2013北京各区县初三一模试题和答案汇编22题

合集下载

2013年东城区初三中考一模数学试题及答案(免费下载)

2013年东城区初三中考一模数学试题及答案(免费下载)

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年北京市朝阳区中考数学一模试卷及答案(word解析版)

2013年北京市朝阳区中考数学一模试卷及答案(word解析版)

北京市朝阳区2013年中考数学一模试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.2.(4分)(2013•朝阳区一模)中国航空母舰“辽宁号”的满载排水量为67500吨.将数675003.(4分)(2013•朝阳区一模)把4张形状、质地完全相同的卡片分别写上数字1,2,3,4,再将这些卡片放在一个不透明的盒子里,随机从中抽取1张卡片,则抽取的卡片上的数字为B∴抽取的卡片上的数字为奇数的概率是=4.(4分)(2013•朝阳区一模)北京2013年3月的一周中每天最高气温如下:7,13,15,5.(4分)(2013•朝阳区一模)如图所示,直线l1∥l2,∠1=40°,则∠2为()6.(4分)(2013•朝阳区一模)如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()==47.(4分)(2013•朝阳区一模)二次函数y=(x ﹣1)2+3的顶点在( )y=8.(4分)(2013•朝阳区一模)如图,矩形ABCD 的两条对角线相交于点O ,∠BOC=120°,AB=3,一动点P 以1cm/s 的速度延折线OB ﹣BA 运动,那么点P 的运动时间x (s )与点C 、O 、P 围成的三角形的面积y 之间的函数图象为( )BAB=•=•二.填空题(共5道小题,每小题4分,共20分)9.(4分)(2013•朝阳区一模)如果2是方程x2﹣mx+6=0的一个根,那么m=5.10.(4分)(2013•朝阳区一模)因式分解:2x2﹣18=2(x+3)(x﹣3).11.(4分)(2013•朝阳区一模)侧面展开图是矩形的简单几何体是圆柱,棱柱.12.(4分)(2013•朝阳区一模)如图所示,菱形ABCD的一条对角线BD上一点O到菱形一边AB的距离为3,那么O点到另外一边BC的距离为3.13.(4分)(2013•朝阳区一模)若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0.三.解答题(共9道小题,14题-20题每小题5分,21题6分,22题7分,共48分)14.(5分)(2013•朝阳区一模)计算:(1﹣)0+﹣2sin45°﹣()﹣1.﹣×﹣=﹣15.(5分)(2013•朝阳区一模)求不等式组的整数解.则不等式组16.(5分)(2013•朝阳区一模)如图所示,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,且BF=AC.求证:DF=DC.17.(5分)(2013•朝阳区一模)动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29000元.求成人票和儿童票各售出多少张.,解得18.(5分)(2013•朝阳区一模)某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)请根据所提供的信息补全频数分布直方图;(2)写出该样本中,七年级学生身高的中位数所在组的范围;155~160cm;(3)如果该校七年级共有500名学生,那么估计该校七年级身高在160cm及160cm以上的学生共有160人;(4)若该校所在区的七年级学生平均身高为155cm,请结合以上信息,对该校七年级学生的身高情况提出一个你的见解.19.(5分)(2013•朝阳区一模)已知:一次函数y=x+2与反比例函数y=相交于A、B两点且A点的纵坐标为4.(1)求反比例函数的解析式;(2)求△AOB的面积.y=得,y=组成方程组得,,,×4+20.(5分)(2013•朝阳区一模)如图,AB为⊙O的直径,BC是弦,OE⊥BC,垂足为F,且与⊙O相交于点E,连接CE、AE,延长OE到点D,使∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)若cosD=,BC=8,求AB的长.都对BF=CF=ABC=,=521.(6分)(2013•朝阳区一模)如图,抛物线y=﹣x2+c与x轴分别交于点A、B,直线y=﹣x+过点B,与y轴交于点E,并与抛物线y=﹣x2+c相交于点C.(1)求抛物线y=﹣x2+c的解析式;(2)直接写出点C的坐标;(3)若点M在线段AB上以每秒1个单位长度的速度从点A向点B运动(不与点A、B 重合),同时,点N在射线BC上以每秒2个单位长度的速度从点B向点C运动.设点M 的运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?=x+过点﹣)联立抛物线及直线解析式可得:或,,)BE==EBO=,EBO==(×t=t t=((.﹣t最大面积是22.(7分)(2013•朝阳区一模)在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB=2.=cot60,== HG=AM=2=cot60===AM=2 AB=HG=2.。

北京市密云区2013年中考一模数学试题(含答案)

北京市密云区2013年中考一模数学试题(含答案)

密云县2013学年初中毕业考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的11. 的倒数是(61C.6696000千米,用科学记数法可表示为(一个球,摸到黑球的概率是(3.4.1函数=中,自变量x的取值范围是(A. x 2B. x :::2D. x 一25. 在一个不透明的袋子里装有3个黑球和2个白球,他们除颜色外都相同, 随机从中摸出A .156.下面的几何体中,主视图为三角形的是(考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

在试卷和答题卡上准确填写学校名称、班级和姓名。

试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

考试结束,将本试卷、答题卡和草稿纸一并交回。

2.3.4.5.B.—62.太阳的半径大约是A . 6.96X03千米米B. 6.96X04千米C. 6.96XI05千米 D . 6.96XI06千7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8, 9, 8, 7, 10.这组数据的平均数 和中位数分别是( )A . 8,8B . 8.4,8C . 8.4,8.4D . 8,8.4&如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁到点的距离为,则关于的函数图象大致为()二、填空题(本题共 16分,每小题4分)329. 分解因式: a -2a +a = _______________ .10.已知扇形的圆心角为120半径为3cm ,则该扇形的面 积为留二).11.将一副三角板按图中方式叠放,则角a 等于 _______________12. 观察下列等式:第1个等式:轩1丄1-丄;1汉3 2 13丿c m 2 (结果保第2个等式:1 1」1 12 3 5 2 3 5第3个等式:a 31 1- -1;5x72「5 7 丿第4个等式:a 41 1 1 -1;7汇9 2 V 79丿请解答下列问题:(1) ________________________________________________ 按以上规律列出第 5个等式:a 5 = ____________________________________________________ = _________________ ; (2) _________________________________________________________________ 求 ai + a 2 + a 3 + a 4 + … +・a ioo 的值为 ___________________________________________________ •:学_科_网 Z_X_X_K]三、解答题(本题共 30分,每小题5分)解不等式:5(x —2) 8 ::: 6(x -1) 7已知:如图, AB=AE / 1 = Z 2,Z B=Z E. 求证:BC=ED.17.如图,已知直线l 1经过点A (-1 , 0)与点B (2, 3),另一条直线12经过点B ,且与x 轴交于点P ( m 0).(1) 求直线11的解析式;14. 15.已知:丄亠1 = 5a=b ,求 ------- - 的值a b b(a - b) a(a - b)16. (2)若厶APB 的面积为3,求m 的值.13.计算:18•列方程或方程组解应用题某服装厂设计了一款新式夏装, 想尽快制作8800件投入市场,服装厂有A 、B 两个 制衣车间,A 车间每天加工的数量是 B 车间的1. 2倍,A B 两车间共同完成一半后, A 车 间出现故障停产,剩下全部由 B 车间单独完成,结果前后共用 20天完成,求A 、B 两车间每 天分别能加工多少件.佃.如图,已知菱形 ABCD AB=AC E 、F 分别是BG AD 的中点,连接 AE 、CF(1) 证明:四边形 AEGF 是矩形; (2) 若AB=8,求菱形的面积。

北京市昌平区2013年初三数学一模试题及答案

北京市昌平区2013年初三数学一模试题及答案

昌平区2013年初三年级第一次统一练习数学 试 卷 2013.5考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟。

2.在答题卡上认真填写学校名称、姓名和考试编号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将答题卡交回。

