锂离子电池电解液知识专业知识讲座

合集下载

锂电池电解液基础知识

锂电池电解液基础知识

锂离子电池电解液1 锂离子电解液概况电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。

电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。

有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。

自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。

目前锂离子电池电解液产品技术也正处于进一步发展中。

在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。

国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。

不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。

电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。

EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。

据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂离子电池中电解液的组成

锂离子电池中电解液的组成

1、电解液的组成电解液的基本功能:在正极和负极之间传递锂离子,但是对电子绝缘,保证电池的充放电能够顺利进行。

理想的电解液要求:1)对锂离子来说是优良的导体,对电子来说是绝缘体;2)在电极表面除了发生锂离子的迁移之外,不发生其他副反应;3)不与其他电池组件发生反应;4)化学稳定性好;安全、环保;电解液的组成:锂离子电池电解液的组成主要包括有机溶剂、锂盐、添加剂。

2、有机溶剂理想溶剂的特点:1.介电常数高且黏度低;2.对锂盐有足够高的溶解度,保证高的电导率;3.沸点高且熔点低;4.化学稳定性好;电化学稳定性好;5.安全性和环境相容性;成本低;电解液中用的有机溶剂主要有以下几类:碳酸酯类、酸酸酯类、醚类有机溶剂、含硫有机溶剂。

2.1 常用碳酸酯类溶剂,如下表:碳酸酯类溶剂按结构可分为环状碳酸酯类和链状碳酸酯类。

环状碳酸酯类的溶剂具有极高的介电常数,但是黏度也较大;链状碳酸酯的介电常数低,但是黏度也低。

碳酸酯类溶剂的特点:碳酸酯类溶剂具有极高的介电常数;电化学稳定性好,氧化电位高;与石墨负电极相容性好,尤其是EC能够在石墨电极表面形成良好的SEI膜;环状碳酸酯和链状碳酸酯混合使用能满足锂电池工作温度、电导率等多方面的要求;绿色环保、低成本;2.2 新型溶剂——羧酸酯:2.3 新型溶剂——亚硫酸酯:3、锂盐理想的锂盐:易溶于有机溶剂且溶液的电导率高;阴离子具有较高的氧化和还原稳定性;化学稳定性好;电化学稳定性好;安全性好、环境友好;成本低;锂盐根据阴离子的不同,可分为无机锂盐和有机锂盐;3.1 常见的无机锂盐,如下表3.2 常见的有机锂盐,如下表平均离子迁移率:LiBF4> LiClO4> LiPF6 > LiAsF6> LiTf > LiImide解离常数:LiTf < LiBF4< LiClO4< LiPF6< LiAsF6< LiImideLiPF6的电导率较高;3.3 锂盐的优缺点LiPF6的优点:电导率高;电化学稳定性好;有效钝化铝箔;与石墨负极相容性好;成本较低。

电解液基础知识培训.

电解液基础知识培训.

成膜添加剂种类 1、有机成膜添加剂 如ES(亚硫酸乙烯酯)、PS 亚硫酸丙烯酯) 碳酸亚乙烯酯(vinylene carbonate, 简称VC) 等。 2、无机成膜添加剂 如CO2 、SO2 、Li2CO3 等。

2、防过充添加剂
机理:在电池充满电或略高于该值时,添加剂 在正极发生氧化反应,然后扩散到负极,发生 还原反应,如下式所示。 正极:R→ O + ne 负极:O+ ne- → R 这样在充满电以后,氧化还原对在正极和负极之 间穿梭,吸收过量的电荷,形成内部防过充的 机理。 过充添加剂:联笨

三、电解液添加剂
1、成膜添加剂 2、防过充添加剂 3、提高电导率添加剂 4、阻燃性电解液

1、成膜添加剂 固体电解质相间界面(SEI)膜:指电池在首次充 放电时,锂离子和电解液在碳电极表面发生氧化 还原反应而形成的一层钝化膜。

成膜添加剂作用:电极在首次充电过程中成膜添 加剂先于溶剂化锂离子插层建立起优良的SEI 膜, 允许锂离子自由进出电极而溶剂分子无法穿越, 从而阻止溶剂分子对电极的破坏,提高电极的嵌 脱锂容量和循环寿命。
2、典型几种溶剂
一、碳酸酯主要包括: 1、环状碳酸酯:碳酸乙烯酯( EC) 、碳酸丙 烯酯(PC) 等 2、链状碳酸酯: (碳酸二甲酯(DMC) 、碳酸 二乙酯(DEC) 、碳酸甲乙酯( EMC) 等。

碳酸丙烯酯( PC)

碳酸丙烯酯( PC) 较早的使用在商业电池中。 与二甲氧基乙烷(DME) 等量混合仍是一次 锂电池的代表性溶剂。PC用于二次电池与 电池负极相溶性较差,在碳负极形成SEI 膜 (固体电解质膜) 之前,随着锂共插入石墨层, 导致石墨层发生剥离,循环性能下降。

