向量与三角函数的综合
高二数学向量知识点总结
高二数学《向量》知识点总结考点一:向量的概念、向量的大体定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的大体定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的概念、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮忙理解。
【命题规律】重点考查概念和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的普遍性,常常也会与三角函数,解析几何一并考查,若出此刻解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考常常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主如果向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示。
专题二 三角函数与平面向量的综合应用
的参数 A,ω ,φ,从图象的特征上寻找答案,A 主要由最值 确定,ω 是由周期确定,周期通过特殊点观察求得,如相邻 两个最大、最小值点相差半个周期,φ 可由点在函数图象上 求得,确定 φ 值时,注意它的不惟一性.如果函数的最大值 与最小值不互为相反数,说明解析式为 y=Asin( ω x+φ)+k 的形式.设最大值为 m,最小值为 n,则 A+k=m,-A+k m-n m+n =n,从而 A= 2 ,k= 2 .
π 由图象最高点为 , 3得 6
(2)由 (1)知,函数的最小值为- 3; π π π 由 2x+ =2kπ- ,k∈Z,得 x=kπ- ,k∈ Z, 6 2 3 π ∴函数取得最小值时自变量 x 的集合为x|x=kπ- , k∈ Z. 3
探究提高
确定函数关系式 y=Asin( ω x+φ)就是确定其中
题型分类 深度剖析
题型一 三角函数的化简求值问题 3 1 1 例1 求 2 - 2 · 的值. sin 140° cos 140° 2sin 10°
思维启迪 从角、函数名称、式子结构入手找其
特征,构造“相消”、“约分”或构造特殊角.
3cos2140° - sin2140° 1 解 原式= · sin2140° cos2140° 2sin 10° 3cos240° - sin240° 1 = · sin240° cos240° 2sin 10° ( 3cos 40° - sin 40° )( 3cos 40° + sin 40° ) 1 = · 1 2 2sin 10° sin 80° 4 2sin(60° - 40° )· 2sin(60° + 40° ) 1 = · 1 2 2sin 10° cos 10° 4 8sin 20° sin 100° 16sin 10° · cos210° = = = 16. cos210° · sin 10° cos210° · sin 10° π 探究提高 若 α+β=π,则 sin α=sin β;若 α+β=2,
高考数学备考攻略平面向量与三角函数的综合应用
高考数学备考攻略平面向量与三角函数的综合应用高考数学备考攻略:平面向量与三角函数的综合应用在高考数学中,平面向量与三角函数是两个重要的概念和工具。
它们在各种数学问题中都有广泛的应用,特别是在几何和三角函数的综合题目中。
本文将介绍一些关于平面向量与三角函数的综合应用。
希望通过这些攻略,能够帮助大家在高考中更好地理解和应用这些知识点。
一、平面向量的几何应用平面向量的几何应用主要体现在它们的加法、减法、数量积、向量积等运算上。
下面将介绍其中的一些典型应用。
1. 平面向量的加法平面向量的加法可以用来解决平面上的位移问题。
例如,在平面直角坐标系中,有一个点A(2,3),以向量a(1,2)为位移,求终点B的坐标。
我们可以通过向量加法得到:B = A + a = (2,3) + (1,2) = (3,5)通过这个简单的例子,我们可以看到,平面向量的加法可以用来求解平面上的位移问题,这在几何中有着重要的应用。
2. 平面向量的数量积平面向量的数量积可以用来解决两个向量之间的夹角问题。
例如,已知两个向量a(3,4)和b(5,12),求它们的夹角θ。
我们可以通过向量的数量积求解:a·b = |a||b|cosθ其中,“·”表示向量的数量积,|a|和|b|分别表示向量的模,θ表示夹角。
根据给定的向量值代入公式计算,可以得到θ≈0.68弧度。
3. 平面向量的向量积平面向量的向量积可以用来解决平行四边形的面积、三角形的有向面积问题。
例如,在平面直角坐标系中,已知两个向量a(2,3)和b(4,1),求平行四边形的面积。
我们可以通过向量的向量积求解:S = |a×b|其中,“×”表示向量的向量积,|a×b|为向量的模。
根据给定的向量值代入公式计算,可以得到平行四边形的面积为2。
二、三角函数的综合应用三角函数是数学中的一个重要分支,在高考数学中占有很大的比重。
下面将介绍一些关于三角函数综合应用的例子。
山东乐陵一中2015高三上数学教案:平面向量与三角函数的综合
【学习目标】 1.掌握三角函数及正、余弦定理. 2.能进行向量的坐标运算.3. 向量与三角函数交汇创新是近年高考命题的热点,主要涉及三种情形:①以向量为载体,考查三角变换与求值; ②向量与解三角形交汇求边与角;③以三角函数表示向量坐标,研究向量运算及性质.【重点难点】重点 :(1)三角函数与向量的交汇;(2)解三角形与向量的交汇;。
难点 :先利用向量进行转化,再利用三角函数的知识求解【自我检测】1. 已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f (x )=a·b 的最小正周期是( )A.π2 B .π C .2π D .4π2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( ) A.π6,π3 B.2π3,π6 C.π3,π6 D.π3,π33. 已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),f ′(x )是f (x )的导函数,则1+sin 2x cos 2x -sin 2x=________. 4. 设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f (x )=a b →→⋅,求f (x )的最大值.5. 设a =(cos α,(λ-1)sin α),b =(cos β,sin β),⎝⎛⎭⎫λ>0,0<α<β<π2是平面上的两个向量,若向量a +b 与a -b 互相垂直.(1)求实数λ的值;(2)若a ·b =45,且tan β=43,求tan α的值.【合作探究】例1:已知向量(3)OP→=,4,绕原点逆时针旋转45°到OP →'的位置,求点()P x y ''', 的坐标.【变式训练】已知向量(4)OP→=,3,绕原点旋转-60°到OQ →的位置,求点()Q x y '',的坐标.例3. 在△ABC 中,BC=2,.(1)求AB AC →→⋅;(2)设(1)(0)BP BA BC λλλ→→→=-+>,当△ABP 时,求λ的值.【变式训练】在△ABC 中,已知AB →·AC →=3BA →·BC →.(1)求证:tan B =3tan A ;(2)若cos C =55,求A 的值知识总结方法总结【达标检测】1.已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB →的夹角的取值范围是( )A.⎣⎡⎦⎤0,π4B.⎣⎡⎦⎤π4,512πC.⎣⎡⎦⎤512π,π2D.⎣⎡⎦⎤π12,512π 2.已知向量a =(cos α,sin α),b =(2,3),若a ∥b ,则sin 2α-sin 2α的值等于A .