三角函数和向量的综合
三角函数与向量综合测试
三角函数与向量综合测试一、选择题:1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A CD .A=B=C2.向量a ,b 的坐标分别为(1,-1),(2,3),则a ﹒b = ( )A.5B.4C.-2D.-13.已知sin A =21, 那么cos(A -23π)= ( ) A.-21 B. 21 C.-23 D. 23 4.已知角α的终边经过点(3,-4),则sin α+cos α的值为 ( ) A.-51 B. 51 C. ±51 D. ±51或±57 5、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为 ( ) A .-2 B .2 C .2316 D .-23166、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .2B 2C .12 D . 12-7、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象 ( )A .向左平移4π个单位 B 向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位8 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π+=x y 的图象( ) A .关于原点对称 B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称 11.若向量()1,1a = ,()1,1b =- ,()1,2c =- ,则c = ( ).A 1322a b -+ .B 1322a b - .C 3122a b - .D 3122a b -+ 12. 已知向量(1,2)a = ,2(2,)b m = ,若0=⋅→→b a ,则 m 的值为 ( )A. 2或-1B. -2或1C. ±2D. ±1二、填空题13.向量 a ,b 满足︱a ︱=3,︱b ︱=4,︱a +b ︱=5,则︱a -b ︱=_____14.cos 2x+cos 2(x+1200)+cos 2(x+2400)的值是________15. 已知|a |=4,|b |=5, a 与b 的夹角为60°,且(k a +b )⊥(a -2b ), 则k = ___16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 三、解答题:17.求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18.已知3tan 2απαπ=<<,求sin cos αα-的值.19.已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+。
向量与三角函数的综合应用
2
解法4 解法4: 3 6 1 2 (sin θ + cos θ ) = sin θ + cos θ =± sin θ ⋅ cos θ = 2 2 ∴ ∴ 4 (sin θ − cos θ )2 = 1 sin θ − cos θ =± 2 sin 2 θ + cos 2 θ = 1 2 2 6+ 2 6− 2 sin θ = sin θ = 4 4 或 ∴ cos θ = 6 − 2 cos θ = 6 + 2 4 4 6+ 2 6− 2 sin θ = − sin θ = − 4 4 或 6− 2 cos θ = − cos θ = − 6 + 2 4 4
例2:已知 a = (cos 2α , sin α ), b = (1,2 sin α − 1), α ∈ ( , π ) : 2 2 π a ⋅ b = , 求 cos( α + ) 解: a ⋅ b = cos 2α + sin α ( 2 sin α − 1) 2 = 1 − sin α = 5 4 π 3 ∴ sin α = ,因为 α ∈ ( , π ) ∴ cos α = − 5 2 5 π π π ∴ cos(α + ) = cos α cos − sin α sin
∴ tan θ = 2 ± 3
小结:1.向量的坐标运算。 小结:1.向量的坐标运算。 向量的坐标运算 2.三角函数的化简 计算。 三角函数的化简、 2.三角函数的化简、计算。 三角恒等变换、齐次式问题) (三角恒等变换、齐次式问题) 转化思想方法的应用。 3. 转化思想方法的应用。
本节目标: 本节目标
• 1.向量运算与三角函数求值的综合。 向量运算与三角函数求值的综合。 向量运算与三角函数求值的综合 • 2.向量运算与三角函数化简的综合。 2.向量运算与三角函数化简的综合 向量运算与三角函数化简的综合。 • 3.转化思想方法的应用。 转化思想方法的应用。 转化思想方法的应用
专题二 三角函数与平面向量的综合应用
的参数 A,ω ,φ,从图象的特征上寻找答案,A 主要由最值 确定,ω 是由周期确定,周期通过特殊点观察求得,如相邻 两个最大、最小值点相差半个周期,φ 可由点在函数图象上 求得,确定 φ 值时,注意它的不惟一性.如果函数的最大值 与最小值不互为相反数,说明解析式为 y=Asin( ω x+φ)+k 的形式.设最大值为 m,最小值为 n,则 A+k=m,-A+k m-n m+n =n,从而 A= 2 ,k= 2 .
π 由图象最高点为 , 3得 6
(2)由 (1)知,函数的最小值为- 3; π π π 由 2x+ =2kπ- ,k∈Z,得 x=kπ- ,k∈ Z, 6 2 3 π ∴函数取得最小值时自变量 x 的集合为x|x=kπ- , k∈ Z. 3
探究提高
确定函数关系式 y=Asin( ω x+φ)就是确定其中
题型分类 深度剖析
题型一 三角函数的化简求值问题 3 1 1 例1 求 2 - 2 · 的值. sin 140° cos 140° 2sin 10°
思维启迪 从角、函数名称、式子结构入手找其
特征,构造“相消”、“约分”或构造特殊角.