一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2-的倒数是A .12-B .12C .2-D .22.气象学上将目标物的水平能见度小于10 000米时的非水成物组成的气溶胶系统造成的视程障碍称为霾或灰霾,水平能见度在1 000-10 000米的这种现象称为轻雾或霭. 测得北京市某天的能见度是9 820米,那么数据9 820用科学记数法可表示为A .98210⨯B .298.210⨯C .39.8210⨯D .40.98210⨯ 3. 如图,若AB ∥CD ,∠A =70°,则∠1的度数是A .20°B .30°C .70°D .110°4.现将背面相同的4张扑克牌背面朝上,洗匀后,从中任意翻开一张是数字5的概率为A .14B .13 C .25 D .125.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 的长不可能...是 A. 2.5 B.3C.4D.56.九(1)班体育委员记录了本班第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数分别为6,10,5,3,4,8,4,这组数据的中位数和极差分别是DBAC1 ABCPA .4,7 B. 7,5 C. 5,7 D. 3,7 7.如图是某几何体的三视图及相关数据,则该几何体的侧面积是俯视图左视图主视图ac bA .12ab πB .12ac π C .ab π D .ac π8.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P '.设Q 点运动的时间为t 秒,若四边形QP CP '为菱形,则t 的值为 A. 2 B. 2 C. 22 D. 3二、填空题(共4道小题,每小题4分,共16分) 9.在函数2y x =-中,自变量x 的取值范围是 . 10.把多项式322x x x -+分解因式,结果为 .11.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,若 cos ∠CAM =45,则tan ∠B 的值为 .12.如图,在△ABC 中,AB =AC =2,点P 在BC 上.若点P 为BC 的中点,则2m AP BP PC =+⋅的值为 ;若BC 边上有100个不同的点P 1,P 2,…,P 100,且m i =AP i 2+BP i ⋅P i C (i =1,2,…,100),则m =m 1+m 2+…+m 100 的值为 .三、解答题(共6道小题,每小题5分,共30分)PCB AACMBAB PCP /Q13.计算: ()101124sin 6013π-⎛⎫-︒-+- ⎪⎝⎭.14. 解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.3210-1-2-315. 已知222a a -=,求2223()42a a a a -+-+的值.16. 如图,在△ABC 中,AD ⊥AB ,AD =AB ,AE ⊥AC ,AE = AC . 求证:BE =CD .17. 将直线y x =沿y 轴向下平移后,得到的直线与x 轴交于点A (30,),与双曲线my x=(0x >)交于点B . (1)求直线AB 的解析式;(2)设点B 的纵坐标为a ,求m 的值(用含a 的代数式表示).18. 某学校组织九年级(1)班和(2)班的学生到离校5千米的“农业嘉年华”参观,(1)班学生的行进速度是(2)班学生速度的1.25倍,结果(1)班学生比(2)班学生早到15分钟,求(2)班学生的速度.四、解答题(共4道小题,19—21小题各5分,22题4分,共19分)19. 如图,四边形ABCD 是⊙O 的内接正方形,延长AB 到E ,使BE =AB ,连接CE . (1)求证:直线CE 是⊙O 的切线;(2)连接OE 交BC 于点F ,若OF =2 , 求EF 的长.DBCEAO yx AEDC BAO F20. 某学校一直坚持开展用眼健康方面的教育,并进行跟踪治疗. 为了调查全校学生的视力变化情况,从中抽取部分学生近几年视力检查的结果做了统计(如图1),并统计了2012年这部分学生的视力分布情况(如表1和图2).图2视力5.2及以上 y %视力5.1 20%视力4.9及以下 x %视力5.0 40%2012年部分学生视力分布统计图表12012 年部分学生视力分布统计表5.2及以上5.15.04.9及以下20ba60人数视力2009—2012 年部分学生视力为5.0的人数统计图人数图1年份2012201120102009806040200(1)根据以上图表中提供的信息写出:a = ,b = , x + y = ; (2)由统计图中的信息可知,近几年学生视力为5.0的学生人数每年与上一年相比,增加最多的 是 年;(3)若全校有1000名学生,请你估计2012年全校学生中视力达到5.0及以上的约有 人.21. 已知:如图,在□ABCD 中,∠BAD ,∠ADC 的平分线AE ,DF 分别与线段BC 相交于点E ,F ,AE 与DF 相交于点G .(1)求证:AE ⊥DF ;(2)若AD =10,AB =6,AE =4,求DF 的长.GA EBCDF22. (1)人教版八年级数学下册92页第14题是这样叙述的:如图1,□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,HG ∥AB ,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为 和 ; (2)如图2,点P 为□ABCD 内一点,过点P 分别作AD 、AB 的平行线分别交□ABCD的四边于点E 、F 、G 、H . 已知S □BHPE = 3,S □PFDG = 5,则PAC S ∆= ; (3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD 的面积为11,则菱形EFGH 的周长为 .图2图3图1⑤④③②①H PA BGEH DF C ABGEP DF C HGFE DCBA五、解答题(共3道小题,第23题7分,第24题7分,第25题9分,共23分) 23. 已知抛物线22y x kx k =-+-+.(1)求证:无论k 为任何实数,该抛物线与x 轴都有两个交点; (2)在抛物线上有一点P (m ,n ),n <0,OP =103,且线段OP 与x 轴正半轴所夹锐角的正弦值为45,求该抛物线的解析式;(3)将(2)中的抛物线x 轴上方的部分沿x 轴翻折,与原图象的另一部分组成一个新的图形M ,当直线y x b =-+与图形M 有四个交点时,求b 的取值范围.-1-111xO y24.在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.C 1C BA 1A图2A 1C 1ABC图1图3PP 1E A 1A C 1CB25. 如图,在平面直角坐标系xOy 中,点B ,C 在x 轴上,点A ,E 在y 轴上,OB ︰OC =1︰3,AE =7,且tan ∠OCE =3,tan ∠ABO =2. (1)求经过A ,B ,C 三点的抛物线的解析式;(2)点D 在(1)中的抛物线上,四边形ABCD 是以BC 为一底边的梯形,求经过B 、D 两点的一次函数解析式;(3)在(2)的条件下,过点D作直线DQ∥y轴交线段CE于点Q,在抛物线上是否存在点P,使直线PQ与坐标轴相交所成的锐角等于梯形ABCD的底角,若存在,求出点P的坐标;若不存在,请说明理由.昌平区2013年初三年级第一次统一练习数学试卷参考答案及评分标准2013.5一、选择题(共8道小题,每小题4分,共32分)1 2 3 4 5 6 7 8A C D D A CB B二、填空题(共4道小题,每小题4分,共16分)题号9 10 11 12答案x≤2x(x-1)2234 , 400(各2分)三、解答题(共6道小题,每小题5分,共30分)13.解:原式=3234312-⨯-+……………………………………………………………4分=-2.………………………………………………………………………5分14.解:5x-12≤8x-6……………………………………………………………………………1分5x-8x≤12-6……………………………………………………………………………2分 -3x≤6……………………………………………………………………………3分x≥-2.……………………………………………………………………………4分所以,原不等式的解集在数轴上表示为321-1-2-3………………5分15.解:原式=223(2)(2)2a a a a a ⎡⎤-+⎢⎥+-+⎣⎦…………………………………………………………… 1分=213()22a a a +++ …………………………………………………………………2分 =242a a + …………………………………………………………………… 3分 =242a a +. …………………………………………………………………… 4分 当2a 2–a =2时,2a 2=a +2. ∴原式=22422a a =. ………………………………………………………………… 5分16.证明:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB=∠EAC =90°.∴∠DAB+∠1=∠EAC+∠1.即∠DAC=∠EAB . ……………………… 1分 又∵AD=AB ,AE=AC , …………………………………… 3分 ∴△DAC ≌△EAB (SAS). ………………………… 4分 ∴CD = BE . ……………………………… 5分17.解:(1)依题意,设直线AB 的解析式为y = x + b .…………………………………………… 1分∵直线AB 与x 轴交于点A (3,0), ∴0 = 3 + b . ∴b=-3. ……………………………………………………………………………… 2分 ∴直线AB的解析式为y=x-3. ………………………………………………………… 3分(2)∵直线AB 与双曲线my x=(x >0)交于点B ,且点B 的纵坐标为a , ∴a = x -3. ∴x=a+3. …………………………………………………………………………………… 4分1DBCEA∴3m a a =+. ∴m=a (a+3). …………………………………………………………………………… 5分18.解:设(2)班学生的速度为x 千米/小时. ………………………………………… 1分依题意,得55151.2560x x -= . ………………………………………………………… 2分解之,得x=4 . ………………………………………………… 3分经检验:x=4是原方程的解,且符合实际意义. …………………………………… 4分答:(2)班学生的速度为4千米/小时. ………………………………………………… 5分四、解答题(共4道小题,19—21小题各5分,22题4分,共19分) 19.(1)证明:连接OC∵四边形ABCD 是O 的内接正方形,∴AB=BC ,CO 平分∠DCB ,∠DCB =∠ABC =90°. ∴∠1=45°,∠EBC =90°. ∵AB=BE , ∴BC=BE . ∴∠2=45°.∴∠OCE =∠1+∠2 = 90°. ∵点C 在O 上,∴直线CE 是O 的切线. …………………………………… 2分(2)解:过点O 作OM ⊥AB 于M ,∴11=22AM BM AB BE ==.∴23BE ME =. ………………………………………………………3分 ∵FB ⊥AE , ∴FB ∥OM .∴△EFB ∽△EOM . …………………………………………………………4分∴EF EBEO EM=. MF O ABCDE12∴223EF EF =+.∴EF=4. …………………………………………………………5分20.解:(1) 80,40,40. ……………………………………………………………… 3分(2) 2012. ………………………………………………………4分(3)700. (5)分21.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥DC .∴∠BAD +∠ADC=180°. ………………………………………1分 ∵AE 、DF 分别平分∠BAD 、∠ADC ,∴111,222BAD ADC ∠=∠∠=∠ . ∴112()902BAD ADC ∠+∠=∠+∠=︒ .∴∠AGD=90°.∴AE ⊥DF . ………………………………………………………2分(2)由(1)知:AD ∥BC ,且BC= AD = 10,DC =AB =6,∠1=∠3,∠2=∠4 . ∴∠1=∠AEB ,∠2=∠DFC . ∴∠3=∠AEB ,∠4=∠DFC . ∴BE=AB =6,CF=DC =6. ∴BF =4.∴EF =2. …………………………………………………3分 ∵AD ∥BC ,∴△EFG ∽△ADG . ∴15EG EF AG AD ==. ∴145EG EG =-. ∴EG=23.∴AG=103. ……………………………………………………4分由(1)知∠FGE=∠AGD=90°,由勾股定理,得DG =2023,FG=423.∴DF=82 . …………………………………………………5分22.解:(1)□AEPH 和□PGCF 或□ABGH 和□EBCF 或□AEFD 和□HGCD . …………… 1分 (2)4321GA EBCDF1. ……………………………………………………………………………………… 2分(3)24. ……………………………………………………………………………………… 4分 五、解答题(共3道小题,第23题7分,第24题7分,第25题9分,共23分) 23.(1)证明:当y =0时,得220x kx k -+-=. ∵22244(2)(2)4b ac k k k -=--=-+. ∵2(2)0k -≥, ∴2(2)40k -+>.∴无论k 为任何实数,该抛物线与x 轴都有两个交点. …………………… 3分(2)解:如图,过点P 作PA ⊥x 轴于A ,则∠OAP =90°,依题意得:104,sin 35OP POA =∠=.∴8,23AP OA ==.∵n <0,∴8(2,)3P -.∵P 在抛物线上, ∴84223k k -=-+-+. ∴23k =-. ∴抛物线解析式为22833y x x =--+. ………………………………………5分 (3)当y =0时,228033x x +-=.∴1242,3x x =-=,∴抛物线与x 轴相交于点4(2,0),(,0)3.B C -当直线y = - x + b 经过点C (-2,0)时,b = -2. ………………………………………C BAP yOx11-1-16分当直线y = - x + b 与抛物线228+-33y x x =相切时,22833x +x-x b =-+,∴△ = 2584()093b ++=. ∴b=12136-. ……………………………………………………………………7分∴ 当12136-<b <-2时,直线与图形M 有四个交点. ………………………………………8分24.解:(1)如图1,依题意得:△A 1C 1B ≌△ACB .……… 1分∴BC 1=BC ,∠A 1C 1B =∠C =30°. ∴∠BC 1C = ∠C =30°.∴∠CC 1A 1 = 60°.…………………………… 2分 (2)如图2,由(1)知:△A 1C 1B ≌△ACB .∴A 1B = AB ,BC 1 = BC ,∠A 1BC 1 =∠ABC . ∴∠1 = ∠2,114263A B AB C B BC === ∴ △A 1BA ∽△C 1BC ………………… 3分 ∴112ΔΔ2439A BA C BCS S ⎛⎫== ⎪⎝⎭. ……………………4分 ∵1Δ3C BC S =, ∴1Δ43A BA S =. ……………………………5分 (3)线段EP 1长度的最大值为8,EP 1长度的最小值1. ………… 7分 25.解:(1)依题意得:∠AOB =∠COE =90°,∴OA OB=tan ∠ABO =2,OE=OCtan ∠OCE =3. …………………………………………1分 ∴OA =2OB ,OE =3OC . ∵OB =OC =1︰3,A 1C 1AB C图121C 1CBA 1A图2∴OC =3OB . ∴OE =9OB . ∵ AE =7, ∴9OB -2OB =7.∴OB =1,OC =3,OA =2,OE =9.∴A (0,2),B (-1,0),C (3,0),E (0,9).……………………………………………………2分设抛物线的解析式为:y =a (x +1)(x -3),∴ 2=-3a ,即a =-23.∴抛物线解析式为:224233y x x =-++ (3)分(2)过点A 作AD ∥x 轴交抛物线于点D .∴ 2D A y y ==.∴D (2,2). …………………………………………4分 设直线BD 的解析式为y =kx +b , ∴022k bk b =-+⎧⎨=+⎩∴k=23, b =23. ∴直线BD 的解析式为2233y x =+.…………………………………………5分 (3)易知直线CE 的解析式为y = -3x + 9, Q (2,3). 设与y 轴交于点F ,过点Q 作QM ⊥y 轴于点M . 则∠QMF =∠AOB = 90°. ∵∠QFM =∠ABO , ∴tan ∠QFM = tan ∠ABO =2 . ∴2QM MF=.∵Q (2,3), ∴1132MF QM ,MO ===.P 3P 2MDQ(P 1)-111xO yEA BC∴F (0,2)即P (0,2).经验证,P (0,2)在抛物线224233y x x =-++上. 易求得,此时直线PQ 的解析式为122y x =+,直线PQ 与抛物线224233y x x =-++的另一个交点的坐标为52148,⎛⎫⎪⎝⎭. ……………………………………………7分 同理可求得满足条件的另两个点P 的坐标为1192192,-+-+⎛⎫⎪⎝⎭和1192192,----⎛⎫ ⎪⎝⎭. ……………………………………9分 综上所述,满足条件的点P 的坐标为 P 1(0,2), P 252148,⎛⎫⎪⎝⎭,P 31192192(,)-+-+, P 41192192(,)----.OCEA Bxy。

