高三指数函数与对数函数第一轮复习
高中三年级数学第一轮复习讲义12指数函数与对数函数
2018届高三第一轮复习讲义【12】-指数函数与对数函数一、知识梳理:1.指数函数的概念、图像和性质 (1)指数的运算性质()()()()()0,,;0,,;0,0,.m n m n nm mn nn n a a a a m n R a a a m n R a b a b a b n R ⋅⋅=>∈=>∈⋅=⋅>>∈(2)指数函数:一般地,函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .(3)指数函数的图像与性质【注意】(1)会根据复合函数的单调性特征“同增异减”,判断形如()f x y a =(0a >且1a ≠)函数的单调性;(2)会根据x y a = (0a >且1a ≠)的单调性求形如(),f x y ax D =∈,(),x y f a x D=∈(1)定义域:x R ∈(2)值域:(0,y ∈的值域;(3)解题时注意“分类讨论”、“数形结合”、“换元”等思想方法的应用。
2.对数的概念及其运算 (1)对数的定义:如果=ba N (>0a ,1a ≠),那么b 叫做以a 为底N 的对数,记作=a log N b .读作“以a 为底N 的对数”,其中a 叫做底数,N 叫做真数.必须注意真数0N >,即零与负数没有对数.(2)指数式与对数式的关系:=ba N ⇔=a log Nb (>0a ,1a ≠,0N >).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数的性质:① log a N 中0(0,1)N a a >>≠,零和负数没有对数,即0N >; ② 底数的对数等于1,即log =1a a ,log a NaN =,()0,1,0a a N >≠>③ 1的对数0,即log 1=0a . (4)对数的运算性质:① ()=+a a a log MN log M log N (0M >,0N >,>0a ,1a ≠);② =aa a Mlog log M log N N-(0M >,0N >,>0a ,1a ≠) ③ =n a a log M nlog M ;log a NaN =(0M >,0N >,>0a ,1a ≠)④ 对数换底公式:log =log a b a Nlog N b(>0a ,1a ≠,>0b ,1b ≠,0N >)【提醒】(1)注意真数0N >,即零与负数没有对数.(2)底数满足>0a ,1a ≠ 3.对数函数:对数函数的图像与性质二、基础检测:1. 设16log 27a =, 则用a 表示6log 16=_______________.2. 函数222xxy +=的单调递增区间是_____________, 值域是____________. 3. 函数|1|45x y -⎛⎫= ⎪⎝⎭的单调递减区间是_____________, 值域是____________.4. 函数20.1log (62)y x x =+-的单调递增区间是________________.5. 若2log 13a<, 则实数a 的取值范围是________________________. 6. 不等式2(21)1x a -<的解集为(,0)-∞, 则实数a 的取值范围是______________.三、例题精讲:【例1】指数函数①x y a =,②x y b =,③x y c =,④xy d =在同一坐标系内的图像如图所示,则,,,a b c d 的大小顺序是().A .b a d c <<<B .a b d c <<<C .b a c d <<<D .b c a d <<< 【参考答案】A .【例2】若不论a 取何正实数,函数12x y a +=-的图像都通过同一定点,则该点坐标是____________. 【参考答案】()1,1--【例3】不等式()2211xa -<的解集为(),0-∞,则实数a 的取值范围是.【参考答案】()(),11,-∞-+∞【例4】根据统计资料,在A 小镇,当某件信息发布后,t 小时之内听到该信息的人口是全镇人口的100(12)%kt--,其中k 是某个大于0的常数,今有某信息,假设在发布后3小时之内已经有70%的人口听到该信息.又设最快要T 小时后,有99%的人口已听到该信息,则T =_______小时.(保留一位小数) 【参考答案】11.5【例5】已知22124x x x-+⎛⎫≤ ⎪⎝⎭,求函数22x xy -=-的值域.解:222242122224414x x xxxx x x x x -++-+⎛⎫≤⇔≤⇔+≤-+⇔-≤≤ ⎪⎝⎭,而函数22xxy -=-在区间[]4,1-上是增函数,所以,函数22xxy -=-的值域为2553,162⎡⎤-⎢⎥⎣⎦.【例6】已知函数[)1423,2,x x y a x --=-⋅-∈-+∞的最小值是4-,求实数a 的值. 解:设2xu -=由于[)2,x ∈-+∞,所以(]0,4u ∈,()2124233x x y a u a a --=-⋅-=---①_x0001_(]0,4a ∈时,()()2min 34,1,f x a a =--==此时u a =,即0x =;②_x0001_当(),0a ∈-∞时,()()223g u u a a =---在(]0,4上是增函数,()f x 无最小值; ③_x0001_当()4,a ∈+∞时,()()223g u u a a =---在(]0,4上是减函数,()174,8a =∉+∞舍去. 综上所述,实数a 的值为1.【例7】若两个函数的图像经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列四个函数:()x x f 21log 2=,()()22log 2f x x =+,232log f x =,42log (2)f x =则“同形”函数是( ) A 1()f x 与2()f x B 2()f x 与3()f x C 2()f x 与4()f x D 1()f x 与4()f x【参考答案】C【例8】函数221()log (2)2ax f x x x -=+-+在[1,3]x ∈上恒有意义,则实数a 的取值范围是_________.【参考答案】(2)-+∞【例9】函数20.3log (2)y x x =-的单调递减区间为.解:先求定义域:由220x x ->得(2)0x x ->0x ∴<或2x >.∵函数0.3log y t =是减函数,故所求单调减区间即22t x x =-在定义域内的增区间, 又22t x x =-的对称轴为1x =,∴所求函数的单调递减区间为(2,)+∞. 【例10】已知函数2()log (01)2axf x a x+=<<-(1)试判断()f x 的奇偶性; (2)解不等式()log 3a f x x ≥. 解:(1)20222xx x+>⇒-<<-故()f x 的定义域关于原点对称, 且122()log log ()()22aa x x f x f x x x--+-===-+-∴()f x 是奇函数. (2)2()log 3log log 3.012a aa xf x x x a x+≥⇔≥<<-,故2220221(32)(1)230322xx x x x x x x x x+⎧-<<>⎧⎪⎪⎪-⇔⇔≤≤--⎨⎨+≥⎪⎪≤-⎩⎪-⎩,即原不等式的解集为2{|1}3x x ≤≤.【例11】设不等式211222(log )9(log )90x x ++≤的解集为M ,求当x M ∈时,函数22()(log )(log )28x xf x =的最大、最小值. 解:211222(log )9(log )90x x ++≤1122(2log 3)(log 3)0x x ∴++≤1233log 2x ∴-≤≤-即3333221112221111log ()log log (),()()2222x x ----≤≤∴≤≤∴8x ≤≤即{|M x x =∈又2222222()(log 1)(log 3)log 4log 3(log 2)1f x x x x x x =--=-+=--∵8x ≤≤∴23log 32x ≤≤ ∴当2log 2x =即4x =时min 1y =-;当2log 3x =,即8x =时,max 0y =. 【例12】通常表明地震能量大小的尺度是里氏震级,其计算公式是0lg lg M A A =-,其中,A 是被测地震最大振幅,0A 是“标准地震”的振幅,M 为震级.则7级地震的最大振幅是5级地震最大振幅的__倍.解:7050(lg lg )(lg lg )752A A A A ---=-=,即75lg 2A A =,75100AA =.【例13】已知函数()|lg |f x x =,若a b ≠,且()()f a f b =,则a b +的取值范围是________.解:如图,由()()f a f b =得|lg ||lg |a b =设0a b <<则lg lg 0a b +=∴1ab =∴22a b ab +>=,答案:(2,)+∞【例14】已知函数()log (01).a f x x x b a a =+->≠,且当234a b <<<<时,函数()f x 的零点*0(,1),,=x n n n N n ∈+∈则.解:方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图像与函数(34)y x b b =-<<的交点横坐标为0x , 且*0(,1),x n n n N ∈+∈,结合图像,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图像上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图像上点的横坐标(5,6)x ∈.故所求的2n =.四、难题突破: 例1. 已知函数1()log 1axf x x-=+(0, 1a a >≠). (1) 讨论函数()f x 的奇偶性和单调性;(2) 设函数()f x 的定义域为[,)a b , 值域为[1,)+∞, 求实数a , b 的值. (1)解: 函数的定义域为区间(1,1)-, 关于原点对称,任取(1,1)x ∈-, 111()log log log ()111a a ax x x f x f x x x x +--⎛⎫-===-=- ⎪-++⎝⎭, 即()f x 是奇函数.任取12,(1,1)x x ∈-, 12x x <, 则12011x x <+<+, 故有121211221111x x x x >⇔>++++, 因此1212121122111111x x x x x x ---+>-+⇔>++++, 当01a <<时, 由log a y x =在(0,)+∞上单调递减, 得121211log log 11a ax x x x --<++, 此时()f x 在(1,1)-上单调递增;当1a >时, 由log a y x =在(0,)+∞上单调递增, 得121211log log 11a ax x x x -->++, 此时()f x 在(1,1)-上单调递减.(2)解: 由题意, [,)(1,1)a b ⊆-, 故11a b -<<≤, 即01a b <<<,由(1)可知()f x 在(1,1)-上单调递增, 故有11()1log 111a a af a a a a--=⇔=⇔=++, 解得1a =;当1b <时, 由单调性得1()log 1a bf x b-<+, 不合题意, 故1b =;综上有1, 1a b =.例2. 已知函数22()lg[(1)(1)1]f x a x a x =-+++(其中a 为实常数). (1) 若函数的定义域为, 求实数a 的取值范围; (2) 若函数的值域为, 求实数a 的取值范围.(1)解: 即不等式22(1)(1)10a x a x -+++>的解集为,当1a =时, 不等式为210x +>, 不合题意;当1a =-时, 不等式为10>恒成立, 符合题意;当21a ≠时, 则有22210(1)4(1)0a a a ⎧->⎪⎨∆=+--<⎪⎩, 解得5(,1)(,)3a ∈-∞-⋃+∞; 综上所述, 5(,1](,)3a ∈-∞-⋃+∞;(2)解: 即函数22(1)(1)1y a x a x =-+++的值域包含+,当1a =时, 函数为21y x =+, 符合题意; 当1a =-时, 函数为1y =, 不合题意;当21a ≠时, 则有22210(1)4(1)0a a a ⎧->⎪⎨∆=+--≥⎪⎩, 解得5(1,]3a ∈, 综上所述, 5[1,]3a ∈.例3. 已知函数2()log ()a f x ax x =-(0, 1a a >≠)在区间[2,4]上是增函数, 求实数a 的取值范围.解: 令210(1)0(,0)(,)ax x x ax x a->⇔->⇒∈-∞⋃+∞给出,函数在[2,4]有定义, 则1122a a <⇒>, 令2t ax x =-, 其图像对称轴为直线12x a=, 当1a >时, 外层函数单调递增, 因此内层函数2t ax x =-在[2,4]上单调递增, 得11224a a ≤⇔≥, 结合定义域要求, 即1a >; 当01a <<时, 外层函数单调递减, 因此内层函数2t ax x =-在[2,4]上单调递减, 因此11428a a ≥⇒≤, 结合定义域要求, 无解; 综上所述, 1a >. 五、课堂练习:1. 函数||3x y -=的值域是____________.2. 已知01a <<, 1b <-, 则函数x y a b =+的图像不会经过第______象限.3. 函数y =_________________.4. 若()log (0, 1)a f x x a a =>≠在[,2]a a 上的最大值是最小值的3倍, 则实数a 的值为_____.5. 函数lg100xy =的图像与函数10010x y =⋅的图像关于直线______________对称; 函数lg100x y =的图像与函数0.1log 100x y =的图像关于直线______________对称. 6. 函数3()log |2|f x x a =+的图像的对称轴是直线2x =, 则实数a =__________. 7. 使2log ()1x x -<+成立的x 的取值范围是_____________. 8. 设223()2(1)xx f x x -+=≥, 则其反函数1()f x -=_______________________.9. 求2211()log ()log ()24f x x x =⋅, 当[2,8]x ∈时的最小值和最大值.10. 求函数2221()log log (1)log ()1x f x x p x x +=+-+--(其中p 为常数, 且1p >)的值域.11. 已知0a >, 1a ≠, 21(log )()1a a f x x a x=--, (1) 判断()f x 的定义域内的奇偶性及单调性, 并加以证明; (2) 若()40f x -<的解集为(,2)-∞, 求a 的值.12. 已知函数()lg()x x f x a b =-(其中a , b 为常数, 且01b a <<<). (1) 求函数()f x 的定义域;(2) 在函数()y f x =的图像上是否存在两个不同的点, 使得过它们的直线平行于x 轴? 若存在, 求出这样的点; 若不存在, 说明理由;(3) 当a , b 满足什么条件时, 不等式()0f x >对一切(1,)x ∈+∞都成立?六、回顾总结:1.主要方法:①指数函数、对数函数的单调性决定于底数a ,要分1a >与01a <<来分类讨论.②熟练掌握对、指数公式的使用和化简计算;2.易错、易漏点:①解决与对数函数有关的问题,要特别注意定义域(对数的底数和真数应满足的条件);注意区别log (1)a b +与log 1a b +的区别;②不同底的对数运算问题,应化为同底对数式进行运算.七、课后作业:1.幂函数)(x f y =图像经过点)21,41(,则=)(x f . 2.已知幂函数a x y =的图像,当10<<x 时,在直线x y =的上方,当1>x 时,在直线x y =的下方,则a 的取值范围是.3.函数2223()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =. 4.幂函数),*,,,()1(互质n m N k n m xy m nk ∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为.5.设,函数在区间上的最大值与最小值之差为,则( ) AB . C. D .6.已知函数|lg|)(x x f =,若b a <<0,且)()(b f a f =,则b a 2+的取值范围是 ( )A .B .C .D .7.设函数)(x f =若)()(a f a f ->,则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)8.函数的值域为 A . B . C . D .9.为了得到函数的图像,只需把函数的图像上所有的点() A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.在同一平面直角坐标系中,函数的图象与的图象关于直线对称.而函数的图象与的图象关于轴对称,若,则的值是()1a >()log a f x x =[]2a a ,12a =24)+∞)+∞(3,)+∞[3,)+∞()212log log x x ⎧⎪⎨-⎪⎩0,0x x ><()()2log 31x f x =+()0,+∞)0,+∞⎡⎣()1,+∞)1,+∞⎡⎣3lg 10x y +=lg y x =()y g x =x y e =y x =()y f x =()y g x =y ()1f m =-mA .B .C .D . 11.函数的图象大致是( )12.若在上是减函数,则的取值范围是 ( )A .B .C .D .13.若函数|1|()2x f x m --=-的图象与x 轴有交点,则实数m 的范围是__________. 14.函数)1,0(≠>=a a a y x 在[]2,1上最大值比最小值大2a ,则_________=a . 15.已知函数),0[,)(+∞∈+⋅=x cb a x f x 的值域为)3,2[-,则)(x f 的一个可能的解析式为__________.【思考题】1.设函数()121,x f x x R -=-∈e -1e -e 1elg ||x y x=)2(log ax y a -=]1,0[a )1,0()2,0()2,1(),2(+∞(1)分别作出()y f x =和()y f x =的图像;(2)求实数a 的取值范围,使得方程()fx a =与()f x a =都有且仅有两个实数解.2.已知2()lg x f x ax b =+,(1)0f =,当0x >时,恒有1()lg f x f x x ⎛⎫-= ⎪⎝⎭.⑴求()f x 的解析式;⑵若方程()lg()f x m x =+的解集是∅,求实数m 的取值范围.3.已知函数2()log (1)f x x =-,222x t g x t ⎛⎫-=∈ ⎪⎝⎭R ,.⑴求()y g x =的解析式;⑵若1t =,求当[2,3]x ∈时,()()g x f x -的最小值;⑶若在[2,3]x ∈时,恒有()()g x f x ≥成立,求实数t 的取值范围.。
指数+课件-2025届高三数学一轮复习
负数没有偶次方根,故C错误;
x + y 2 是非负数,所以
x+y
2
= |x + y|,故D正确.