3cos2140° - sin2140° 1 解 原式= · sin2140° cos2140° 2sin 10° 3cos240° - sin240° 1 = · sin240° cos240° 2sin 10° ( 3cos 40° - sin 40° )( 3cos 40° + sin 40° ) 1 = · 1 2 2sin 10° sin 80° 4 2sin(60° - 40° )· 2sin(60° + 40° ) 1 = · 1 2 2sin 10° cos 10° 4 8sin 20° sin 100° 16sin 10° · cos210° = = = 16. cos210° · sin 10° cos210° · sin 10° π 探究提高 若 α+β=π,则 sin α=sin β;若 α+β=2,
三角函数与向量结合的题型
三角函数与向量结合的题型三角函数与向量结合的题型是高中数学中比较常见的一种,它涉及到了三角函数和向量两个概念,需要学生掌握这两个概念的相关知识,才能够顺利地解决这类问题。
首先,我们来看看什么是三角函数。
三角函数是指正弦函数、余弦函数、正切函数等这些以角度为自变量的函数。
在三角函数中,最基本的是正弦函数和余弦函数。
正弦函数的定义域是所有实数,值域是[-1,1];余弦函数的定义域也是所有实数,值域也是[-1,1]。
这两个函数在几何上可以理解为一个单位圆上某个点的纵坐标和横坐标。
接下来,我们再来看看向量。
向量是一个有大小和方向的量,用箭头表示。
在平面直角坐标系中,一个向量可以表示为一个有序数对(x,y),其中x表示向量在x轴上的投影,y表示向量在y轴上的投影。
向量的长度可以用勾股定理求出,即∣∣a ∣∣=√(x^2+y^2)。
那么,三角函数与向量结合的题型怎么解决呢?我们可以通过将向量的坐标表示为三角函数的形式来简化问题。
例如,对于一个长度为r、与x轴夹角为θ的向量a,它的x轴投影为r*cosθ,y轴投影为r*sinθ。
因此,我们可以将a表示为a=r(cosθ,sinθ)。
这样,我们就可以将向量的坐标表示为三角函数的形式了。
接下来,我们来看几个例子。
例1:已知向量a=(3,4),求向量a与x轴正方向所成的角度。
解:根据勾股定理可得∣∣a∣∣=5。
因此,在单位圆上,a对应的点为(3/5,4/5)。
根据正切函数的定义可得tanθ=y/x=4/3。
因此,θ=tan^-1(4/3)≈53.13°。
例2:已知向量a=(2,3),向量b=(4,-1),求向量a与向量b之间的夹角。
解:根据向量内积的定义可得a·b=2*4+3*(-1)=5。
又因为a·b=∣∣a∣∣*∣∣b∣∣*cosθ,所以cosθ=a·b/(∣∣a∣∣*∣∣b∣∣)=5/(√13*√17)。
因此,θ=cos^-1(5/(√13*√17))≈29.46°。
专题03 三角函数与平面向量综合问题(答题指导)(解析版)
专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
三角函数与向量综合题
题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的值依次为 ( )A .π12,-3B .π3,3C .π3,-3D .-π12,3 【分析】 根据向量的坐标确定平行公式为⎩⎨⎧ x =x '+π6y =y '+3,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】 由平移向量知向量平移公式⎩⎨⎧ x '=x -π6y '=y -3,即⎩⎨⎧ x =x '+π6y =y '+3,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C. 【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin 2A =34, 又A 为锐角,所以sinA =32,则A =π3. (Ⅱ)y =2sin 2B +cos C -3B 2=2sin 2B +cos (π-π3-B)-3B 2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B =32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2. 【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值. 【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果. 【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0.由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12. ∵α∈(3π2,2π),tanα<0,故t anα=12(舍去).∴tanα=-43. (Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255, ∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法. 题型四 三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=-35. (Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π, 由cos(α-β)=-35,得sin(α-β)=45, 又sin β=-513,∴cos β=1213, ∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365. 点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx ,由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1. (Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1, 当sin(x +π4)=-1时,f(x)的最小值为1- 2. 点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),a =23,且→m·→n =12. (Ⅰ)若△ABC 的面积S =3,求b +c 的值.(Ⅱ)求b +c 的取值范围.【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12, ∴-cos 2A 2+sin 2A 2=12,即-cosA =12, 又A ∈(0,π),∴A =2π3. 又由S △ABC =12bcsinA =3,所以bc =4, 由余弦定理得:a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4. (Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3, ∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4]. [点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.。
三角函数与平面向量综合测试题
约稿:三角函数与平面向量综合测试题广东省珠海市斗门区第一中学 于发智 519100 jianghua20011628@一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,恰有..一项..是符合题目要求的。