2013年北京市数学中考一、二模拟题分类汇编:操作探究

2013年北京市数学中考一、二模拟题分类汇编:操作探究

操作探究1.(2013.昌平一模22)(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,□ABCD中,过对角线BD上一点P作EF∥BC,HG∥AB,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为□ABCD内一点,过点P分别作AD、AB的平行线分别交□ABCD的四边于点E、F、G、H. 已知S□BHPE = 3,S□PFDG = 5,则;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为.2.(2013.燕山一模22)阅读下列材料:问题:如图⑴,已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF =45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:⑴图⑴中线段BE、EF、FD之间的数量关系是;⑵如图⑵,已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF=45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;⑶如图⑶,已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.3.(2013.朝阳一模22)阅读下面材料:小雨遇到这样一个问题:如图1,直线l1∥l2∥l3,l1与l2之间的距离是1,l2与l3之间的距离是2,试画出一个等腰直角三角形ABC,使三个顶点分别在直线l1、l2、l3上,并求出所画等腰直角三角形ABC的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l1任取一点A,作AD⊥l2于点D,作∠DAH=90°,在AH上截取AE=AD,过点E作EB⊥AE交l3于点B,连接AB,作∠BAC=90°,交直线l2于点C,连接BC,即可得到等腰直角三角形ABC.请你回答:图2中等腰直角三角形ABC的面积等于.参考小雨同学的方法,解决下列问题:如图3,直线l1∥l2∥l3,l1与l2之间的距离是2,l2与l3之间的距离是1,试画出一个等边三角形ABC,使三个顶点分别在直线l1、l2、l3上,并直接写出所画等边三角形ABC的面积(保留画图痕迹).4.(2013.海淀一模22)问题:如图1,、、、是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形,使它的顶点、、、分别在直线、、、上,并计算它的边长.图1 图2小明的思考过程:他利用图1中的等距平行线构造了的正方形网格,得到了辅助正方形,如图2所示, 再分别找到它的四条边的三等分点、、、,就可以画出一个满足题目要求的正方形.请回答:图2中正方形的边长为 .请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为,边长为1)中,画出一个等边△,使它的顶点、、落在格点上,且分别在直线a、b、c上;(3)如图4,、、是同一平面内的三条平行线,、之间的距离是,、之间的距离是,等边△的三个顶点分别在、、上,直接写出△的边长.图3 图45.(2013.东城一模22)如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm,最大值为________cm.6.(2013.怀柔一模22)理解与应用:我们把对称中心重合、四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.....一条直线l与方形环的边线有四个交点、、、.小明在探究线段与的数量关系时,从点、向对边作垂线段、,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)直线l与方形环的对边相交时(22题图1),直线l分别交、、、于、、、,小明发现与相等,请你帮他说明理由;(2)直线l与方形环的邻边相交时(22题图2),l分别交、、、于、、、,l与的夹角为,请直接写出的值(用含的三角函数表示).7.(2013.门头沟一模22)操作与探究:在平面直角坐标系xOy中,点P从原点O出发,且点P只能每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系xOy中,点P从原点O出发,平移1次后可能到达的点的坐标是,;点P从原点O出发,平移2次后可能到达的点的坐标是,,;点P从原点O出发,平移3次后可能到达的点的坐标是;(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上,….若点P平移5次后可能到达的点恰好在直线上,则点P的坐标是;(3)探究运用:点P从原点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于30,不超过32,求点Q的坐标.8.(2013.平谷一模22)对于平面直角坐标系中的任意两点,我们把叫做两点间的直角距离,记作.(1)已知点,那么两点间的直角距离=_____________;(2)已知O为坐标原点,动点满足,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有满足条件的图形;(3)设是一定点,是直线上的动点,我们把的最小值叫做点到直线的直角距离.试求点到直线的直角距离..9.(2013.石景山一模22)问题解决:已知:如图,为上一动点,分别过点、作于点,于点,联结、.(1)请问:点满足什么条件时,的值最小?(2)若,,,设.用含的代数式表示的长(直接写出结果).拓展应用:参考上述问题解决的方法,请构造图形,并求出代数式的最小值.来源:学,科,网]10.(2013.顺义一模22)如图1,在四边形中,,分别是的中点,连结并延长,分别与的延长线交于点,则(不需证明).小明的思路是:在图1中,连结,取的中点,连结,根据三角形中位线定理和平行线性质,可证得.问题:如图2,在中,,点在上,,分别是的中点,连结并延长,与的延长线交于点,若,连结,判断的形状并证明.11.(2013.通州一模22)如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形的边长为2,是的中点,沿将菱形剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为、、,周长分别记为、、,判断所拼成的三种图形的面积、周长的大小关系(用“=”、“>”、“<”、“≤”或“≥”连接):面积关系是;周长关系是.12.(2013.西城一模22)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1) 如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0) .①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在轴的正半轴上有一点D,且∠ACB =∠ADB,则点D的坐标为;(2) 如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.点P为轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.13.(2013.延庆一模22)阅读下面材料:将正方形ABCD(如图1)作如下划分:第1次划分:分别联结正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH按上述方法再作划分,得图3,则图3中共有_______个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD划分成有2013个正方形的图形?需说明理由.14.(2013.昌平二模22)(1)【原题呈现】如图,要在燃气管道l上修建一个泵站分别向A、B两镇供气. 泵站修在管道的什么地方,可使所用的输气管线最短?解决问题:请你在所给图中画出泵站P的位置,并保留作图痕迹;(2)【问题拓展】已知a>0,b>0,且a+b=2,写出的最小值;(3)【问题延伸】已知a>0,b>0,写出以、、为边长的三角形的面积.15.(2013.朝阳二模22)阅读下列材料:小华遇到这样一个问题,如图1, △ABC中,∠ACB=30º,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60º,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.16.(2013.大兴二模22)在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B 落在直线上的T处,折痕为MN.当点T 在直线上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动(点M可以与点A重合,点N可以与点C重合),求线段AT长度的最大值与最小值的和(计算结果不取近似值).17.(2013.东城二模22)阅读并回答问题:数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:①在OA,OB上分别截取OD,OE,使OD=OE.②分别以D,E为圆心,以大于为半径作弧,两弧在内交于点C.③作射线OC,则OC就是的平分线小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:作法: ①利用三角板上的刻度,在OA ,OB 上分别截取OM ,ON ,使OM =ON .②分别过以M ,N 为OM ,ON 的垂线,交于点P.③作射线OP ,则OP 就是的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1) 小聪的作法正确吗?请说明理由;(2) 请你帮小颖设计用刻度尺作平分线的方法.(要求:不与小聪方法相同,请画出图形,并写出画图的方法,不必证明).18.(2013.房山二模22)如图1,在矩形MNPQ 中,点E ,F ,G ,H 分别在边NP ,PQ ,QM ,MN 上,当时,我们称四边形EFGH 为矩形MNPQ 的反射四边形.已知:矩形ABCD 的四个顶点均为边长为1的正方形网格的格点,请解决下列问题: (1)在图2中,点E ,F 分别在BC ,CD 边上,请作出矩形ABCD 的反射四边形EFGH ,并求出反射四边形EFGH 的周长.(2)在图3中作出矩形ABCD 的所有反射四边形,并判断它们的周长之间的关系.19.(2013.密云二模22)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.20.(2013.石景山二模22)如图,在矩形ABCD中,AB=3,BC=4,点M、N、分别在BC、AB上,将矩形ABCD沿MN折叠,设点B的对应点是点E.(1)若点E在AD边上,BM=,求AE的长;(2)若点E在对角线AC上,请直接写出AE的取值范围:.解:21.(2013.丰台二模22)操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+()=3.若平面直角坐标系xOy中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为.(1)计算:{3,1}+{1,2};(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA 平移一周.请用“平移量”加法算式表示动点P的平移过程.22.(2013.海淀二模22)如图1,四边形ABCD中,、为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”,此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.图1 图2 图3(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.23.(2013.怀柔二模22)探究与应用已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有..两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.(1)如图,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1;(2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦,若点P的坐标为(m,0)时,则b﹦;(3)依据(2)的规律,如果点P的坐标为(6,0),请你直接写出点M1和点M的坐标.解:(1)如图(2)k﹦,b﹦;(3)M1的坐标为(,),M的坐标为(,).24.(2013.西城二模22)在平面直角坐标系xOy中,点经过变换得到点,该变换记作,其中为常数.例如,当,且时,.(1) 当,且时,= ;(2) 若,则= ,= ;(3) 设点是直线上的任意一点,点经过变换得到点.若点与点重合,求和的值.第七章操作探究参考答案1.(2013.昌平一模22)解:(1)□AEPH 和□PGCF或□ABGH 和□EBCF 或□AEFD 和□HGCD . … 1分(2)1. ……………………………… 2分(3)24.……………………………… 4分2.(2013.燕山一模22)⑴线段BE、EF、FD之间的数量关系是EF=BE+FD; (1)分⑵AG的长为 5 ,△EFC的周长为 10 ;………………………3分⑶△AEF的面积为 15 .………………………5分3.(2013.朝阳一模22)解: 5;……………………………………………2分如图;………………………………………3分. ………………………………………5分4.(2013.海淀一模22)(1).………………………2分(2)①如图:(答案不唯一) …4分②.………………………5分5.(2013.东城一模22)解:(1)拼接成的四边形所图虚线所示;………………2分(2);. …………………………5分(注:通过操作,我们可以看到最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来菱形的边AB=4,左右两边的长等于线段MN的长,当MN垂直于BC时,其长度最短,等于原来菱形的高的一半,于是这个平行四边形的周长的最小值为2(+4)=;当点E与点A重合,点M与点G重合,点N与点C重合时,线段MN最长,等于,此时,这个四边形的周长最大,其值为.)6.(2013.怀柔一模22)理解与应用:…………………1分=∠N’NF……………………2分………………3分)……………………………5分7.(2013.门头沟一模22)解:(1)(0,6),(1,4),(2,2),(3,0).………………………2分(2)平移5次后P在y=-2x+10上,又在y=3x上,联立方程组即可。