)
例1-2 [教材链接题]已知a,b ∈ ,下列各式总能成立的有( B )
A.
3
a−b
4
3
=b−a
B.
4
C. a4 − b 4 = a − b
【解析】
3
a−b
3
【答案】 − = − =
− ,∴
− =
∴
+
− = − ,
−
− =
=
−
+−
=
−
=
−
,
,
故 − + �� − = − +
−
.
− × = ( − ) =
再将x + x −1 = 7平方并化简得x 2 + x −2 = 47,
3
2
x +x
3
−2
1
2
= x +x
1
−2
1
2
x−x ⋅x
3
2
1
−2
方和公式展开求解,也可由x + x
解)
从而
3
3
−
x2 +x 2 +2
x2 +x−2 +3
=
18+2
函数的概念与幂函数、指数函数、对数函数
第一轮复习 函数的概念与幂函数、指数函数、对数函数【考向指引】高考内容几乎覆盖了中学阶段的所有知识,涉及函数的所有性质,以考查通法为主,一般来说,考查基本方法的基础题多采用选择、填空题;函数与其他知识(如方程、不等式、数列、导数等)的综合题,难度较大,能力要求较高,常采用解答题。
纵观近年高考函数的考查和命题改革特点,复习时应注意以下几个方面: 1.函数解析式的求法和分段函数的求法;2.函数五大性质,特别是函数的对称性、周期性、复合函数的单调性、函数图象等; 3.指数函数、对数函数、幂函数的概念、图象、性质及其应用; 4.函数、导数、数学模型与代数推理等交汇问题。
5.函数与方程问题是近几年考查的重点和热点,通过考查这部分知识,融入数形结合、分类讨论、化归与转化等数学思想和方法;6.函数的图象与性质是每年高考的必考内容,主要考查对函数图象的识别和对性质的理解,以及利用函数的图象与性质解决数学综合问题的能力。
预测2012年函数的图象与性质内容仍然会重点考查,并可能更侧重于综合运用函数的图象与性质解决问题能力的考查。
第一讲 函数及其表示(一)【考点解读】1.函数1) 函数的定义:设B A ,是两个非空数集,如果按照某种确定的对应关系f ,使对于集合A 中任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作:A x x f y ∈=),(。
其中x 的取值范围叫做函数的定义域,函数值的集合{}A x x f ∈)(叫做函数的值域。
2) 函数的三要素:定义域、对应关系和值域是函数的三要素,因定义域与对应关系决定了值域,所以,只要两个函数的定义域相同,对应关系完全一致,就称这两个函数相等。
掌握函数的三种表示方法——列表法、解析法和图象法。
若函数在其定义域的不同子集上,因对应法则不同而用几个不同的式子来表示,这种表示形式的函数叫做分段函数。
(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)
指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂n 1.整数指数幂概念:a =a ⋅Λ⋅a (n ∈N )a 0=1(a ≠0)1⋅4a 243*n 个aa-n=1a ≠0,n ∈N *)n(a 2.整数指数幂的运算性质:(1)a m ⋅a n =a m +n (m ,n ∈Z )(2)a (3)(ab )=a ⋅b n n n ()mn=a mn(m ,n ∈Z )(n ∈Z )其中a ÷a =a ⋅a m n m -n =a m -n a n ⎛a ⎫-1nn -n , ⎪=(a ⋅b)=a ⋅b =n .b ⎝b ⎭n 3.a 的n 次方根的概念即:若x n 一般地,如果一个数的n 次方等于a n >1,n ∈N ),那么这个数叫做a 的n 次方根,=a ,则x 叫做a 的n 次方根,(n >1,n ∈N )**(说明:①若n 是奇数,则a 的n 次方根记作n a ;若a >0则n a >0,若a <o 则n a <0;②若n 是偶数,且a >0则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:-n a ;(例如:8的平方根±8=±2216的4次方根±416=±2)③若n 是偶数,且a <0则n a 没意义,即负数没有偶次方根;④Θ0=0n >1,n ∈N nn (*)∴n 0=0;⑤式子a 叫根式,n 叫根指数,a 叫被开方数。
∴(a )nn=a ..4.a 的n 次方根的性质一般地,若n 是奇数,则n a n =a ;若n 是偶数,则n a n =a =⎨5.例题分析:例1.求下列各式的值:(1)3-8⎧a⎩-aa ≥0a <0.(3)(2)(-10)*2(3)4(3-π)(4)4例2.已知a <b <0,n >1,n ∈N ,化简:n (a -b )+n (a +b ).n n (二)分数指数幂1051231.分数指数幂:5a =a =a102(a >0)3a =a =a124(a >0)即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)a 3()kn=akn 对分数指数幂也适用,442255⨯3⨯4⎛2⎫⎛⎫2532例如:若a >0,则 a 3⎪=a 3=a , a 4⎪=a 4=a ,∴a =a 3⎝⎭⎝⎭a =a .545即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
高考数学第一轮复习---指数与对数函数
2007年高考数学第一轮复习---指数与对数函数一、指数与对数运算: (一)知识归纳: 1.根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根.即,若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作n a ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n .②性质:1)a a nn =)(; 2)当n 为奇数时,a a n n =;3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n2.幂的有关概念:①规定:1)∈⋅⋅⋅=n a a a a n( N *, 2))0(10≠=a a , n 个 3)∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n ②性质:1)r a a a a sr sr,0(>=⋅+、∈s Q ),2)r a aa sr sr ,0()(>=⋅、∈s Q ),3)∈>>⋅=⋅r b a b a b a rrr ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用.3.对数的概念:①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b=,那么数b 称以a 为底N的对数,记作,log b N a =其中a 称对数的底,N 称真数. 1)以10为底的对数称常用对数,N 10log 记作N lg ,2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log 记作N ln ②基本性质:1)真数N 为正数(负数和零无对数), 2)01log =a , 3)1log =a a , 4)对数恒等式:N aNa =log③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M NMa a alog log log -=; 3)∈=n M n M a na (log log R ).④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a , 2).log log b mnb a na m =(二)学习要点:1.b N N a a N a b n ===log ,,(其中1,0,0≠>>a a N )是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底.2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验.【例1】解答下述问题: (1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+--- [解析]原式=41322132)10000625(]102450)81000()949()278[(÷⨯÷+- 922)2917(21]1024251253794[=⨯+-=÷⨯⨯+-=(2)计算1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅.[解析]分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++;分母=41006lg 26lg 101100036lg)26(lg =-+=⨯-+; ∴原式=43. (3)化简:.)2(2485332332323323134aa a a ab aaab b b a a ⋅⋅⨯-÷++--[解析]原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.(4)已知:36log ,518,9log 3018求==ba 值. [解析],5log ,51818b b=∴=ab a b -+-=-+-+=++=∴22)2(2)3log 18(log )9log 18(log 16log 5log 2log 18log 36log 181818181818181830.[评析]这是一组很基本的指数、对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.【例2】解答下述问题:(1)已知1log 2log log ≠=+x x x x b c a 且, 求证:ba ac c log 2)(=[解析]0log ,1,log log 2log log log ≠∴≠=+x x bxc x x a a a a a a ,2log log )1(log log 2log 2log 11c b c c bc a a a a a a ⇒+=⇒=+∴=b ba a a a a ac c acb ac log 2log )()(log log )(log =⇒=⋅(2)若0lg lg )][lg(lg lg lg lg lg lg 2=-++++yx y x y y x x y x ,求)(log 2xy 的值.[解析]去分母得0)][lg()lg (lg 22=-++y x y x⎩⎨⎧=-=⇒⎩⎨⎧=-=+∴110)lg(0lg lg y x xy y x y x , x ∴、y -是二次方程012=--t t 的两实根,且y x y x y x >≠≠>>,1,1,0,0,解得251±=t , 0)(log ,215,215,02=+∴-=+=∴>y x y x x [评析]例2是更综合一些的指数、对数运算问题,这种问题更接近考试题的形式,应多从这种练习中积累经验. 二、指数函数与对数函数(一)学习要点: 1.指数函数:①定义:函数)1,0(≠>=a a a y x且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞,3)当10<<a 时函数为减函数,当1>a 时函数为增函数.②函数图像: 1)指数函数的图象都经过点(0,1),且图象都在第一、二象限,2)指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴),3)对于相同的)1,0(≠>a a a 且,函数xxa y a y -==与的图象关于y 轴对称.③函数值的变化特征:2.对数函数:①定义:函数)1,0(log ≠>=a a x y a 且称对数函数, 1)函数的定义域为),0(+∞, 2)函数的值域为R , 3)当10<<a 时函数为减函数,当1>a 时函数为增函数,4)对数函数x y a log =与指数函数)1,0(≠>=a a a y x且互为反函数.②1)对数函数的图象都经过点(0,1),且图象都在第一、四象限,2)对数函数都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴).4)对于相同的)1,0(≠>a a a 且,函数x y x ya 1log log ==与的图象关于x 轴对称.③函数值的变化特征:(二)学习要点:1.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识.2.指数、对数函数值的变化特点(上面知识结构表中的12个小点)是解决含指数、对数式的问题时使用频繁的关键知识,要达到滚瓜烂熟,运用自如的水平,在使用时常常还要结合指数、对数的特殊值共同分析.3.含有参数的指数、对数函数的讨论问题是重点题型,解决这类问题的最基本的分类方案是以“底”大于1或小于1分类.4.在学习中含有指数、对数的复合函数问题大多数都是以综合形式出现,如与其它函数(特别是二次函数)形成的复合函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要努力提高综合能力.【例1】已知11log )(--=x mxx f a 是奇函数 (其中)1,0≠>a a , (1)求m 的值;(2)讨论)(x f 的单调性; (3)求)(x f 的反函数)(1x f-;(4)当)(x f 定义域区间为)2,1(-a 时,)(x f 的值域为),1(+∞,求a 的值.[解析](1)011log 11log 11log )()(222=--=--+--+=+-xx m x mx x mx x f x f a a a对定义域内的任意x 恒成立,10)1(11122222±=⇒=-⇒=--∴m x m xx m , 当)1(0)(1≠==x x f m 时不是奇函数,1-=∴m , (2)∴-+=,11log )(x x x f a 定义域为),1()1,(+∞--∞ , 求导得e x x f a log 12)(2--=', ①当1>a 时,)(,0)(x f x f ∴<'在),1()1,(+∞--∞与上都是减函数; ②当10<<a 时,),1()1,()(,0)(+∞--∞∴>'与在x f x f 上都是增函数; (另解)设11)(-+=x x x g ,任取111221>>-<<x x x x 或, 0)1)(1()(21111)()(2112112212<----=-+--+=-∴x x x x x x x x x g x g , )()(12x g x g <∴,结论同上;(3)111)1(1111log -+=⇒+=-⇒-+=⇒-+=y y yy y a a a x a x a x x a x x y , )10,0(11)(,0,011≠>≠-+=∴≠∴≠--a a x a a x f y a x x y且(4))2,1()(,3,21->∴-<<a x f a a x 在 上为减函数,∴命题等价于1)2(=-a f ,即014131log 2=+-⇒=--a a a a a,解得32+=a .[评析]例1的各个小题概括了指数、对数函数的各种常见的基本问题,熟练掌握这些基本问题的解答程序及方法是很重要的能力训练,要认真总结经验.【例2】对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围; (3)若函数在),1[+∞-内有意义,求实数a 的取值范围; (4)若函数的定义域为),3()1,(+∞-∞ ,求实数a 的值; (5)若函数的值域为]1,(--∞,求实数a 的值; (6)若函数在]1,(-∞内为增函数,求实数a 的取值范围. [解答]记2223)(32)(a a x ax x x g u -+-=+-==,(1)R x u ∈>对0 恒成立,33032min <<-⇒>-=∴a a u ,a ∴ 的取值范围是)3,3(-;(2)这是一个较难理解的问题。
4.4-对数函数课件-2025届高三数学一轮复习
2个单位长度,便得到所求函数的图象,如图4.4-4
(4).