-513B .-313 C.313 D.5133.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为A.π6,π3B.2π3,π6C.π3,π6D.π3,π34.已知O 为坐标原点,对于函数f (x )=a sin x +b cos x ,称向量OM →=(a ,b )为函数f (x )的伴随向量,同时称函数f (x )为向量OM →的伴随函数.(1)设函数g (x )=sin(π2+x )+2cos(π2-x ),试求g (x )的伴随向量OM →的模; (2)记ON →=(1,3)的伴随函数为h (x ),求使得关于x 的方程h (x )-t =0在⎣⎡⎦⎤0,π2内恒有两个不相等实数解的实数t 的取值范围.【选做题】5.已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1) 若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值; (2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.6.△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c 且2sin 2A +B 2+cos2C =1. (1)求角C 的大小;(2)若向量m =(3a ,b ),向量n =(a ,-b 3),m ⊥n ,(m +n )·(m -n )=16,求a ,b ,c 的值.。
专题03 三角函数与平面向量综合问题(答题指导)(解析版)
专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
高一数学三角函数与向量公式
两角和公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 倍角公式:tan2A=2tanA/(1-tan 2A) cos2a=cos 2a-sin 2a=2cos 2a-1=1-2sin 2a 半角公式:sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) 和差化积:2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB 正弦定理: a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理: b 2=a 2+c 2-2accosB 注:角B 是边a 和边c 的夹角弧长公式: l=α*r ,α是圆心角的弧度数,r >0 扇形面积公式 s=1/2*l*r 乘法与因式分:a 2-b 2=(a+b)(a-b) a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b(a 2+ab+b 2) 一元二次方程的解: X 1=-b+√(b 2-4ac)/2a; X 2=-b-√(b 2-4ac)/2a 根与系数的关系: X 1+X 2=-b/a ;X 1*X 2=c/a (韦达定理) 判别式:b 2-4ac=0 注:方程有两个相等的实根 b 2-4ac>0 注:方程有两个不等的实根b 2-4ac<0 注:方程没有实根,有共轭复数根 降幂公式:sin 2x=1-cos2x/2 cos 2x=1-cos2x/2 万能公式:Sin2α=2 tan α/(1+ tan 2α) Cos2α=(1- tan 2α)/(1+ tan 2α) Tan2α=2tan α/(1- tan 2α) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)=sinα cos (2kπ+α)=cosα tan (2kπ+α)=tanα cot (2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα 公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosαtan(π-α)=-tanα cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosαtan(2π-α)=-tanα cot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα cos(π/2+α)=-sinαtan(π/2+α)=-cotα cot(π/2+α)=-tanαsin(π/2-α)=cosα cos(π/2-α)=sinαtan(π/2-α)=cotα cot(π/2-α)=tanα (以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
三角函数与平面向量综合测试题
约稿:三角函数与平面向量综合测试题广东省珠海市斗门区第一中学 于发智 519100 jianghua20011628@一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,恰有..一项..是符合题目要求的。
1.下列函数中,周期为2π的是( ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >3. 条件甲a =+θsin 1,条件乙a =+2cos2sin θθ,那么 ( )A .甲是乙的充分不必要条件B .甲是乙的充要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =5. 若函数f (x )=3sin21x , x ∈[0, 3π], 则函数f (x )的最大值是 ( ) A.21 B.32 C.22 D.23 6. (1+tan25°)(1+tan20°)的值是 ( ) A.-2 B.2 C.1 D.-1 7.α、β为锐角a =sin(βα+),b =ααcos sin +,则a 、b 之间关系为 ( )A .a >bB .b >aC .a =bD .不确定8. 下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|.B ACD③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 3632sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 ① ④ ((写出所有真命题的编号))9. )sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则 ( ) A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数 C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数10. 使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为( ) A .π25B .π45 C .πD .π2311、在直角坐标系xOy 中,,i j分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC中,2AB i j =+ ,3AC i k j =+,则k 的可能值有 ( ) A 、1个 B 、2个 C 、3个 D 、4个12. 如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ( )(A )32 (B )364(C )4173 (D )3212二、填空题:本大题共4小题,每小题4分,共16分。
平面向量与三角函数的交汇
. ’ ・ ・
.