锂电池电解液基础知识

锂电池电解液基础知识

锂离子电池电解液1 锂离子电解液概况电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。

电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。

有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。

自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。

目前锂离子电池电解液产品技术也正处于进一步发展中。

在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。

国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。

不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。

电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。

EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。

据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂离子电池电解液

锂离子电池电解液

• ② 用 Born-Landé公式计算 • 假如没有热力学数据,可以用Born-Landé (波恩-朗德)公式计算晶格能的理论值: • 式中:R0 为正、负离子的核间距(R0≈r+ + r-),单位为 pm。z1和z2分别为正负离 子电荷数的绝对值。A 为 Madelung(马德隆) 常量,其数值与晶体类型有关:
无机空心微球的制备
• 喷雾干燥法 :用喷雾的技术,使物料以雾滴状态分 散于热气流中,物体与热气体充分接触在瞬间完 成传热和传质的过程,使溶剂迅速增发为气体, 达到干燥的目的。 • 模板法:主要过程是先选取成分和尺寸适宜的可 牺牲性模板(sacrificed template)作为主体,再通 过控制前驱体在模板表面沉积或反应,形成表面 包覆层,最后用溶解、加热或化学反应等方法去 核,即获得所期望尺寸的空心微球材料。
• 固体聚合物电解质具有良好的柔韧性、成 膜性、稳定性、成本低等特点,既可作为 正负电极间隔膜用又可作为传递离子的电 解质用。
• 固体聚合物电解质一般可分为干形固体聚 合物电解质(SPE)和凝胶聚合物电解质 (GPE)。SPE固体聚合物电解质主要还是基 于聚氧化乙烯(PEO),其缺点是离子导电率 较低,在100℃下只能达到10-40cm。
某样品在相同倍率下的充放电曲线 如下:
样品在不同放电倍率下的 充放电曲线
循环伏安(CV)测试
• 循环伏安(Cyclic Voltammetry)扫描技术是 研究电化学反应机理的重要实验手段。循 环伏安又称为三角波线性电位扫描,一般 采用三电极体系,通过控制研究电极的电 位在一定范围内以固定速率正/负放向的循 环扫描,检测出电极机化电流随电极电位 的变化曲线。
• 利用反应生成模板法制备得到粒径为 1.7~2.5 µm的SnO2空心微球,并将SnO2 空心微球和SnO2纳米颗粒分别用作为LIB 电极材料。

电解液培训PPT讲稿

电解液培训PPT讲稿

高温( 45℃ )、循环
LE-3501M系列 性能良好
4 圆柱 磷酸铁锂
过充
LE- 3501B01
满足圆柱过充(3C, 10V)的要求
一、按应用领域分类

类别

倍率型
动 力 5电 池
锰酸锂 磷酸铁锂
产品型号 LE-3501
LE-16
LE- 41系列 LE-3508 LE-35系列
应用领域
多应用于电动工具
一①E、C:锂极性离溶子剂,电溶池解锂用盐电并具解有液成膜基作本用,常系识必不可 少组分。 ②DMC:弱极性溶剂,黏度低,有利于电导率的增加,
多用于倍率型及要求浸润性好的电解液。 ③EMC:易少量分解成DMC、DEC,与EC搭配多用于 铝
壳电池。 ④DEC:沸点高,与EMC、PC混用,多用于高温型电解
10.5±0.2
适合软包、铝壳锂离子
电池(85℃4h,鼓胀
LE-13408
EC/DEC/EMC LiPF6 添加剂
1.22±0.03
9.2±0.2
<5% )
二、按功能分类
技术指标
型号
体系
密度 (20℃) (g/cm3)
电导率(25℃) (ms/cm)
性能
倍 率 LE-3501 型
EC/DMC/EMC LiPF6 添加剂
一、锂离子电池用电解液基本常识
一、锂离1子.2常电用池锂用盐电介解绍液基本常识
电解液常用锂盐有LiPF6、LiClO4、 LiAsF6、LiBF4等。
1.2.1LiPF6的相关知识 LiPF6容易跟水反应,主要评价锂盐 的指标有:酸度、不溶物、金属离子
含量等。
一、锂离子1.2电添池加用剂电介绍解液基本常识

《锂离子电池电解液》课件

《锂离子电池电解液》课件
组成
电解液主要由溶剂、锂盐和其他添加剂组成。其 中,溶剂是电解液的主要成分,决定了电解液的 基本性质;锂盐是传导锂离子的介质;添加剂则 可改善电解液的某些性能。
02
电解液的物理化学 性质
电导率
总结词
电导率是衡量电解液传导电流能力的重要参数。
详细描述
电导率决定了锂离子在电解液中的迁移速度,进而影响电池的充放电性能。高 电导率的电解液有助于提高电池的倍率性能。
乳化法
将锂盐、有机溶剂和水等原料混合,通过乳化剂的作用形成稳定的乳液,再经过蒸发、 冷却等处理得到电解液。该方法操作简便,环境友好,但乳化剂的用量和稳定性控制要
求较高。
电解液的优化策略
添加剂改性
有机溶剂优化
通过添加特定的添加剂,如成膜剂、 阻燃剂、导电剂等,改善电解液的性 能。该方法简单易行,但添加剂的选 择和用量需经过精心设计。
03
同,但都需要具备较高的稳定性和安全性。
THANKS
感谢您的观看
研究高电压下的电解液稳定性,以适应锂离 子电池高能量密度的需求。
阻燃电解液
开发具有阻燃性能的电解液,提高电池的安 全性,降低燃烧和爆炸的风险。
降低成本与环保问题
要点一
低成本制备技术
研究电解液的低成本制备技术,如溶剂法、一步法等,以 降低生产成本。
要点二
绿色环保电解液
开发环保型的电解液,减少对环境的影响,如使用可再生 资源或无毒溶剂等。
快速充电
02
03
循环稳定性
具有良好电化学性能的电解液可 以降低内阻,允许电流更快地通 过,从而缩短充电时间。
良好的电解液可以减少电池在充 放电过程中的容量衰减,提高电 池的循环寿命。
安全性能