图4.4-4
log 2 x + 1 + 2 x ≥ 0 ,
方法2y =∣ log 2 x + 1 ∣ +2 =
−log 2 x + 1 + 2 −1 < x < 0 ,
分别作出函数在 −1,0 和[0, +∞)上的两段图象即得y = |log 2 (x + 1)| + 2的图象
x
2
+ 1 的定义域为(
1
2
B.[1, +∞)
C.(− , 0]
C)
D.[0, +∞)
【解析】要使函数f x 有意义,则log 0.5 4x − 3 ≥ 0,得0 < 4x − 3 ≤ 1,得
3
4
3
4
3
x
4
2
1
的定义域为(− , 0].
2
1
4
x
2
< x ≤ 1,即函数f x 的定义域为( , 1],由 < + 1 ≤ 1,得− < ≤ 0,得
慢
长
2.函数y=ax(a>1),y=logax(a>1)或y=xn(n>0)增长速度的对比
(1)对于指数函数y=ax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,
ax的增长
无论n比a大多少,尽管在x的一定范围内,ax会小于xn,但由于________快于
xn的增长
ax>xn
________,因此总存在一个
【解析】当0 < x < x1 时,g x > f x ;
高三一轮复习-指数函数与对数函数(带答案)
个性化辅导授课教案指数函数与对数函数一、指数函数【考情解读】1.考查指数函数的求值、指数函数的图象和性质;2.讨论与指数函数有关的复合函数的性质;3.将指数函数与对数函数、抽象函数相结合,综合考查指数函数知识的应用. 【重点知识梳理】 1.根式的性质 (1)(na )n =a .(2)当n 为奇数时na n =a . 当n 为偶数时na n ={ a a ≥0-aa <0.2.有理数指数幂 (1)幂的有关概念①正整数指数幂:a n =a ·a ·…·a n 个 (n ∈N *). ②零指数幂:a 0=1(a ≠0).③负整数指数幂:a -p =1ap (a ≠0,p ∈N *).④正分数指数幂:a m n =na m (a >0,m 、n ∈N *,且n >1).⑤负分数指数幂:a -m n =1a m n =1na m (a >0,m 、n ∈N *,且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质①a r a s =a r +s (a >0,r 、s ∈Q ); ②(a r )s =a rs (a >0,r 、s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a xa >10<a <1图象定义域 (1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1;x <0时,0<y <1(5)当x >0时,0<y <1; x <0时,y >1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数【高频考点突破】 考点一 指数幂的运算例1、 (1)计算:(124+223)12-2716+1634-2×(8-23)-1;(2)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值.【探究提高】根式运算或根式与指数式混合运算时,将根式化为指数式计算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又有负指数.【变式探究】计算下列各式的值:(1)⎝⎛⎭⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)15+2-(3-1)0-9-45; (3)a 3b 23ab 2a 14b 124a -13b 13(a >0,b >0).考点二 指数函数的图象、性质的应用 例2、 (1)函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是 ( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 【答案】 (1) D 【解析】由f (x )=a x-b的图象可以观察出函数f (x )=a x-b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.(2)求函数f (x )=3x 2-5x +4的定义域、值域及其单调区间. 【解析】依题意x 2-5x +4≥0,解得x ≥4或x ≤1, ∴f (x )的定义域是(-∞,1]∪[4,+∞).【探究提高】(1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. (2)对复合函数的性质进行讨论时,要搞清复合而成的两个函数,然后对其中的参数进行讨论. 【变式探究】 (1)函数y =e x +e -xe x -e-x 的图象大致为( )【答案】A【解析】y =e x +e -x e x -e -x =1+2e 2x -1,当x >0时,e 2x -1>0,且随着x 的增大而增大,故y =1+2e 2x -1>1且随着x的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减.又函数y 是奇函数,故只有A 正确.(2)若函数f (x )=e -(x -μ)2 (e 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +μ=________. 【答案】1【解析】由于f (x )是偶函数,所以f (-x )=f (x ),即e -(-x -μ)2=e -(x -μ)2,∴(x +μ)2=(x -μ)2,∴μ=0, ∴f (x )=e -x 2.又y =e x 是R 上的增函数,而-x 2≤0, ∴f (x )的最大值为e 0=1=m ,∴m +μ=1. 考点三 指数函数的综合应用例3、(1)k 为何值时,方程|3x -1|=k 无解?有一解?有两解? (2)已知定义在R 上的函数f (x )=2x -12|x |.①若f (x )=32,求x 的值;②若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.【解析】(1)函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的图象有唯一的交点,所 以方程有一解;当0<k <1时,直线y =k 与函数y =|3x -1|的图象有两个不同的交点,所以方程有两解.【探究提高】对指数函数的图象进行变换是利用图象的前提,方程f (x )=g (x )解的个数即为函数y =f (x )和y =g (x )图象交点的个数;复合函数问题的关键是通过换元得到两个新的函数,搞清复合函数的结构.【变式探究】已知f(x)=aa2-1(a x-a-x) (a>0且a≠1).(1)判断f(x)的奇偶性;(2)讨论f(x)的单调性;(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.【解析】(1)因为函数的定义域为R,所以关于原点对称.又因为f(-x)=aa2-1(a-x-a x)=-f(x),所以f(x)为奇函数.二、对数函数【考情解读】1.考查对数函数的图象、性质;2.考查对数方程或不等式的求解;3.考查和对数函数有关的复合函数问题.【重点知识梳理】1.对数的概念一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”.2.对数的性质与运算法则(1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M .(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质a >1 0<a <1图 象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0 当0<x <1时,y <0 (5)当x >1时,y <0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【高频考点突破】 考点一 对数式的运算 例1、计算下列各式: (1)lg 25+lg 2·lg 50+(lg 2)2; (2)lg 32-lg 9+1·lg 27+lg 8-lg 1 000lg 0.3·lg 1.2;(3)(log 32+log 92)·(log 43+log 83).【探究提高】(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧. 【变式探究】 求值:(1)log 89log 23;(2)(lg 5)2+lg 50·lg 2;(3)12lg 3249-43lg 8+lg 245. 【解析】(1)原式=log 2332log 23=23.(2)原式=(lg 5)2+lg(10×5)lg 105=(lg 5)2+(1+lg 5)(1-lg 5) =(lg 5)2+1-(lg 5)2=1. (3)原式=lg 427-lg 4+lg(75) =lg42×757×4=lg 10=12. 考点二 对数函数的图象与性质例2、已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c=f (0.2-0.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c【答案】B【探究提高】(1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想. 【变式探究】 (1)已知a =21.2,b =⎝⎛⎭⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <bC .b <a <cD .b <c <a【答案】A【解析】b =⎝⎛⎭⎫12-0.8=20.8<21.2=a , c =2log 52=log 522<log 55=1<20.8=b , 故c <b <a .(2)已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 【答案】2 2【解析】f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1,∴⎩⎪⎨⎪⎧ b -1=1b =a ,即⎩⎪⎨⎪⎧b =2a =2. 考点三 对数函数的综合应用 例3、已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【探究提高】解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质(1)要分清函数的底数a∈(0,1),还是a∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.【变式探究】已知函数f(x)=log a(8-2x) (a>0且a≠1).(1)若f(2)=2,求a的值;(2)当a>1时,求函数y=f(x)+f(-x)的最大值.。
第3章+第5讲+指数与指数函数2024高考数学一轮复习+PPT(新教材)
5.函数y=ax-a-1(a>0,且a≠)的图象可能是( )
解析 函数 y=ax-1a是由函数 y=ax 的图象向下平移1a个单位长度得到 的,A 显然错误;当 a>1 时,0<1a<1,平移距离小于 1,所以 B 错误;当 0<a<1 时,1a>1,平移距离大于 1,所以 C 错误.故选 D.
1. 3
6
4 6 a9
3 a94=________.
答案 a4
解析 原式=[(a96)13]4[(a93)16]4=a2·a2=a4.
解析 答案
2.已知 3a+2b=1,则9a·33ab=________.
答案 3
解析
因为
3a
+
2b
=
1
,
所
以
3 2
a
+
b
=
1 2
,
所
以
原
式
=
= 3.
解析 答案
3.化简: 解
解析 答案
6 . 若 曲 线 |y| = 2x + 1 与 直 线 y = b 没 有 公 共 点 , 则 b 的 取 值 范 围 是 ________.
答案 [-1,1] 解析 曲线|y|=2x+1与直线y=b如图所示,由图象可得,如果曲线|y| =2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].
解析 答案
8.若0<a<b<1,x=ab,y=ba,z=bb,则x,y,z的大小关系为( )
A.x<z<y
B.y<x<z
C.y<z<x
D.z<y<x
解析 因为0<a<b<1,所以f(x)=bx单调递减,故y=ba>z=bb;又幂函 数g(x)=xb单调递增,故x=ab<z=bb,则x,y,z的大小关系为x<z<y.
