1)王亮5次投篮的平均数为:(6+7+8+7+7)÷5=7个, 王亮的方差为:2222221(67)(77)(87)(77)(77)0.4S ⎡⎤=-+-+-+-+-=⎣⎦.王亮770.4李刚77 2.8(2)两人的平均数、众数相同,从方差上看,王亮投篮成绩的方差小于李刚投篮成绩的方差.所以王亮的成绩较稳定.(3)选王亮的理由是成绩较稳定,选李刚的理由是他具有发展潜力,李刚越到后面投中数越多.【点睛】此题是一道实际问题,考查的是对平均数,众数,方差的理解与应用,将统计学知识与实际生活相联系,有利于培养学生学数学、用数学的意识,同时体现了数学来源于生活、应用于生活的本质.24.(1)见解析;(2)∠BCF=15°【解析】【分析】(1) 利用正方形的性质得出AC⊥DB,BC//AD,再利用平行线的判定与性质结合平行四边形的判定方法得出答案;(2)利用正方形的性质结合直角三角形的性质得出∠OFC=30°,即可得出答案.【详解】解:(1)证明:∵ABCD是正方形,∴AC⊥DB,BC∥AD∵CE⊥AC∴∠AOD=∠ACE=90°∴BD∥CE∴BCED是平行四边形(2)如图:连接AF,∵ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC∴∠OCB=45°∵ Rt △OCF 中, CF=BD=2OC ,∴∠OFC=30°∴∠BCF=60°-45°=15°【点睛】本题考查了正方形的性质以及平行四边形的判定和直角三角形的性质,掌握正方形的性质是解题关键. 25. (1) 94,92.2,93;(2)见解析;(3)92.2.【解析】【分析】(1)求出九(1)班的平均分确定出m 的值,求出九(2)班的中位数确定出n 的值,求出九(2)班的众数确定出p 的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.【详解】解:(1)九(1)班的平均分=88919293939394989810010+++++++++=94, 九(2)班的中位数为(96+92)÷2=92.2,九(2)班的众数为93,故答案为:94,92.2,93;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B 班成绩好;(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,故答案为92.2.【点睛】本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.。

八年级数学下册 第18章 平行四边形 18.2 平行四边形的判定第1课时课件 华东师大版

八年级数学下册 第18章 平行四边形 18.2 平行四边形的判定第1课时课件 华东师大版

2.(2013·郴州中考)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE. 求证:四边形DEBF是平行四边形.
【证明】因为BE∥DF,所以∠AFD=∠CEB, 又因为∠ADF=∠CBE,AF=CE, 所以△ADF≌△CBE,所以DF=BE. 又BE∥DF, 所以四边形DEBF是平行四边形.
3.如图,点B,E,C,F在一条直线上,AB=DE,∠B=∠DEF, BE=CF.
求证:(1)△ABC≌△DEF. (2)四边形ABED是平行四边形.
【证明】(1)∵BE=CF,∴BE+EC=CF+EC,即BC=EF. 又∵∠B=∠DEF,AB=DE, ∴△ABC≌△DEF. (2)∵∠B=∠DEF,∴AB∥DE. ∵AB=DE,∴四边形ABED是平行四边形.
【总结提升】从边的角度判定平行四边形的三点注意 (1)判定一个四边形是平行四边形需要两个条件. (2)对于已知两组对边的情况:可以通过判定这两组对边分别 平行,也可以判定这两组对边分别相等来证明四边形是平行四 边形. (3)对于已知一组对边的情况:需要证明这一组对边平行且相 等.
题组一:从两组对边的角度判定平行四边形 1.如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC 于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是( )
于点O,图中共有
个平行四边形.
【解析】∵四边形ABCD是平行四边形, ∴AD∥BC∥EF,AB∥GH∥CD.
所以是平行四边形的有:□AEOG,□EOHB,□OFCH, □GDFO;□ADFE,□EFCB,□AGHB,□GDCH;□ABCD;
共9个. 答案:9
3.如图,在平行四边形ABCD中,点E,F分别是AD,BC的中点.

初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介平行四边形是特殊的四边形。

本章我们在平行线、三角形和四边形的基础上进一步研究平行四边形;并通过平行四边形角、边的特殊化,研究矩形、菱形和正方形等特殊的平行四边形,认识这些概念之间的联系与区别,明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力。

本章教学时间约需14课时,具体分配如下(仅供参考):18.1 平行四边形6课时18.2 特殊的平行四边形6课时数学活动小结2课时一、教科书内容和本章学习目标(一)本章知识结构框图(二)教科书内容平行四边形是常见的几何图形,既有丰富的性质,又在现实生活中具有广泛的应用,尤其是矩形、菱形、正方形等特殊平行四边形的性质更加丰富、应用更加广泛。

学生在第一学段已经学习过平行四边形,本学段七年级下册“三角形”一章中研究了多边形及其内角和等内容,包括四边形及其内角和;八年级上册“全等三角形”一章又研究了三角形全等的判定及全等三角形的性质。

这些内容是学习本章的重要基础。

本章引言直接进入特殊的四边形——平行四边形:两组对边分别平行的四边形的学习,在平行四边形的基础上,学习矩形、菱形、正方形这些特殊平行四边形。

“18.1 平行四边形”主要研究平行四边形的概念、性质定理和判定定理;在平行四边形概念和性质的基础上,介绍两条平行线间距离的概念;作为性质定理和判定定理的一个应用,探究并证明三角形中位线定理。

“18.2 特殊的平行四边形”首先研究特殊的平行四边形:矩形和菱形,它们分别是有一个角是直角,或有一组邻边相等的特殊的平行四边形。

18.2.1和18.2.2分别研究矩形和菱形的概念、性质定理和判定定理,在矩形和菱形的基础上,再研究它们的特殊情况:同时具有两个特殊条件的平行四边形:正方形,它是有一个角是直角的特殊菱形,或者是有一组邻边相等的特殊矩形。