2 n c 0
= 一
‘ ・ —
= 一
b , c , c o = 罟 。
( 1 ) . ;
方 法总结 : 解决平 面 向量 与 三角 函 数 的交 汇 问题 的关 键 , 准
确利用 向量 的坐标运 算化 简 已知 条件 , 将其 转 化为 三角 函数 中的
1 ) +s i n 口= 2 ( 1 一 c o s # )
‘ ’
一
.
1 ≤c o ≤1 , . ‘ . 0≤J b+cI ≤4, 即 0≤I b+c I ≤2
当c o =一 1 时, 有I b +c I =2 , 所 以 向量 b +C 的长 度 的最 大
值为 2
解 法二 : ’ . ‘I b I =1 , I cI =1 , l b+cl ≤I bI +l cI =2
学 。 i n a ) , ( 詈, 孚) 。
育 ( 2 ) 翱 ・ 赢
,
当c 0 :一 1 时, 有b +C =( 一 2 , 0 ) , 即I b +c I : 2 , 所 以 向量
( Ⅱ) 设 d= 竹, 且a 上( b +C ) , 求c o 的值 。 思维突 破 : ( 1 ) 1 利用 向量 的运算 法则求 出b +c , 利用 向量模 的
平方 等 于向量的平 方求 出 I b +C I 的平 方 , 利 用三 角 函数 的平 方关
、
又 ÷ 6 c s i n A = 3 0 , . ・ . 6 c = 1 5 6
主 思 : 三 角 形 的 三 边 可 与 三 个 向 量 对 应 , 这 样 就 可 以 利
司 夹 角 之 间 的 联 系 与 区 别 , 还 要 注 意 向 量 的 数 量 积 与 三 角 形面 积 公
(完整版)向量与三角,不等式等知识综合应用
第19讲 向量与三角、不等式等知识综合应用常熟市中学 蔡祖才一、高考要求平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=02.函数y =sin x 的图象按向量a =(32π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +23.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为.4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN u u u u r u u u r与的夹角余弦值为 .四、典型例题例1 已知a =(3sin ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω 例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ ( )(A)6π (B) 4π (C) 3π (D) 2π例3 设向量a r =(sin x ,cos x ),b r =(cos x ,cos x ),x ∈R ,函数f(x)=a r ·(a r +b r).使不等式f (x )≥23成立的x 的取值集合为 .例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅u u u r u u u r u u u r+的最小值是 .例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π,1),且当x ∈[0, 4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |=,5求cos()28θπ+的值.第19讲 向量与三角、不等式等知识综合应用 过关练习1.已知i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r ,且||||a b r r与的夹角为锐角,则实数λ的取值范围是( )(A )),21(+∞ (B ))21,2()2,(-⋃--∞ (C )),32()32,2(+∞⋃- (D ))21,(-∞2.在直角坐标系中,O 是原点,OQ =(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x =3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )(A ) 4 (B ) 5 (C ) 26 (D )263.已知||2||0a b =≠r r ,且关于x 的方程2||0x a x a b ++⋅=r r r 有实根,则a r 与b r 的夹角的取值范围是 ( )(A )[0,6π] (B )[,]3ππ (C )2[,]33ππ (D )[,]6ππ 4.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=u u u r u u u r,若OP AB PA PB ⋅≥⋅u u u r u u u r u u u r u u u r,则实数λ的取值范围是 ( )(A )112λ≤≤ (B )11λ-≤≤(C )1122λ≤≤+ (D )1122λ-≤≤+ 5. 已知向量a r =(cos α,sin α),b r =(cos β,sin β),且a b ≠±r r ,那么a b +r r 与a b-r r的夹角的大小是 .6. 已知向量].2,0[),2sin ,2(cos ),23sin,23(cos π∈-==x x x x x 且若||2)(x f +-⋅=λ的最小值为32-,则λ的值为 .7.