2023年一轮复习《指数函数和对数函数》综合训练(含解析)
2023年一轮复习《指数函数和对数函数》综合训练一、单选题(本大题共12小题,共60分)1.(5分)已知函数y=f(x)是定义域为R的奇函数.当x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则实数m的值为()A. √2−1B. 2√2−2C. 2−√2D. 3−2√22.(5分)已知某抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.2%,则至少要抽的次数是(参考数据:lg2=0.301)()A. 6B. 7C. 8D. 93.(5分)已知函数f(x)=sin(π2x)+a(e x−1+e−x+1)有唯一零点,则a=()A. −1B. −12C. 12D. 14.(5分)已知x1是方程x+≶x=3的根,x2是方程x+10x=3的根,那么x1+x2的值为()A. 6B. 3C. 2D. 15.(5分)函数y=|ln|x−2||+x2−4x的所有零点之和是()A. −8B. −4C. 4D. 86.(5分)已知函数f(x)={xlnx−x,x>0f(x+1),x⩽0,若关于x的方程2f(x)−kx+1=0有四个不同的实根,则实数k的取值范围是()A. (−14,−16]∪(14,12]B. [−14,−16)∪[14,12)C. (−12,−13]∪(12,1]D. [−12,−13]7.(5分)已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减,f(−2)=0,则不等式xf(x+1)>0的解集为()A. (−3,−1)∪(0,+∞)B. (−∞,−3)∪(0,1)C. (−∞,−3)∪(−1,+∞)D. (−3,0)∪(1,+∞)8.(5分)已知函数y=f(x)的定义域为(0,+∞),满足对任意x∈(0,+∞),恒有f[f(x)−1x]=4,若函数y=f(x)−4的零点个数为有限的n(n∈N∗)个,则n的最大值为()A. 1B. 2C. 3D. 49.(5分)下列函数中,在定义域内单调递增,且在区间(−1,1)内有零点的函数是()A. y=−x3B. y=2x−1C. y=x2−12D. y=log2(x+2)10.(5分)(示范高中)已知x >0,y >0,≶2x +≶4y =≶2,则1x +1y 的最小值是( )A. 6B. 5C. 3+2√2D. 4√211.(5分)已知函数f(x)={|log 2(x +1)|,x ∈(−1,3)5−x,x ∈[3,+∞),则函数g(x)=f(f(x))−1的零点个数为( )A. 3B. 4C. 5D. 612.(5分)已知函数f(x)在[−3,4]上的图象是一条连续的曲线,且其部分对应值如表:A. (−3,−1)和(−1,1)B. (−3,−1)和(2,4)C. (−1,1)和(1,2)D. (−∞,−3)和(4,+∞)二 、填空题(本大题共4小题,共20分)13.(5分)若log 9(3a +4b )=log 3√ab ,则a +3b 的最小值是________. 14.(5分)已知2a =3,b =log 25,则2b =______,2a+b =______. 15.(5分)若lga ,lgb 是方程2x2-4x+1=0的两个实根,则ab=____. 16.(5分)计算 log23•log38=____. 三 、解答题(本大题共6小题,共72分) 17.(12分)求值:(1)0.027−13−(−17)−2−3−1+(−78)0; (2)3log 32+lg 16+3lg 5−lg 15.18.(12分)计算下列各式的值. (1)i −i 2+i 3−i 4+…+i 2021−i 2022;(2)log 168+101−lg5−(2764)13+(1−√2)lg1. 19.(12分)已知函数f(x)=a −22x +1(a ∈R) 为定义域上的奇函数.(1)求a 的值;(2)判断f(x)在定义域上的单调性,并加以证明;(3)若关于x 的方程f(x)=23在区间(b,b +1)(b ∈N ∗)内有唯一解,求b 的值. 20.(12分)设二次函数f(x)=ax 2+(b −3)x +3.(1)若函数f(x)的零点为−3,2,求函数f(x); (2)若f(1)=1,a >0,b >0,求1a +4b 的最小值. 21.(12分)解下列方程. (1)log 2[log 2(2x +3)]=2; (2)(12)x .82x =4.22.(12分)已知函数f(x)=−x 2+2ex +m −1,g(x)=x +e 2x(x >0).(1)若y =g(x)−m 有零点,求实数m 的取值范围;(2)求实数m 的取值范围,使得g(x)−f(x)=0有两个不相等的实根. 四 、多选题(本大题共5小题,共25分) 23.(5分)已知a >0,b >0,ln a =ln b 2=ln (3a +2b )3,则下列说法错误的是( )A. b =2aB. 3a +2b =b 3C. ln bln (a+1)=log 23D. eln b a=324.(5分)设函数f(x)={3x ,x ⩽0|log 3x|,x >0,若f(x)−a =0有三个不同的实数根,则实数a 的取值可以是( )A. 12 B. 1 C. −1 D. 225.(5分)若关于x 的不等式ae x +bx +c <0的解集为(−1,1),则( )A. b >0B. |a|<|c|C. a +b +c >0D. 8a +2b +c >026.(5分)下列各选项中,值为1的是( )A. log 26.log 62B. log 62+log 64C. (2+√3)12⋅(2−√3)12D. (2+√3)12−(2−√3)1227.(5分)已知函数f(x)={cosx,x >0kx,x ⩽0,若方程f(x)+f(−x)=0有n 个不同的实根,从小到大依次为x 1,x 2,x 3,…,x n ,则下列说法正确的是( )A. x 1+x 2+x 3+…+x n =0B. 当n =1时,k <−1π C. 当n =3且k <0时,tan x 3=−1x 3D. 当k >12π时,n =3答案和解析1.【答案】B;【解析】解:∵函数y=f(x)是定义域为R的奇函数.x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.∴f(0)=0,若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,由y=f(x)=(x−1)2+1,x∈[1,2],故mx=(x−1)2+1有且只有一个解,即x2−(m+2)x+2=0的Δ=0,解得:m=2√2−2,或m=−2√2−2(舍去),故m=2√2−2,故选:B由已知中恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,可得f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,进而可得答案.此题主要考查的知识点是根的存在性及根的个数判断,其中结合函数奇偶性的函数特征,分析出f(x)=mx有且仅有两个正根,是解答的关键.2.【答案】B;【解析】解:假设至少要抽的次数是n,则(1−0.6)n<0.002,∴nlg0.4<lg0.002,∴n>lg0.002lg0.4=lg2−32lg2−1≈6.8.∴至少要抽的次数是7.故选:B.假设至少要抽的次数是n,则(1−0.6)n<0.002,化为对数式即可得出.该题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.3.【答案】B;【解析】解:因为函数f(x)=sin(π2x)+a(e x−1+e−x+1),令x−1=t,t∈R,则g(t)=sin(π2(t+1))+a(e t+e−t)=cos(π2t)+a(e t+e−t)为偶函数,因为函数f(x)=sin(π2x)+a(e x−1+e x−1)有唯一零点,t)+a(e t+e−1)有唯一零点,所以g(t)=cos(π2根据偶函数的对称性,则g(0)=1+2a=0,解得a=−1,2故选:B.t)+a(e t+e−t)有唯一零点,根据偶函数的对称性求令x−1=t,转化为g(t)=cos(π2解.此题主要考查了函数的零点问题,属于中档题.4.【答案】B;【解析】解:第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,其实是与第一个方程一样的.如果x1,x2是两个方程的解,则必有x1=3−x2,∴x1+x2=3.故选:B.第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,由此能求出结果.该题考查两数和的求法,是基础题,解题时要认真审题,注意对数函数性质的合理运用.5.【答案】D;【解析】解:根据函数y=|ln|x−2||+x2−4x的零点,转化为|ln|x−2||+x2−4x=0的根,令y=|ln|x−2||,y=−x2+4x,两个函数的对称轴都为x=2,在同一坐标系中,画出函数的图象:x 3,x 2关于x =2对称,所以x 3+x 2=4, x 1,x 4关于x =2对称,所以x 1+x 4=4, 所以x 1+x 2+x 3+x 4=8, 故选:D .根据函数y =|ln |x −2||+x 2−4x 的零点⇒|ln |x −2||+x 2−4x =0的根⇒y =|ln |x −2||,y =−x 2+4x 交点的横坐标,由两个函数都有对称轴x =2,结合图象可得x 3,x 2关于x =2对称,x 1,x 4关于x =2对称,进而得出答案. 该题考查函数的零点,解题中注意转化思想的应用,属于中档题.6.【答案】C;【解析】解:当x >0时,f ′(x)=lnx ,当0<x <1时,f ′(x)<0,当x >1时,f ′(x)>0,所以当x >0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 又当x ⩽0时,f(x)=f(x +1),所以根据周期为1可得:当x ⩽0时f(x)的图象,故f(x)的图象如图所示:将方程2f(x)−kx +1=0,转化为方程f(x)=k2x −12有四个不同的实根, 令g(x)=k2x −12,其图象恒过(0,−12), 因为f(x)与g(x)的图象有四个不同的交点, 所以k CE <k2⩽k DE 或k BE <k2⩽k AE ,又由A(−3,0),B(−2,0),C(−2,−1),D(−1,−1),E(0,−12), 故k CE =14,k DE =12,k BE =−14,k DE =−16, 所以14<k2⩽12或−14<k2⩽−16, 即12<k ⩽1或−12<k ⩽−13. 故选:C.把方程2f(x)−kx +1=0有四个不同的实根,转化为函数y =f(x)和g(x)=k2x −12的图象有四个交点,作出两个函数的图象,结合图象,即可求解.此题主要考查了函数的零点、转化思想、数形结合思想,难点在于作出图象,属于中档题.7.【答案】B;【解析】本题查抽象函数的单调性和奇偶性的综合应用,属于中档题。
高考数学(对数、指数函数)第一轮复习
高考数学(指数函数和对数函数)第一轮复习资料知识点小结(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x +=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。
指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。
性质:见表2试题选讲第一节对函数的进一步认识第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-2 2.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3.答案:33-33.函数y =(12)2x -x 2的值域是________.解析:∵2x -x 2=-(x -1)2+1≤1, ∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎪⎨⎪⎧ 0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧a >1a 0-1=0a 2-1=2⇒a = 3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1.从而有f (x )=-2x+12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2.(2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0即(22t2-k +1+2)(-2t2-2t+1)+(2t2-2t +1+2)(-22t2-k+1)<0整理得23t2-2t -k>1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎪⎨⎪⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1]3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________.解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________.解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1,故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:25.(2010年山东青岛质检)已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y =(13)2-x =3x -2.答案:y =3x -2(x ∈R ) 6.(2009年高考山东卷改编)函数y =e x +e -xe x -e-x 的图象大致为________.解析:∵f (-x )=e -x+e x e -x -e x =-e x+e-xe x -e -x =-f (x ),∴f (x )为奇函数,排除④.