北京市海淀区2013年中考一模数学答案-word版本-完美编辑直接打印

北京市海淀区2013年中考一模数学答案-word版本-完美编辑直接打印

EDCBA海淀区九年级第二学期期中测评数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分) 130112cos301)()8-︒+- .解:原式218=-- ………………………4分 7=.………………………5分解:由①得 2x >-.………………………2分 由②得 1x ≤.………………………4分则不等式组的解集为12≤<-x .………………………5分 15.先化简,再求值:4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x . 解:原式2212421x x x x -+-=⋅-- ………………………2分 )1)(1()2(221+--⋅--=x x x x x ………………………3分 12+=x . ………………………4分 当3=x 时,原式=2112=+x .………………………5分16.证明:AB ∥EC ,∴.A DCE ∠=∠ ………………………1分 在△ABC 和△CDE 中,,,,B EDC A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE .………………………4分 ∴.BC DE = ………………………5分17.解:(1)∵ 点A (1,)n -在反比例函数xy 2-=的图象上, ∴ 2n =. ………………………1分 ∴ 点A 的坐标为12-(,). ∵ 点A 在一次函数y kx k =-的图象上, ∴2k k =--.∴1-=k .………………………2分∴ 一次函数的解析式为1+-=x y .………………………3分 (2)点P 的坐标为(-3,0)或(1,0).………………………5分 (写对一个给1分)18.解:设原计划每天加工x 顶帐篷. ………………………1分1500300150030042x x---=.………………………3分 解得 150x =. ………………………4分 经检验,150x =是原方程的解,且符合题意. 答:原计划每天加工150顶帐篷. ………………………5分 四、解答题(本题共20分,每小题5分)19. 解:过点A 作AF ⊥BD 于F . ∵∠CDB =90°,∠1=30°,∴∠2=∠3=60°. ………………………1分 在△AFB 中,∠AFB =90°.∵∠4=45°,AB =∴AF =BF ………………………2分 在△AFE 中,∠AFE =90°.∴1,2EF AE ==.………………………3分 在△ABD 中,∠DAB =90°.∴DB =∴1DE DB BF EF =--=-.………………………4分∴1131)222ADE S DE AF ∆-=⋅=-=.………………………5分 20.(1)证明:连接OD . ………………………1分∵AB =AC , ∴B C ∠=∠. 又∵OB OD =, ∴1B ∠=∠.∴1C ∠=∠. ∴OD ∥AC .∵DE ⊥AC 于E , ∴DE ⊥OD .∵点D 在⊙O 上,∴DE 与⊙O 相切. ………………………2分 (2)解:连接AD .∵AB 为⊙O 的直径,∴∠ADB =90°. ∵AB =6,sin B =55, ∴sin AD AB B =⋅=556.………………3分 ∵123290∠+∠=∠+∠=︒, ∴13∠=∠. ∴ 3.B ∠=∠在△AED 中,∠AED =90°.∵sin 3AE AD ∠==∴65AE AD ===. ………………………4分 又∵OD ∥AE ,∴△FAE ∽△FOD .∴FA AEFO OD =. ∵6AB =,∴3OD AO ==.∴235FA FA =+. ∴2AF =. ………………………5分21.(1)13.………………………1分(2)∵(3318)80%30++÷=,∴被小博同学抽取的监测点个数为30个. ………………………2分………………………3分(3)设去年同期销售x 万箱烟花爆竹.(135%)37x -=.解得125613x =.………………………4分 ∴1212563719201313-=≈.答:今年比去年同期少销售约20万箱烟花爆竹. ……………………… 5分22.(1.………………………2分 (2)①如图:(答案不唯一) ………………………4分………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)依题意,可得抛物线的对称轴为212mx m-=-=.………………………1分 ∵抛物线与x 轴交于A 、B 两点,点A 的坐标为(2,0)-, ∴点B 的坐标为 (4,0).………………………2分(2)∵点B 在直线y =12x +4m +n 上, ∴024m n =++①.∵点A 在二次函数2-2y mx mx n =+的图象上, ∴044m m n =++②. ………………………3分 由①、②可得12m =,4n =-. ………………………4分 ∴ 抛物线的解析式为y =2142x x --,直线的解析式为y =122x -. ……………5分(3)-502d <<. ………………………7分 24.(1)2AE =.………………………1分(2)线段AE 、CD 之间的数量关系为2AE CD =.………………………2分 证明:如图1,延长AC 与直线l 交于点G .依题意,可得∠1=∠2. ∵∠ACB =90︒, ∴∠3=∠4. ∴BA BG =.∴CA =CG .………………………3分 ∵AE ⊥l ,CD ⊥l , ∴CD ∥AE . ∴△GCD ∽△GAE . ∴12CD GC AE GA ==. ∴2AE CD =.………………………4分 (3)解:当点F 在线段AB 上时,如图2, 过点C 作CG ∥l 交AB 于点H ,交AE 于点G . ∴∠2=∠HCB . ∵∠1=∠2, ∴∠1=∠HCB . ∴CH BH =. ∵∠ACB =90︒,∴∠3+∠1=∠HCB +∠4 =90︒. ∴∠3=∠4. ∴CH AH BH ==. ∵CG ∥l ,∴△FCH ∽△FEB . ∴56CF CH EF EB ==. 设5,6CH x BE x ==,则10AB x =.∴在△AEB 中,∠AEB =90︒,8AE x =. 由(2)得,2AE CD =. ∵4CD =, ∴8AE =. ∴1x =.∴10,6,5AB BE CH ===. ∵CG ∥l ,∴△AGH ∽△AEB . ∴12HG AH BE AB ==.图3图2∴3HG =.………………………5分 ∴8CG CH HG =+=. ∵CG ∥l ,CD ∥AE , ∴四边形CDEG 为平行四边形. ∴8DE CG ==.∴2BD DE BE =-=.……………………6分 当点F 在线段BA 的延长线上时,如图3, 同理可得5CH =,3GH =,6BE =. ∴DE =2CG CH HG =-=. ∴ 8BD DE BE =+=.∴2BD =或8.……………………7分 25.解:(1)()2222y x mx m m x m m =-++=-+,……………………1分∴顶点坐标为C m ,m ().……………………2分 (2)①2y x =+与抛物线222y x mx m m =-++交于A 、B 两点,∴2222x x mx m m +=-++.解方程,得121,2x m x m =-=+.……………………4分A 点在点B 的左侧,∴(1,1),(2,4).A m m B m m -+++∴AB =……………………5分直线OC 的解析式为y x =,直线AB 的解析式为2y x =+,∴AB ∥OC ,两直线AB 、OC 之间距离h =∴11322APBSAB h =⋅=⨯=.………………………6分……………………8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。

2013年北京中考一模试题及答案_昌平

2013年北京中考一模试题及答案_昌平

昌平区2012—2013学年第二学期初三年级第一次统一练习物 理 试 卷2013.5一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。

共 28 分,每小题 2 分)1.在图1所示的物理学家中,以其名字命名功率单位的是2.下列文具中,通常情况下属于绝缘体的是A .铅笔芯B .塑料笔杆C .金属小刀D .不锈钢尺 3.下列用电器中,利用电流热效应工作的是 A .电视机 B .电热毯 C .电风扇D .电冰箱4.下列实例中,目的是为了减小摩擦的是 A .自行车轮胎上制有凹凸的花纹 B .自行车的车把上有凹凸的花纹 C .自行车轴承中装有滚珠D .骑自行车的人刹车时用力捏闸5.图 2 所示的现象中,由于光的直线传播形成的是考生须知1.本试卷共8 页,共五道大题,37 道小题,满分 100 分。

考试时间 120分钟。

2.在试卷和答题卡上准确填写学校名称、考试编号和姓名。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷和答题卡一并交回。

牛顿 瓦特 欧姆 伽利略 图1A BC D建筑物经凸透镜成缩小像C玩具在镜中成像A筷子好像在水面处“折断”了D指针在阳光下形成影子B图26.如图 3 所示,小红同学与其他几位同学坐在滑行的“香蕉”船上在海上游玩,若说小红 是静止的,则所选择的参照物是 A.海边的沙滩B.小红她们骑着的香蕉船C.海水D.站在沙滩上给小红照相的同学7. 下列物态变化中,属于凝华的是 A .早春,冰雪融化B .盛夏,山间形成浓雾C .初秋,田野花草挂上露珠D .寒冬,树梢上结了霜8. 图 4 所示的用具中,属于费力杠杆的是9.如图 5 所示的电路中,将开关 S 闭合,灯 L 1 和灯 L 2 均发光,则下列说法中正确的是 A .灯 L 1 和灯 L 2并联 B .灯 L 1和灯 L 2 串联 C .通过灯 L 1 和灯L 2的电流一定相等D .灯 L 1 和灯 L 2两端的电压一定不相等10.下列说法中,正确的是A .闭合电路的一部分导体在磁场中运动时,导体中就一定会产生感应电流B .电动机把机械能转化为电能C .在电磁感应现象中,电能转化为机械能D .奥斯特实验表明,通电导线周围存在磁场 11.下列措施中,能使蒸发减慢的是 A .将湿衣服展开后晾在向阳、通风处 B .用笤帚把地上的水向周围扫开 C .用保鲜袋装蔬菜放入冰箱D .用电吹风机吹头发12.在下列数据中,最接近生活实际的是A .一支新2B 铅笔的质量约是400g B .一个正规篮球的直径约为1dmC .一块普通橡皮的质量约为 1kgD .教室中日光灯管的长约为 120cm食品夹 瓶盖起子钳子 核桃夹 图4ABCD图5S L 2L 1图313.在学习了电路知识以后,教师要求学生练习安装楼梯照明灯,即用两个单刀双掷开关S 1 和 S 2 同时控制同一盏灯, 其中任意一个开关都可以使灯亮或灭。