锂电池电解液培训资料PPT(共 30张)

锂电池电解液培训资料PPT(共 30张)

1、SEI(solid electrolyte interface) 成 膜添加剂
有机成膜添加剂-硫代有机溶剂
硫代有机溶剂是重要的有机成膜添加剂,包括亚硫酰基添加剂和磺酸酯
添加剂。ES(ethylene sulfite, 亚硫酸乙烯酯)、PS(propylene sulfite, 亚硫 酸丙烯酯)、DMS(dimethylsulfite, 二甲基亚硫酸酯)、DES(diethyl sulfite, 二乙基亚硫酸酯)、DMSO(dimethyl sulfoxide, 二甲亚砜)都是常用的亚硫酰 基添加剂 ,亚硫酰基添加剂还原分解形成SEI膜的主要成分是无机盐Li2S、 Li2SO3 或Li2SO4 和有机盐ROSO2Li, 碳负极界面的成膜能力大小依次 为:ES>PS>>DMS>DES,链状亚硫酰基溶剂不能用作PC基电解液的添 加剂,因为它们不能形成有效的SEI 膜,但可以与EC溶剂配合使用,高粘 度的EC 具有强的成膜作用,可承担成膜任务,而低粘度的DES 和DMS 可 以保证电解液优良的导电性磺酸酯是另一种硫代有机成膜添加剂,不同体 积的烷基磺酸酯如1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯、甲基磺酸乙酯和 甲基磺酸丁酯具有良好的成膜性能和低温导电性能,是近年来人们看好的 锂离子电池有机电解液添加剂
在PC 基电解液中加入10%的1,2-三氟乙酸基乙烷[1,2-bis(trifluoracetoxy)-ethane, 简称BTE]后,电极在1.75V(vs.Li/Li+)发生成膜反应, 可有效抑制PC 溶剂分子的还原共插反应,并允许锂可逆地嵌入与脱嵌,提高 碳负极的循环效率。氯甲酸甲酯、溴代丁内酯的使用也可以使碳负极的不可 逆容量降低60%以上。
乙酰胺及其衍生物和含氮芳香杂环化合物,如对二氮(杂)苯与间二氮(杂)苯 及其衍生物[26]等具有相对较大的分子量可避免配体的共插,在有机电解 液中添加适量的这类物质,能够明显改善电池性能;

技术培训-电解液

技术培训-电解液

1.1*10-5
6.7*10-6
20℃[(mol/l)-2s-1]
8.5*10-5
4.4*10-5
4.0*10-5
1.6*10-5
30℃[(mol/l)-2s-1]
2.2*10-4
1.6*10-4
7.8*10-5
6.7*10-5
20µL水在不同体系50H后的对比
Density of electrolyt e(g/l) Density after addition of 20µl of water Change of desity in 50h after water added(%) 0.285 0.096 0.406 0.367
有机成膜添加剂有机成膜添加剂 卤代有机成膜添加剂
卤代有机成膜添加剂包括氟代、氯代和溴代有机化合物。这类添加剂借 助卤素原子的吸电子效应提高中心原子的得电子能力,使添加剂在较高的电 位条件下还原并有效钝化电极表面卤代EC、三氟乙基膦酸[tris(2,2,2trifluoroethyl)phosphite, 简称TTFP]、氯甲酸甲酯、溴代丁内酯及氟代乙酸基 乙烷等都是这类添加剂[23~25]。 在PC 基电解液中加入10%的1,2-三氟乙酸基乙烷[1,2-bis(trifluoracetoxy)-ethane, 简称BTE]后,电极在1.75V(vs.Li/Li+)发生成膜反应, 可有效抑制PC 溶剂分子的还原共插反应,并允许锂可逆地嵌入与脱嵌,提高 碳负极的循环效率。氯甲酸甲酯、溴代丁内酯的使用也可以使碳负极的不可 逆容量降低60%以上。
低沸点的有机阻燃剂[33~35]如三甲基磷酸酯(trimethyl phosphate,简称TMP),在受热的情况下首先气化: TMP(l)⎯→ TMP(g) ⎯ (1) 气态TMP 分子受热分解释放出阻燃自由基(如P·自由基): TMP(g) ⎯→ P· (2) 生成的阻燃自由基有捕获体系中氢自由基的能力: P·+ H·⎯→ PH (3) 从而阻止碳氢化合物燃烧或爆炸的链式反应的发生。