1.下列函数中,周期为2π的是( ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >3. 条件甲a =+θsin 1,条件乙a =+2cos2sin θθ,那么 ( )A .甲是乙的充分不必要条件B .甲是乙的充要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =5. 若函数f (x )=3sin21x , x ∈[0, 3π], 则函数f (x )的最大值是 ( ) A.21 B.32 C.22 D.23 6. (1+tan25°)(1+tan20°)的值是 ( ) A.-2 B.2 C.1 D.-1 7.α、β为锐角a =sin(βα+),b =ααcos sin +,则a 、b 之间关系为 ( )A .a >bB .b >aC .a =bD .不确定8. 下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|.B ACD③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 3632sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 ① ④ ((写出所有真命题的编号))9. )sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则 ( ) A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数 C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数10. 使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为( ) A .π25B .π45 C .πD .π2311、在直角坐标系xOy 中,,i j分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC中,2AB i j =+ ,3AC i k j =+,则k 的可能值有 ( ) A 、1个 B 、2个 C 、3个 D 、4个12. 如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ( )(A )32 (B )364(C )4173 (D )3212二、填空题:本大题共4小题,每小题4分,共16分。
(完整版)向量与三角,不等式等知识综合应用
第19讲 向量与三角、不等式等知识综合应用常熟市中学 蔡祖才一、高考要求平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=02.函数y =sin x 的图象按向量a =(32π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +23.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为.4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN u u u u r u u u r与的夹角余弦值为 .四、典型例题例1 已知a =(3sin ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω 例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ ( )(A)6π (B) 4π (C) 3π (D) 2π例3 设向量a r =(sin x ,cos x ),b r =(cos x ,cos x ),x ∈R ,函数f(x)=a r ·(a r +b r).使不等式f (x )≥23成立的x 的取值集合为 .例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅u u u r u u u r u u u r+的最小值是 .例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π,1),且当x ∈[0, 4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |=,5求cos()28θπ+的值.第19讲 向量与三角、不等式等知识综合应用 过关练习1.已知i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r ,且||||a b r r与的夹角为锐角,则实数λ的取值范围是( )(A )),21(+∞ (B ))21,2()2,(-⋃--∞ (C )),32()32,2(+∞⋃- (D ))21,(-∞2.在直角坐标系中,O 是原点,OQ =(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x =3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )(A ) 4 (B ) 5 (C ) 26 (D )263.已知||2||0a b =≠r r ,且关于x 的方程2||0x a x a b ++⋅=r r r 有实根,则a r 与b r 的夹角的取值范围是 ( )(A )[0,6π] (B )[,]3ππ (C )2[,]33ππ (D )[,]6ππ 4.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=u u u r u u u r,若OP AB PA PB ⋅≥⋅u u u r u u u r u u u r u u u r,则实数λ的取值范围是 ( )(A )112λ≤≤ (B )11λ-≤≤(C )1122λ≤≤+ (D )1122λ-≤≤+ 5. 已知向量a r =(cos α,sin α),b r =(cos β,sin β),且a b ≠±r r ,那么a b +r r 与a b-r r的夹角的大小是 .6. 已知向量].2,0[),2sin ,2(cos ),23sin,23(cos π∈-==x x x x x 且若||2)(x f +-⋅=λ的最小值为32-,则λ的值为 .7.已知A 、B 、C 是ABC ∆三内角,向量(m =-u r(cos ,sin ),n A A =r 且 1.m n ⋅=u r r(Ⅰ)求角A ; (Ⅱ)若221sin 23cos sin BB B+=--,求tanC . 8.设函数f (x )=a b ⋅r r ,其中向量a r =(2cos x ,1),b r=(cos x ,3sin2x ),x ∈R .(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c r =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.第19讲 向量与三角、不等式等知识综合应用 参考答案课前训练部分1.C2.D3.4.1517典型例题部分例1 A例2 1111sin cos (1cos )(1sin )222ABC S θθθθ∆=----- 当2θπ=即2πθ=时,面积最大.例3 3,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭例4 如图,OM OA OC OB OA -≥-=⋅⋅=+⋅2)(=.222-=⋅- 即)(+⋅的最小值为:-2.