已知A 、B 、C 是ABC ∆三内角,向量(m =-u r(cos ,sin ),n A A =r 且 1.m n ⋅=u r r(Ⅰ)求角A ; (Ⅱ)若221sin 23cos sin BB B+=--,求tanC . 8.设函数f (x )=a b ⋅r r ,其中向量a r =(2cos x ,1),b r=(cos x ,3sin2x ),x ∈R .(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c r =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.第19讲 向量与三角、不等式等知识综合应用 参考答案课前训练部分1.C2.D3.4.1517典型例题部分例1 A例2 1111sin cos (1cos )(1sin )222ABC S θθθθ∆=----- 当2θπ=即2πθ=时,面积最大.例3 3,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭例4 如图,OM OA OC OB OA -≥-=⋅⋅=+⋅2)(=.222-=⋅- 即)(+⋅的最小值为:-2.例5 (Ⅰ)由题意知⎩⎨⎧=+=+,1,1b a c a ∴b =c =1-a , ∴f (x )=a +2(1-a )sin(2x +4π).∵x∈[0,4π], ∴2x +4π∈[4π,4π3].当1-a >0时,由a +2(1-a )=22-1, 解得a =-1; 当1-a <0时, a +2(1-a )·22=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +4π). (Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8π个单位,再向下平移一个单位就可以得到f (x )的图象. 因此,将f (x )的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数g(x )=22sin2x 的图象.故m u r =(8π,1)是满足条件的一个向量.例6 (cos sin sin )m n θθθθ+=-++u r rm n +=u r r由已知m n +=u r r ,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+- 过关练习部分1.B2.C3.B4.B 5、2π6. 217(Ⅰ)∵1m n ⋅=u r r∴(()cos ,sin 1A A -⋅= cos 1A A -=12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭ ∵50,666A A ππππ<<-<-<∴66A ππ-= ∴3A π= (Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2tan tan 20B B --= ∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去 ∴tan 2B =8.(Ⅰ)依题设可知,函数的解析式为f (x )=a b ⋅r r =2cos 2x +3sin2x =1+2sin(2x +6π).由1+2sin(2x +6π)=1-3,可得三角方程sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π. (Ⅱ)函数y =2sin2x 的图象按向量c r=(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f(x)的图象.由(1)得 f(x)=2sin2(x +12π)+1. ∵|m |<2π,∴12m π=-, 1.n =。
平面向量与三角函数的综合计算与应用解析与归纳
平面向量与三角函数的综合计算与应用解析与归纳引言:平面向量作为数学中的重要概念之一,与三角函数有着密切的联系。
通过对平面向量与三角函数的综合运用,我们可以解决各种实际问题,并深入理解它们在数学中的应用。
本文将通过计算、解析和归纳的方式,探讨平面向量与三角函数的综合应用。
一、平面向量与三角函数的基本关系在开始讨论平面向量与三角函数的综合计算与应用之前,我们先来回顾一下它们之间的基本关系。
1. 平面向量的表示平面向量可以用有序数对表示,一个二维向量A可以表示为A = (a, b),其中a为向量在x轴上的分量,b为向量在y轴上的分量。
同时,向量A也可以表示为矩阵形式:A = [a, b]2. 平面向量的运算平面向量可以进行加法和数量乘法运算。
加法运算即将两个向量的对应分量相加,例如A + B = (a1 + b1, a2 + b2),其中A = (a1, a2),B = (b1, b2)。
数量乘法即向量的每一个分量都乘以相同的数,例如kA = (ka1, ka2),其中k为任意实数。
3. 三角函数的定义三角函数是常用的数学函数,由直角三角形的边长比定义。
其中,正弦函数s inθ的定义为:sinθ = 长边/斜边,余弦函数cosθ的定义为:cosθ = 邻边/斜边,正切函数tanθ的定义为:tanθ = 长边/邻边。
二、平面向量与三角函数的综合计算与应用在了解了平面向量与三角函数的基本关系后,我们可以通过综合计算与应用来加深对它们的理解。