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课时)5课时18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC 相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1,l2之间的距离是指什么?指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°.(2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD 的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l 1 ∥l 2,BE ∥CF ,BA ⊥l 1 于点A ,DC ⊥l 2于点C ,有下面的四个结论;(1)AB =DC ;(2)BE =CF ;(3)S △ABE =S △DCF ;(4)S 四边形ABCD =S 四边形BCFE .其中正确的有 ( ) A.4个 B.3个 C.2个 D.1个3.如图所示,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF =3,DE =2,则▱ABCD 的周长为 ( )A.5B.7C.10D.144.如图所示,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 ( ) A.2 B.4 C.4 D.85.如图所示,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为 .7.如图所示,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是 .。

人教版数学八年级下册18.2《特殊平行四边形》说课稿

人教版数学八年级下册18.2《特殊平行四边形》说课稿

人教版数学八年级下册18.2《特殊平行四边形》说课稿一. 教材分析《特殊平行四边形》是人教版数学八年级下册第18章的一部分,本节内容是在学生掌握了平行四边形的性质和判定之后进行学习的。

通过学习本节内容,学生能够了解和掌握矩形、菱形、正方形的性质,并能够运用这些性质解决实际问题。

教材通过丰富的图形和实例,引导学生探索和发现特殊平行四边形的性质,培养学生的观察能力、思考能力和解决问题的能力。

二. 学情分析学生在学习本节内容之前,已经掌握了平行四边形的性质和判定,具备了一定的几何知识基础。

但是,对于特殊平行四边形的性质和应用,学生可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

此外,学生可能对矩形、菱形、正方形的性质有一定的了解,但是不够系统和深入,需要通过本节内容的学习来进行补充和完善。

三. 说教学目标1.知识与技能目标:学生能够理解和掌握矩形、菱形、正方形的性质,并能够运用这些性质解决实际问题。

2.过程与方法目标:通过观察、操作、猜想、验证等活动,学生能够培养自己的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂学习,克服困难,自主探索,体验成功的喜悦,培养对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:矩形、菱形、正方形的性质及其应用。

2.教学难点:特殊平行四边形性质的推导和证明,以及在不同情境下的应用。

五. 说教学方法与手段本节课采用讲授法、演示法、探究法和小组合作法等多种教学方法。

通过多媒体课件和实物模型的演示,帮助学生直观地理解特殊平行四边形的性质。

同时,引导学生进行观察、操作、猜想、验证等活动,培养学生的思考能力和解决问题的能力。

六. 说教学过程1.导入新课:通过复习平行四边形的性质和判定,引出特殊平行四边形的概念,激发学生的学习兴趣。

2.自主学习:学生通过阅读教材,了解矩形、菱形、正方形的性质,并尝试解决相关问题。

3.课堂讲解:教师讲解矩形、菱形、正方形的性质,通过实例和图形的演示,帮助学生直观地理解。

18.2特殊的平行四边形菱形的性质(教案)

18.2特殊的平行四边形菱形的性质(教案)
b.菱形的性质:熟练掌握菱形的四条边相等、对角线互相垂直、对角线平分一组对角、轴对称性质等,这是解决菱形相关问题的关键。
c.性质的运用:培养学生将菱形的性质应用于解决实际问题的能力,例如求菱形的面积、周长等。
举例:讲解菱形性质时,通过具体图形的绘制和实际例题的演示,强调菱形边长和对角线的关系,以及如何利用这些性质解题。
2.教学难点
a.菱形性质的推导:学生需要通过观察、操作、推理等过程,理解菱形性质的形成,特别是对角线垂直平分的推导,这是学生理解的难点。
b.性质的应用:在解决具体问题时,如何灵活运用菱形的性质,特别是在综合问题中,如何识别并利用菱形的性质简化问题。
c.空间想象能力的培养:在分析菱形时,学生需要具备较强的空间想象能力,能从不同角度审视和解决问题。
4.培养学生的数学运算和数据分析能力,通过解决与菱形相关的问题,让学生熟练运用相关知识进行计算和分析。
5.培养学生的合作交流能力,鼓励学生在小组讨论中分享观点,倾听他人意见,共同探讨菱形性质的应用。
三、教学难点与重点
1.教学重点
a.菱形的定义:确保学生理解邻边相等的平行四边形是菱形,这是判断菱形的基础。
五、教学反思
在今天的课堂中,我发现学生们对菱形的性质表现出很大的兴趣,这让我感到很欣慰。通过导入环节的提问,大家能够联想到生活中的菱形实例,这说明学生们已经具备了观察和联系实际的能力。在新课讲授部分,我注意到有些学生对菱形对角线垂直平分的性质理解不够深入,这是今后教学中需要重点关注的地方。
在实践活动环节,学生们分组讨论和实验操作的过程较为顺利,但我也观察到部分小组在解决问题时仍存在一定的困难。这说明我在教学中需要更多地关注学生的个体差异,给予他们个性化的指导和帮助。此外,在学生小组讨论中,我发现有些学生发言不够积极,可能是因为他们对主题不够熟悉或者缺乏自信。在今后的教学中,我要更加注重激发学生的积极性,鼓励他们大胆表达自己的观点。

初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题

初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题

章节测试题1.【题文】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.【答案】见解析【分析】(1)由垂直的定义得到∠ADB=∠ADC=90°,根据已知条件即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠DCE,根据直角三角形的性质得到AM=DM,DN=CN,由等腰三角形的性质得到∠MAD=∠MDA,∠NCD=∠NDC,等量代换得到∠ADM=∠CDN,即可得到结论.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE中,∵AD=CD,∠ADB=∠ADC,DB=DE,∴△ABD≌△CDE;(2)解:∵△ABD≌△CDE,∴∠BAD=∠DCE,∵M、N分别是AB、CE的中点,∴AM=DM,DN=CN,∴∠MAD=∠MDA,∠NCD=∠NDC,∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.2.【题文】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG且EG⊥CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?【答案】(1)证明见解析;(2)成立,证明见解析;(3)成立,即EG=CG且EG⊥CG.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;【解答】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△D AG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。