例5 (Ⅰ)由题意知⎩⎨⎧=+=+,1,1b a c a ∴b =c =1-a , ∴f (x )=a +2(1-a )sin(2x +4π).∵x∈[0,4π], ∴2x +4π∈[4π,4π3].当1-a >0时,由a +2(1-a )=22-1, 解得a =-1; 当1-a <0时, a +2(1-a )·22=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +4π). (Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8π个单位,再向下平移一个单位就可以得到f (x )的图象. 因此,将f (x )的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数g(x )=22sin2x 的图象.故m u r =(8π,1)是满足条件的一个向量.例6 (cos sin sin )m n θθθθ+=-++u r rm n +=u r r由已知m n +=u r r ,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+- 过关练习部分1.B2.C3.B4.B 5、2π6. 217(Ⅰ)∵1m n ⋅=u r r∴(()cos ,sin 1A A -⋅= cos 1A A -=12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭ ∵50,666A A ππππ<<-<-<∴66A ππ-= ∴3A π= (Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2tan tan 20B B --= ∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去 ∴tan 2B =8.(Ⅰ)依题设可知,函数的解析式为f (x )=a b ⋅r r =2cos 2x +3sin2x =1+2sin(2x +6π).由1+2sin(2x +6π)=1-3,可得三角方程sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π. (Ⅱ)函数y =2sin2x 的图象按向量c r=(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f(x)的图象.由(1)得 f(x)=2sin2(x +12π)+1. ∵|m |<2π,∴12m π=-, 1.n =。
三角函数与向量的基本概念及综合应用
向量和三角函数的基本概念与应用一、 向量的基本概念:1、 向量、平行向量(共线向量)、零向量、单位向量、相等向量:2、 向量的表示:→AB 、→a 、区别于|→AB|、|→a |3、 向量的加法、减法:平行四边形法则和三角形法则★ 例题1、一艘船从A 点出发以2 3 km/h 的速度向垂直于对岸的方向行驶,同时河水的速为2km/h ;求船实际航行的速度大小和方向。
(答案:4km/h ,方向与水流方向成60°角)★【※题2】①设O 为平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足→OP=→OA+λ(→AB+→AC),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( D )A 外心B 垂心C 内心D 重心 ②将上题中的条件改为→OP=→OA+λ( →AB |→AB| + →AC|→AC|)则应选( C )★ 例题3:(1)、化简下列各式:①→MN+→NM ;②→FD+→DE-→EF ;③→AB+→BC+→CA ;④(→AB-→DC )+(→DA-→CB )其中结果为0的有①③④( 2)、在平行四边形ABCD 中,→AB=→a ,DB=→b ,则有:→AD=→a -→b ,→AC=→a +→a -→b4、 实数与向量的积、平面向量基本定理、平面向量的坐标表示:① 注意点的坐标和向量的坐标的差别:②向量的平等行和垂直坐标公式:5、向量的数量积的概念,以及向量平行、垂直、长度、夹角:★例1、已知平行四边形OADB 中,→OA=→a ,→OB=→b ,AB 与OD 相交于点C ,且|BM|=13|BC|,|CN|=13|CD|,用→a 、→b 表示→OM 、→ON 、和→MN 。
★ 例2、求证;G 为△ABC 的重心的充要条件是:→GA+→GB+→GC=0★例3、已知AD 、BE 分别是△ABC 的边BC 、AC 上的中线,→AD=→a ,→BE=→b ,则→BC=____★ 例4、①已知等差数列{a n }的前n 项之和为S n ,若M,N,,P 三点共线,O 为坐标原点,且→ON=a 31→OM+a 2→OP(直线MP 不过点O ),则S 32等于多少?②(2006年江西高考)已知等差数列{a n }的前n 项之和为S n ,若→OB=a 1→OA+a 200→OC,且=A,B,C 三点共线(该直线不过点O ),则S 200等于( )A 100B 101C 200D 201★例5、①若→a 的起点和终点坐标分别为(1,3),(4,7),则|→a |=_____② 已知→a =(1,2),→b =(x,1),且→a +2→b 与2→a -→b 平行,则x 之值为____③ 已知→a =(3,4),→a ⊥→b ,且→b 的起点坐标为(1,2),终点坐标为 (x,3x),则→b 等于_____ ④ 已知点M (3,-2),N (-5,-1),且→MP=12→MN ,则点P 的坐标是____(答案:(-1,-32)巩固练习:(一)平面向量的坐标运算规律:①设→a =(x 1,y 1),→b =(x 2,y 2),则→a +→b =_________;→a -→b =__________,λ→a =______;②|→a |=→a 2 =x 12+y 12;又→a ²→b =|→a |²|→b |²cos<→a ,→b >=x 1x 2+y 1y 2则cos<→a ,→b >= →a ²→b |→a ||→b = x 1x 2+y 1y 2 x 12+y 12 ²x 22+y 22 ; ③若→a ∥→b ⇔x 1y 2-x 2y 1=0; 若→a ⊥→b ⇔x 1x 2+y 1y 2=0,★例1、 ① 已知→a =(3,5) → b=(2,3),→c =(1,-2),求(→a ²→b )²→c (答案:(21,-42))②已知→a =(3,-1),→b =(-1,2),则-3→a -2→b 的坐标为_____(答案:(-7,-1)) ③已知|→a |=4,|→b |=3,(2→a -3→b )²(2→a +→b )=61,求→a 与→b 的夹角.(为120°) ④已知|→a |=2,|→b |=9, →a ²→b =-542,求→a 与→b 的夹角.(为135°)★ 例2、①已知→a =(1,2),→b =(x,1)且→a +2→b 与2→a -→b 平行,则x=_____(答案:21)②已知|→a |=2,|→b |=1, →a 与→b 的夹角为3π,求向量2→a +3→b 与3→a -→b 的夹角的余弦值.(答案:2837 ²31 );③已知向量→a =(cos α,sin α),→b =(cos β,sin β),且→a ≠±→b ,则→a +→b 与→a -→b 的夹角大小是____(90°)④已知向量→a 与→b 的夹角为120°,且|→a |=3,|→a +→b |=13 ,则|→b |=_____★例3已知→a =(1,2),→b =(-3,2),当k 为何值时,①k →a +→b 与→a -3→b 垂直?②k →a +→b 与→a -3→b 平行,平行时它们是同向还是反向?(解:①k=19; ②k=-1/3,反向.)★例4:①若向量→a +3→b 垂直于向量7→a -5→b ,且向量→a -4→b 垂直于向量7→a -2→b ,求向量→a 与→b 的夹角大小.(答案:60°)②已知向量→a =(2,7),→b =(x,-3),当→a 与→b 的夹角为钝角时,求出x 的取值范围;若→a 与→b 的夹角为锐角时,问x 的取值范围又为多少?(答案:为钝角时x<212≠-67; 为锐角时x>212)★例5、已知→a =(cos x 2,sin x 2),→b =(sin 3x 2,cos 3x2),x ∈[0,2π],①求→a ²→b ;②求|→a +→b |,③设函数ƒ(x)=→a ²→b+2|→a +→b |,求出ƒ(x )的最大值和最小值。