1. 平面向量与三角函数之间的关系根据平面向量的定义和三角函数的定义,我们可以得出以下结论:对于任意角θ,设与角θ 相对的边向量为A,斜边向量为B,则有:A = [sinθ, cosθ]B = [sinθ, cosθ]2. 平面向量的模与方向平面向量的模表示向量的长度,可以通过勾股定理来计算。
对于向量A = (a, b),其模记为|A|,计算公式为:|A| = √(a^2 + b^2)向量的方向可以用角度来表示,可以通过以下公式计算:θ = arctan(b/a)3. 平面向量的点积与叉积平面向量的点积和叉积是平面向量运算中的两个重要概念。
降幂公式、辅助角公式应用
降幂公式、辅助角公式应用降幂公式(cosα)^2=(1+cos2α)/2 (sinα)^2=(1-cos2α)/2(tanα)^2=(1-cos(2α))/(1+cos(2α))推导公式如下直接运用二倍角公式就是升幂,将公式Cos2α变形后可得到降幂公式: cos2α=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2 cos2α=2(cosα)^2-1,(cosα)^2=(cos2α+1)/2co s2α=1-2(sinα)^2,(sinα)^2=(1-cos2α)/2 降幂公式例10、(2008惠州三模)已知函数x x x x f cos sin sin 3)(2+-= (I )求函数)(x f 的最小正周期; (II )求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域. 解:x x x x f cos sin sin 3)(2+-=x x 2sin 2122cos 13+-⨯-= 232cos 232sin 21-+=x x 23)32sin(-+=πx (I )ππ==22T (II )∴20π≤≤x ∴34323πππ≤+≤x ∴ 1)32sin(23≤+≤-πx 所以)(x f 的值域为:⎥⎦⎤⎢⎣⎡--232,3 点评:本题考查三角恒等变换,三角函数图象的性质,注意掌握在给定范围内,三角函数值域的求法。
例11、(2008广东六校联考)已知向量a =(cos 23x ,sin 23x ),b =(2sin 2cos x x ,-),且x ∈[0,2π].(1)求b a+(2)设函数b a x f +=)(+b a⋅,求函数)(x f 的最值及相应的x 的值。
解:(错误!未找到引用源。
)由已知条件: 20π≤≤x , 得:33(coscos ,sin sin )2222x x x x a b +=+-2 x x sin 22cos 22=-= (2)2sin 23sin 2cos 23cossin 2)(xx x x x x f -+=x x 2cos sin 2+= 23)21(sin 21sin 2sin 222+--=++-=x x x ,因为:20π≤≤x ,所以:1sin 0≤≤x所以,只有当: 21=x 时, 23)(max =x f ,0=x ,或1=x 时,1)(min =x f点评:本题是三角函数与向量结合的综合题,考查向量的知识,三角恒等变换、函数图象等知识。
高二数学向量知识点总结
高二数学《向量》知识点总结考点一:向量的概念、向量的大体定理【内容解读】了解向量的实际背景,把握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,明白得向量的几何表示,把握平面向量的大体定理。
注意对向量概念的明白得,向量是能够自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求把握向量的加减法运算,会用平行四边形法那么、三角形法那么进行向量的加减运算;把握实数与向量的积运算,明白得两个向量共线的含义,会判定两个向量的平行关系;把握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并明白得其几何意义,把握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判定两个平面向量的垂直关系。
【命题规律】命题形式要紧以选择、填空题型显现,难度不大,考查重点为模和向量夹角的概念、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】把握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮忙明白得。
【命题规律】重点考查概念和公式,要紧以选择题或填空题型显现,难度一样。
由于向量应用的普遍性,常常也会与三角函数,解析几何一并考查,假设出此刻解答题中,难度以中档题为主,偶然也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主若是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
专题三角函数与向量(学生版).docx