【锂电池 专家课件】锂电池电解液综述

【锂电池 专家课件】锂电池电解液综述
• 目前,提高LiBOB 溶解度的途径主要有两条: • ①寻找合适的溶剂配比,使锂盐既易溶解,又不会使溶液黏度过大; • ②改变提纯时的析晶温度,使晶粒尽可能细。根据结晶学原理,析晶温度
不同, 晶体成核和长大的速度不同。对BOB- 这种弱配位离子,低粘度溶剂 是得到高电导率的关键。
康晓丽, 仇卫华, 刘兴江.电源技术。2008年,32卷,11期,804.
• 按阴离子中心原子的不同划分,则可分为磷系锂盐,硼系锂盐,甲基系 列锂盐,亚胺系列锂盐以及其它导电锂盐。
• 已报道的可用于锂离子电池的锂盐有很多,大体上可分为有机盐和无机 盐。目前较常用的是无机阴离子导 电锂盐 ,主要为LiPF6 、LiBOB 、 LiBF4 、LiTFSI等几种;
磷系列锂盐-LiPF6
LiBOB的缺点
• LiBOB存在的缺点主要有以几个方面: • (1)电导率的问题[1] • LiBOB在部分低介电常数的溶剂中(特别是线性碳酸酯类)几乎不溶解。例
如,它在EC/DMC(3:7)的混合溶液中的溶解度只有0.80 mol/L,;而且 LiBOB在碳酸酯混合物中的电导率小于常用的LiPF6电解液。 • LiBOB电解液体系的低温性能也不如LiPF6。如1 mol/Kg LiBOB/EC-DMC溶 液在-20℃时只能维持室温条件下能量的19%,而LiPF6却能维持74%。解 决这些问题需要优化电解液(特别是溶剂)的组分和组成;已有研究表明, 在EC-EMC中加入PC,则能显著提高LiBOB电解液的低温性能。
LiBOB电解液的特性
• 3.铝的完美钝化 • 用作集流体的铝由于质量轻、耐腐蚀、成本低等 特点,存锂离子蓄电池中有着不可替代的作用。 铝的保护主要是靠其表面生成的钝化膜,而非水 溶液中生成的钝化膜的成分、结构主要是由溶质 决定。因此,用作锂离子蓄电池的盐或电解液在 高电压下不能腐蚀铝,这是它们能够得到应用的 基木要求。 • 例如:具有良好综合性质的LiN(CFSO3)2由于腐蚀 铝,限制了它在锂离子二次电池中的使用。

锂电池电解液详解.ppt

锂电池电解液详解.ppt
中 , 梦 里 梦 外,你 的声音 以绵绵 细雨开 始润泽 我深切 的遥想 ,以一 粒饱满 的种子 播 种 在 我 的 心灵之 中。 当 浓 浓 的夏 意弥漫 整个时 空,我 在一个 飘雨的 夜晚再 次 倾 听 你 的 声音时 ,我思 想里的 文字已 经在你 空灵舒 缓的音 律里铺 展开来 ;那时 候 , 你 仿 佛 亲爱的 人一样 在我的 耳边娓 娓道来 真挚的 心声; 那时候 ,我的 文字在 你 声 音 的 演 绎里描 画为我 迷恋的 风景; 那时候 ,我心 底最柔 弱的部 分被你 的声音 牢 牢 地 抓 住 。 像 你 喜 欢 我自 如流畅 的文字 一样, 我喜欢 倾听你 深沉动 情的声 音 , 我 喜 欢 倾听你 婉转深 情或高 亢悠扬 的表达 ,你用 磁一般 吸引心 灵的声 音,达 成 了 与 我 思 想的契 合,你 用你质 美情深 的声音 ,把我 的文字 转换成 了你对 我真诚 的 倾 诉 。 这 样自然 纯美的 倾诉中 ,有你 和我对 情感的 理解与 挚诚、 有你和 我对季 节 风 景 的 描 摹与憧 憬、有 你和我 怀揣着 的对生 活无限 热爱的 深情。 在 你 妙 美 的 声 音 里 , 我看到 了一幅 幅画面 生动起 来,那 画面交 织着心 里约定 的情怀 ——我
2ROCO2Li+H2O HF+ROLi Li2CO3+2HF ROCO2Li+2HF
Li2CO3+CO2+2ROH LiF+ROH
LiF+H2CO3 nLiF+ROH+H2CO3+ROH
破环电极活性物质 HF与正极氧化物材料反应
导致电池胀气、极化增大、容量衰减、循环性降低等
❖ 变色
正常电解液
保存不当,变色电解液
用量少,见效快
特点:
(1) 较少用量即能改善电池的一种或几种性能; (2) 对电池性能无副作用,不与电池中其它材料发生副反应; (3) 与有机溶剂有较好的相溶性,甚至能完全溶于其中; (4) 价格相对较低; (5) 无毒性或毒性较小。