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x-1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x+1),则f (2+log 23)=________.解析:∵2<3<4=22,∴1<log 23<2.∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)log 224=2-log 224=2log 2124=124.答案:1248.(2009年高考湖南卷改编)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K , f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为________.解析:由f (x )=2-|x |≤12得x ≥1或x ≤-1,∴f K (x )=⎩⎪⎨⎪⎧2-|x |,x ≥1或x ≤-1,12,-1<x <1.则单调增区间为(-∞,-1].答案:(-∞,-1]9.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变动时,函数b =g (a )的图象可以是________.解析:函数y =2|x |的图象如图.当a =-4时,0≤b ≤4,当b =4时,-4≤a ≤0,答案:②10.(2010年宁夏银川模拟)已知函数f (x )=a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值为14,求实数a 的值.解:f (x )=a 2x +2a x -1=(a x +1)2-2,∵x ∈[-1,1],(1)当0<a <1时,a ≤a x ≤1a ,∴当a x =1a 时,f (x )取得最大值.∴(1a +1)2-2=14,∴1a =3,∴a =13. (2)当a >1时,1a≤a x ≤a ,∴当a x =a 时,f (x )取得最大值.∴(a +1)2-2=14,∴a =3.综上可知,实数a 的值为13或3.11.已知函数f (x )=-22x -a +1.(1)求证:f (x )的图象关于点M (a ,-1)对称;(2)若f (x )≥-2x在x ≥a 上恒成立,求实数a 的取值范围.解:(1)证明:设f (x )的图象C 上任一点为P (x ,y ),则y =-22x -a +1,P (x ,y )关于点M (a ,-1)的对称点为P ′(2a -x ,-2-y ).∴-2-y =-2+22x -a +1=-2·2x -a 2x -a +1=-21+2-(x -a )=-22(2a -x )-a+1, 说明点P ′(2a -x ,-2-y )也在函数y =-22x -a +1的图象上,由点P 的任意性知,f (x )的图象关于点M (a ,-1)对称.(2)由f (x )≥-2x 得-22x -a +1≥-2x ,则22x -a +1≤2x ,化为2x -a ·2x +2x -2≥0,则有(2x )2+2a ·2x -2·2a ≥0在x ≥a 上恒成立.令g (t )=t 2+2a ·t -2·2a ,则有g (t )≥0在t ≥2a 上恒成立.∵g (t )的对称轴在t =0的左侧,∴g (t )在t ≥2a上为增函数. ∴g (2a )≥0.∴(2a )2+(2a )2-2·2a ≥0,∴2a (2a -1)≥0,则a ≥0.即实数a 的取值范围为a ≥0.12.(2008年高考江苏)若f 1(x )=3|x -p 1|,f 2(x )=2·3|x -p 2|,x ∈R ,p 1、p 2为常数,且f (x )=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ).(1)求f (x )=f 1(x )对所有实数x 成立的充要条件(用p 1、p 2表示);(2)设a ,b 是两个实数,满足a <b ,且p 1、p 2∈(a ,b ).若f (a )=f (b ),求证:函数f (x )在区间[a ,b ]上的单调增区间的长度之和为b -a2(闭区间[m ,n ]的长度定义为n -m ).解:(1)f (x )=f 1(x )恒成立⇔f 1(x )≤f 2(x )⇔3|x -p 1|≤2·3|x -p 2|⇔3|x -p 1|-|x -p 2|≤2⇔|x -p 1|-|x -p 2|≤log 32.(*)若p 1=p 2,则(*)⇔0≤log 32,显然成立;若p 1≠p 2,记g (x )=|x -p 1|-|x -p 2|,当p 1>p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2,x <p 2,-2x +p 1+p 2,p 2≤x ≤p 1,p 2-p 1,x >p 1.所以g (x )max =p 1-p 2,故只需p 1-p 2≤log 32. 当p 1<p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2,x <p 1;2x -p 1-p 2,p 1≤x ≤p 2;p 2-p 1,x >p 2.所以g (x )max =p 2-p 1,故只需p 2-p 1≤log 32.综上所述,f (x )=f 1(x )对所有实数x 成立的充要条件是|p 1-p 2|≤log 32. (2)证明:分两种情形讨论. ①当|p 1-p 2|≤log 32时,由(1)知f (x )=f 1(x )(对所有实数x ∈[a ,b ]),则由f (a )=f (b )及a <p 1<b易知p 1=a +b2.再由f 1(x )=⎩⎪⎨⎪⎧3p 1-x ,x <p 1,3x -p 1,x ≥p 1,的单调性可知,f (x )在区间[a ,b ]上的单调增区间的长度为b -a +b 2=b -a2.②当|p 1-p 2|>log 32时,不妨设p 1<p 2,则p 2-p 1>log 32.于是,当x ≤p 1时,有f 1(x )=3p 1-x<3p 2-x <f 2(x ),从而f (x )=f 1(x ).当x ≥p 2时,f 1(x )=3x -p 1=3p 2-p 1·3x -p 2>3log 32·3x -p 2=f 2(x ),从而f (x )=f 2(x ).当p 1<x <p 2时,f 1(x )=3x -p 1及f 2(x )=2·3p 2-x ,由方程3x 0-p 1=2·3p 2-x 0,解得f 1(x )与f 2(x )图象交点的横坐标为x 0=p 1+p 22+12log 32.①显然p 1<x 0=p 2-12[(p 2-p 1)-log 32]<p 2,这表明x 0在p 1与p 2之间.由①易知f (x )=⎩⎪⎨⎪⎧f 1(x ),p 1≤x ≤x 0,f 2(x ),x 0<x ≤p 2.综上可知,在区间[a ,b ]上,f (x )=⎩⎪⎨⎪⎧f 1(x ),a ≤x ≤x 0,f 2(x ),x 0<x ≤b .故由函数f 1(x )与f 2(x )的单调性可知,f (x )在区间[a ,b ]上的单调增区间的长度之和为(x 0-p 1)+(b -p 2),由于f (a )=f (b ),即3p 1-a =2·3b -p 2,得p 1+p 2=a +b +log 32.②故由①②得(x 0-p 1)+(b -p 2)=b -12(p 1+p 2-log 32)=b -a 2.综合①、②可知,f (x )在区间[a ,b ]上单调增区间的长度之和为b -a2.第二节 对数函数A 组1.(2009年高考广东卷改编)若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=________.解析:由题意f (x )=log a x ,∴a =log a a 12=12,∴f (x )=log 12x .答案:log 12x2.(2009年高考全国卷Ⅱ)设a =log 3π,b =log 23,c =log 32,则a 、b 、c 的大小关系是________.解析:a =log 3π>1,b =log 23=12log 23∈(12,1),c =log 32=12log 32∈(0,12),故有a >b >c .答案:a >b >c3.若函数f (x )=⎪⎩⎪⎨⎧∈-∈⎪⎭⎫ ⎝⎛]1,0[,4)0,1[,41x x xx,则f (log 43)=________.解析:0<log 43<1,∴f (log 43)=4log 43= 3.答案:3 4.如图所示,若函数f (x )=a x-1的图象经过点(4,2),则函数g (x )=log a 1x +1的图象是________.解析:由已知将点(4,2)代入y =a x -1,∴2=a4-1,即a =213>1.又1x +1是单调递减的,故g (x )递减且过(0,0)点,∴④正确.答案:④ 5.(原创题)已知函数f (x )=a log 2x +b log 3x +2,且f (12010)=4,则f (2010)的值为_.解析:设F (x )=f (x )-2,即F (x )=a log 2x +b log 3x ,则F (1x )=a log 21x +b log 31x=-(a log 2x+b log 3x )=-F (x ),∴F (2010)=-F (12010)=-[f (12010)-2]=-2,即f (2010)-2=-2,故f (2010)=0.答案:06.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a >0且a ≠1).(1)求f (log 2x )的最小值及相应x 的值;(2)若f (log 2x )>f (1)且log 2f (x )<f (1),求x 的取值范围.解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=(log 2a )2-log 2a +b =b ,∴log 2a =1,∴a =2.又∵log 2f (a )=2,∴f (a )=4.∴a 2-a +b =4,∴b =2.∴f (x )=x 2-x +2.∴f (log 2x )=(log 2x )2-log 2x +2=(log 2x -12)2+74.∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意知⎩⎪⎨⎪⎧ (log 2x )2-log 2x +2>2,log 2(x 2-x +2)<2.∴⎩⎪⎨⎪⎧log 2x <0或log 2x >1,0<x 2-x +2<4. ∴⎩⎪⎨⎪⎧0<x <1或x >2,-1<x <2.∴0<x <1. B 组1.(2009年高考北京卷改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点________.解析:∵y =lg x +310=lg(x +3)-1,∴将y =lg x 的图象上的点向左平移3个单位长度得到y =lg(x +3)的图象,再将y =lg(x +3)的图象上的点向下平移1个单位长度得到y =lg(x +3)-1的图象.答案:向左平移3个单位长度,再向下平移1个单位长度2.(2010年安徽黄山质检)对于函数f (x )=lg x 定义域中任意x 1,x 2(x 1≠x 2)有如下结论:①f (x 1+x 2)=f (x 1)+f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2);③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1+x 22)<f (x 1)+f (x 2)2.上述结论中正确结论的序号是________.解析:由运算律f (x 1)+f (x 2)=lg x 1+lg x 2=lg x 1x 2=f (x 1x 2),所以②对;因为f (x )是定义域内的增函数,所以③正确;f (x 1+x 22)=lg x 1+x 22,f (x 1)+f (x 2)2=lg x 1+lg x 22=lg x 1x 2,∵x 1+x 22≥x 1x 2,且x 1≠x 2,∴lg x 1+x 22>lg x 1x 2,所以④错误.答案:②③3.(2010年枣庄第一次质检)对任意实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=log 12(3x -2)*log 2x 的值域为________.解析:在同一直角坐标系中画出y =log 12(3x -2)和y =log 2x 两个函数的图象,由图象可得f (x )=⎩⎪⎨⎪⎧log 2x (0<x ≤1)log 12(3x -2) (x >1),值域为(-∞,0].答案:(-∞,0]4.已知函数y =f (x )与y =e x 互为反函数,函数y =g (x )的图象与y =f (x )的图象关于x 轴对称,若g (a )=1,则实数a 的值为________.解析:由y =f (x )与y =e x 互为反函数,得f (x )=ln x ,因为y =g (x )的图象与y =f (x )的图象关于x 轴对称,故有g (x )=-ln x ,g (a )=1⇒ln a =-1,所以a =1e.答案:1e5.已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是________.解析:由log 2x |x |有意义可得x >0,所以,f (2x +|x |)=f (1x ),log 2x |x |=log 2x ,即有f (1x )=log 2x ,故f (x )=log 21x=-log 2x .答案:f (x )=-log 2x ,(x >0)6.(2009年高考辽宁卷改编)若x 1满足2x +2x =5,x 2满足2x +2log 2(x -1)=5,则x 1+x 2=________.解析:由题意2x 1+2x 1=5,①2x 2+2log 2(x 2-1)=5,②所以2x 1=5-2x 1,x 1=log 2(5-2x 1),即2x 1=2log 2(5-2x 1).令2x 1=7-2t ,代入上式得7-2t =2log 2(2t -2)=2+2log 2(t -1),∴5-2t =2log 2(t -1)与②式比较得t =x 2,于是2x 1=7-2x 2.∴x 1+x 2=T 2.答案:727.当x ∈[n ,n +1),(n ∈N )时,f (x )=n -2,则方程f (x )=log 2x 根的个数是________.