专题:三角函数与向量的交汇题型分析及解题策略主要考点如下:1.考查三角式化简、求值、证明及求角问题.2.考查三角函数的性质与图像,特别是y=Asin(cox+(p)的性质和图像及其图像变换.3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.6.考查利用正弦定理、余弦定理解三角形问题.题型一解斜三角形与向量的综合【例1】已知角A、B、C为^ABC的三个内角,其对边分别为a、b、c,京=(—cos成,sin*^"), / = (cos*^", sin*^"), a = 2^3? J E L= 2^*(I )若ZiABC的面积S=,,求b + c的值.(II )求b+c的取值范围.题型二三角函数与平面向量平行(共线)的综合【例2】已知A、B、C为三个锐角,且A+B +C=TI.若向量8 = (2sinA — 2, cosA + sinA)与向量2 =C — 3B(cosA—sinA, 1+sinA)是共线向量.(I )求角A; (II )求函数y=2sin2B+cos—-—的最大值.题型三三角函数与平面向量垂直的综合【例3】已知向量甘= (3sina,cosa), 3 = (2sina, 5sina—4cosa), aG(宇,2n),且甘_L言.Ct jr(I )求tana 的值; (II)求cos(y+~)的值.题型四三角函数与平面向量的模的综合此类题型主要是利用向量模的性质ltl2=t2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例4】已知向量盲= (cosa,sina),言= (cosB,sir)B), |2 —言|=|>姑.TT TT 5(I )求cos(a—P)的值;(II )^—^<P<O<a<p 且sinP = ——,求sina 的值.题型五三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;⑵利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】1.设函数f(x) = 4.含.其中向量冷= (m, cosx),言= (l+sinx, 1), x《R,且f(亨) = 2.(I )求实数m的值;(II)求函数f(x)的最小值.(3)求f(x)的对称中心和对称轴2.(山东)已知向量扁= (smx,l)〃(品cosx*s2W>0),函数/'(x) = M的最大值为6.JT(I)求刀;(II)将函数y = /(x)的图象向左平移g个单位,再将所得图象上各点的横坐标缩短为原来的5倍,纵坐标不变,得到函数V = g(x)的图象.(1)求g(x)在[0,芸]上的值域.(2)五点法做出g(x)在一个周期上的图像。
三角函数与向量结合的题型
三角函数与向量结合的题型【引言】在高中数学课程中,三角函数和向量是两个重要的概念。
它们分别代表了数学的几何和代数两个方面。
三角函数帮助我们研究角度、三角形的性质,而向量则使得我们能够进行矢量运算和分析。
这两个概念的结合可以带来更加复杂和有趣的数学题型。
在本文中,我们将探讨三角函数与向量结合的题型,从简单到复杂,逐步深入地理解这个主题。
【1. 什么是三角函数】三角函数是描述角度和角度相关的性质的一组函数。
其中最常见的三角函数有正弦函数、余弦函数和正切函数。
我们通常用sin、cos和tan来表示它们。
三角函数的定义涉及到一个直角三角形的三个边长或角度,使得我们能够通过角度来研究三角形的性质。
三角函数在解决几何问题、物理问题和工程问题中起着重要的作用。
【2. 什么是向量】向量是用来表示大小和方向的量。
在数学中,向量通常用有序数对或有序数组来表示。
有向线段也可以看作是向量的几何表示。
向量在几何和代数中都有广泛的应用。
我们可以通过向量进行矢量运算,如向量加法、向量减法和数量乘法。
向量还可以用于描述力、速度和位移等物理量。
【3. 三角函数与向量的关系】三角函数和向量之间有许多密切相关的关系。
我们可以通过三角函数来表达向量的方向。
给定一个向量,我们可以计算出它与横轴的夹角,并通过三角函数来表示这个夹角的大小。
我们可以使用三角函数来计算两个向量之间的夹角。
夹角的正弦、余弦和正切值可以帮助我们理解向量之间的关系和性质。
在解决几何问题时,我们常常会遇到涉及角度和向量的复杂题目,这些题目需要我们结合三角函数和向量来求解。
【4. 三角函数与向量结合的题型举例】下面我们来看一些常见的三角函数与向量结合的题型。
4.1 题型一:求两个向量的夹角已知两个向量a和b,求它们的夹角。
解决这个问题时,我们可以使用向量的数量积和三角函数来求解。
具体步骤如下:计算向量a和b的数量积,即a·b。
计算a和b的模长,即|a|和|b|。
三角函数与平面向量专题知识整合
数学爱好者专高考文科数学爱好者业精心策划S专题辅导题知识整合三角函数是高中数学的重要内容之一,也是历年高考的重点.跨学科应用是它的鲜明特点,在解答函数、不等式、立体几何、解析几何问题时,三角函数是常用的工具.在实际问题中也有着广泛的应用,因而是高考对基础知识和基本技能方面考查的重要内容.三角函数这一章的主要知识点是:角的概念的推广、弧度制、任意角的三角函数、单位圆中的三角函数线,同角三角函数的基本关系式,正、余弦的诱导公式,两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切,正弦函数、余弦函数的图象和性质,函数y=Asin(ωx+φ)的图象,正切函数的图象和性质,已知三角函数值求角.由于向量具有几何形式和代数形式的“双重身份”,使之成为中学数学知识的一个“交汇点”,成为联系数和形的有力纽带,运用向量知识,可以使几何问题直观化、符号化、数量化,从而把“定性”研究推向“定量”研究.在解题过程中,善于利用化归思想处理共线、平行、垂直问题,向向量的坐标运算方面转化,向量模的运算转化为向量的运算;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.