锂电池电解液培训资料

锂电池电解液培训资料

02
各国政府制定的相关法规和标准,如我国《危险化学品安全管
理条例》等。
行业标准
03
相关行业协会制定的规范和标准,如锂电池行业协会制定的电
解液使用规范等。
05 未来发展趋势与挑战
技术创新与突破方向
新型电解液材料研发
探索新型的电解质材料,以提高锂电池的能量密度、循环寿命和 安全性。
电解液生产工艺改进
碳酸酯类电解液
最常见的电解液类型,具有高电导率、低粘度等特点,广泛应用 于消费电子产品和电动汽车等领域。
醚酯类电解液
具有较高的电导率和较低的粘度,适用于高能量密度锂电池,但易 燃易爆,安全性较差。
氟代碳酸酯类电解液
具有较高的电导率和稳定性,对环境友好,但成本较高,且合成难 度较大。
02 电解液的制造工艺与技术
THANKS FOR WATCHING
感谢您的观看
优化电解液的生产工艺,降低成本,提高产量和产品质量。
电解液回收与再利用技术
研究电解液的回收和再利用技术,降低环境污染,实现可持续发展 。
市场发展机遇与挑战
1 2
新能源汽车市场的增长
随着新能源汽车市场的不断扩大,锂电池电解液 的需求量也将持续增长。
市场竞争加剧
随着新进入者的增多,锂电池电解液市场的竞争 将更加激烈。
电解液在锂电池中的作用
电导介质
电解液是离子传输的媒介,能够确保 锂离子在正负极之间快速、有效地传 输,从而提高锂电池的充放电性能。
阻燃剂
调节电池性能
电解液的种类和组成对锂电池的电化 学性能、循环寿命、安全性能等具有 重要影响。
电解液具有一定的阻燃性,有助于提 高锂电池的安全性能。
电解液的种类与特点

锂离子电池电解液的基础(终极版)

锂离子电池电解液的基础(终极版)
6
2:1溶剂一一常规溶剂
Solvent Structure Mw Melting point (℃)
EC
PC DMC DEC EMC
。o
「y一�
88
36.4
。 。飞o一y「0
'o)l_o,,.

0)1...0
102 -48.8 90 4.6 118 -74.3
/气。人。 。/ 104 -53
Boiling point (℃) 248
14
3:1离子传导特性一一混合溶剂(1)
·通常一种溶剂难以同时满足高的介 电常数和低粘度的要求, 因此需要 采用混合溶剂体系: 一 种溶剂提供高的介电常数: 另 一种溶剂提供低的粘度。
·二兀溶剂体系的介电常数和粘度可 以按下式计算:
乌= (1 - x2) ε I + Xzζz 1/s =ηl (1-xv,,2
1.063 0.969 1.006
·环状碳酸醋类溶剂具有极高的介电常数, 但是粘度也大。 ·链状碳酸醋的介电常数低, 但是粘度也低。 ·为了满足工作温度范围、 电导率等多方面的要求, 通常是将介电常数高的环 状碳酸酷和粘度低的链状碳酸醋混合使用。
7
2:1溶剂一一选择碳酸醋类溶剂的理由
·电极体系:Li/Mn02 一次锺电池I ·电解液:LiCIOiPC-DME
3
1电解液的功能与要求一一基本要求
电解液的理想状态: 1)对铿离子来说是优良的导体, 对电子来说是绝缘体。 2)在电极表面除了发生锺离子的迁移之外, 不发生其它副反应。 3)不与其它电池组件发生反应。 4)化学稳定性好。 5)安全、 环保。
电解液的现状: 1)受限于有机溶剂和键盐的选择, 离子电导率一般在5~15mS/cm范围。 2)由于钮离子电池的正极具有很强的氧化性, 而负极具有很强的还原性, 电

锂离子电池电解液知识课件

锂离子电池电解液知识课件
性能指标
评价电解液性能的主要指标包括电导率、稳定性、闪点、粘 度等。其中,电导率决定了离子传输的速度和效率,稳定性 则关乎电池的安全性能和使用寿命。
02
离子池解液
锂离子电池电解液的特性与要求
特性
高电导率、稳定性好、低黏度、 低蒸发率、低凝固点等。
具有良好的化学和电化学稳定 性,能够传递锂离子,并且对电 极材料无腐蚀作用。
VS
遵守法规
生产和使用锂离子电池电解液应遵守相关 法规和标准,确保其安全、环保和质量可 靠。
04
解液的市与 景
电解液的市场需求与规模
市场需求
随着电动汽车、移动设备等领域的快速发展,对锂离子电池的需求持续增长,进而带动电解液市场的 需求。
市场规模
全球电解液市场规模不断扩大,预计未来几年将继续保持增长态势。
锂离子电池电解液的种类与优缺点
01
02
03
种类
锂盐电解液、有机溶剂电 解液、固态电解质等。
优点
高能量密度、长寿命、环 保等。
缺点
易燃易爆、对温度敏感、 成本高等。
锂离子电池电解液的应用与发展趋势
应用
手机、笔记本电脑、电动汽车、储能 系统等。
发展趋势
提高能量密度和安全性、降低成本、 开发新型电解质材料等。
电解液的毒性
锂离子电池电解液含有有机溶剂和电解质盐,对人体和环境有一定的毒性。
处理方法
应按照相关规定和标准处理废弃的电解液,避免随意排放和丢弃;同时,应积极研发环保型的电解液,降低对环 境的危害。
电解液的安全与环保标准及法规
国际和国内标准
国际电工委员会(IEC)、美国保险商试 验所(UL)等国际机构以及中国、欧盟 等国家和地区都制定了关于锂离子电池 电解液的安全和环保标准及法规。