人教版初中数学八年级下册《第18章 平行四边形:18.2 特殊的平行四边形》同步练习卷2020.2

人教版初中数学八年级下册《第18章 平行四边形:18.2 特殊的平行四边形》同步练习卷2020.2

人教新版八年级下学期《18.2 特殊的平行四边形》2020年同步练习卷一.选择题(共33小题)1.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°2.在Rt△ABC中,若斜边AC=,则AC边上的中线BD的长为()A.1B.2C.D.3.如图,已知A(3,6)、B(0,n)(0<n≤6),作AC⊥AB,交x轴于点C,M为BC的中点,若P(,0),则PM的最小值为()A.3B.C.D.4.如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D 点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是()A.2B.8C.8D.125.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 6.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等7.如图,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于()A.3.5B.4C.7D.148.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD9.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤10.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8B.10C.10.4D.1211.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC 的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF =CF;④∠EFC=2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个12.如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOF A是菱形D.四边形EBOF是菱形13.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.1514.如图,在边长为1的菱形ABCD中,∠A=60°,点E,F分别为AD、CD上的动点,连接BE、BF、EF.若∠EBF=60°,则(1)BE=BF;(2)△BEF是等边三角形;(3)四边形EBFD面积是菱形面积的一半;(4)△DEF面积的最大值是.以上结论成立的是()A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)15.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.416.如图,已知Rt△ABC中,∠BAC=90°,∠C=30°,AB=6,M为边BC上的一个动点,ME⊥AB,MF⊥AC,则EF的最小值为()A.6B.6C.3D.317.下列说法错误的是()A.矩形的对角线互相平分B.有一个角是直角的四边形是矩形C.有一个角是直角的平行四边形叫做矩形D.矩形的对角线相等18.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.519.如图,平行四边形ABCD中,∠B=60°.G是CD的中点,E是边AD上的动点,EG 的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是()A.四边形CEDF是平行四边形B.当CE⊥AD时,四边形CEDF是矩形C.当∠AEC=120°时,四边形CEDF是菱形D.当AE=ED时,四边形CEDF是菱形20.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O.AE垂直平分OB于点E,则AD的长为()A.4B.3C.5D.521.在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的平分线EF与DC 交于点F,若AB=7,3DF=4FC,则BC的长为()A.7﹣1B.4+2C.2+5D.4+322.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE=3,则矩形ABCD的面积为()A.B.C.12D.3223.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量其中三个角是否都为直角B.测量对角线是否相等C.测量两组对边是否分别相等D.测量对角线是否相互平分24.如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD为矩形的是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2 25.如图,在边长为2的正方形ABCD中,以BC为边作等边△BCM,连接AM并延长交CD于N,则CN的长为()A.B.C.D.26.如图,将一个正方形剪去一个角后,∠1+∠2等于()A.120°B.170°C.220°D.270°27.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°28.下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直平分的四边形是正方形29.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.则四边形AODE一定是()A.正方形B.菱形C.矩形D.不能确定30.在四边形ABCD中,点O是对角线的交点,在下列条件中,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD=BC,∠BAD=∠BCDC.AO=CO,BO=DO,AB=BC D.AO=BO=CO=DO,AC⊥BD31.已知四边形ABCD是平行四边形,下列结论中错误的是()A.当∠ABC=90°时,它是矩形B.当AB=BC时,它是菱形C.当AC⊥BD时,它是菱形D.当AC=BD时,它是正方形32.下列说法中,正确的有()个.①对角线互相垂直的四边形是菱形;②一组对边平行,一组对角相等的四边形是平行四边形;③有一个角是直角的四边形是矩形;④对角线相等且垂直的四边形是正方形;⑤每一条对角线平分每一组对角的四边形是菱形.A.1B.2C.3D.433.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD 面积为16,则DE的长为()A.3B.2C.4D.8二.填空题(共9小题)34.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB=.35.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,BD.若∠EBD=32°,则∠BCD的度数为度.36.如图,点P是线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,点M,N分别是对角线AC,BE的中点,连接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,则线段MN的长为.37.如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为.38.如图,在矩形ABCD中,AB=3,BC=5,点E在AD边上且不与点A和点D重合,点O是对角线BD的中点,当△OED是等腰三角形时,AE的长为.39.如图,正方形ABCD的边长为2,点E在对角线BD上,且∠BAE=22.5°,则BE的长为.40.已知正方形ABCD的对角线长为8cm,则正方形ABCD的面积为cm2.41.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.42.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.三.解答题(共8小题)43.如图,在四边形ABCD中,对角线AC、BD交于点O,AB∥DC,AB=BC,BD平分∠ABC,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=2,BD=4,求OE的长.44.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.45.如图1,在Rt△ABC中,∠ACB=90°,D是AB边上任意一点,E是BC边上的中点,过点C作CF∥AB交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)如图2,若D为AB中点,求证:四边形CDBF是菱形;(3)若∠FDB=30°,∠ABC=45°,BE=4,求的△BDE面积.46.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.47.如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=2时,求AF的长度.48.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?49.如图,在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF ⊥AC于点F.求证:四边形CFDE是正方形.50.在△ABC中,∠BAC=90°,AD是BC边上的中线,点E为AD的中点,过点A作AF ∥BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)填空:①当∠ACB=°时,四边形ADCF为正方形;②连接DF,当∠ACB=°时,四边形ABDF为菱形.人教新版八年级下学期《18.2 特殊的平行四边形》2020年同步练习卷参考答案与试题解析一.选择题(共33小题)1.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°【分析】先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由AB=AC,AF⊥BC,可知BF=CF,BF=EF,再根据三角形外角的性质即可得出结论.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故选:C.