北京市顺义区2013年中考一模数学试题及答案

北京市顺义区2013年中考一模数学试题及答案

C

2
DD C 2 D C1
A1 B

三、解答题(本题共 30 分,每小题 5 分) 13.计算: . (1)1 4sin 60 ( 3.14)0 12
3
14.解不等式组
3x 1 2(x
x
2
3
≥1,
1),
并把解集在数轴上表
示出来.
15.已知:如图,CA 平分 BCD , 点 E 在 D
DEC
……………………………………
……… 4 分

A D
…………………………
…………………5 分
16





=( 3 a 3 ) a 3 ………………………2 (a 3)(a 3) (a 3)(a 3) a2

=a
a 3
(a 3)(a 3) a2
…………………………… 3 分
=1 a(a 3)
EG
25 . 如 图 , 已 知 抛 物 线 y ax2 bx 3与 y 轴 交 于 点 A ,
y
E A
B O
D
C x
F
且经过 B(1,0)、C(5,8) 两点,点 D 是抛物线顶点, E 是 对称轴与直线 AC 的交点, F 与 E 关于点 D 对称. (1)求抛物线的解析式; (2)求证: AFE CFE ; (3)在抛物线的对称轴上是否存在点 P ,使 AFP 与 FDC 相似.若有,请求出所有符合条件的点 P 的坐标;若没有,请说明理由.
20 户?
20 x 25 25 x 30
4
n
2
22 . 如 图 1 , 在 四 边 形
0. ABCD 中 , AB CD , E、F 分 别

2013北京市西城区初三数学一模试题及答案

2013北京市西城区初三数学一模试题及答案

2013北京市西城区初三数学一模试题及答案D初三一模 数学试卷 第2页(共6页)北京市西城区2013年初三一模试卷数 学 2013. 5一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.3-的相反数是A .31-B .31C .3D .3- 2.上海原世博园区最大单体建筑“世博轴”被改造成一个综合性商业中心,该项目营业面积约130 000平方米,130 000用科学记数法表示应为 A .1.3×105 B .1.3×104 C .13×104 D .0.13×106 3.如图,AF 是∠BACAB 于点E . 若∠1=25°,则BAF ∠的度数为 A .15° B .50° C .25° D .12.5° 4.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为A .21B .31 C .61 D .15.若菱形的对角线长分别为6和8,则该菱形的边长为A.5 B.6 C.8 D.10初三一模数学试卷第3页(共6页)初三一模数学试卷第4页(共6页)初三一模 数学试卷 第5页(共6页)二、填空题(本题共16分,每小题4分) 9.函数y =中,自变量x 的取值范围是 . 10.分解因式:32816a a a -+=11.如图,在梯形ABCD BD ⊥DC ,∠C=45°. 若AD=2,BC=8,则为 . 12.在平面直角坐标系xOy 中,有一只电子青蛙在点A (1,0)处. 第一次,它从点A 先向右跳跃1个单位,再向上跳跃1个单位到达点A 1; 第二次,它从点A 1先向左跳跃2个单位,再向下跳跃2个单位到达点A 2; 第三次,它从点A 2先向右跳跃3个单位,再向上跳跃3个单位到达点A 3; 第四次,它从点A 3先向左跳跃4个单位,再向下跳跃4个单位到达点A 4; …… 依此规律进行,点A 6的坐标为 ;若点A n 的坐标为(2013,2012), 则n = . 三、解答题(本题共30分,每小题5分) 13.计算:10345sin 2)13(8-+︒--+. 14.解不等式组4(1)78,25,3x x x x +≤-⎧⎪-⎨-<⎪⎩并求它的所有整数解. ≤初三一模 数学试卷 第6页(共6页)15.如图,点C 在线段AB 上,△都是等边三角形. (1) 求证:△DAB ≌△DCE ; (2) 求证:DA ∥EC .16.已知3=y x ,求22222()x y x y xy xy y --÷-的值.17.函数错误!未指定书签。

2013年西城初三物理一模答案 word版

2013年西城初三物理一模答案    word版

北京市西城区2013年初三一模物理试卷参考答案及评分标准2013. 5一、单项选择题:(每题2分,共28分)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案 C D C B D B C A B A D C D B 二、多项选择题:(每题3分,共12分)题号15 16 17 18答案A、C、D A、B、D A 、C B 、D三、填空题:(每空2分,共12分)题号答案题号答案19 凸22 8.4×10520 电23 2221 小于24 0.75~1.92四、实验与探究题:(共35分)25 (4分)(1)(2)27(3分)有力的作用;电磁铁;电动机28(2分)幻灯机;缩小29(3分)(1)直角三角板;(2)从多个方向;完全重合。

(3)(4)30(3分)98 ;低于;不变。

31(4分)(1)如图5(2)D(3)0.38;(4)0.4(3)向烧杯中加水到烧杯的标记线图1AG图3ON平面镜B AF图4图2NSN S电源+﹣L图5SOVPA26(3分)(1)4.25+0.02 ; (2)-16 ;(3) 1.4 32 (2分)34(1)(4)ρ石=1312m m m m ρ+-水33 (2分)F =(-20Nm)h + 9N 34(2分)(1)实验电路连接如图6。

(2)R X = 2102I I RI -35(2分) 实验步骤及实验现象:[方法一] ①在支点的两侧同时挂钩码,使杠杆平衡; ②只改变一侧钩码的悬挂点,杠杆失去平衡。

[方法二] 将相同质量的钩码先后挂在支点的两侧,观察到两次杠杆转动方向不同。

36 (5分)(1)实验步骤:(4分)① 在斜面上确定一点A ,用刻度尺测量 A 点到水平木板面的高度h ,并将h 的数据记录在表格中。

② 将小车车头(或车尾)对齐A 点,让小车从斜面上由静止开始下滑。

用刻度尺测量小车在水平木板面上滑行的距离s ,并将s 的数据记录在表格中。

北京市西城区2013年初三一模答案

北京市西城区2013年初三一模答案

32 x
答:略。
x = 32 g
……………… ( 1 分)
……………… ( 1 分) ……………… ( 1 分)
35.( 3 分) ( 1) 2H2O ( 2)解:设生成硫酸铜的质量为
x,生成水的质量
2Cu + 2H 2SO4 + O2 = 2CuSO4 + 2H 2O
……………… ( 1 分) y,消耗 H2SO4 的质量为 z。
24
25
B
C
B
说明:除特别注明外,每空 1 分。其他合理答案参照本标准给分。 二、填空题(共 5 小题,共 30 分。)
26.( 6 分) ( 1)淀粉(糖类)、蛋白质
元素 ( 2)佝偻病 ( 3)吸附
( 4)乳化 (5) ①②④
27.( 5 分)
点燃
( 1)天然气
( 2)风能 ( 3)2CO + O 2
答:略。
… ……………… ( 1 分) ………………… ( 1 分)
初三一模 化学答案 第 2 页(共 2 页)
点燃
③C + O2
2H 2O + O 2↑
②CD
CO 2
Ca(OH) 2+ CO 2 = CaCO3↓ +H2O
初三一模 化学答案 第 1 页(共 2 页)
( 2)① 防止倒吸
②浓硫酸
③ CO2 和 CH 4( 0, 2 分)
33.( 7 分)
【实验准备】溶液变红
CuSO4+ 2NaOH = Cu(OH) 2↓+ Na2 SO4
HCl + NaOH= NaCl + H 2O
31.( 5 分)