向量和三角函数综合题
向量和三角函数综合题引言向量和三角函数是数学中常见且重要的概念,它们在物理学、几何学、工程学等领域都有广泛的应用。
本文将介绍向量和三角函数的基本概念和性质,并通过一些综合题目来加深理解和应用。
向量的基本概念什么是向量向量是由大小和方向共同决定的量,可以用有向线段表示,其中起点和终点分别称为向量的始点和终点。
通常用小写字母表示向量,如a、b等。
向量的表示方法向量可以用矩阵或坐标表示。
如果一个向量在二维坐标系中,可以用二维列向量表示;如果一个向量在三维坐标系中,可以用三维列向量表示。
向量的运算向量之间可以进行加法、减法和数量乘法。
向量的加法和减法可以通过将向量的始点与终点相连得到,而数量乘法就是将向量的长度进行比例缩放。
向量的数量特征向量的数量特征包括模长、方向角和方向余弦。
模长表示向量的长度,方向角表示向量与正方向的夹角,而方向余弦就是向量的方向角的余弦值。
三角函数的基本概念什么是三角函数三角函数是描述角度关系的函数,主要包括正弦、余弦和正切函数。
它们在三角形的计算和周期性变化的问题中经常出现。
正弦函数正弦函数在数学上表示为sin(x),其中x为角度。
正弦函数的值域在[-1, 1]之间,当x为0、π、2π等整数倍的π时,函数的值为0,这也是函数图像上的极值点。
余弦函数余弦函数在数学上表示为cos(x),其中x为角度。
余弦函数的值域也在[-1, 1]之间,当x为π/2、3π/2、5π/2等奇数倍的π/2时,函数的值为0,极值点出现在函数图像的波峰和波谷处。
正切函数正切函数在数学上表示为tan(x),其中x为角度。
正切函数的值域为全体实数,当x为π/2、3π/2、5π/2等奇数倍的π/2时,函数没有定义。
三角函数的性质三角函数有很多重要的性质,包括周期性、奇偶性、和差公式、倍角公式、半角公式等。
这些性质在计算中经常用到,对于解题非常有帮助。
向量和三角函数的综合应用向量与三角函数的关系向量和三角函数在很多应用中是密切相关的。
三角函数与平面向量的综合应用
ʏ山东省威海市第二中学丛丽伟三角函数与平面向量之间的交汇与综合问题,一直是高考数学试卷中比较常见的一类热点问题,通过平面向量的工具性加以转化问题,结合三角函数中的概念及相应公式加以恒等变换,有时涉及正㊁余弦定理等相关知识,用来综合考查三角函数的基础知识㊁基本公式㊁基本技能与基本应用等㊂一㊁三角函数的求值与平面向量的综合以平面向量为载体,利用诱导公式㊁同角三角函数关系式㊁两角和与差的三角函数及倍角公式等解决三角函数中的求值问题,是高考的重要考向,考查同学们分析问题㊁解决问题的能力㊂例1已知向量m=(s i n x,3c o s x),n=(s i n x,s i n x),函数f(x)=m㊃n㊂(1)求fπ12的值;(2)当xɪ0,π2时,求函数f(x)的最大值与最小值㊂分析:(1)根据题设条件,利用平面向量的数量积公式,通过数量积的坐标运算来构建函数f(x)的解析式,把x=π12代入即可;(2)利用题设中x的取值范围所对应角的取值范围,结合三角函数的图像与性质来确定三角函数在给定区间上的最大值与最小值㊂解:(1)依题意可得f(x)=m㊃n=(s i n x,3c o s x)㊃(s i n x,s i n x)=s i n2x+3c o s x s i n x=1-c o s2x2+32s i n2x=32s i n2x-12c o s2x+12=s i n2x-π6+12,故fπ12=s i n2ˑπ12-π6+12=12㊂(2)当xɪ0,π2时,有2x-π6ɪ-π6,5π6㊂故当2x-π6=π2,即x=π3时,f(x)m a x=s i nπ2+12=1+12=32;当2x-π6=-π6,即x=0时,f(x)m i n=s i n-π6+12=-12+12=0㊂规律方法:平面向量在三角函数求值中的应用步骤:(1)利用平面向量的基本性质㊁运算公式㊁数量积等构建对应的三角函数关系式,特别是涉及向量的平行与垂直关系等;(2)利用三角恒等变换公式,以及题设条件中的角的取值限制等,通过三角函数的图像与性质来分析与求解㊂二㊁三角函数的性质与平面向量的综合以平面向量的坐标运算为载体,引入三角函数,通过三角恒等变换化为一个角的三角函数,重点考查三角函数的单调性㊁周期性㊁最值㊁取值范围及三角函数的图像变换等㊂例2已知向量m=(s i n x,-1),n=c o s x,32,函数f(x)=(m+n)㊃m㊂(1)求函数f(x)的最小正周期及单调递增区间;(2)当xɪ0,π2时,求函数f(x)的值域;(3)将函数f(x)的图像左移3π8个单位32解题篇创新题追根溯源高考数学2024年1月长度后得函数g (x )的图像,求函数g (x )在-π3,π3上的最大值㊂分析:(1)根据题设条件,通过向量的坐标运算及数量积公式,构建三角函数f (x )的解析式,并通过三角恒等变换转化为正弦型函数,进而求解对应的基本性质;(2)结合题设条件中角的取值范围,通过三角函数的图像与性质来确定函数的最值,进而得以确定函数f (x )的值域;(3)利用三角函数图像的平移变换可得函数g (x )的解析式,进而利用三角函数的图像与性质来求解最大值问题㊂解:(1)由已知可得f (x )=(m +n )㊃m =s i n x +c o s x ,12㊃(s i n x ,-1)=s i n 2x +s i n x c o s x -12=12s i n 2x -12c o s 2x =22s i n 2x -π4㊂故f (x )的最小正周期T =2π2=π㊂由2k π-π2ɤ2x -π4ɤ2k π+π2,k ɪZ ,可得k π-π8ɤx ɤk π+3π8,k ɪZ ,所以函数f (x )的单调递增区间是k π-π8,k π+3π8(k ɪZ )㊂(2)当x ɪ0,π2时,有2x -π4ɪ-π4,3π4 ,故-22ɤs i n 2x -π4 ɤ1,所以-12ɤ22s i n 2x -π4ɤ22㊂所以当x ɪ0,π2 时,函数f (x )的值域为-12,22㊂(3)根据题意可得函数g (x )=22s i n 2x +3π8-π4 =22s i n 2x +π2=22c o s 2x ㊂当x ɪ-π3,π3时,有2x ɪ-2π3,2π3㊂所以当2x =0,即x =0时,g (x )m a x =22c o s 0=22㊂规律方法:平面向量与三角函数的基本性质的综合问题的解法:(1)利用向量的相关概念㊁公式等构建相应的三角函数解析式;(2)利用三角恒等变换公式等将相应的三角函数关系式转化为正弦型(或余弦型)函数;(3)根据三角函数的图像与性质来研究相关函数的基本性质问题㊂三、平面向量在三角形计算中的应用以平面向量的线性运算㊁数量积为载体,考查三角形中正㊁余弦定理的应用,以及简单的三角恒等变换,主要解决三角形中的边㊁角及面积等问题㊂例3 在әA B C中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知s i