解析:当n =0时,x ∈[0,1),f (x )=-2; 当n =1时,x ∈[1,2),f (x )=-1; 当n =2时,x ∈[2,3),f (x )=0; 当n =3时,x ∈[3,4),f (x )=1; 当n =4时,x ∈[4,5),f (x )=2;当n =5时,x ∈[5,6),f (x )=3.答案:2 8.(2010年福建厦门模拟)已知lg a +lg b =0,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是________.解析:由题知,a =1b ,则f (x )=(1b)x =b -x ,g (x )=-log b x ,当0<b <1时,f (x )单调递增,g (x )单调递增,②正确;当b >1时,f (x )单调递减,g (x )单调递减.答案:② 9.已知曲线C :x 2+y 2=9(x ≥0,y ≥0)与函数y =log 3x 及函数y =3x 的图象分别交于点A (x 1,y 1),B (x 2,y 2),则x 12+x 22的值为________.解析:∵y =log 3x 与y =3x 互为反函数,所以A 与B 两点关于y =x 对称,所以x 1=y 2,y 1=x 2,∴x 12+x 22=x 12+y 12=9.答案:910.已知函数f (x )=lg kx -1x -1(k ∈R 且k >0).(1)求函数f (x )的定义域;(2)若函数f (x )在[10,+∞)上是单调增函数,求k 的取值范围.解:(1)由kx -1x -1>0及k >0得x -1k x -1>0,即(x -1k )(x -1)>0.①当0<k <1时,x <1或x >1k ;②当k =1时,x ∈R 且x ≠1;③当k >1时,x <1k或x >1.综上可得当0<k <1时,函数的定义域为(-∞,1)∪(1k,+∞);当k ≥1时,函数的定义域为(-∞,1k)∪(1,+∞).(2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110.又f (x )=lg kx -1x -1=lg(k +k -1x -1),故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2),即lg(k +k -1x 1-1)<lg(k +k -1x 2-1),∴k -1x 1-1<k -1x 2-1,∴(k -1)·(1x 1-1-1x 2-1)<0,又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1.综上可知k ∈(110,1).11.(2010年天津和平质检)已知f (x )=log a 1+x1-x(a >0,a ≠1).(1)求f (x )的定义域;(2)判断f (x )的奇偶性并给予证明;(3)求使f (x )>0的x 的取值范围.解:(1)由1+x1-x>0 ,解得x ∈(-1,1).(2)f (-x )=log a 1-x1+x=-f (x ),且x ∈(-1,1),∴函数y =f (x )是奇函数.(3)若a >1,f (x )>0,则1+x 1-x >1,解得0<x <1;若0<a <1,f (x )>0,则0<1+x1-x<1,解得-1<x <0.12.已知函数f (x )满足f (log a x )=a a 2-1(x -x -1),其中a >0且a ≠1.(1)对于函数f (x ),当x ∈(-1,1)时,f (1-m )+f (1-m 2)<0,求实数m 的集合; (2)x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围.解:令log a x =t (t ∈R ),则x =a t ,∴f (t )=a a 2-1(a t -a -t ),∴f (x )=a a 2-1(a x -a -x ).∵f (-x )=a a 2-1(a -x -a x )=-f (x ),∴f (x )是R 上的奇函数.当a >1时,a a 2-1>0,a x 是增函数,-a -x 是增函数,∴f (x )是R 上的增函数;当0<a <1,a a 2-1<0,a x 是减函数,-a -x 是减函数,∴f (x )是R 上的增函数.综上所述,a >0且a ≠1时,f (x )是R 上的增函数.(1)由f (1-m )+f (1-m 2)<0有f (1-m )<-f (1-m 2)=f (m 2-1),∴⎩⎪⎨⎪⎧1-m <m 2-1,-1<1-m <1,-1<m 2-1<1.解得m ∈(1,2).(2)∵f (x )是R 上的增函数,∴f (x )-4也是R 上的增函数,由x <2,得f (x )<f (2), ∴f (x )-4<f (2)-4,要使f (x )-4的值恒为负数,只需f (2)-4≤0,即a a 2-1(a 2-a -2)-4≤0,解得2-3≤a ≤2+3, ∴a 的取值范围是2-3≤a ≤2+3且a ≠1.第三节 幂函数与二次函数的性质A 组1.若a >1且0<b <1,则不等式a log b (x -3)>1的解集为________.解析:∵a >1,0<b <1,∴a log b (x -3)>1⇔log b (x -3)>0⇔log b (x -3)>log b 1⇔0<x -3<1⇔3<x <4.答案:{x |3<x <4}2.(2010年广东广州质检)下列图象中,表示y =x 32的是________.解析:y =x 32=3x 2是偶函数,∴排除②、③,当x >1时,32xx =x 31>1,∴x >x 32,∴排除①.答案:④3.(2010年江苏海门质检)若x ∈(0,1),则下列结论正确的是__________.①2x >x 21>lg x ②2x >lg x >x 21 ③x 21>2x >lg x ④lg x >x 21>2x 解析:∵x ∈(0,1),∴2>2x>1,0<x 21<1,lg x <0.答案:① 4.(2010年东北三省模拟)函数f (x )=|4x -x 2|-a 恰有三个零点,则a =__________.解析:先画出f (x )=4x -x 2的图象,再将x 轴下方的图象翻转到x 轴的上方,如图,y =a 过抛物线顶点时恰有三个交点,故得a 的值为4.答案:45.(原创题)方程x 12=log sin1x 的实根个数是__________.解析:在同一坐标系中分别作出函数y 1=x 21 和y 2=log sin1x 的图象,可知只有惟一一个交点.答案:16.(2009年高考江苏卷)设a 为实数,函数f (x )=2x 2+(x -a )·|x -a |.(1)若f (0)≥1,求a 的取值范围;(2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集.解:(1)因为f (0)=-a |-a |≥1,所以-a >0,即a <0.由a 2≥1知a ≤-1.因此,a 的取值范围为(-∞,-1].(2)记f (x )的最小值为g (a ).则有f (x )=2x 2+(x -a )|x -a |=⎩⎪⎨⎪⎧3(x -a 3)2+2a 23,x >a , ①(x +a )2-2a 2,x ≤a , ②(ⅰ)当a ≥0时,f (-a )=-2a 2,由①②知f (x )≥-2a 2,此时g (a )=-2a 2.(ⅱ)当a <0时,f (a 3)=23a 2.若x >a ,则由①知f (x )≥23a 2;若x ≤a ,则x +a ≤2a <0,由②知f (x )≥2a 2>23a 2.此时g (a )=23a 2.综上,得g (a )=⎩⎪⎨⎪⎧-2a 2, a ≥0,2a 23, a <0.(3)(ⅰ)当a ∈(-∞,-62]∪[22,+∞)时,解集为(a ,+∞); (ⅱ)当a ∈[-22,22)时,解集为[a +3-2a 23,+∞);(ⅲ)当a ∈(-62,-22)时,解集为(a ,a -3-2a 23]∪[a +3-2a 23,+∞).B 组1.(2010年江苏无锡模拟)幂函数y =f (x )的图象经过点(-2,-18),则满足f (x )=27的x 的值是__________.解析:设幂函数为y =x α,图象经过点(-2,-18),则-18=(-2)α,∴α=-3,∵x -3=27,∴x =13.答案:132.(2010年安徽蚌埠质检)α则不等式f (|x |)≤2的解集是解析:由表知22=(12)α,∴α=12,∴f (x )=x 12.∴(|x |)12≤2,即|x |≤4,故-4≤x ≤4.答案:{x |-4≤x ≤4}3.(2010年广东江门质检)设k ∈R ,函数f (x )=⎩⎪⎨⎪⎧1x (x >0),e x (x ≤0),F (x )=f (x )+kx ,x ∈R .当k =1时,F (x )的值域为__________.解析:当x >0时,F (x )=1x+x ≥2;当x ≤0时,F (x )=e x +x ,根据指数函数与幂函数的单调性,F (x )是单调递增函数,F (x )≤F (0)=1,所以k =1时,F (x )的值域为(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)4.设函数f (x )=⎩⎪⎨⎪⎧-2 (x >0),x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=0,则关于x 的不等式f (x )≤1的解集为__________.解析:由f (-4)=f (0),得b =4.又f (-2)=0,可得c =4,∴⎩⎪⎨⎪⎧ x ≤0,x 2+4x +4≤1或⎩⎪⎨⎪⎧x >0,-2≤1,可得-3≤x ≤-1或x >0.答案:{x |-3≤x ≤-1或x >0}5.(2009年高考天津卷改编)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是__________.解析:函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,的图象如图. 知f (x )在R 上为增函数. ∵f (2-a 2)>f (a ),即2-a 2>a . 解得-2<a <1.答案:-2<a <16.(2009年高考江西卷改编)设函数f (x )=ax 2+bx +c(a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a 的值为__________.解析:由题意定义域D 为不等式ax 2+bx +c ≥0的解集.∵ax 2+bx +c =a (x +b 2a )2+4ac -b24a ,∵a <0,∴0≤y ≤ 4ac -b 24a,∴所有点(s ,f (t )),(s ,t ∈D )构成一个正方形区域,意味着方程ax 2+bx +c =0的两根x 1,x 2应满足|x 1-x 2|= 4ac -b 24a,由根与系数的关系知4ac -b 24a =b 2a 2-4c a =b 2-4aca 2,∴4a =-a 2.∵a <0,∴a =-4.答案:-47.(2010年辽宁沈阳模拟)已知函数f (x )=⎩⎪⎨⎪⎧-2+x ,x >0,-x 2+bx +c ,x ≤0.若f (0)=-2f (-1)=1,则函数g (x )=f (x )+x 的零点的个数为__________.解析:∵f (0)=1,∴c =1.又f (-1)=-12,∴-1-b +1=-12,∴b =12.当x >0时,g (x )=-2+2x =0,∴x =1;当x ≤0时,g (x )=-x 2+12x +1+x =0,∴x 2-32x -1=0,∴x =2(舍)或x =-12,所以有两个零点.答案:28.设函数f (x )=x |x |+bx +c ,给出下列四个命题:①c =0时,f (x )是奇函数;②b =0,c >0时,方程f (x )=0只有一个实根;③f (x )的图象关于(0,c )对称;④方程f (x )=0至多有两个实根.其中正确的命题是__________.解析:c =0时,f (-x )=-x |-x |+b (-x )=-x |x |-bx =-f (x ),故f (x )是奇函数;b =0,c >0时,f (x )=x |x |+c =0,∴x ≥0时,x 2+c =0无解,x <0时,f (x )=-x 2+c =0,∴x =-c ,有一个实数根.答案:①②③9.(2010年湖南长沙质检)对于区间[a ,b ]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b ]中的任意数x 均有|f (x )-g (x )|≤1,则称函数f (x )与g (x )在区间[a ,b ]上是密切函数,[a ,b ]称为密切区间.若m (x )=x 2-3x +4与n (x )=2x -3在某个区间上是“密切函数”,则它的一个密切区间可能是________.①[3,4] ②[2,4] ③[2,3] ④[1,4]解析:|m (x )-n (x )|≤1⇒|x 2-5x +7|≤1,解此绝对值不等式得2≤x ≤3,故在区间[2,3]上|m (x )-n (x )|的值域为[0,1],∴|m (x )-n (x )|≤1在[2,3]上恒成立.答案:③10.设函数f (x )=x 2+2bx +c (c <b <1),f (1)=0,方程f (x )+1=0有实根.(1)证明:-3<c ≤-1且b ≥0;(2)若m 是方程f (x )+1=0的一个实根,判断f (m -4)的正负并加以证明.解:(1)证明:f (1)=0⇒1+2b +c =0⇒b =-c +12.又c <b <1,故c <-c +12<1⇒-3<c <-13.方程f (x )+1=0有实根,即x 2+2bx +c +1=0有实根,故Δ=4b 2-4(c +1)≥0,即(c +1)2-4(c +1)≥0⇒c ≥3或c ≤-1.又c <b <1,得-3<c ≤-1,由b =-c +12知b ≥0.(2)f (x )=x 2+2bx +c =x 2-(c +1)x +c =(x -c )(x -1),f (m )=-1<0, ∴c <m <1,∴c -4<m -4<-3<c ,∴f (m -4)=(m -4-c )(m -4-1)>0, ∴f (m -4)的符号为正.11.(2010年安徽合肥模拟)设函数f (x )=ax 2+bx +c ,且f (1)=-a2,3a >2c >2b ,求证:(1)a >0且-3<b a <-34;(2)函数f (x )在区间(0,2)内至少有一个零点;(3)设x 1、x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<574.