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.2.在Rt△ABC中,若斜边AC=,则AC边上的中线BD的长为()A.1B.2C.D.【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【解答】解:在Rt△ABC中,∵斜边AC=,∴AC边上的中线BD的长=AC=,故选:D.【点评】本题考查直角三角形斜边上的中线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3.如图,已知A(3,6)、B(0,n)(0<n≤6),作AC⊥AB,交x轴于点C,M为BC的中点,若P(,0),则PM的最小值为()A.3B.C.D.【分析】作AH⊥y轴于H,CE⊥AH于E.则四边形CEHO是矩形,OH=CE=6,由△AHB∽△CEA,得出比例式,推出AE=2BH,设BH=x,则AE=2x,推出B(0,6﹣x),C(3+2x,0),由BM=CM,推出M(,),得出PN=ON﹣OP=x,在Rt△PMN中,由勾股定理得出PM2=PN2+MN2=x2+()2=x2﹣3x+9=(x﹣)2+,根据二次函数的性质得出PM2最小值为,即可得出结果.【解答】解:如图,作AH⊥y轴于H,CE⊥AH于E,作MN⊥OC于N.则四边形CEHO是矩形,OH=CE=6,∵∠BAC=∠AHB=∠AEC=90°,∴∠ABH+∠HAB=90°,∠HAB+∠EAC=90°,∴∠ABH=∠EAC,∴△AHB∽△CEA,∴=,∴=,∴AE=2BH,设BH=x,则AE=2x,∴OC=HE=3+2x,OB=6﹣x,∴B(0,6﹣x),C(3+2x,0)∵BM=CM,∴M(,),∵P(,0),∴PN=ON﹣OP=﹣=x,∴PM2=PN2+MN2=x2+()2=x2﹣3x+9=(x﹣)2+,∴x=时,PM2有最小值,最小值为,∴PM的最小值为=.故选:D.【点评】本题考查相似三角形的判定和性质、两点间距离公式、二次函数的应用等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会构建二次函数,利用二次函数的性质解决最值问题,属于中考常考题型.4.如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D 点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是()A.2B.8C.8D.12【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B的坐标和点D的坐标得出OD=2,求出DE=4,AD=2,即可得出答案.【解答】解:连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AD==2,∴菱形的周长=4AD=8;故选:C.【点评】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.5.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 【分析】证出四边形ABCD是菱形,由菱形的性质即可得出结论.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.【点评】本题考查了菱形的判定与性质;熟练掌握菱形的判定与性质是解题的关键.6.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等【分析】根据菱形的对角线性质,即可得出答案.【解答】解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,∴菱形的对角线不一定具有的性质是相等;故选:D.【点评】此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.7.如图,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于()A.3.5B.4C.7D.14【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=3.5.故选:A.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD【分析】由条件OA=OC,OB=OD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再由矩形和菱形的判定定理即可得出结论.【解答】解:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,A、∵AC=BD,∴四边形ABCD是矩形,故选项A不符合题意;B、∵AB⊥BC,∴四边形ABCD是矩形,故选项B不符合题意;C、∵∠AOB=60°,不能得出四边形ABCD是菱形;选项C不符合题意;D、∵AC⊥BD,∴四边形ABCD是菱形,故选项D符合题意;故选:D.【点评】此题主要考查了菱形的判定、矩形的判定;关键是掌握对角线互相垂直的平行四边形是菱形.9.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤【分析】根据平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.【解答】解:∵四边形ABCD是平行四边形∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确;∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG∴EG=EF=AG=BG,无法证明GE=GF,故②错误;∵BG=EF,AB∥CD∥EF,∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确;∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=AB,∴∠BAC=30°与题意不符合故⑤错误,故选:B.【点评】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.10.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8B.10C.10.4D.12【分析】由矩形和菱形的性质可得AE=EC,∠B=90°,由勾股定理可求AE的长,即可求四边形AECF的周长.【解答】解:如图所示,此时菱形的周长最大,∵四边形AECF是菱形∴AE=CF=EC=AF,在Rt△ABE中,AE2=AB2+BE2,∴AE2=1+(5﹣AE)2,∴AE=2.6∴菱形AECF的周长=2.6×4=10.4故选:C.【点评】本题考查了旋转的性质,菱形的性质,矩形的性质,勾股定理,熟练运用勾股定理求线段的长度是本题的关键.11.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC 的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF =CF;④∠EFC=2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质得到AD∥BC,AD=BC,由线段中点的定义得到AF=AD,BG=BC,于是得到四边形ABGF是平行四边形,根据平行线的性质得到CE⊥FG;故①正确;根据AD=2AB,AD=2AF,得到AB=AF,于是得到四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,根据全等三角形的性质得到FE=MF,∠AEF=∠M,推出∠AEC=∠ECD=90°,根据直角三角形的性质得到FC=EF=FM,故③正确;得到∠FCD=∠M,推出∠DCF=∠DFC,于是得到∠EFC=∠M+∠FCD=2∠CFD;故④正确.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点F、G分别是AD、BC的中点,∴AF=AD,BG=BC,∴AF=BG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AB∥FG,∵CE⊥AB,∴CE⊥FG;故①正确;∵AD=2AB,AD=2AF,∴AB=AF,∴四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EF=FM,故③正确;∴∠FCD=∠M,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故④正确,故选:D.【点评】本题考查了平行四边形的性质,菱形的判定,平行线的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.12.如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOF A是菱形D.四边形EBOF是菱形【分析】根据三角形的中位线定理和菱形的性质进行解答即可.【解答】解:∵菱形ABCD,∴BO=OD,BD⊥AC,∵E、F分别是边AB、AD的中点,∴2EF=BD=BO+OD,EF∥BD,∴EF=DO,EF⊥AO,∵E是AB的中点,O是BD的中点,∴2EO=AD,同理可得:2FO=AB,∵AB=AD,∴AE=OE=OF=AF,∴四边形EOF A是菱形,∵AB≠BD,∴四边形EBOF是平行四边形,不是菱形,故选:D.【点评】本题考查了三角形的中位线定理和菱形的性质,理解中位线定理和菱形的性质是关键.13.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.15【分析】根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.【解答】解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.【点评】本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.14.如图,在边长为1的菱形ABCD中,∠A=60°,点E,F分别为AD、CD上的动点,连接BE、BF、EF.若∠EBF=60°,则(1)BE=BF;(2)△BEF是等边三角形;(3)四边形EBFD面积是菱形面积的一半;(4)△DEF面积的最大值是.以上结论成立的是()A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)【分析】证明△ABE≌△DBF,可得出BE=BF,又∠EBF=60°,可证出△BEF是等边三角形;由全等得出四边形EBFD面积=S△BED+S△DBF=S△ABE+S△BED=S△ABD=,则知(1)(2)(3)成立,设AE=DF=x,DE=1﹣x,过点F作FH⊥AD 于点H,可求出FH,由面积公式表示出△DEF面积,利用二次函数的性质可求出面积的最大值为.