2013北京各区县初三一模试题和答案汇编选择题

2013北京各区县初三一模试题和答案汇编选择题

西城区1.3-的相反数是 A .31-B .31 C .3 D .3-2.上海原世博园区最大单体建筑“世博轴”被改造成一个综合性商业中心,该项目营业面积约130 000平方米,130 000用科学记数法表示应为A .1.3×105B .1.3×104C .13×104D .0.13×106 3.如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E .若∠1=25°,则BAF ∠的度数为 A .15° B .50° C .25° D .12.5°4.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为A .21B .31C .61D .15.若菱形的对角线长分别为6和8,则该菱形的边长为 A .5B .6C .8D .10 6则该队队员年龄的众数和中位数分别是A .16,15B .15,15.5C .15,17D .15,167.由一些大小相同的小正方体搭成的一个几何体的三视图如图所示,则构成这个几何体的小正方体共有 A .6个B .7个C .8个D .9个8.如图,在矩形ABCD 中,AB=2,BC=4.将矩形ABCD 绕点C 沿顺时针方向旋转90°后,得到矩形FGCE (点A 、B 、D 的对应点分别为点F 、G 、E ).动点P 从点B 开始沿BC-CE 运动到点E 后停止,动点Q 从点E 开始沿EF -FG 运动到点G 后停止,这两点的运动速度均为每秒1个单位.若点P 和点Q 同时开始运动,运动时间为x (秒),△APQ 的面积为y ,则能够正确反映y 与x 之 间的函数关系的图象大致是昌平区1.2-的倒数是A .12-B .12C .2-D .22.气象学上将目标物的水平能见度小于10 000米时的非水成物组成的气溶胶系统造成的视程障碍称为霾或灰霾,水平能见度在1 000-10 000米的这种现象称为轻雾或霭. 测得北京市某天的能见度是9 820米,那么数据9 820用科学记数法可表示为A .98210⨯B .298.210⨯C .39.8210⨯D .40.98210⨯ 3. 如图,若AB ∥CD ,∠A =70°,则∠1的度数是A .20°B .30°C .70°D .110°4.现将背面相同的4张扑克牌背面朝上,洗匀后,从中任意翻开一张是数字5的概率为A .14B .13 C .25 D .125.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 的长不可能...是 A. 2.5 B.3 C.4 D.5D BAC1ABCP6.九(1)班体育委员记录了本班第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数分别为6,10,5,3,4,8,4,这组数据的中位数和极差分别是 A .4,7 B. 7,5 C. 5,7 D. 3,7 7.如图是某几何体的三视图及相关数据,则该几何体的侧面积是俯视图左视图主视图A .12ab πB .12ac π C .ab π D .ac π8.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿ABcm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P '.设Q 点运动的时间为t 秒,若四边形QP CP '为菱形,则t 的值为A. B. 2C. D. 3房山区一、选择题(共8道小题,每小题4分,共32分)1.-3的相反数是 A .-3B .3C .31D . 0.32.我国2012年末全国民用汽车保有量达到12089万辆,比上年末增长14.3%.将12089用科学记数法表示应为B PDCBAA .4102089.1⨯B .5102089.1⨯ C.410089.12⨯ D.41012089.0⨯3.如图,把一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数为A. 20°B. 30°C. 60°D. 40°4.下面的几何体中,主视图为三角形的是D . C . B . A . 5.如图,四边形ABCD 是⊙O 的内接正方形,点P 是 劣弧CD ⌒上不同于点C 的任意一点,则∠BPC 的度数是A .45°B .60°C .75°D .90°6.一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅匀后随机地从中摸出一个球是绿球的概率是A. 94B. 92C. 31D. 327.将二次函数322--=x x y 化成k h x y +-=2)(形式,则k h +结果为 A. 5- B. 5 C. 3 D. 3-8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是PD CBA 第3题图A.B.C.D.G HE (F)ABCD8一、选择题:1.B ;2.A ;3.D ;4.C ;5.A ;6.C ;7.D ;8.B .怀柔区一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2的相反数是()A. -2B. 2C.21D.212.2012年“博爱在京城”募捐救助活动中,我区红十字会共接收社会各界募捐款近980000元,980000用科学计数法表示为( )A.98×105B.9.8×104C.9.8×105D. 9.8×1063. 一个正多边形的每个外角都是36°,这个正多边形的边数是( )A.9 B.10 C.11 D.124.如图,下列水平放置的几何体中,主视图是三角形的是()5.有8个型号相同的足球,其中一等品5个,二等品2个和三等品1个,从中随机抽取1个足球,恰好是一等品的概率是( )A.81B.82C.41D.856.关于x的方程(a -2)x2-2x-3=0有一根为3,则另一根为()A.-1 B.3 C.2 D.17.我市连续十天的空气污染指数的数据如下(主要污染物为可吸入颗粒物,又称PM10):61 , 75 , 70 , 56 , 81 , 90 , 92 , 91 , 75 , 81 . 那么该组数据的众数和中位数分别是( )A . 92 , 75B . 81 , 81C . 81 , 78D . 78 , 818. 如图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则y与x之间函数关系的图象是()密云县1.16-的倒数是()A.6 B.﹣6 C.16D.16-2.太阳的半径大约是696000千米,用科学记数法可表示为()A.6.96×103千米B.6.96×104千米C.6.96×105千米D.6.96×106千米3.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是( ) A.B.C.D.4.函数12y xx=-中,自变量的取值范围是()A.2x> B.2x< C.2x≠ D.2x≠-5.在一个不透明的袋子里装有3个黑球和2个白球,他们除颜色外都相同,随机从中摸出一个球,摸到黑球的概率是()A.15B.25C.35D.236.下面的几何体中,主视图为三角形的是()A B C D7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是( )A .8,8B .8.4,8C .8.4,8.4D .8,8.4 8.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁到点的距离为,则关于的函数图象大致为( )一、选择题(本题共32分,每小题4分) 1.B 2.C 3.C 4.C 5.C 6.C 7.B 8.C朝阳区1.-3的倒数是A .13B .13- C . 3 D .-32.“厉行勤俭节约,反对铺张浪费”势在必行.最新统计数据显示,中国每年浪费食物总量折合为粮食大约是200000000人一年的口粮.将200000000用科学记数法表示为 A .8210⨯ B .9210⨯ C .90.210⨯ D .72010⨯3. 若一个正多边形的一个外角是72°,则这个正多边形的边数是 A .10 B .9 C .8 D .54.如图,AB ∥CD ,E 是AB 上一点,EF 平分∠BEC 交CD 于点F ,若∠BEF =70°,则∠C 的度数是A .70°B .55°C .45°D .40°5.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上 的点数大于4的概率为 A .61 B .31 C .41 D .216.把方程2630x x ++=化成()2x n m +=的形式,正确的结果为A .()236x += B .()236x -= C .()2312x += D .()2633x += 7.某校春季运动会上,小刚和其他16名同学参加了百米预赛,成绩各不相同,小刚已经知道了自己的成绩,如果只取前8名参加决赛,他想知道自己能否进入决赛,还需要知道所有参加预赛同学成绩的A . 平均数B . 众数C . 中位数D . 方差8.如图,将一张三角形纸片ABC 折叠,使点A 落在BC 边上,折痕EF ∥BC ,得到△EFG ;再继续将纸片沿△BEG 的对称轴EM 折叠,依照上述做法,再将△CFG 折叠,最终得到矩形EMNF ,折叠后的△EMG 和△FNG 的面积分别为1和2,则△ABC 的面积为A . 6B . 9C . 12D . 18一、选择题(本题共32分,每小题4分) 1.B 2.A 3.D 4.D 5.B 6.A 7.C 8.C大兴区1.12-的相反数是A .2B . 2-C .12 D .12- 2.某区在一次扶贫活动中,共捐款3180000元,将3180000用科学记数法表示为 A . 531.810⨯ B .3.18×106C .70.31810⨯D .73.1810⨯3.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是 A .22cm B .20 cm C .18cm D .15cm4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是 A .甲B .乙C .丙D .丁EDCBA5.从1~9这九个自然数中任取出一个,这个数是2的倍数的概率是A .29B .49C .59D .236.如图,在平面直角坐标系中,点P 坐标为(﹣2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于A.﹣4和﹣3之间B.3和4之间 C .﹣5和﹣4之间 D .4和5之间7.如图是由一些相同的小正方体构成的几何体的三视图,那么构成这个几何体的小正方体的个数为A .7个B .6个C .5个D .4个8. 如图,已知A 、B 是反比例函数y =kx (k >0,x >0)图象上的两点,BC ∥x轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C .过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设四边形OMPN 的面积为S ,点P 运动的时间为t ,则S 关于t 的函数图象大致为一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.