题型例析河南陈长松热点题型一三角函数的求值、化简、证明等基本问题例1已知cos(π4+x)=35,17π12<x<7π4,求sin2x+2sin2x1-tanx的值.分析先把所求式化简,再利用已知条件求值.解由题设得cosx-sinx=32!5,sin2x=725,又5π3<x+π4<2π,所以原式=2sinxcosx(cosx+sinx)cosx-sinx=sin2x・1+tanx1-tanx=sin2xtan(π4+x)=-2875.评注在处理条件求值问题时,一要处理好角的终边位置和三角函数的符号;二应转化题设条件与待求式,以创造条件寻求时机代入求值.踪练习追zhuizonglianxitan10°-3!csc40°的值为.后反思练lianhoufansi原式=sin10°cos10°-3!csc40°=sin10°-3!cos10°cos10°・csc40°=212sin10°-3!2cos10"#°cos10°・csc40°=-2cos40°・sin40°cos10°=-sin80°cos10°=-1.热点题型二三角函数的最值问题例2求函数y=sinxcosx+2的最大值和最小值.分析求函数的最值可用多种方法求解,最常用的有两种方法:几何法、有界性法.几何法运用数形结合思想,要掌握转化的方法.与专三角函数平面向量"#。
三角函数与平面向量
汇报人:张老师 2023-11-25
目 录
• 三角函数概述 • 三角函数运算 • 平面向量基础 • 平面向量与三角函数的关系 • 三角函数与平面向量的应用 • 总结与展望
01
三角函数概述
三角函数的定义与基本性质
1. 正弦函数(sine) • 定义:对于任意角x,正弦函数定义为对边长度与斜边长度的比值,即sin(x) = 对边 / 斜边。 • 性质:正弦函数的值域为[-1,1],周期为2π。
辑思维,提升问题解决能力。
未来学习中可能遇到的相关主题与展望
相关主题
在未来学习中,学生可能会遇到与三角函数和平面向量 紧密相关的主题,如复数、微分学、积分学、线性代数 等。
展望
对于更深入的学习和理解,学生可以进一步探索这些相 关主题,以构建更为完整和深入的数学知识体系。
如何在日常生活中应用这些知识
在工程中的应用(如位移、速度、加速度的计算)
要点一
位移、速度、加速度计算
要点二
工程测量
在工程领域,经常需要计算物体的位移、速度和加速度。 通过三角函数和平面向量的结合,可以有效地描述和计算 这些物理量,为工程设计提供准确的数据支持。
在土地测量、建筑设计等工程中,三角函数和平面向量可 用于计算角度、距离等参数,确保工程的准确性和稳定性 。
解决问题
01
三角函数与平面向量可以用于解决日常生活中的许多问题,比
如计算距离、角度,确定物体的运动轨迹等。
导航
02
在地理位置定位和导航中,经常会使用到三角函数与平面向量
的知识。
设计与制作
03
在建筑、艺术、设计等领域,利用三角函数与平面向量可以进
行精确的测量和计算,以实现设计和制作的准确性。
平面向量与三角函数的综合习题
平面向量与三角函数的综合习题三角函数与平面向量综合题题型一:三角函数与平面向量平行(共线) 的综合【例1】已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)→与向量q =(cosA-sinA ,1+sinA) 是共线向量.C -3B 2(Ⅰ)求角A ;(Ⅱ)求函数y =2sin B +cos . 2题型二. 三角函数与平面向量垂直的综合【例2】3π→→→→已知向量a =(3sinα,cosα),b =(2sinα,5sinα-4cosα),α∈(2π),且a ⊥b . 2απ(Ⅰ)求tanα的值;(Ⅱ)求的值. 23题型三. 三角函数与平面向量的模的综合→→→→2【例3】已知向量a =(cosα,sinα),b =(cosβ,sinβ),|a -b |=5.(Ⅰ) 求cos(α-β)的值;5ππ5(Ⅱ) 若-β<0<α<sinβ=-sinα的值. 2213题型四三角函数与平面向量数量积的综合【例3】π→→→→设函数f(x)=a ·b . 其中向量a =(m,cosx) ,b =(1+sinx ,1) ,x ∈R ,且f(2=2. (Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.题型五:结合三角形中的向量知识考查三角形的边长或角的运算【例5】(山东卷)在∆A B C 中,角A , B , C 的对边分别为a, b , c ,tan C =.5(1)求cos C ;(2)若C B ⋅C A =,且a +b =9,求c . 2题型六:结合三角函数的有界性,考查三角函数的最值与向量运算【例6】(2019年高考陕西卷)f (x ) =a ⋅b ,其中向量a =(m , cos 2x ) ,πb =(1+sin 2x ,1) ,x ∈R ,且函数y =f (x ) 的图象经过点(, 2) . 4(Ⅰ)求实数m 的值;(Ⅱ)求函数y =f (x ) 的最小值及此时x 值的集合。
例说平面向量与三角函数的综合性问题
说 :题 以线 量 载 , 、 , . 明本 是 共 向 为体利 / 求 t 0 丁
谊, o
一
. . +
~
莲 髻 鬟
上
‘
-
黧
’
中 角
, ,
一
…
, 上∞ ,
H
,
I 嘉 豫 掰 求的 g ; 三
1:( 譬 一 小解 : 1) 1,) , , 2 ‘ m 4 (
u 手。 ~
‘ .