【解答】解:(1)如图1,连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(AAS),∴BE=BF,故(1)成立;(2)∵BE=BF,∠EBF=60°,∴△BEF是等边三角形;故(2)成立;(3)∵△ABE≌△DBF,∴S△ABE=S△DBF,∴四边形EBFD面积=S△BED+S△DBF=S△ABE+S△BED=S△ABD,∵,∴四边形EBFD面积是菱形面积的一半,故(3)成立;(4)设AE=DF=x,∴DE=1﹣x,如图2,过点F作FH⊥AD于点H,∵∠ADF=120°,∴∠FDH=60°,∴∴=,=﹣,∴当x=时,S有最大值为.故(4)成立;故选:D.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定,二次函数的性质等知识,熟练掌握菱形的性质是解题关键.15.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.4【分析】根据勾股定理求得OD=,然后根据矩形的性质得出CE=OD=.【解答】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.【点评】本题考查了矩形的性质以及勾股定理的应用,熟练掌握矩形的性质是解题的关键.16.如图,已知Rt△ABC中,∠BAC=90°,∠C=30°,AB=6,M为边BC上的一个动点,ME⊥AB,MF⊥AC,则EF的最小值为()A.6B.6C.3D.3【分析】根据已知得出四边形AEMF是矩形,得出EF=AM,要使EF最小,只要AM最小即可,根据垂线段最短得出即可.【解答】解:∵∠BAC=90°,ME⊥AB,MF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AEMF是矩形,∴EF=AM,要使EF最小,只要AM最小即可,过A作AM⊥BC于M,此时AM最小,在Rt△ABC中,∠BAC=90°,∠C=30°,AB=6,∴AM=AB=3,即EF=3故选:C.【点评】本题利用了矩形的性质和判定、勾股定理、垂线段最短的应用,解此题的关键是确定出何时,EF最短,题目比较好,难度适中.17.下列说法错误的是()A.矩形的对角线互相平分B.有一个角是直角的四边形是矩形C.有一个角是直角的平行四边形叫做矩形D.矩形的对角线相等【分析】根据矩形的性质和判定对各个选项进行判断即可.【解答】解:A、矩形的对角线互相平分;正确;B、有一个角是直角的四边形是矩形;错误;C、有一个角是直角的平行四边形叫做矩形;正确;D、矩形的对角线相等;正确;故选:B.【点评】本题考查了矩形的判定与性质;熟练掌握矩形的判定与性质是解题的关键.18.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM 的值最小,根据面积关系建立等式求出其解即可.【解答】解:∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC.∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=2.4,∴AM=1.2;故选:C.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.19.如图,平行四边形ABCD中,∠B=60°.G是CD的中点,E是边AD上的动点,EG 的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是()A.四边形CEDF是平行四边形B.当CE⊥AD时,四边形CEDF是矩形C.当∠AEC=120°时,四边形CEDF是菱形D.当AE=ED时,四边形CEDF是菱形【分析】根据平行四边形的性质和菱形、矩形的判定判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形,正确;B、∵四边形CEDF是平行四边形,∵CE⊥AD,∴四边形CEDF是矩形,正确;C、∵四边形CEDF是平行四边形,∵∠AEC=120°,∴∠CED=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,正确;D、当AE=ED时,不能得出四边形CEDF是菱形,错误;故选:D.【点评】本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.20.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O.AE垂直平分OB于点E,则AD的长为()A.4B.3C.5D.5【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故选:B.【点评】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.21.在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的平分线EF与DC 交于点F,若AB=7,3DF=4FC,则BC的长为()A.7﹣1B.4+2C.2+5D.4+3【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G,∵3DF=4FC,∴=,∵矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE==7,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=7,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴=,设CG=3x,DE=4x,则AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=7,解得x=﹣1,∴BC=7+4x=7+4﹣4=3+4,故选:D.【点评】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.22.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE=3,则矩形ABCD的面积为()A.B.C.12D.32【分析】由矩形的性质得出OA=OC,由线段垂直平分线的性质得出AE=CE=3,求出BE=1,由勾股定理求出AB,即可得出答案.【解答】解:连接AE,如图所示:∵四边形ABCD是矩形,∴OA=OC,∠ABC=90°,BC=AD=4,∵OE⊥AC,∴AE=CE=3,∴BE=BC﹣CE=1,∴AB===2,∴矩形ABCD的面积=AB×BC=2×4=8;故选:B.【点评】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握矩形的性质,由勾股定理求出AB是解题的关键.23.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量其中三个角是否都为直角B.测量对角线是否相等C.测量两组对边是否分别相等D.测量对角线是否相互平分【分析】由矩形的判定定理和平行四边形的判定定理即可得出答案.【解答】解:A、测量其中三个角是否都为直角,能判定矩形;B、测量对角线是否相等,不能判定平行四边形;C、测量两组对边是否分别相等,能判定平行四边形;D、对角线是否相互平分,能判定平行四边形;故选:A.【点评】本题考查的是矩形的判定、平行四边形的判定;熟练掌握矩形的判定定理和平行四边形的判定定理是解题的关键.24.如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD为矩形的是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2【分析】根据矩形的判定方法即可一一判断.【解答】解:A、∵AB=BC,∴▱ABCD为菱形,错误;B、∵AC⊥BD,∴▱ABCD为菱形,错误;C、∵∠ABC=90°,∴▱ABCD是矩形,正确;D、∵∠1=∠2,∴▱ABCD为菱形,错误;故选:C.【点评】本题考查了矩形的判定定理,解题的关键是熟练掌握矩形的判定方法.25.如图,在边长为2的正方形ABCD中,以BC为边作等边△BCM,连接AM并延长交CD于N,则CN的长为()A.B.C.D.【分析】作MG⊥BC于G,MH⊥CD于H,根据直角三角形的性质和勾股定理分别求出CN.【解答】解:作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB∥MG∥CD,∴AM=MN,∵MH⊥CD,∠D=90°,∴MH∥AD,∴NH=HD,∵△MBC是等边三角形,∴MC=BC=2,由题意得,∠MCD=30°,∴MH=MC=1,CH=,DH=CD﹣CH=2﹣,HN=DH=2﹣CN=CH﹣HN=﹣(2﹣)=2﹣2故选:A.【点评】本题考查了正方形的性质、等边三角形的性质、熟记正方形的各种性质以及平行线的性质是解题的关键.26.如图,将一个正方形剪去一个角后,∠1+∠2等于()A.120°B.170°C.220°D.270°【分析】根据三角形外角的性质可得∠1+∠2的度数=三角形三个内角的和+∠A的度数,再根据三角形内角和定理和正方形的性质即可求解.【解答】解:∵∠1=∠A+∠3,∠2=∠A+∠4,∴∠1+∠2=∠A+∠3+∠4+∠A=180°+90°=270°.故选:D.【点评】本题考查了正方形的性质和三角形外角的性质和三角形内角和定理,解题的关键是得到∠1+∠2=(∠A+∠3+∠4)+∠A.27.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°【分析】由等边三角形的性质可得∠DAE=60°,进而可得∠BAE=150°,又因为AB =AE,结合等腰三角形的性质,易得∠AEB的大小,进而可求出∠BED的度数.【解答】解:∵△ADE是等边三角形,∴∠DAE=60°,AD=AE=DE,∵四边形ABCD是正方形,∴∠EAB=90°,AD=AB∴∠BAE=90°+60°=150°,AE=AB∴∠AEB=30°÷2=15°,∴∠BED=60°﹣15°=45°,故选:A.【点评】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠AEB的度数,难度适中.28.下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直平分的四边形是正方形【分析】根据矩形、菱形、正方形的判定定理进行判断.【解答】解:A、对角线相等的平行四边形是矩形,故本选项不符合题意.B、对角线互相垂直的四边形不一定是菱形,比如筝形,故本选项不符合题意.C、对角线互相垂直平分的四边形是菱形,故本选项符合题意.D、对角线互相垂直平分且相等的四边形是正方形,故本选项符合题意.。