n C =2s i n (B +C )㊃c o s B ㊂(1)判断әA B C 的形状;(2)设向量m =(a +c ,b ),n =(b +a ,c -a ),若m ʊn ,求A ㊂分析:(1)利用三角形的内角和公式A +B +C =π转化角后,结合题设条件进行消元处理,进而得到涉及角A ,B 的基本关系,结合三角函数值及三角形的性质来分析与判断;(2)利用两平面向量平行的关系,结合向量的坐标加以转化与应用,合理构建三角形中边与角的关系式,进而利用余弦定理加以分析与求解㊂解:(1)在әA B C 中,因为s i n C =s i n (A +B ),s i n A =s i n (B +C ),所以s i n C=s i n (A +B )=2s i n (B +C )c o s B =2s i n A c o s B ,所以s i n A c o s B +c o s A s i n B=2s i n A c o s B ,即s i n A c o s B -c o s A s i n B =0,即s i n (A -B )=0㊂又因为-π<A -B <π,所以A -B =0,即A =B ,故әA B C 为等腰三角形㊂(2)由m ʊn 得(a +c )(c -a )=b (b +a ),展开整理得b 2+a 2-c 2=-a b ,所以c o s C =a 2+b 2-c 22a b =-12㊂42 解题篇 创新题追根溯源 高考数学 2024年1月因为0<C<π,所以C=2π3㊂又A=B,故A+B=π3,所以A=π6㊂规律方法:平面向量与三角形计算综合问题的解法:(1)借助平面向量的基本概念㊁基本公式等,往往可以合理构建三角函数关系式,为利用解三角形来处理问题奠定基础;(2)合理综合解三角形㊁三角函数及平面向量的相关知识加以合理转化与巧妙应用㊂特别地,在解决三角形中的向量夹角问题时需注意向量的方向㊂四㊁三角函数㊁平面向量与其他知识的综合应用以平面向量为问题场景,通过坐标公式㊁数量积公式等变形,转化为相应的三角函数问题,综合函数与方程㊁不等式等其他相关知识来分析与综合,也是高考中比较常见的一类综合应用问题㊂例4设向量a=(4s i n x,c o s x-s i n x),b=s i n2π+2x4,c o s x+s i n x,函数f(x)=a㊃b㊂(1)求函数f(x)的解析式;(2)已知常数ω>0,若y=f(ωx)在-π2,2π3上是增函数,求ω的取值范围;(3)设集合A=xπ6ɤxɤ2π3,B= {x||f(x)-m|<2},若A⊆B,求实数m的取值范围㊂分析:(1)利用向量的数量积把三角函数关系式加以转化,即可得到函数f(x)= 2s i n x+1;(2)根据三角函数在给定区间上的单调性,通过不等式组的求解来确定参数的取值范围;(3)结合绝对值不等式的求解㊁集合的包含关系㊁三角关系式的最值,以及三角函数的图像与性质来加以直观转化与求解㊂解:(1)因为a=(4s i n x,c o s x-s i n x), b=s i n2π+2x4,c o s x+s i n x,所以函数f(x)=a㊃b=4s i n xˑs i n2π+2x4+(c o s x-s i n x)ˑ(c o s x+s i n x)= 4s i n x㊃1-c o sπ2+x2+c o s2x= 2s i n x(1+s i n x)+1-2s i n2x=2s i n x+1㊂(2)由于f(ωx)=2s i nωx+1,由2kπ-π2ɤωxɤ2kπ+π2,kɪZ,可得函数y= f(ωx)的增区间是2kπω-π2ω,2kπω+π2ω,kɪZ㊂又因为y=f(ωx)在区间-π2,2π3上是增函数,所以-π2,2π3⊆-π2ω,π2ω,即-π2ωɤ-π2,2π3ɤπ2ω,解得0<ωɤ34㊂所以ω的取值范围为0,34㊂(3)由|f(x)-m|<2解得-2<m-f(x)<2,即f(x)-2<m<f(x)+2㊂因为A⊆B,所以当π6ɤxɤ2π3时,不等式f(x)-2<m<f(x)+2恒成立㊂所以[f(x)-2]m a x<m<[f(x)+2]m i n,即[f(x)]m a x-2<m<[f(x)]m i n+2㊂因为f(x)=2s i n x+1,所以在π6,2π3上,[f(x)]m a x=fπ2=3, [f(x)]m i n=fπ6=2,所以1<m<4㊂故实数m的取值范围为(1,4)㊂规律方法:本题巧妙地把平面向量㊁三角函数㊁集合㊁不等式等相关知识加以交汇,以平面向量为问题背景,通过平面向量的数量积为媒介,结合三角函数的图像与性质来考查数学基本知识点,得以达到提高数学品质与提升数学能力的目的㊂注意高考中三角函数与平面向量的交汇综合问题往往以平面向量的相关概念与数量积等来建立相应的三角函数关系式,结合三角函数的基本公式与三角恒等变换公式㊁解三角形公式等来综合考查,一般难度中等,真正达到考查能力,注意应用的目的㊂(责任编辑王福华)52解题篇创新题追根溯源高考数学2024年1月。
三角函数与向量的综合应用
三角函数与向量的综合应用在数学领域中,三角函数与向量是两个重要的概念。
它们在各自的领域中拥有广泛的应用,并且可以相互结合,产生更强大的数学工具。
本文将讨论三角函数与向量的综合应用,并探究它们在实际问题中的应用。
一、三角函数与向量的基础知识1. 三角函数三角函数是描述角度关系的函数,其中最常用的三角函数包括正弦函数、余弦函数和正切函数。
它们可以通过三角比值或单位圆上的点坐标来定义。
三角函数在几何、物理和工程等领域中广泛应用,用于求解角度、距离、速度等问题。
2. 向量向量是具有大小和方向的量,可用于表示物体的位移、力和速度等。
向量通常用有序数组表示,其中包括了向量的分量或坐标。
向量在几何、物理、计算机图形学等领域中有重要的应用,用于描述与计算空间中的各种问题。
二、三角函数与向量的结合运用1. 正弦函数与向量的应用正弦函数可以用于求解两个向量之间的夹角。
对于给定的两个向量A和B,它们的夹角θ可以通过以下公式求得:θ = arcsin(|A × B| / (|A| |B|))其中,|A|和|B|分别表示向量A和向量B的模长,A × B表示两个向量的叉乘,|A × B|表示叉乘结果的模长。
这个夹角的计算提供了求解向量运动方向、力的方向以及判断向量共线性等问题的重要依据。
2. 余弦函数与向量的应用余弦函数可以用于求解两个向量之间的夹角以及向量在特定方向上的投影。
对于给定的两个向量A和B,它们的夹角θ可以通过以下公式求得:θ = arccos(A · B / (|A| |B|))其中,|A|和|B|分别表示向量A和向量B的模长,A · B表示两个向量的点乘。
此外,余弦函数还可以用于求解向量在特定方向上的投影长度,从而实现对向量分解和向量运动路径的分析。
3. 正切函数与向量的应用正切函数可以用于求解向量的斜率。
对于给定的向量A,它的斜率可以通过以下公式求得:m = tan(θ) = (A.y / A.x)其中,A.x和A.y分别表示向量A在x轴和y轴上的分量。
平面向量与三角函数的综合习题