一
・ c, z 手 唔, ・ 手 一
时 L o 6 nZ u— o i
言
o
‘
取范 手 孑 詈 J2 值 一, , 亍 时 【 ̄ 2s i 3 :
哨 的向量运算。 蓄 赛 署
年 囊 高磊 盂
竺嘉 耄荦
篙量 垒
] 。 i AA C 角 对 .  ̄ . B A , , 的 对 B C
o]=A 曰 + ss … 或 s: i A一 8i n =2 n 2 ,B 手  ̄
。
(
线
3 I. ). . (+ t n ,+ 。 x 2 a0y 1)
x 2 a0 + t n 一1
c.c , , 一 等 3 手
三 磊 角嚣袤妻
; 巍麓 鋈
2抓 表 现 手 法 中 的 以 动 写 静 、 小 见 . 以 大、 虚实 结 合 等 3抓 修 辞 手 法 中 的 比 喻 、 人 、 张 、 . 拟 夸 抒 发 了作 者 怎 样 的 思 想 感 情 或 间 接 流 露 出 作 者 怎 样 的 情 感 。 其 主 要 方 法 就 是 运 用 上 面 所 说 的 联 系 法和 诗 词 的 艺 术 手 法
…
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求函数 的最大值和最小正周期;
(2)将函数 的图像按向量 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的 .
(1)求角A的大小;(2)当 =2sin2B+sin(2B+ )取最大值时,求角 的大小.
8.已知 =(cos +sin ,sin ),=(cos -sin ,2cos ),
(1)求证:向量 与向量不可能平行;
(2)若 = · ,且 ∈[-,]时,求函数 的最大值及最小值.
9.设函数 ,其中向量 ,
六、目标检测
1、 的三个内角 所对的边长分别是 ,设向量 ,若 ,则角 的大小为________.
2、设向量 ,函数 .求函数 的最小正周期和最值对应的 的取值.
3、已知向量 .若 ,求 .
七、作业布置
1.已知 =(cos40,sin40), =(cos20,sin20),则 =()ﻩ
A.1B. C.D.
4.辅助角公式
asinx+bcosx=,其中tanφ=
(二)向量相关知识
已知向量
1.若 ,则
2.若 ,则
3. =
4. 行的综合
例1:已知向量 , ,若 ,求 值.
变式:已知A、B、C为三个锐角,且A+B+C=π.若向量 =(2-2sinA,cosA+sinA)与向量 =(sinA-cosA,1+sinA)是共线向量,求角A.
问题二:三角函数与平面向量垂直的综合
例2:已知向量 , ,且 .(1)求 的值;(2)求 的值.
问题三:三角函数与平面向量数量积的综合
例3:已知向量 ,函数 ,求:
(1)函数 的最小正周期T;
(2)已知 分别是 的三条边,其中A为锐角, 且 ,求 和 的面积 .
变式:设函数 ,其中向量 , ,且 (1)求实数 的值;(2)求函数 的最小值.
A.30ﻩB.45C.60D.75
6.在△ABC中,A、B、C所对边的长分别为 ,已知向量=(1,2sinA), =(sinA,1+cosA),满足∥ ,b+c=
(1)求A的大小;(2)求sin(B+ )的值.
7.△ABC的角A、B、C的对边分别为 ,=(2b-c, ), =(cosA,-cosC),且⊥ .
三、课前检测
(一)三角函数相关知识
1.两角和与差的余弦、正弦、正切公式
cos(α-β)=cos(α+β)=
sin(α-β)=sin(α+β)=
tan(α-β)=tan(α+β)=
2.二倍角公式
sin 2α=;
cos2α===;
tan2α=
3.公式的变形
(1)sinαcosα=,
(2)cos2α=,sin2α=;
2.将函数 的图象按向量(, )平移后得到图象对应的解析式
A.2cos2 B.-2cos2 ﻩC.2sin2 D.-2sin2
3.已知△ABC中,= , = ,若 ·<0,则△ABC是()
A.钝角三角形B.直角三角形C.锐角三角形D.任意三角形
4.设 =(,sin),=(cos,),且 ∥,则锐角为()ﻩ
向量与三角函数的综合
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
平面向量与三角函数的综合
姓名:班级:
一、学习目标
掌握三角函数与向量平行、垂直、数量积的综合应用
二、相关知识
三角函数的性质、正余弦定理、三角形面积公式