人教版八年级数学下册第十八章 平行四边形18.2.2菱形 课件(2课时共64张)

人教版八年级数学下册第十八章 平行四边形18.2.2菱形  课件(2课时共64张)
A∴S△AOFra bibliotek=1 2
OA·OB=
1 2
×5×12=30,
∴S菱形ABCD=4S△AOB=4×30=120.
B
O
D
∵ AB AO2 BO2 52 122 13,
C
又∵菱形两组对边的距离相等,
∴S菱形ABCD=AB·h=13h,∴13h=120,得h= 11230.
课堂检测
能力提升题
求证:∠AFD=∠CBE. 证明:∵四边形ABCD是菱形, ∴CB=CD, CA平分∠BCD. ∴∠BCE=∠DCE.
B
F
C
EA
又 CE=CE,∴△BCE≌△DCE(SAS).
D
∴∠CBE=∠CDE.
∵在菱形ABCD中,AB∥CD,
∴∠AFD=∠EDC.∴∠AFD=∠CBE.
课堂小结


形 的


O
C


菱形的两组对角分别相等 角

菱形的邻角互补

B
怎样判断一 个四边形是 菱形?
菱形的两条对角线互相平分
对角线 菱形的两条对角线互相垂直平分,
并且每一条对角线平分一组对角。
素养目标
2. 经历菱形判定定理的探究过程,渗透类比 思想,体会研究图形判定的一般思路. 1. 掌握菱形的三种判定方法,能根据不同的已 知条件,选择适当的判定定理进行推理和计算 .
B
O
D
C
= AC(BO+DO)
= AC·BD. 菱形的面积 = 底×高 = 对角线乘积的一半
探究新知 素养考点 1 利用菱形的面积公式解答问题
例3 如图,菱形花坛ABCD的边长为20m,∠ABC=60°, 沿着菱形的对角线修建了两条小路AC和BD,求两条小路的 长和花坛的面积(结果分别精确到0.01m和0.1m2).

初中数学人教版八年级下册《第十八章 平行四边形 18.2.2 矩形的判定》教材教案

初中数学人教版八年级下册《第十八章 平行四边形 18.2.2 矩形的判定》教材教案

《矩形的判定》教案【教学目标】1.知识与技能经历图形性质的探讨,掌握矩形的判定定理。

2.过程与方法在参与观察、实验、猜想、证明。

能用矩形的判定定理解决一些简单的问题。

3.情感态度和价值观在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

【教学重点】矩形判定定理的推导。

【教学难点】正确运用矩形的判定定理。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件。

【课时安排】1课时【教学过程】一、情景导入【过渡】大家看老师手里拿到的一个相框,大家说一下,根据你观察到的,这个相框是什么形状呢?(学生回答)【过渡】很多同学都在说,这是一个矩形,大家能用什么方法来证明呢?(学生回答)【过渡】利用上节课我们所学的矩形的相关性质,我们可以利用直尺或量角器来证明这个相框是矩形。

除了这种方法之外,今天我们再来学习几种矩形的判定方法。

二、新课教学1.矩形的判定【过渡】首先,像刚刚大家说的那样,根据矩形的定义,我们可以判断一个四边形是否为矩形。

有一个角是直角的平行四边形是矩形。

【过渡】除了这种方法之外,还有别的吗?大家看一下课本思考的内容。

在日常生活中,我们经常能看到这样的场景。

工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?猜想:对角线相等的平行四边形是矩形。

【过渡】大家能证明这个猜想吗?【过渡】证明时,我们需要结合矩形的定义,从证明一个角为90°入手,再根据平行四边形的性质,从而找出已知条件。

大家动手试一下吧。

课件展示证明过程。

【过渡】由此,我们得到了矩形的另一个判定定理:对角线相等的平行四边形是矩形。

【过渡】在上一节课的学习当中,我们知道一个矩形的四个角都是直角,如果将这个命题反过来,即它的逆命题还成立吗?如果上述逆命题成立,那么进一步说,至少有几个角是直角的四边形是矩形呢?猜想:有三个角是直角的四边形是矩形。