证明:(1)∵f (1)=a +b +c =-a2,∴3a +2b +2c =0.又3a >2c >2b ,∴3a >0,2b <0,∴a >0,b <0.又2c =-3a -2b ,由3a >2c >2b ,∴3a >-3a -2b >2b .∵a >0,∴-3<b a <-34.(2)∵f (0)=c ,f (2)=4a +2b +c =a -c ,①当c >0时,∵a >0,∴f (0)=c >0且f (1)=-a2<0,∴函数f (x )在区间(0,1)内至少有一个零点.②当c ≤0时,∵a >0,∴f (1)=-a2<0且f (2)=a -c >0,∴函数f (x )在区间(1,2)内至少有一个零点.综合①②得f (x )在(0,2)内至少有一个零点.(3)∵x 1、x 2是函数f (x )的两个零点,则x 1、x 2是方程ax 2+bx +c =0的两个根,∴x 1+x 2=-b a ,x 1x 2=c a =-32-b a ,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2= (-b a )2-4(-32-b a )=(b a +2)2+2.∵-3<b a <-34,∴2≤|x 1-x 2|<574. 12.已知函数f (x )=ax 2+4x +b (a <0,a 、b ∈R ),设关于x 的方程f (x )=0的两实根为x 1、x 2,方程f (x )=x 的两实根为α、β.(1)若|α-β|=1,求a 、b 的关系式;(2)若a 、b 均为负整数,且|α-β|=1,求f (x )的解析式;(3)若α<1<β<2,求证:(x 1+1)(x 2+1)<7.解:(1)由f (x )=x 得ax 2+3x +b =0(a <0,a 、b ∈R )有两个不等实根为α、β,∴Δ=9-4ab >0,α+β=-3a ,α·β=ba.由|α-β|=1得(α-β)2=1,即(α+β)2-4αβ=9a 2-4ba=1,∴9-4ab =a 2,即a 2+4ab =9(a <0,a 、b ∈R ).(2)由(1)得a (a +4b )=9,∵a 、b 均为负整数, ∴⎩⎪⎨⎪⎧a =-1a +4b =-9或⎩⎪⎨⎪⎧ a =-9a +4b =-1或⎩⎪⎨⎪⎧a =-3,a +4b =-3,显然后两种情况不合题意,应舍去,从而有⎩⎪⎨⎪⎧a =-1,a +4b =-9,∴⎩⎪⎨⎪⎧a =-1,b =-2.故所求函数解析式为f (x )=-x 2+4x -2.(3)证明:由已知得x 1+x 2=-4a ,x 1·x 2=b a ,又由α<1<β<2得α+β=-3a <3,α·β=ba<2,∴-1a <1,∴(x 1+1)(x 2+1)=x 1·x 2+(x 1+x 2)+1=b a -4a +1<2+4+1=7,即(x 1+1)(x 2+1)<7.第四节 函数的图像特征A 组1.命题甲:已知函数f (x )满足f (1+x )=f (1-x ),则f (x )的图象关于直线x =1对称.命题乙:函数f (1+x )与函数f (1-x )的图象关于直线x =1对称.则甲、乙命题正确的是__________.解析:可举实例说明如f (x )=2x ,依次作出函数f (1+x )与函数f (1-x )的图象判断.答案:甲2.(2010年济南市高三模拟考试)函数y =x |x |·a x(a >1)的图象的基本形状是_____.解析:先去绝对值将已知函数写成分段函数形式,再作图象即可,函数解析式:y =⎩⎪⎨⎪⎧ax (x >0)-ax (x <0),由指数函数图象易知①正确.答案:①3.已知函数f (x )=(15)x -log 3x ,若x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值为__________(正负情况).解析:分别作y =(15)x 与y =log 3x 的图象,如图可知,当0<x 1<x 0时,(15)x1>log 3x 1,∴f (x 1)>0.答案:正值4.(2009年高考安徽卷改编)设a <b ,函数y =(x -a )2(x -b )的图象可能是_____.解析:∵x >b 时,y >0.由数轴穿根法,从右上向左下穿,奇次穿偶次不穿可知,只有③正确.答案:③5.(原创题)已知当x ≥0时,函数y =x 2与函数y =2x 的图象如图所示,则当x ≤0时,不等式2x ·x 2≥1的解集是__________.解析:在2x ·x 2≥1中,令x =-t ,由x ≤0得t ≥0, ∴2-t ·(-t )2≥1,即t 2≥2t ,由所给图象得2≤t ≤4, ∴2≤-x ≤4,解得-4≤x ≤-2. 答案:-4≤x ≤-26.已知函数f (x )=⎩⎨⎧.(2,5]∈,3-,1,2]-[∈,-32x x x x(1)画出f (x )的图象;(2)写出f (x )的单调递增区间.解:(1)函数f (x )的图象如图所示.,(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].B 组 1.(2010年合肥市高三质检)函数f (x )=ln 1-x1+x的图象只可能是__________.解析:本题中f (x )的定义域为{x |-1<x <1},从而排除②③选项.又由于u (x )=-1+21+x在定义域{x |-1<x <1}内是减函数,而g (x )=ln x 在定义域(0,+∞)内是增函数,从而f (x )=ln 1-x 1+x =ln(-1+21+x )在定义域{x |-1<x <1}是减函数. 答案:①2.家电下乡政策是应对金融危机、积极扩大内需的重要举措.我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下图所示.在这四种方案中,运输效率(单位时间的运输量)逐步提高的是解析:运输效率是运输总量Q 与时间t 的函数的导数,几何意义为图象的切线,切线斜率的增长表明运输效率的提高,从图形看,②正确.答案:②3.如图,过原点O 的直线与函数y =2x 的图象交于A ,B 两点,过B作y 轴的垂线交函数y =4x的图象于点C ,若AC 平行于y 轴,则点A 的坐标是__________.解析:设C (a,4a ),所以A (a,2a ),B (2a,4a ),又O ,A ,B 三点共线,所以2a a =4a 2a,故4a =2×2a ,所以2a =0(舍去)或2a =2,即a =1,所以点A 的坐标是(1,2).答案:(1,2)4.已知函数f (x )=4-x 2,g (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,当x >0时,g (x )=log 2x ,则函数y =f (x )·g (x )的大致图象为__________.解析:f (x )为偶函数,g (x )是奇函数,所以f (x )·g (x )为奇函数,图象关于原点对称,当x →+∞时,f (x )→-∞,g (x )→+∞,所以f (x )·g (x )→-∞答案:②5.某加油机接到指令,给附近空中一运输机加油.运输机的余油量为Q 1(吨),加油机加油箱内余油Q 2(吨),加油时间为t 分钟,Q 1、Q 2与时间t 的函数关系式的图象如右图.若运输机加完油后以原来的速度飞行需11小时到达目的地,问运输机的油料是否够用?________.解析:加油时间10分钟,Q 1由30减小为0.Q 2由40增加到69,因而10分钟时间内运输机用油1吨.以后的11小时需用油66吨.因69>66,故运输机的油料够用.答案:够用 6.已知函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=|x |,则y =f (x )与y =log 7x 的交点的个数为__________.解析:由f (x +2)=f (x )知函数y =f (x )为周期为2的周期函数,作图. 答案:67.函数y =x mn (m ,n ∈Z ,m ≠0,|m |,|n |互质)图象如图所示,则下列结论正确的是__________.①mn >0,m ,n 均为奇数②mn <0,m ,n 一奇一偶 ③mn <0,m ,n 均为奇数 ④mn >0,m ,n 一奇一偶解析:由于幂函数在第一象限的图象趋势表明函数在(0,+∞)上单调递减,此时只需保证mn<0,即mn <0,有y =x m n =x -|m ||n |;同时函数只在第一象限有图象,则函数的定义域为(0,+∞),此时|n |定为偶数,n 即为偶数,由于两个数互质,则m 定为奇数.答案:②8.(2009年高考福建卷改编)定义在R 上的偶函数f (x )的部分图象如图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是①y =x 2+1②y =|x |+1③y =⎩⎪⎨⎪⎧2x +1,x ≥0x 3+1,x <0④y =⎩⎪⎨⎪⎧e x ,x ≥0e -x ,x <0解析:∵f (x )为偶函数,由图象知,f (x )在(-2,0)上为减函数,而y =x 3+1在(-∞,0)上为增函数.答案:③9.(2010年安徽合肥模拟)已知函数图象C ′与C :y (x +a +1)=ax +a 2+1关于直线y =x 对称,且图象C ′关于点(2,-3)对称,则a 的值为__________.解析:∵C ′与C :y (x +a +1)=ax +a 2+1关于直线y =x 对称,∴C ′为x (y +a +1)=ay +a 2+1.整理得,y +1+a =1-ax -a.∵C ′关于点(2,-3)对称,∴a =2.答案:2 10.作下列函数的图象:(1)y =1|x |-1;(2)y =|x -2|(x +1);(3)y =1-|x ||1-x |;(4)y =|log 2x -1|;(5)y =2|x -1|.解:(1)定义域{x |x ∈R 且x ≠±1},且函数是偶函数.又当x ≥0且x ≠1时,y =1x -1.先作函数y =1x 的图象,并将图象向右平移1个单位,得到函数y =1x -1(x ≥0且x ≠1)的图象(如图(a)所示).又函数是偶函数,作关于y 轴对称图象,得y =1|x |-1的图象(如图(b)所示).(2)函数式可化为y =⎩⎨⎧(x -12)2-94 (x ≥2),-(x -12)2+94(x <2).其图象如图①所示.(3)函数式化为y =⎩⎪⎨⎪⎧1+x 1-x (x <0),1 (0≤x <1),-1 (x >1).其图象如图②所示.(4)先作出y =log2x 的图象,再将其图象向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方,即得y =|log2x -1|的图象,如图③所示.(5)先作出y =2x的图象,再将其图象在y 轴左边的部分去掉,并作出y 轴右边的图象关于y 轴对称的图象,即得y =2|x |的图象,再将y =2|x |的图象向右平移1个单位长度,即得y=2|x -1|的图象,如图④所示.11.已知函数f (x )=-a a x +a(a >0且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.解:(1)证明:函数f (x )的定义域为R ,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知,y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a.,f (1-x )=-a a 1-x +a =-a a a x+a =-a ·a x a +a ·a x =-a xa x +a .∴-1-y =f (1-x ).即函数y =f (x )的图象关于点(12,-12)对称.(2)由(1)有-1-f (x )=f (1-x ).即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.12.设函数f (x )=x +b ax -1(x ∈R ,且a ≠0,x ≠1a ).(1)若a =12,b =-32,指出f (x )与g (x )=1x 的图象变换关系以及函数f (x )的图象的对称中心;(2)证明:若ab +1≠0,则f (x )的图象必关于直线y =x 对称.解:(1)a =12,b =-32,f (x )=x -3212x -1=2x -3x -2=2+1x -2,∴f (x )的图象可由g (x )的图象沿x 轴右移2个单位,再沿y 轴上移2个单位得到,f (x )的图象的对称中心为点(2,2).(2)证明:设P (x 0,y 0)为f (x )图象上任一点,则y 0=x 0+bax 0-1,P (x 0,y 0)关于y =x 的对称点为P ′(y 0,x 0).由y 0=x 0+b ax 0-1得x 0=y 0+bay 0-1.∴P ′(y 0,x 0)也在f (x )的图象上.故f (x )的图象关于直线y =x 对称.。
高考数学第一轮复习系列讲座11--指数函数与对数函数
y = loga x
(0<a<1)
图像
定义域 值域
(0,+∞)
R
(0,+∞) (0,+∞)
R
R
单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数
过定点
(1,0) (1,0) (1,0)
函数值变 化情况
16
0<x<1时,y<0 x>1时,y>0
新疆 王新敞
奎屯
0<x<1时,y>0
x>1时,y<0
王新敞 w xckt@126. com
新疆 王新敞
奎屯
二、知识点归纳 新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞 w xckt@ 新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞 w xckt@
新疆 源头学子 小屋 http:// w w w . xj ktyg . com/ w xc/ 特级教师
王新敞 w xckt@126. com
新疆 王新敞
奎屯
三、题型讲解
新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞
w xckt@
新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞
w xckt@
例2 画出函数 y log 2 | x |的图象 ,
并由图象写出它们的单调区间.