锂离子电池电解液知识

锂离子电池电解液知识

电解液的几个理论问题
介电常数对电解液电导率的影响 • 溶剂的介电常数越大,离子溶剂化程度 愈深,阴阳离子之间的距离就越大。 • 加入可与锂离子形成螯合物的溶剂如 DME或冠醚类化合物,实现电解质锂盐 阴阳离子对的有效分离,可极大地提高 阴阳离子间的距离,提高锂盐在电解液 中的浓度,从而获得较高的电导率。
羧酸酯类有机溶剂 环状羧酸酯
• γ-丁内酯(γ-BL),在一次锂电池中得到应用, 遇水易分解,而且还具有较大的毒性。
链状羧酸酯
• 甲酸甲酯(MF)、乙酸甲酯(MA)、丙酸甲 酯(MP)和丙酸乙酯(EP)
电解液的组成与作用—有机溶剂
其它有机溶剂 含硫有机溶剂
• 如亚硫酸乙烯酯(ES)、亚硫酸丙烯酯 (PS)、亚硫酸二甲酯(源自MS)和亚硫酸二 乙酯(DES)。
电解液的组成与作用—添加剂
提高电解液电导率的添加剂 阴离子受体化合物如
• 硼基化合物(C6H3F)O2B(C6H3F2)、 (C6F4)O2(C6F5)
电解液的组成与作用—添加剂
过充电保护添加剂 过充电保护添加剂在正常充放电时不参加任何电
化学反应,在过充电时通过一定的方式阻断电流, 从而提高电池的安全性。 1、过充电时添加剂在阳极表面氧化聚合,电阻增 加,电流急剧下降,从而实现安全保护,如联苯、 环己基苯 2、在电解液中添加合适的氧化还原对,当充电电 压超过电池的正常充放电电压时,添加剂在正极 上氧化,氧化产物扩散到负极被还原,还原产物 再扩散到正极被氧化,整个过程循环进行,直到 电池的过充电结束,如4-氟苯甲醚、苯甲醚。
电解液的组成与作用—几个影响因素
影响电解液性能的杂质 质子酸
• HF、H2O以及其他含有活泼氢原子的有机 酸、醇、醛、酮、胺和酰胺等物质

锂离子电池电解液(标准讲义)

锂离子电池电解液(标准讲义)

相对介电常数 89.6 3.1 2.9 2.8 64.4 2.8 42.5 39.1
有机溶剂选择标准
1.有机溶剂对电极应该是惰性的,在电池的充放 电过程中不与正负极发生电化学反应,稳定性好 2.有机溶剂应该有较高的介电常数和较小的黏度 以使锂盐有足够高的溶解度,保证高的电导率 3.熔点低、沸点高、蒸气压低,从而使工作温度 范围较宽。 4.与电极材料有较好的相容性,电极在其构成的 电解液中能够表现出优良的电化学性能 5.电池循环效率、成本、环境因素等方面的考虑
3.高温条件下的热分解
正极材料的溶解
正极材料在电解液中固有的溶解性、活性物 质因电解液中HF或其他酸性物质的生成而 被侵蚀,以及电极电化学过程中部分金属离 子转变成可溶性盐进入电解液体系,这些因 素都会导致电极活性物质的溶解。 与LiCoO2、LiNiO2、LiFePO4相比,尖晶石 结构的锰酸锂在电解液中的溶解最严重。
2
正极与电解液界面
锂离子电池正极材料本身的结构和所处的环境均与 负极材料不同,主要表现在以下两个方面:
1.正极材料原子间全部是化学键结合,没有象负极 那样碳石墨之间的范德华力,溶剂分子难以发生象 在石墨层间那样的嵌入反应,溶剂分子在嵌层之前 必须去溶剂化 2.正极材料始终处于导电位条件下,尤其是在充电 末期,电位达到4.2V,电解液组分在电极表面的氧 化分解和电极集流体腐蚀将成为正极材料电化学过 程中的主要副反应
双电子反应:
PC/EC+2e→丙烯/乙烯+CO32CO32-+2Li+→Li2CO3
单电子反应形成烷基碳酸锂:
PC/EC +e →PC-/EC-自由基 2PC-/EC-自由基+ 2Li+→丙烯/乙烯+烷氧基碳酸锂 烷氧基碳酸锂+H2O →Li2CO3+CO2+(CH2OH)2