八年级数学下册第十八章平行四边形特殊的平行四边形菱形菱形的性质教案新版新人教版

八年级数学下册第十八章平行四边形特殊的平行四边形菱形菱形的性质教案新版新人教版

18.2.2 菱 形第1课时 菱形的性质1.掌握的定义和性质及菱形面积的求法;(重点)2.灵活运用菱形的性质解决问题.(难点)一、情境导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.二、合作探究探究点一:菱形的性质【类型一】 利用菱形的性质证明线段相等如图,四边形ABCD 是菱形,CE ⊥AB交AB 延长线于E ,CF ⊥AD 交AD 延长线于F .求证:CE =CF .解析:连接AC .根据菱形的性质可得AC 平分∠DAB ,再根据角平分线的性质可得CE =FC .证明:连接AC ,∵四边形ABCD 是菱形,∴AC 平分∠DAB .∵CE ⊥AB ,CF ⊥AD ,∴CE =CF .方法总结:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.【类型二】 利用菱形的性质进行有关的计算如图,O 是菱形ABCD 对角线AC与BD 的交点,CD =5cm ,OD =3cm.过点C 作CE ∥DB ,过点B 作BE ∥AC ,CE 与BE 相交于点E .(1)求OC 的长;(2)求四边形OBEC 的面积.解析:(1)在直角三角形OCD 中,利用勾股定理即可求解;(2)利用矩形的定义即可证明四边形OBEC 为矩形,再利用矩形的面积公式即可直接求解.解:(1)∵四边形ABCD 是菱形,∴AC ⊥BD .在直角三角形OCD 中,OC =CD 2-OD 2=52-32=4(cm);(2)∵CE ∥DB ,BE ∥AC ,∴四边形OBEC 为平行四边形.又∵AC ⊥BD ,即∠COB =90°,∴平行四边形OBEC 为矩形.∵OB =OD ,∴S 矩形OBEC =OB ·OC =4×3=12(cm 2).方法总结:菱形的对角线互相垂直,则菱形对角线将菱形分成四个直角三角形,所以可以利用勾股定理解决一些计算问题.【类型三】 运用菱形的性质证明角相等如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.解析:根据“菱形的对角线互相平分”可得OD=OB,再根据“直角三角形斜边上的中线等于斜边的一半”可得OH=OB,∠OHB=∠OBH,根据“两直线平行,内错角相等”求出∠OBH=∠ODC,然后根据“等角的余角相等”证明即可.证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°.∵DH⊥AB,∴OH=12BD=OB,∴∠OHB=∠OBH.又∵AB∥CD,∴∠OBH=∠ODC,∴∠OHB=∠ODC.在Rt△COD中,∠ODC+∠DCO=90°.在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.方法总结:本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.【类型四】运用菱形的性质解决探究性问题感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.解析:探究:△ADE与△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即可证明△ADE≌△DBF;拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.解:探究:△ADE与△DBF全等.∵四边形ABCD是菱形,∴AB=AD.∵AB=BD,∴AB=AD=BD,∴△ABD为等边三角形,∴∠DAB=∠ADB=60°,∴∠EAD=∠FDB=120°.∵AE=DF,∴△ADE≌△DBF;拓展:∵点O在AD的垂直平分线上,∴OA=OD.∴∠DAO=∠ADB=50°,∴∠EAD=∠FDB=130°.∵AE=DF,AD=DB,∴△ADE≌△DBF,∴∠DEA=∠AFB=32°,∴∠EDA=∠OAD-∠DEA=18°.方法总结:本题考查了菱形的性质、等边三角形的判定和性质以及全等三角形的判定和性质的综合运用,解题时一定要熟悉相关的基础知识并进行联想.探究点二:菱形的面积已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.8 3 C.4 3D.8解析:∵四边形ABCD是菱形,∴AB=BC,OA=12AC=2,OB=12BD,AC⊥BD,∠BAD+∠ABC=180°.∵∠BAD=120°,∴∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=4,∴OB=AB2-OA2=42-22=23,∴BD=2OB=43,∴S菱形ABCD=12AC·BD=12×4×43=8 3.故选B.方法总结:菱形的面积有三种计算方法:①将其看成平行四边形,用底与高的积来求;②对角线分得的四个全等三角形面积之和;③两条对角线的乘积的一半.三、板书设计 1.菱形的性质菱形的四边条都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.菱形的面积S 菱形=边长×对应高=12ab (a ,b 分别是两条对角线的长)通过剪纸活动让学生主动探索菱形的性质,大多数学生能全部得到结论,少数需要教师加以引导.但是学生得到的结论,有一些是他们的猜想,是否正确还需要证明,因此问题就上升到证明这个环节.在整个新知生成过程中,探究活动起了重要的作用.课堂中学生始终处于观察、比较、概括、总结和积极思维状态,切身感受到自己是学习的主人.为学生今后获取知识、探索发现和创造打下了良好的基础,更增强了敢于实践,勇于探索,不断创新和努力学习数学知识的信心和勇气.。

八年级数学下册18.2特殊的平行四边形易错题

八年级数学下册18.2特殊的平行四边形易错题

八年级数学下册18.2特殊的平行四边形易错题1、下列图形中,是轴对称图形的是()答案C 解析考点:轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2、1. 下列说法不正确的是答案D 解析3、如图,在矩形ABCD中,AB=11cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点答案B 解析考点:翻折变换(折叠问题).分析:延长A′E交CD于点G,由题意知GE=EH,FH=GF,则阴影部分的周长与原矩形的周长相等.解答:解:延长A′E 交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD′A′≌四边形EGDA∴阴影部分的周长=矩形的周长=(11+6)×2=34cm.故选B.4、对左下方的几何体变换位置或视角,则可以得到的几何体是()答案B 解析5、用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确答案C 解析6、如图,在数轴上点A和点B之间的整数是; 答案?2 解析7、下列函数不属于二次函数的是( ;)答案解析8、计算结果是A.0B.1C.-1D.x 答案C 解析9、一个平行四边形绕着对角线的交点旋转90°能够与本身重合,则该平行四边形为(;答案C 解析考点:旋转的性质;正方形的判定.分析:根据题意,该四边形的对角线互相垂直平分且相等.解答:解:因为平行四边形对角线互相平分,绕着它的对角线的交点旋转90°,能够与它本身重合,说明对角线互相垂直平分且相等,所以该四边形是正方形.故选C.点评:此题考查了平行四边形的性质及与特殊四边形的关系,属基础题.解题时要根据旋转的性质解答.10、、若,则二次函数的图象的顶点在答案D 解析11、图中的两个三角形是位似图形,它们的位似中心是();A.答案A 解析12、﹣5的相反数是()A.﹣5B.5C.﹣D.答案B 解析13、;(2011浙江丽水,7,3分)计算–的结果为(答案C 解析14、右图是某同学对二氧化碳部分知识构建的网络图(部分反应条件和部分生成物省略)。