三角函数与平面向量综合题题型一:三角函数与平面向量平行(共线)的综合【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合【例2】 已知向量→a =(3sinα,cosα),→b =(2s inα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值. 题型三. 三角函数与平面向量的模的综合【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合【例3】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.题型五:结合三角形中的向量知识考查三角形的边长或角的运算【例5】(山东卷)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan 37C =.(1)求cos C ;(2)若52CB CA ⋅=,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算【例6】(2007年高考陕西卷)()f x a b =⋅,其中向量(,cos 2)a m x =,(1sin 2,1)b x =+,x R ∈,且函数()y f x =的图象经过点(,2)4π. (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。
高二数学向量知识点总结
高二数学《向量》知识点总结考点一:向量的概念、向量的大体定理【内容解读】了解向量的实际背景,把握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,明白得向量的几何表示,把握平面向量的大体定理。
注意对向量概念的明白得,向量是能够自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求把握向量的加减法运算,会用平行四边形法那么、三角形法那么进行向量的加减运算;把握实数与向量的积运算,明白得两个向量共线的含义,会判定两个向量的平行关系;把握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并明白得其几何意义,把握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判定两个平面向量的垂直关系。
【命题规律】命题形式要紧以选择、填空题型显现,难度不大,考查重点为模和向量夹角的概念、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】把握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮忙明白得。
【命题规律】重点考查概念和公式,要紧以选择题或填空题型显现,难度一样。
由于向量应用的普遍性,常常也会与三角函数,解析几何一并考查,假设出此刻解答题中,难度以中档题为主,偶然也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主若是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
专题三角函数与向量(学生版).docx
专题:三角函数与向量的交汇题型分析及解题策略主要考点如下:1.考查三角式化简、求值、证明及求角问题.2.考查三角函数的性质与图像,特别是y=Asin(cox+(p)的性质和图像及其图像变换.3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.6.考查利用正弦定理、余弦定理解三角形问题.题型一解斜三角形与向量的综合【例1】已知角A、B、C为^ABC的三个内角,其对边分别为a、b、c,京=(—cos成,sin*^"), / = (cos*^", sin*^"), a = 2^3? J E L= 2^*(I )若ZiABC的面积S=,,求b + c的值.(II )求b+c的取值范围.题型二三角函数与平面向量平行(共线)的综合【例2】已知A、B、C为三个锐角,且A+B +C=TI.若向量8 = (2sinA — 2, cosA + sinA)与向量2 =C — 3B(cosA—sinA, 1+sinA)是共线向量.(I )求角A; (II )求函数y=2sin2B+cos—-—的最大值.题型三三角函数与平面向量垂直的综合【例3】已知向量甘= (3sina,cosa), 3 = (2sina, 5sina—4cosa), aG(宇,2n),且甘_L言.Ct jr(I )求tana 的值; (II)求cos(y+~)的值.题型四三角函数与平面向量的模的综合此类题型主要是利用向量模的性质ltl2=t2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例4】已知向量盲= (cosa,sina),言= (cosB,sir)B), |2 —言|=|>姑.TT TT 5(I )求cos(a—P)的值;(II )^—^<P<O<a<p 且sinP = ——,求sina 的值.题型五三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;⑵利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】1.设函数f(x) = 4.含.其中向量冷= (m, cosx),言= (l+sinx, 1), x《R,且f(亨) = 2.(I )求实数m的值;(II)求函数f(x)的最小值.(3)求f(x)的对称中心和对称轴2.(山东)已知向量扁= (smx,l)〃(品cosx*s2W>0),函数/'(x) = M的最大值为6.JT(I)求刀;(II)将函数y = /(x)的图象向左平移g个单位,再将所得图象上各点的横坐标缩短为原来的5倍,纵坐标不变,得到函数V = g(x)的图象.(1)求g(x)在[0,芸]上的值域.(2)五点法做出g(x)在一个周期上的图像。
三角函数与向量结合的题型
三角函数与向量结合的题型【引言】在高中数学课程中,三角函数和向量是两个重要的概念。
它们分别代表了数学的几何和代数两个方面。
三角函数帮助我们研究角度、三角形的性质,而向量则使得我们能够进行矢量运算和分析。
这两个概念的结合可以带来更加复杂和有趣的数学题型。
在本文中,我们将探讨三角函数与向量结合的题型,从简单到复杂,逐步深入地理解这个主题。
【1. 什么是三角函数】三角函数是描述角度和角度相关的性质的一组函数。
其中最常见的三角函数有正弦函数、余弦函数和正切函数。
我们通常用sin、cos和tan来表示它们。
三角函数的定义涉及到一个直角三角形的三个边长或角度,使得我们能够通过角度来研究三角形的性质。
三角函数在解决几何问题、物理问题和工程问题中起着重要的作用。
【2. 什么是向量】向量是用来表示大小和方向的量。
在数学中,向量通常用有序数对或有序数组来表示。
有向线段也可以看作是向量的几何表示。
向量在几何和代数中都有广泛的应用。
我们可以通过向量进行矢量运算,如向量加法、向量减法和数量乘法。
向量还可以用于描述力、速度和位移等物理量。
【3. 三角函数与向量的关系】三角函数和向量之间有许多密切相关的关系。
我们可以通过三角函数来表达向量的方向。
给定一个向量,我们可以计算出它与横轴的夹角,并通过三角函数来表示这个夹角的大小。
我们可以使用三角函数来计算两个向量之间的夹角。
夹角的正弦、余弦和正切值可以帮助我们理解向量之间的关系和性质。
在解决几何问题时,我们常常会遇到涉及角度和向量的复杂题目,这些题目需要我们结合三角函数和向量来求解。
【4. 三角函数与向量结合的题型举例】下面我们来看一些常见的三角函数与向量结合的题型。
4.1 题型一:求两个向量的夹角已知两个向量a和b,求它们的夹角。
解决这个问题时,我们可以使用向量的数量积和三角函数来求解。
具体步骤如下:计算向量a和b的数量积,即a·b。
计算a和b的模长,即|a|和|b|。
三角函数与平面向量专题知识整合