俯视左视主视东城区1.15-的倒数是 A. 5 B.15 C. 15- D. -5 2. 2013年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出达到23 000多亿元.将23 000用科学记数法表示应为A. 23×104B. 0.23×106 C . 2.3×105 D. 2.3×104 3.用配方法解方程2410x x ++=,配方后的方程是A .2(2)3x +=B .2(2)3x -= C .2(2)5x -= D .2(2)5x +=4.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是S 2甲=0.90,S 2乙=1.22,S 2丙=0.43,S 2丁=1.68.在本次射击测试中,成绩最稳定的是 A .甲 B .乙 C .丙 D . 丁5. 如图,下面是利用尺规作AOB ∠的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是A .SSSB .SASC .ASAD .AAS6. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC ,若12OC OA =,则∠C 等于A. 15°B. 30°C. 45°D. 60°7. 在一个不透明的口袋中有3个完全相同的小球,标号为1,2,3,现随机地取出一个小球,然后放回,再随机地取出一个小球,两次取得小球的标号相同的概率是 A.16 B. 14 C. 13 D. 128. 如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当P 运动到B 点时,P ,Q 两点同时停止运动.设P 点运动的时间为t ,△APQ 的面积为S ,则S 与t 的函数关系的图象是丰台区1.-2的倒数是A .2B .-2C .21D . 21-2.第九届中国(北京)国际园林博览会将于2013年的5月18日至11月18日在丰台区举办.据相关介绍,本届园博会在占地面积、建设规模、园区特色、标志建筑、绿色低碳等方面均超过以往任何一届,目前已有120多个国内外城市参展.业界专家预测,北京园博会接待游客将达20 000 000人次,堪称园林版的“奥运会”.将20 000 000用科学记数法表示为A .6102⨯B .61020⨯C .7102⨯D .8100.2⨯3.如图,下列水平放置的几何体中,俯视图是长方形的是4.如果一个正多边形的每个外角为36°,那么这个正多边形的边数是A .12B .10C .9D .8ABCD5.某中学周末有40人去体育场观看足球赛,40张票分别为A 区第2排1号到40号, 小明同学从40张票中随机抽取一张,则他抽取的座位号为10号的概率是A .140 B . 139C . 12D . 14 6.如图,直线AB 、CD 相交于点O ,OE CD ⊥, 54BOE ∠=,则∠AOC 等于 A .54° B .46° C .36° D .26°7. 某中学书法兴趣小组12名成员的年龄情况如下:A . 15,16B . 13,14C . 13,15D .14,148.如图,在ABC △中,1AB AC ==,20BAC ∠= .动点P 、Q 分别在直线BC 上运动,且始终保持100PAQ ∠=.设BP x =,CQ y =,则y 与x 的函数关系的图象海 淀 区1.2的相反数是A. 2B.2-C.21 D.21- 2.十八大开幕当天,网站关于此信息的总浏览量达5.5亿次.将5.5亿用科学记数法表示为A. 8105.5⨯B. 81055⨯ C. 755010⨯ D. 10100.55⨯ 3.如图是某几何体的三视图,则这个几何体是A. 圆柱B. 正方体C. 球D. 圆锥A ODBECA B C D4.一个多边形的外角和是内角和的一半,则这个多边形的边数为A. 5B.6C. 7D. 85.小林在元宵节煮了20个元宵,其中10个黑芝麻馅,6个山楂馅,4个红豆馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红豆馅元宵的概率是A .12 B .13 C . 15D .25 6.一副三角板如图放置,若∠1=90︒,则∠2的度数为A .45°B .60°C .75°D .90°7.在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:则这10场比赛中他得分的中位数和众数分别是A.10, 4B.10,7C.7,13D. 13,48.如图,△ABC 是等边三角形,6AB =厘米,点P 从点B 出发,沿BC 以每秒1厘米的速度运动到点C 停止;同时点M 从点B 出发,沿折线BA -AC 以每秒3厘米的速度运动到点C 停止.如果其中一个点停止运动,则另一个点也停止运动.设点P 的运动时间为t 秒,P 、M 两点之间的距离为y 厘米,则表示y 与t 的函数关系的图象大致是A. B. C. D.一、选择题(本题共32分,每小题4分)门头沟区1.-3的倒数是A .3B .13C .3-D .13-2.2012年北京市的经济又迈上新的台阶,全市地区生产总值达到了1 780 000 000 000元,将1 780 000 000 000用科学记数法表示应为A .130.17810⨯B .121.7810⨯C .1117.810⨯D .101.7810⨯ 3.若一个多边形的内角和等于900º,则这个多边形的边数是 A .5B .6C .7D .84.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是⊙O 上一点, 若∠ADC =26º,则∠AOB 的度数为 A .13º B .26º C .52º D .78º5.右图是某个几何体的表面展开图,则该几何体的左视图为6.有6张形状、大小、质地均相同的卡片,正面分别印有数字1、2、3、4、5、6,背面完全相同.现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面印有的数字恰好是奇数的概率为A .16 B .14 C . 13D . 12 7.小明同学在社会实践活动中调查了20户家庭某月的用水量,如下表所示:则这20户家庭该月用水量的众数和中位数分别是 A .5,7B .7,7C .7,8D .3,78.如图1,从矩形纸片AMEF 中剪去矩形BCDM 后,动点P 从点B 出发,沿BC 、CD 、DE 、EF 运动到点F 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则图形ABCDEF 的面积是A .28B .32C .36D .48A .B .C .D .图1E D BAF CBC平谷区1.3-的倒数是A .3B .3-C .13 D .13- 2.最新统计,中国注册志愿者总数已超30 000 000人,30 000 000用科学记数法表示为 A .7310⨯ B .6310⨯ C .63010⨯ D .5310⨯ 3.如图,在□ABCD 中,CE AB ⊥,E 为垂足. 如果125A =∠,则BCE =∠ A .25B .30C .35D .554.某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是 A .17B .18C .19D .1105.如图,点D E F ,,分别是ABC △三边的中点,若ABC △的 周长为20cm ,则DEF △ 的周长为 A .15cmB .20cm 3C .5cmD .10cm6.北京市2013年4月份某一周天气预报的日最高气温(单位:℃) 分别为13,14,17,22,22,15,15,这组数据的众数是 A .22℃ B .15℃C .C ︒22℃和15 D .18.5℃7.将函数267y x x =++进行配方,正确的结果应为 A .2(3)2y x =+-B .2(3)2y x =++C .2(3)2y x =-+D .2(3)2y x =--8.如图,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直A E BCD角边AB 、AC 分别平行于x 轴、y 轴,若双曲线ky x=(k ≠0) 与ABC ∆有交点,则k 的取值范围是 A .12k << B .13k ≤≤ C .14k ≤≤ D .14k <≤ 一、选择题(本题共32分,每小题4分)顺义区1.3-的倒数是A . 13-B . 13C . 3-D .32.据2013年4月1日《CCTV —10讲述》栏目报道,2012年7月11日,一位26岁的北京小伙樊蒙,推着坐在轮椅上的母亲,开始从北京到西双版纳的徒步旅行,圆了母亲的旅游梦,历时93天,行程3 359公里.请把3 359用科学记数法表示应为A .233.5910⨯ B .43.35910⨯ C .33.35910⨯ D .433.5910⨯3.下面四个几何体中,俯视图为四边形的是4.我区某一周的最高气温统计如下表:则这组数据的中位数与众数分别是( )A .17,17B . 17,18C .18,17D .18,185.下列计算正确的是A .235a a a += B .236a a a ⋅= C. 235()a a = D. 532a a a ÷= 6.如图,AB ∥CD ,点E 在BC 上,68BED ∠=︒,38D ∠=︒,则B ∠的度数为A B C D EDCBAA . 30︒B . 34︒C . 38︒D .68︒7.若x y ,为实数,且30x ++=,则2013y x ⎛⎫⎪⎝⎭的值为A .1B . 1-C . 2D . 2- 8.如图,AB 为半圆的直径, 点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 和PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为A .B .C .D .一、选择题通州区1.3-的倒数是A .3B .3-C .13-D .132.在下列几何体中,主视图、左视图和俯视图形状都相同的是A B C D3.2012年,北京实现地区生产总值约17800亿元,比2011年增长百分之七点多.将17800用科学记数法表示应为 A .17.8×103B .1.78×105C .0.178×105D .1.78×1044.如图,A 、B 、C 是⊙O 上的三个点,∠ABC =32°, 则∠AOC 的度数是 A .32°B .64°C .16°D .58° 第4题图5.端午节吃粽子是中华民族的传统习俗.妈妈买了2只红豆粽和3只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是 A.25 B .12C .15D .236. 一个扇形的圆心角为90°,半径为2,则这个扇形的面积是 A .6πB .4πC .2πD .π7.某班开展以“提倡勤俭节约,反对铺张浪费”为主题教育活动. 为了解学生每天使用零花钱的情况,小明随机调查了10名同学,结果如下表:关于这10名同学每天使用的零花钱,下列说法正确的是 A .平均数是2.5 B .中位数是3C .众数是2D .方差是48. 如图,在直角坐标系xoy 中,已知()01A ,,)B ,以线段AB 为边向上作菱形ABCD ,且点D 在y 轴上.若菱形ABCD 以每秒2个单位长度的速度沿射线AB 滑行,直至顶点D 落在x 轴上时停止.设菱形落在x 轴下方部分的面积为S ,则表示S 与滑行时间t一、选择题:1.C 2.C 3.D 4.B 5.A 6.D 7.B 8.A。