锂电池电解液基础知识

锂电池电解液基础知识

锂电池电解液基础知识锂离⼦电池电解液1 锂离⼦电解液概况电解液是锂离⼦电池四⼤关键材料(正极、负极、隔膜、电解液)之⼀,号称锂离⼦电池的“⾎液”,在电池中正负极之间起到传导电⼦的作⽤,是锂离⼦电池获得⾼电压、⾼⽐能等优点的保证。

电解液⼀般由⾼纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在⼀定条件下,按⼀定⽐例配制⽽成的。

有机溶剂是电解液的主体部分,与电解液的性能密切相关,⼀般⽤⾼介电常数溶剂与低粘度溶剂混合使⽤;常⽤电解质锂盐有⾼氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多⽅⾯考虑,六氟磷酸锂是商业化锂离⼦电池采⽤的主要电解质;添加剂的使⽤尚未商品化,但⼀直是有机电解液的研究热点之⼀。

⾃1991年锂离⼦电池电解液开发成功,锂离⼦电池很快进⼊了笔记本电脑、⼿机等电⼦信息产品市场,并且逐步占据主导地位。

⽬前锂离⼦电池电解液产品技术也正处于进⼀步发展中。

在锂离⼦电池电解液研究和⽣产⽅⾯,国际上从事锂离⼦电池专⽤电解液的研制与开发的公司主要集中在⽇本、德国、韩国、美国、加拿⼤等国,以⽇本的电解液发展最快,市场份额最⼤。

国内常⽤电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。

不同的电解液的使⽤条件不同,与电池正负极的相容性不同,分解电压也不同。

电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上⽐普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少⽓体产⽣,防⽌电池⿎胀。

EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。

据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使⽤温度范围⼴,与碳负极的相容性好,安全指数⾼,有好的循环寿命与放电特性。

锂电池电解液基础知识

锂电池电解液基础知识
(2)降低电解液中的微量水和 HF 酸
如前所述, 锂离子电池对电解液中的水和酸要求非常严格。 碳化二亚胺类化 合物能阻止 LiPF 6水解成酸,另外,一些金属氧化物如 Al 2O3,、MgO、BaO、Li 2CO3、 CaCO3 等被用来清除 HF,但是相对于 LiPF6 的水解而言除酸速度太慢,而且难 于滤除干净。
锂离子电池电解液
1 锂离子电解液概况
电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号 称锂离子电池的 “血液 ”,在电池中正负极之间起到传导电子的作用, 是锂离子电 池获得高电压、 高比能等优点的保证。 电解液一般由高纯度的有机溶剂、 电解质 锂盐(六氟磷酸锂, LiFL6 )、必要的添加剂等原料,在一定条件下,按一定比例 配制而成的。
2.3 添加剂
添加剂的种类繁多,不同的锂离子电池生产厂家对电池的用途、性能要求不 一,所选择的添加剂的侧重点也存在差异。 一般来说, 所用的添加剂主要有三方 面的作用:
(1)改善 SEI 膜的性能
在锂离子电池电解液中加入苯甲醚或其卤代衍生物, 能够改善电池的循环性 能,减少电池的不可逆容量损失。 黄文煌对其机理做了研究, 发现苯甲醚与溶剂 的还原产物发生反应,生成的 LiOCH ,利于电极表面形成高效稳定的 SEI 膜, 从而改善电池的循环性能 。电池的放电平台能够衡量电池在 3.6V 以上所能释放 的能量,一定程度上反映电池的大电流放电特性。在实际操作中,我们发现,向 电解液中加入苯甲醚,能够延长电池的放电平台,提高电池的放电容量。
分子链的高规整性, 而晶形化会降低离子导电率。 因此要想提高离子导电率一方
面可通过降低聚合物的结晶度, 提高链的可移动性, 另一方面可通过提高导电盐
在聚合物中的溶解度。利用接枝、嵌段、交联、共聚等手段来破坏高聚物的结晶