人教版数学八年级下册18.2《特殊平行四边形》教学设计

人教版数学八年级下册18.2《特殊平行四边形》教学设计

人教版数学八年级下册18.2《特殊平行四边形》教学设计一. 教材分析人教版数学八年级下册18.2《特殊平行四边形》是学生在学习了平行四边形的性质和判定之后,进一步研究特殊平行四边形的特征和应用。

本节内容主要包括矩形、菱形、正方形的性质,以及它们之间的关系和转化。

教材通过丰富的图形和实例,引导学生探索和发现特殊平行四边形的性质,培养学生的观察能力、逻辑思维能力和解决问题的能力。

二. 学情分析学生在八年级上学期已经学习了平行四边形的性质和判定,对平行四边形有了初步的认识。

但特殊平行四边形的性质和判定对他们来说还是新的内容,需要通过实例和探究活动来进一步理解和掌握。

学生在学习过程中应具备观察和分析图形的能力,能够运用已学的知识解决实际问题。

三. 教学目标1.了解矩形、菱形、正方形的定义和性质。

2.掌握特殊平行四边形的判定方法。

3.培养学生的观察能力、逻辑思维能力和解决问题的能力。

4.能够运用特殊平行四边形的性质解决实际问题。

四. 教学重难点1.特殊平行四边形的性质和判定。

2.矩形、菱形、正方形之间的关系和转化。

五. 教学方法1.情境教学法:通过展示实际生活中的特殊平行四边形,激发学生的学习兴趣,引导学生主动探索。

2.问题驱动法:教师提出问题,引导学生思考和讨论,培养学生解决问题的能力。

3.合作学习法:学生分组讨论和探究,培养学生的团队协作能力。

4.直观教学法:利用图形和教具,直观展示特殊平行四边形的性质和判定。

六. 教学准备1.教学课件:制作课件,展示特殊平行四边形的图形和实例。

2.教学道具:准备一些特殊的平行四边形模型,如矩形、菱形、正方形等。

3.练习题:准备一些有关特殊平行四边形的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些特殊的平行四边形,如矩形、菱形、正方形等,引导学生观察和思考:这些图形有什么特殊的性质?它们之间的关系如何?2.呈现(10分钟)教师简要介绍矩形、菱形、正方形的定义和性质,引导学生通过观察和分析,发现它们之间的关系和转化。

八年级数学下册18章

八年级数学下册18章

证明:∵四边形 ABCD 是矩形,
∴∠B =∠D,∠C =∠A,AB∥DC.
∴∠B +∠C = 180°.
A
D
又∵∠B = 90°, ∴∠C = 90°.
B
C
∴∠B =∠C =∠D =∠A = 90°.
(2) 如图,四边形 ABCD 是矩形, A
D
∠ABC = 90°,对角线 AC 与 DB 相
交于点 O. 求证:AC = DB.
平行四 边形
新知一览
平行四 边形
平行四边形的性质 平行四边形的判定
特殊的平 行四边形
矩形 菱形 正方形
性质 判定
第十八章 平行四边形
18.2.1 矩 形
第1课时 矩形的性质
情景导入
根据四边形的不稳定性,观察在平行四边形的 变化过程中,当有一个角是直角时,会产生什么 特殊的平行四边形?
探究新知 知识点1: 矩形的性质
D
∴ AB = DC,∠ABC =∠DCB = 90°,
在 △ABC 和 △DCB 中,
O
B
C
∵ AB = DC,∠ABC = ∠DCB,BC = CB,
∴ △ABC≌△DCB.
∴ AC = DB.
归纳总结
矩形的性质 对边平行相等;对角相等;对角线相互平分.
角: 矩形的四个角都是直角
对角线: 矩形的对角线相等 A
C. 对角相等 D. 对角线互相平分
2.若直角三角形的两条直角边分别 5 和 12,则斜边
上的中线长为 A. 13 B. 6
( C) C. 6.5 D. 不能确定
3.若矩形的一条对角线与一边的夹角为 40°,则两条
对角线相交的锐角是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2.2菱形的判定
考纲、大纲描述
掌握菱形的三个判定方法,定义判定法和对角线判定法以及四条边判定的方法
教材内容分析
本节内容是继平行四边形学习之后进行的并且学习了菱形的性质,菱形是特殊的平行四边形,在这个基础上学习菱形的判定方法。
学情分析
从学生的学习过程中,菱形在生活中广泛存在,所以学生从小就有对菱形的整体感知,把菱形看成特殊的平行四边形,并从菱形的性质中得到菱形的判定方法。
角:
对角线:

阅读教材P57-58页
【思考】昨天我们研究了菱形的性质,那么如何判定一个四边形是菱形呢?请阅读教材总结菱形的判定方法?
判定方法一(定义判定法)几何语言:
判定方法二(对角线判定法)几何语言:
判定方法三(四边判定方法)几何语言:
1例:在□ABCD中,对角线AC和BD相交于点O,并且AB=9,OB=6,OA= ,
(1)求证□ABCD是菱形;(2)求菱形ABCD的面积
2判断题,对的画“√”错的画“×”
(1).对角线互相垂直的四边形是菱形()
(2).一条对角线垂直另一条对角线的四边形是菱形()
(3)对角线互相垂直且平分的四边形是菱形()
(4)对角线相等的四边形是菱形()

1如何证明上述的判定二和三
2判定一二与判定三有什么本质性的不同?
教学目标
1.经历探究菱形的两个判定定理的过程;会用定义及判定定理进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
重点
菱形的三个判定方法.
难点
判定方法的简证明方法及运用
教学环节
师生活动
问题预设

菱形的定义:有一组邻边相等的平行四边形是菱形
菱形性质:边:

1判定二判定三的证明
2例题的展示

菱形的判定方法
判定方法一(定义判定法)
判定方法二(对角线判定法)
判定方法三(四边判定法)

1.顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形。
板书设计
18.2.2菱形的判定
一、
二、
三、
教学反思
相关文档
最新文档