数学爱好者专高考文科数学爱好者业精心策划S专题辅导题知识整合三角函数是高中数学的重要内容之一,也是历年高考的重点.跨学科应用是它的鲜明特点,在解答函数、不等式、立体几何、解析几何问题时,三角函数是常用的工具.在实际问题中也有着广泛的应用,因而是高考对基础知识和基本技能方面考查的重要内容.三角函数这一章的主要知识点是:角的概念的推广、弧度制、任意角的三角函数、单位圆中的三角函数线,同角三角函数的基本关系式,正、余弦的诱导公式,两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切,正弦函数、余弦函数的图象和性质,函数y=Asin(ωx+φ)的图象,正切函数的图象和性质,已知三角函数值求角.由于向量具有几何形式和代数形式的“双重身份”,使之成为中学数学知识的一个“交汇点”,成为联系数和形的有力纽带,运用向量知识,可以使几何问题直观化、符号化、数量化,从而把“定性”研究推向“定量”研究.在解题过程中,善于利用化归思想处理共线、平行、垂直问题,向向量的坐标运算方面转化,向量模的运算转化为向量的运算;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.题型例析河南陈长松热点题型一三角函数的求值、化简、证明等基本问题例1已知cos(π4+x)=35,17π12<x<7π4,求sin2x+2sin2x1-tanx的值.分析先把所求式化简,再利用已知条件求值.解由题设得cosx-sinx=32!5,sin2x=725,又5π3<x+π4<2π,所以原式=2sinxcosx(cosx+sinx)cosx-sinx=sin2x・1+tanx1-tanx=sin2xtan(π4+x)=-2875.评注在处理条件求值问题时,一要处理好角的终边位置和三角函数的符号;二应转化题设条件与待求式,以创造条件寻求时机代入求值.踪练习追zhuizonglianxitan10°-3!csc40°的值为.后反思练lianhoufansi原式=sin10°cos10°-3!csc40°=sin10°-3!cos10°cos10°・csc40°=212sin10°-3!2cos10"#°cos10°・csc40°=-2cos40°・sin40°cos10°=-sin80°cos10°=-1.热点题型二三角函数的最值问题例2求函数y=sinxcosx+2的最大值和最小值.分析求函数的最值可用多种方法求解,最常用的有两种方法:几何法、有界性法.几何法运用数形结合思想,要掌握转化的方法.与专三角函数平面向量"#。
平面向量与三角函数的综合应用
平面向量与三角函数的综合应用在数学中,平面向量和三角函数都是重要的概念和工具。
它们在各个领域都有广泛的应用,如物理学、工程学、计算机图形学等。
本文将介绍平面向量与三角函数的综合应用,并探讨它们在实际问题中的具体运用。
一、平面向量的基本概念与运算平面向量是具有大小和方向的有序数对,通常用箭头来表示。
向量的大小称为模,方向由箭头所指示。
平面向量可以通过坐标表示,也可以通过起点和终点坐标表示。
平面向量的运算包括加法、减法、数量乘法等。
平面向量的加法满足平行四边形法则,即将两个向量的起点放在同一点,然后将它们依次连接起来,形成一个四边形,那么两个向量的和就是对角线的向量。
平面向量的减法可通过加法来实现,即将减去的向量取其相反向量,再进行加法运算。
数量乘法是指将向量的每个分量都乘以一个实数。
平面向量的模可以通过勾股定理来计算,即模的平方等于向量的横纵坐标的平方和的平方根。
平面向量的方向可以通过两个向量的数量积来计算,数量积等于两个向量的模的乘积再乘以它们的夹角的余弦。
二、三角函数的概念与性质三角函数是用来描述角度的函数,包括正弦函数、余弦函数、正切函数等。
在平面向量中,三角函数用来描述向量与坐标轴之间的关系。
三角函数的运算和性质包括函数图像、周期性、奇偶性、单调性等。
正弦函数是指一个角的正弦值与角度的函数关系,通常用sin表示。
余弦函数是指一个角的余弦值与角度的函数关系,通常用cos表示。
正切函数是指一个角的正切值与角度的函数关系,通常用tan表示。
三角函数的图像具有周期性,即在一个周期内,函数值会重复出现。
正弦函数和余弦函数的周期为2π,正切函数的周期为π。
正弦函数和余弦函数都是偶函数,即f(x) = f(-x),而正切函数是奇函数,即f(x) = -f(-x)。
三、平面向量与三角函数的综合应用平面向量和三角函数在实际问题中常常需要综合运用。
下面通过几个例子来说明。
例1:平面三角形的面积计算考虑一个平面三角形,已知两个顶点的坐标为A(x1,y1)、B(x2,y2),求解这个三角形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数和向量的综合
复习要点:
1、 熟练应用三角恒等变换和向量数量积等公式
2、 三角函数和向量综合问题的处理思路
典例剖析:
1、已知向量.1,43),1,1(-=⋅=且的夹角为
与向量向量π (1)求向量n ;
(2)设向量)sin ,,(cos ),0,1(x x ==向量,其中R x ∈,若0=⋅,试求||+的取值范围.
2、已知向量5
52sin ,(cos ,sin ,cos =-==b a ββαα)( (1)求)cos(
βα-的值 (2)若02,20<<-<<βππα且135sin -
=β,求αsin 的值
3、 已知向量⎥⎦
⎤⎢⎣⎡∈-==2,0)2sin ,2(cos ),23sin ,23
(cos πx x x b x x a 且向量。
求(1)+⋅;(2)若x f +-⋅=2)(的最小值是23-
,求实数λ的值。
4、已知函数2()2cos
2sin cos 1(0)f x x x x x ωωωω=++∈R >,的最小正周期是2
π. (Ⅰ)求ω的值; (Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.
17题、如图,函数y=2sin(πx+ϕ),(x ∈R)(其中0≤ϕ≤
2
π)的图象与y 轴交于点(0,1);①、求ϕ的值;②、设P 为图象上的最高点,M ,N
是图象与x 轴的交点,求→PM 与→PN 的夹角。
课后作业:
1、已知向量(sin ,cos ),(1,2)m A A n ==- ,且0.m n ⋅=
(Ⅰ)求tan A 的值;
(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.
2、已知向量)1,2
sin 2(cos .22x x a -=)sin ,1(.x b =,函数f (x )=b a ⋅ (Ⅰ)求函数f (x )的最小正周期;
(Ⅱ)当x 0∈(0,4π)且f (x 0)=5
24时,求f (x 0+6π)的值.
3、(山东17)(本小题满分12分)
已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为
π2. (Ⅰ)求π8f ⎛⎫ ⎪⎝⎭
的值; (Ⅱ)将函数()y f x =的图象向右平移
π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.
4.(上海18)(本题满分15分)
已知函数f (x )=sin2x ,g (x )=cos π26x ⎛⎫+
⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图像分别交于M 、N 两点.
(1)当π4
t =时,求|MN |的值; (2)求|MN |在π02t ⎡⎤∈⎢⎥⎣⎦
,时的最大值.
5、如图在长方体ABCD 中,,,AB a AD b N == 是CD 的中点,M 是线段AB 上的点,
2,1a b == ,
(1)若M 是AB 的中点,求证:AN 与CM 共线;(2)在线段AB 上是否存在点
M ,使得BD 与CM 垂直?若不存在请说明理由,若存在请求出M 点的位置;
(3)若动点P 在长方体ABCD 上运动,试求AP AB ⋅ 的最大值及取得最大值时P
点的位置。