电池电解液详解讲义

电池电解液详解讲义

最佳用量 3%~5% ~5% ~2% ~1.6% ~5%
PC
~10%
EC+PC
~5%
EC+PC
0.35mol/L
PC,DMC,EC ~20%
PC
饱和
EC+DEC
饱和
改进效果
首次充放电效率达 92.9%
首次充放电效率接近 90%Fra bibliotek2)、SO2的成膜效果和对电极性能的改善十分明显,但与电池处于高电位条件 下的正极材料相容性差,难以在实际生产中使用。
3)、在1mol/L,LiPF6/EC+DMC体系中添加饱和Li2CO3后,电极表面产生的气 体总量明显减少,电极可逆容量明显提高。SEI膜的形成是Li2CO3在电极表 面沉积和溶剂还原分解共同作用的结果。Li2CO3的加入一方面有助于电极表 面形成导Li+性能优良的SEI膜,同时也在一定程度上抑制了EC和DEC的分解 反应。
1、SEI(solid electrolyte interface) 成膜添加剂 2、导电添加剂 3、阻燃添加剂 4、过充电保护添加剂 5、控制电解液中水和HF含量的添加剂 6、改善低温性能的添加剂 7、多功能添加剂
1、SEI(solid electrolyte interface) 成 膜添加剂
4)、在LiClO4作锂盐电解质的电解液中加入少量NaClO4,也可以降低电极不可 逆容量,改善循环性能,这是因为Na+的加入改变了电解液内部Li+的溶剂化 状况和电极界面成膜反应的形式,SEI 膜的结构得到了优化的缘故[31]。
名称 ES
状态 液体
PS
液体
VC
液体
苯甲醚
液体
N,N-二甲基三氟 乙酰胺
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
电解液的几个理论问题
介电常数对电解液电导率的影响
• 溶剂的介电常数越大,离子溶剂化程度 愈深,阴阳离子之间的距离就越大。
• 加入可与锂离子形成螯合物的溶剂如 DME或冠醚类化合物,实现电解质锂盐 阴阳离子对的有效分离,可极大地提高 阴阳离子间的距离,提高锂盐在电解液 中的浓度,从而获得较高的电导率。
影响电解液电导率的两个重要因素
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
电解液的几个理论问题
锂盐溶解过程对有机电解液电导率的影响 • 有机溶剂对离子溶剂化作用越强,锂盐 在有机溶剂中的溶解度越大。 • 有机溶剂如EC、PC、DEC和DMC等都 是阳离子接受体,直接影响阳离子的溶 剂化过程。一些阴离子接受体的硼基化 合物能够和阴离子形成配位作用,从而 使锂盐阴离子发生强烈的溶剂化,只需 添加少量就能明显提高锂盐的溶解度和 电解液的电导率。
电解液的组成与作用—有机溶剂
有机溶剂的要求
• (1)适中的粘度和介电常数; • (2)较高的闪点和沸点与尽可能低的熔点; • (3)较宽的电化学稳定窗口; • (4)具有良好的热稳定性,使用温度尽可
能的宽; • (5)良好的化学和电化学稳定性,与电池
内的活性物质不发生反应; • (6)良好的安全性和环境相容性。
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
电解液的几个理论问题
锂盐浓度对电导率的影响 • 锂盐的浓度越大,导电离子数增加,电 导率有增加的趋势,另一方面,随着锂 盐浓度的增加阴阳离子发生复合的几率 越大,电导率有降低的趋势,电导率通 常在电解液的浓度接近1M时有最大值。
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
• 介电常数高的有机溶剂其粘度必然也较大,粘 度小的有机溶剂其介电常数必然也较小
• 将介电常数大而黏度也大的有机溶剂如EC、 PC,与粘度小同时介电常数也小的有机溶剂 如DMC、DEC、EMC等混合使用。
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
电解液的组成与作用—制备工艺
有机电解液的制备工艺
• 有机溶剂精制:脱除含有质子酸的杂质,如 水、有机酸、醇、醛、酮、胺、酰胺等;
• 有机电解液的配制; • 有机电解液中水、酸等杂质的脱除 • 电解液的包装
制备过程应该在洁净、气体氛围水含量小 于10ppm的环境下操作。
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
电解液的几个理论问题
溶剂粘度对有机电解液电导率的影响
• 电解液电导率的大小与溶剂的粘度成反比,要 获得足够的电导率,电解液必须具有较低的粘 度。
• 有机溶剂的选择原则:介电常数高、粘度小有 机溶剂
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
锂离子电池电解液知识
锂离子电池的结构与原理 电解液的几个理论问题 电解液的组成与作用 功能性电解液研究
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
锂离子电池的结构与原理
二次锂离子电池的结构
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
锂离子电池的结构与原理
二次锂离子电池的主要组成部分
• 正极 • 负极 • 隔膜 • 电解质 • 外壳以及外电路
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
电解液的几个理论问题
电导率是电解液的特性表征参数之一,决定了电 池的内阻和倍率特性,可以表示为:
K Zi2FCi
i 6ri
• 其中Zi数 • η为电解液的粘度 • ri为i离子的溶剂化半径 • 从上式可以看出电解质锂盐的浓度和电解液的粘度是
电解液的组成与作用
影响电解液的几个因素 电解液工艺以及技术要求 有机溶剂 电解质锂盐 添加剂
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
电解液的组成与作用—几个影响因素
影响电解液性能的杂质 质子酸
• HF、H2O以及其他含有活泼氢原子的有机 酸、醇、醛、酮、胺和酰胺等物质
锂离子电池的结构与原理
二次锂离子电池原理图
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
锂离子电池的结构与原理
典型的锂二次电池放电曲线图
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
金属离子 • 指还原电位较锂离子高、含量相对较高的铁、 镍、钠、铝等金属杂质离子。
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
电解液的组成与作用—几个影响因素
影响电解液性能的杂质来源
• 六氟磷酸锂通常含有约100ppm的HF, 20-50ppm的水份;
• 精制后的有机溶剂通常仍含有100— 300ppm的有机酸、醇、醛、酮、胺和酰胺 等杂质以及痕量的水(通常<20ppm);
• 电解液调制过程中反应器吸附、空气携带的 固体颗粒、水分等。
• 有机溶剂中所溶解的氧,在电池的充放电循 环中可能诱发自由基反应,加速溶剂的分解, 不利于电解液的稳定。
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。文档如有不 当之处,请联系本人或网站删除。
相关文档
最新文档