解: 因为 f (x) log2 | x | log2 | x | f (x) , (x 0)
C2
CC1 所以函数是偶函数,它的图
1
指数函数与对数函数(复习)
y
y=x
y=a
x
y
y=a
x
y=x
(0,1)
y=logax
(1, 0)
(0,1)
o
o
x
(1, 0)
y=logax 0<a<1时
x
a>1时
二.例题和练习
1. 下列图象正确的是 ( )
y
y=10x 0 (A)
(0,1)
y
(0,1)
y=10-x
x
y=lg x
0 (B)
x
y
0 (1,0) (C)
y
y=lg x 0 (D)
x
x>1 则 y<0
3.对照比较,指数函数与对数函数的图象: 指数函数 y 图 象
y=a
(0,1)
x
对数函数 y
0
(1,0)
y=logax
0
x
x
性质
(1) 过(0,1)点 (2)a>1时 增函数 0<a<1 减函数
(1) 过(1,0)点 (2)a>1时 增函数 0<a<1 减函数
指数函数与对数函数 是互为反函数
(1,0)
x
x
2. 下列函数在
(0,+∞ )内是减函数的是(
(B) y=4x
x
3.5
)
(A) y=x2+2 (C) y=log 3. 比较大小
(D) y=log 1 x
3
(1) log 1 6 和 log 1 7
3 3
(2) 3.7
-2.3
和 3.7
-2.2
4. 求函数的定义域 (1) y=log 1
指数函数和对数函数复习(有详细知识点和习题详解)
指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。
高三第一轮数学复习知识点
高三第一轮数学复习知识点在高三数学的学习过程中,第一轮复习是非常关键的一步。
在这个阶段,学生们要回顾并巩固自己在之前学习中所掌握的数学知识,同时要注意查漏补缺,填平知识漏洞,为接下来的复习打下坚实的基础。
一、函数与方程函数与方程是高三数学的基础。
在这一部分中,学生们需要掌握函数的概念、性质以及基本的图像变换知识。
此外,还需要了解常见的一次函数、二次函数、指数函数、对数函数等函数的性质与特点,并能熟练解决相关的题目。
在方程的学习中,需要掌握一元一次方程、一元二次方程等常见方程的解法,并能灵活应用于实际问题的解决过程中。
二、数列与数列的求和数列是高中数学中的重点知识,也是数学建模的基础。
在数列的学习中,学生们需要了解等差数列、等比数列、斐波那契数列等常见数列的概念、性质以及特点,并能运用差分法、通项公式等方法解决数列的相关问题。
此外,数列的求和也是数学学习中的重点内容,学生们需要学会通过列式法、分组求和法等方法求解数列的和,并能理解这些方法的推导过程。
三、几何图形与几何推理几何学是数学学科的基础,也是高三数学复习中不可或缺的一部分。
在几何图形的学习中,学生们需要掌握平面几何和立体几何相关的基本概念、性质以及定理,并能够灵活运用这些知识解决相关的几何问题。
在几何推理的学习中,学生们需要理解各种推理方法的基本原理,并能通过逻辑推理解决几何问题。
四、概率与统计概率与统计是高中数学中的实际应用部分。
在概率的学习中,学生们需要了解基本概率的概念、性质以及计算方法,并能够应用概率理论解决生活中的实际问题。
在统计的学习中,学生们需要熟悉数据的收集、整理、分析等基本方法,并能够通过统计理论解决实际问题。
五、解析几何与立体几何解析几何是数学学科的重要分支之一,立体几何是几何学的重要内容之一。
在解析几何的学习中,学生们需要掌握坐标系的建立与运用、直线与曲线的方程等相关内容,并能熟练解决相关的几何问题。
在立体几何的学习中,学生们需要了解空间几何中的基本概念、性质以及相关定理,并能运用这些知识解决实际问题。
2024年高考数学第一轮复习重点总结
2024年高考数学第一轮复习重点总结第一章:函数与方程1. 函数的概念与性质;2. 一次函数与二次函数的基本性质与图像;3. 幂函数、指数函数、对数函数与三角函数的基本性质与图像;4. 常用函数的性质与应用;5. 一次方程、二次方程与方程的根与解法;6. 一元二次方程的解法及其应用。
第二章:图形的性质与变化1. 直线、抛物线、圆的基本性质与方程;2. 图形的平移、翻折、旋转与对称性;3. 图形的相似、全等与尺类定理;4. 平面直角坐标系与空间直角坐标系的基本概念与表示方法;5. 平面图形与解析几何的应用。
第三章:数列与数理统计1. 数列的概念、基本性质与表示方法;2. 等差数列与等比数列的通项公式与性质;3. 数列的求和公式与性质;4. 概率与统计的基本概念与应用。
第四章:平面向量与解析几何1. 平面向量的概念、基本运算与线性运算;2. 平面向量的共线与共面性质;3. 平面向量的数量积与向量积的定义与性质;4. 平面向量的正交与垂直性质;5. 解析几何的基本概念与性质;6. 解析几何的定位与判定问题。
第五章:立体几何1. 空间几何体的基本概念与性质;2. 直线与平面的关系与性质;3. 立体几何体的表面积与体积计算;4. 空间向量与几何关系的应用。
第六章:三角函数与三角方程1. 三角函数的基本性质与图像;2. 三角函数的定义与公式;3. 三角函数的图像变换与性质;4. 三角方程与三角恒等式的解法与应用。
第七章:导数1. 函数的导数的概念与性质;2. 函数的导数的基本运算与求导法则;3. 高阶导数与隐函数求导;4. 函数的极值与最值;5. 函数的单调性与凹凸性;6. 函数的导数与函数的图像。
第八章:微分与应用1. 函数的微分的概念与性质;2. 微分的基本运算与微分法则;3. 高阶微分的计算;4. 函数的近似与应用。
第九章:积分与应用1. 不定积分的定义、性质与基本运算;2. 定积分的定义、性质与基本运算;3. 反常积分的计算;4. 函数的定积分与曲线下面积;5. 积分与微分的关系与应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数指数幂的运算【知识要点】1、整数指数幂运算性质(1)=⋅nma a ),(Z n m ∈ (2) =n maa ),(Z n m ∈(3) =n m a )( ),(Z n m ∈ (4)=⋅nb a )( )(Z n ∈ (5) 根式运算性质 ⎩⎨⎧=为偶数为奇数n a n a a nn,,2、正数的正分数指数幂的意义n m nm a a= (n m a ,,0>∈N *,且)1>n注意:(1)分数指数幂是根式的另一种表示形式;(2)二是根式与分数指数幂可以进行互化. 3、对正数的负分数指数幂和0的分数指数幂作如下规定.(1)nm nmaa1=- (n m a ,,0>∈N *,且)1>n(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义. 4、有理指数幂的运算性质(1)∈>=⋅+s r a aa a sr sr,,0(Q )(2)∈>=s r a a a rss r ,,0()(Q ) (3) ∈>=⋅s r a b a b a rrr,,0()(Q )注意:若p a ,0>是一个无理数,则pa 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用 求值:4332132)8116(,)41(,100,8---,23)425(-,423981⨯,63125.132⨯⨯计算:[].01.016)2()87()064.0(2175.0343031-++-+-----1.化简:(1)2932)- (2 (3)2.计算求值()()().322510002.0833012132-+--+⎪⎭⎫⎝⎛----3.÷--)8)(3(31212132b a b a )6(6561b a -4.化简代数式.21122112112----------+---+-b a b a b a b b a a5.化简计算:(1))2(4121y x -)2(4121y x + (2)4234321)(k n m -6.已知22121=+-aa ,求下列各式的值。
(1);1-+a a (2);22-+a a7.已知32x a b --=+, 的值.指数函数图像及其性质【知识要点】一、指数函数的概念、图象和性质定义函数x y a =(0a >,且1)a ≠叫做指数函数.指数函数图象分类1a > 01a <<指数函数图象特征向x 轴、y 轴正半轴方向无限延伸图象关于原点和y 轴都不对称函数图象都在x 轴上方 函数图象都过定点(0,1)自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 图象上升趋势是越来越陡图象下降趋势是越来越缓指数函数性质函数的定义域为R 非奇非偶函数 函数的值域为()0,+∞在定义域上是增函数在定义域上是减函数1a ,0x x >> 1a ,0x x <> 1a ,0x x <<1a ,0x x ><函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;例、比较大小①35.27.1,7.1②2.01.08.0,8.0-- ③1.33.09.0,7.1例、已知[]2,3-∈x ,求)(x f =12141+-x x 的最小值与最大值。
例、设)(x f = )(1222R x a a xx ∈+-+⋅,试确定a 的值,使)(x f 为奇函数。
【课后作业】1、下列哪个函数是指数函数?( ) A .13-=x y B .3x y = C .xy -=2D .x y 3log =2、)(x F =(+1)0)(()122≠⋅-x x f x 是偶函数,且)(x f 不恒等于零,则)(x f ( ) (A )是奇函数 (B )可能是奇函数,也可能是偶函数 (C )是偶函数 (D )不是奇函数,也不是偶函数 3、练习:比较下列各组数中各个值的大小: (1)4.3377与 (2)4.333232--⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛与4、函数1a y x -=的定义域为5、已知指数函数)1,0()(≠>=a a a x f x且的图像经过点)9,2(,画出)(x f 的函数图像,并求.)3(),1(),0(的值-f f f6.若函数=y xx234⋅-3+的值域为[]7,1,试确定x 的取值范围。
7、 已知函数)(x f =)1(11>+-a a a xx , (1) 判断函数的奇偶性;(2)求该函数的值域;(3)证明)(x f 是R 上的增函数。
【典型例题】例1.下列以x 为自变量的函数中,是指数函数的是 ( )A .(4)xy =- Bx y π= C .4xy =- D.2,(01)x y a a a +=>≠且例2.若指数函数xa y )2(-=是单调递减函数,则a 的取值范围是( );,)(3.25.01.31.33;)()((24.03.032,32)4--.2.03.251.05.0--,)(A .()1,0∈aB .()∞+∈,1aC .()3,2∈aD .()∞+∈,3a例3.若2)41(<m,则m 的取值范围是例4.指数函数()x f x a =图像过点)161,2(,令xa x g =)(,求的)(x g 定义域和值域例5、若)10(,)(≠<=a a x f x,写出下列函数的图像所经过的定点的坐标。
⑴11)(+=x ax f __________;⑵1)(12+=-x ax f __________;⑶13)(+-=x a x f __________。
例6、求下列函数的定义域和值域 (1)1412+-=x y(2)22)21(x x y -=例7、求函数222)21(+-=x x y 的单调区间、定义域和值域.例8、解关于x 的不等式x x x 31122)51(52+-+>例9、已知函数3)21121()(x x f x+-=, (1)求)(x f 的定义域;(2)判断函数的奇偶性; 【经典练习】1、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x - 2、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>3、函数2121xx y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 4、已知函数323+⋅=xy 的值域为[]51,9,则x 的取值范围为5、指数函数xa y =在[0,1]上的最大值与最小值的和为3,则函数xay )1(=在[0,1]上的最大值与最小值的差为6、在下列图中,二次函数bx ax y +=2与指数函数y =xab )(的图象只可为( )7、若函数1-+=b a y x(0a >且1≠a )的图象经过第二、三、四象限,则A .10<<a 且0>bB . 1>a 且0>b 1>aC .10<<a 且0<bD . 1>a 且0<b 8、要得到函数xy 212-=的图象,只需要将指数函数xy )41(=的图象向 (右或左)平移 个单位。
9、已知函数)(x f =21)31(x -,其定义域是____________,值域是___________.10、解方程122+x -9·x2+4=011、已知函数x xx f )21(2)(-=在定义域[a a2,623--]上具有奇偶性;(1)求出a 的值,并判断它的奇偶性; (2)求出此函数的值域 【课后作业】1、集合A=},2{R x y y x∈=, B=},{2R x x y y ∈=,则⊂ B. A ⊆B C. A ⊃B =B 2、函数212x y -=___________,值域______________.3、设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )≠ ≠A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f nnn4、已知2)(xx e e x f --=,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数5、若指数函数)10(<<=a a y x在[-1,1]上的最大值与最小值的差是1,则底数a 为A.251- B. 251+- C. 451+ D. 451+- 6、已知函数)(x f 的定义域是(1,2),则函数)2(xf 的定义域是 .7、求下列函数的定义域 (1)21221-⎪⎭⎫ ⎝⎛=x y (2)352218+-⎪⎭⎫ ⎝⎛-=x x y8、已知10<<a ,试比较aaaa 111++和的大小.9、已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值,并求出函数的最小值.对数与对数运算【知识要点】1、 对数的概念:一般地,如果)1,0(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做对数的底数,N 叫做真数. 2、 对数与指数之间的相互转化,log x a a N N x =⇔= 3、 对数的运算法则:如果且,0>a 1≠a ,那么,0,0>>N M法则1:;log log )(log N M N M a a a +=⋅法则2:log log log aa a MM N N=- 法则3:;log log M n M a na =法则4: M pM a a p log 1log = 4、 常用对数和自然对数对于对数N x a log =)1,0(≠>a a 且,当: 底数10=a 时,叫做常用对数,简记N lg底数e a =,叫做自然对数,记作N ln ,其中e 是个无理数,e ≈ 28……. 5、 换底公式: aNN b b a log log log =(0,>b a 且1,≠b a )例、将下列指数式化为对数式,对数式化为指数式:(1)54=625 (2)61264-=(3)1() 5.733m= (4) 3log 92= (5)5log 1253= (6)12log 164=-例、把下列对(指)数式写成指(对)数式:(1)lg 0.012=- (2)ln10 2.303=(3)5=xe (4)2310=k例、求下列各式中x 的值:642(1)log x 3=- log 86x =(2) lg100x =(3) 2ln e x =(4)-:【经典练习】1、把下列对数式写成指数式:3(1)log 92= 5(2)log 1253= 21(3)log 24=- 31(4)log 481=-2、把下列指数式写成对数式(1)32=8 (2)52=32 (3)12-=21(4)312731=-3、求下列各式的值:51log 25()= 212log 16()=3lg1000()= lg 0.001(4)=(5) 15log 15= (6)4.0log 1 = (7)9log 81= 4、已知==3log ,9log 1818则a===12lg ,6lg ,2lg 则已知b a ,=24lg若=-=6log 28log ,2log 333则m 5.化简:()281lg500lg lg 6450lg 2lg552+-++【课后作业】1、若,0)(log log log 2137=⎥⎦⎤⎢⎣⎡x 则x =2、若,)(log 21x x f =则=)21(f3、已知y x a a ==3log ,2log ,则yx a +2=4、若b a lg ,lg 是方程01422=+-x x 的两个实数根,则2)(lg )lg(ba ab ⋅=5、计算求值(1)20lg 5lg 2lg 5lg 2+⋅+ (2)16lg 2)6(lg 29lg 4lg 2+-++6、(1)已知518,9log 18==ba ,试用b a ,表示25log 95(2)设b a ==5log ,9log 28,试用b a ,表示2log 15对数函数图像及性质【知识要点】1.对数函数的定义:形如函数 x y a log =)10(≠>a a 且叫做对数函数. 2.对数函数性质列表:图 象1a >01a <<(1,0)(1,0)1x =1x =log a y x =log a y x =3、数的运算法则:如果且,0>a 1≠a ,那么,0,0>>N M 法则1:;log log )(log N M N M a a a +=⋅法则2:log log log aa a MM N N=- 法则3:;log log M n M a na =法则4:;log 1log M nM a a n =(思考:=n a M p log ) 4、公式换底公式:log log log a b a NN b=,其中0,1,0,1,0a a b b N >≠>≠>。