北京市密云县2013年中考数学一模试卷(解析版)

北京市密云县2013年中考数学一模试卷(解析版)

市密云县2013年中考数学一模试卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的1.(4分)(2013•密云县一模)﹣的倒数是()A.6B.﹣6 C.D.﹣考点:倒数.专题:常规题型.分析:根据互为倒数的两个数的积等于1解答.解答:解:∵(﹣)×(﹣6)=1,∴﹣的倒数是﹣6.故选B.点评:本题考查了倒数的定义,熟记概念是解题的关键.2.(4分)(2013•密云县一模)太阳的半径大约是696000千米,用科学记数法可表示为()A.696×103千米B.69.6×104千米C.6.96×105千米D.6.96×106千米考点:科学记数法—表示较大的数.专题:计算题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:696000=6.96×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2013•密云县一模)在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称图形与中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形与中心对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(4分)(2013•密云县一模)函数中,自变量x的取值X围是()A.x>2 B.x<2 C.x≠2D.x≠﹣2考点:函数自变量的取值X围.分析:根据分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣2≠0,解得x≠2.故选C.点评:本题考查了函数自变量的取值X围,用到的知识点为:分式有意义,分母不为0.5.(4分)(2013•密云县一模)在一个不透明的袋子里装有3个黑球和2个白球,他们除颜色外都相同,随机从中摸出一个球,摸到黑球的概率是()A.B.C.D.考点:概率公式.分析:根据概率公式先求出总的球数,再进行计算即可.解答:解:∵袋子里装有3个黑球和2个白球,共5个球,∴随机从中摸出一个球,摸到黑球的概率是,故选C.点评:此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(4分)(2013•密云县一模)下面的几何体中,主(正)视图为三角形的是()A .B.C.D.考点:简单几何体的三视图.分析:主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.解答:解:A、主视图是长方形,故此选项错误;B、主视图是长方形,故此选项错误;C、主视图是三角形,故此选项正确;D、主视图是正方形,中间还有一条线,故此选项错误;故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.7.(4分)(2013•密云县一模)某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.D.考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.解答:解:8,9,8,7,10的平均数为×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8.故选B .点评:本题考查了中位数及算术平均数的求法,特别是中位数,首先应该排序,然后再根据数据的个数确定中位数.8.(4分)(2013•密云县一模)如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:本题考查动点问题的函数图象问题.解答:解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离S 不变,走另一条半径时,S随t的增大而减小.故选C.点评:注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.二、填空题(本题共16分,每小题4分)9.(4分)(2013•密云县一模)分解因式:a3﹣2a2+a= a(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解答:解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10.(4分)(2013•密云县一模)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为3πcm2.考点:扇形面积的计算.分析:根据扇形的面积公式即可求解.解答:解:扇形的面积==3πcm2.故答案是:3π.点评:本题主要考查了扇形的面积公式,正确理解公式是解题关键.11.(4分)(2013•密云县一模)将一副三角板按图中方式叠放,则角α的度数为75°.考点:三角形的外角性质.专题:探究型.分析:先根据直角三角板的性质求出∠1及∠2的度数,再根据三角形内角与外角的关系即可解答.解答:解:∵图中是一副三角板,∴∠2=45°,∠1=90°﹣45°=45°,∴∠α=∠1+30°=45°+30°=75°.故答案为:75°.点评:本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和.12.(4分)(2013•密云县一模)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==×(﹣);(2)求a1+a2+a3+a4+…+a100的值为.考点:规律型:数字的变化类.专题:压轴题.分析:(1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(2)运用(1)中变化规律计算得出即可.解答:解:(1)第1个等式:a 1==×(1﹣);第2个等式:a 2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…则第5个等式:a 5==×(﹣);故答案为:,×(﹣);(2)a1+a 2+a3+a4+…+a100=×(1﹣)+×(﹣)+…+×(﹣),=×(1﹣+﹣+…+﹣),=×(1﹣),=.故答案为:.点评:此题考查了数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.三、解答题(本题共30分,每小题5分)13.(5分)(2013•密云县一模)计算:.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行二次根式的化简、零指数幂、绝对值、负整数指数幂的运算,然后按照实数的运算法则计算即可.解答:解:原式=2+1﹣5+9=7.点评:本题考查了实数的运算,涉及了二次根式的化简、零指数幂、绝对值、负整数指数幂等知识,属于基础题.14.(5分)(2013•密云县一模)解不等式:5(x﹣2)+8<6(x﹣1)+7.考点:解一元一次不等式.专题:探究型.分析:先去括号、移项、再合并同类项,化系数为1即可.解答:解:去括号得,5x﹣10+8<6x﹣6+7,移项得,5x﹣6x<﹣6+7+10﹣8,合并同类项得,﹣x<3,化系数为1得,x>﹣3.故此不等式的解集为:x>﹣3.点评:本题考查的是解一元一次不等式,去分母;去括号;移项;合并同类项;化系数为1是解一元一次不等式的基本步骤,要根据各不等式的特点灵活应用.15.(5分)(2013•密云县一模)已知(a≠b),求的值.考点:分式的化简求值;约分;通分;分式的加减法.专题:计算题.分析:求出=,通分得出﹣,推出,化简得出,代入求出即可.解答:解:∵+=,∴=,∴﹣,=﹣,=,=,=,=.点评:本题考查了通分,约分,分式的加减的应用,能熟练地运用分式的加减法则进行计算是解此题的关键,用了整体代入的方法(即把当作一个整体进行代入).16.(5分)(2013•密云县一模)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.考全等三角形的判定与性质.点:专题:证明题.分析:由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.解答:证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.点评:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.17.(5分)(2013•密云县一模)如图,已知直线L1经过点A(﹣1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)考点:待定系数法求一次函数解析式.专题:分类讨论;待定系数法.分析:(1)设直线L1的解析式为y=kx+b,由题意列出方程组求解;(2)分两种情形,即点P在A的左侧和右侧分别求出P点坐标,再求解.解答:解:(1)设直线L1的解析式为y=kx+b,由题意得,解得.所以直线L1的解析式为y=x+1.(2)当点P在点A的右侧时,AP=m﹣(﹣1)=m+1,有S△APB=×(m+1)×3=3,解得:m=1.此时点P的坐标为(1,0).当点P在点A的左侧时,AP=﹣1﹣m,有S△APB=×|﹣m﹣1|×3=3,解得:m=﹣3,此时,点P的坐标为(﹣3,0).综上所述,m的值为1或﹣3.点评:本题要注意利用一次函数的特点,列出方程组,求出未知数求得函数解析式;利用P 点坐标求三角形的面积.18.(5分)(2013•密云县一模)某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有AB两个制衣间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用了20天完成,求A、B两车间每天分别能加工多少件.考分式方程的应用.专题:压轴题.分析:首先设B车间每天能加工x件,则A 车间每天能加工1.2x件,由题意可得等量关系:A、B两车间生产4400件所用的时间+B两车间生产4400件所用的时间=20天,有等量关系可列出方程+=20,解方程可得答案,注意不要忘记检验.解答:解:设B车间每天能加工x件,则A车间每天能加工1.2x件,由题意得:+=20,解得:x=320,经检验:x=320是原分式方程的解,1.2×320=384(件).答:A车间每天能加工384件,B车间每天能加工320件.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.列分式方程解应用题的一般步骤:设、列、解、验、答,必须严格按照这5步进行做题,规X解题步骤,另外还要注意完整性.四、解答题(本题共20分,每小题5分)19.(5分)(2013•密云县一模)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.考矩形的判定;勾股定理;菱形的性质.专题:证明题.分析:(1)根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证;(2)根据勾股定理求出AE的长度,然后利用菱形的面积等于底乘以高计算即可得解.解答:(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠1=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==4,所以,S 菱形ABCD=8×4=32.点评:本题考查了矩形的判定,菱形的性质,平行四边形的判定,勾股定理的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.20.(5分)(2013•密云县一模)如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;矩形的判定与性质.专题:几何综合题.分析:(1)连接OA,由切线的性质可知OA⊥AP,再由MN⊥AP可知四边形ANMO是矩形,故可得出结论;(2)连接OB,则OB⊥BP由OA=MN,OA=OB,OM∥AP.可知OB=MN,∠OMB=∠NPM.故可得出Rt△OBM≌△MNP,OM=MP.设OM=x,则NP=9﹣x,在Rt△MNP利用勾股定理即可求出x的值,进而得出结论.解答:(1)证明:如图,连接OA,则OA⊥AP,∵MN⊥AP,∴MN∥OA,∵OM∥AP,∴四边形ANMO是矩形,∴OM=AN;(2)解:连接OB,则OB⊥BP∵OA=MN,OA=OB,OM∥AP.∴OB=MN,∠OMB=∠NPM.∴Rt△OBM≌Rt△NPM,∴OM=MP.设OM=x,则NP=9﹣x,在Rt△MNP中,有x2=32+(9﹣x)2∴x=5,即OM=5.点评:本题考查的是切线的性质、全等三角形的判定与性质、勾股定理及矩形的判定与性质,在解答此类题目时往往连接圆心与切点,构造出直角三角形,再根据直角三角形的性质解答.21.(5分)(2013•密云县一模)某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:(1)这次评价中,一共抽查了560 名学生;(2)请将条形统计图补充完整;(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?考点:条形统计图;用样本估计总体;扇形统计图.专题:数形结合.分析:(1)用专注听讲的人数224除以专注听讲所占的百分比即可得到所抽查的学生总人数;(2)用16万乘以“独立思考”的学生所占的百分比即可.解答:解:(1)抽查的学生总人数==560(名);(2)讲解题目的人数=560﹣84﹣168﹣224=84(名),画条形统计图为:(3)∵16×=4.8(万),∴全市在试卷讲评课中,“独立思考”的学生约有4.8万人.故答案为560.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出各项的数据的大小,便于比较.也考查了扇形统计图以及样本估计总体的统计思想.22.(5分)(2013•密云县一模)如图,长方形制片ABCD中,AB=8cm ,AD=6cm,按下列步骤进行裁减和拼图第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)所拼成得四边形是什么特殊四边形?(2)则拼成的这个四边形纸片的周长的最小值是多少?考点:图形的剪拼;勾股定理;三角形中位线定理;矩形的性质.分析:(1)首先确定剪拼之后的四边形是个平行四边形;(2)根据周长大小取决于MN的大小,然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决.解答:解:(1)画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,(2)其周长为2N1N2+2M1N1=2BC+2MN.∵BC=6cm为定值,∴四边形的周长取决于MN的大小.如答图2所示,是剪拼之前的完整示意图,过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,∵M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4cm.点评:此题主要考查了图形的剪拼以及考查了动手操作能力和空间想象能力,确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2013•密云县一模)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值X围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.考点:二次函数综合题.专题:压轴题.分析:(1)当k=﹣2时,即可求得点A的坐标,然后设反比例函数的解析式为:y=,利用待定系数法即可求得答案;(2)由反比例函数和二次函数都是y随着x的增大而增大,可得k<0,又由二次函数y=k(x2+x ﹣1)的对称轴为x=﹣,可得x<﹣时,才能使得y随着x的增大而增大;(3)由△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q(﹣,﹣k),A(1,k),即可得=,继而求得答案.解答:解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x ﹣1)=k (x+)2﹣k,对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x≤﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x≤﹣;(3)由(2)可得:Q(﹣,﹣k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作AD⊥OC,QC⊥OC,∴OQ==,∵OA==,∴=,解得:k=±.点评:此题考查了二次函数的性质、反比例函数的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意掌握待定系数法求函数解析式,注意数形结合思想的应用.24.(7分)(2013•密云县一模)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC 于点N,连接PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN 为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.考点:等腰梯形的性质;等腰三角形的判定;勾股定理;三角形中位线定理.专压轴题.题:分析:(1)可通过构建直角三角形然后运用勾股定理求解.(2)①△PMN的形状不会变化,可通过做EG⊥BC于G,不难得出PM=EG,这样就能在三角形BEG中求出EG的值,也就求出了PM的值,如果做PH⊥MN于H,PH是三角形PMH和PHN的公共边,在直角三角形PHM中,有PM的值,∠PMN的度数也不难求出,那么就能求出MH和PH的值,也就求出HN和PN的值了,有了PN,PM,MN的值,就能求出三角形MPN的周长了.②本题分两种情况进行讨论:1、N在CD的DF段时,PM=PN.这种情况同①的计算方法.2、N在CD的CF段时,又分两种情况进行讨论MP=MN时,MC=MN=MP,这样有了MC的值,x也就能求出来了NP=NM时,我们不难得出∠PMN=120°,又因为∠MNC=60°因此∠PNM+∠MNC=180度.这样点P与F就重合了,△PMC即这是个直角三角形,然后根据三角函数求出MC 的值,然后就能求出x了.综合上面的分析把△PMC是等腰三角形的情况找出来就行了.解答:解:(1)如图1,过点E作EG⊥BC于点G.∵E为AB的中点,∴BE=AB=2在Rt△EBG中,∠B=60°,∴∠BEG=30度.∴BG=BE=1,EG=即点E到BC的距离为(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.∵PM⊥EF,EG⊥EF,∴PM∥EG,又EF∥BC,∴四边形EPMG为矩形,∴EP=GM,PM=EG=同理MN=AB=4.如图2,过点P作PH⊥MN于H,∵MN∥AB,∴∠NMC=∠B=60°,又∠PMC=90°,∴∠PMH=∠PMC﹣∠NMC=30°.∴PH=PM=∴MH=PM•cos30°=则NH=MN﹣MH=4﹣在Rt△PN H中,PN=∴△PMN的周长=PM+PN+MN=②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.当PM=PN时,如图3,作PR⊥MN于R,则MR=NR.类似①,PM=,∠PMR=30°,MR=PMcos30°=×=,∴MN=2MR=3.∵△MNC是等边三角形,∴MC=MN=3.此时,x=EP=GM=BC﹣BG﹣MC=6﹣1﹣3=2.当MP=MN时,∵EG=,∴MP=MN=,∵∠B=∠C=60°,∴△MNC是等边三角形,∴MC=MN=MP=(如图4),此时,x=EP=GM=6﹣1﹣,当NP=NM时,如图5,∠NPM=∠PMN=30度.则∠PNM=120°,又∠MNC=60°,∴∠PNM+∠MNC=180度.因此点P与F重合,△PMC为直角三角形.∴MC=PM•tan30°=1.此时,x=EP=GM=6﹣1﹣1=4.综上所述,当x=2或4或(5﹣)时,△PMN为等腰三角形.点评:本题综合考查了等腰梯形,等腰直角三角形的性质,中位线定理,勾股定理等知识点的应用.25.(8分)(2013•密云县一模)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m 的值,并定出相对应的点E坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△ACH∽△PCB,根据相似的性质得到:,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本题要分当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1和当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.解答:解:(1)当m=3时,y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0,x2=6,∴A(6,0)当x=1时,y=5∴B(1,5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B,C关于对称轴对称∴BC=4.(2)连接AC,过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△ACH∽△PCB,∴,∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,∴BC=2(m﹣1),∵B(1,2m﹣1),P(1,m),∴BP=m﹣1,又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0),∴AH=1,CH=2m﹣1,∴,∴m=.(3)∵B,C不重合,∴m≠1,(I)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1,(i)若点E在x轴上(如图1),∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,在△BPC和△MEP中,,∴△BPC≌△MEP,∴BC=PM,∴2(m﹣1)=m,∴m=2,此时点E的坐标是(2,0);(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴m﹣1=1,∴m=2,此时点E的坐标是(0,4);(II)当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,(i)若点E在x轴上(如图3),易证△BPC≌△MEP,∴BC=PM,∴2(1﹣m)=m,∴m=,此时点E的坐标是(,0);(ii)若点E在y轴上(如图4),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴1﹣m=1,∴m=0(舍去),综上所述,当m=2时,点E的坐标是(2,0)或(0,4),当m=时,点E的坐标是(,0).点评:此题主要考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和相似三角形的性质以及全等三角形的性质和全等三角形的判定、需注意的是(3)题在不确E点的情况下需要分类讨论,以免漏解.题目的综合性强,难度也很大,有利于提高学生的综合解题能力,是一道不错的题目.。

北京市昌平区2013年初三数学一模试题及答案

北京市昌平区2013年初三数学一模试题及答案

北京市朝阳区九年级综合练习(一)数学试卷评分标准及参考答案2010.5一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案CBACCBAD二、填空题(共4个小题,每小题4分,共16分)9.a( m-1)210.31 11.甲 12.81 三、解答题(共13个小题,共72 分) 13.(本小题5分)解:原式1223233+-⨯-= …………………………………………………………4分132-=. …………………………………………………………………………5分14.(本小题5分)解: 整理,得 3x 23x 2x 2+=+-, …………………………………………………………1分去分母,得 3x(x -2)+2(x+2)=3(x 2-4) .…………………………………………………2分∴ 3x 2-6x+2x+4=3x 2-12. ……………………………………………………………3分解这个方程,得 x=4. …………………………………………………………………4分经检验x=4是原方程的解. ……………………………………………………………5分15.(本小题5分)解:由①得 21-≥x ; ………………………………………………………………………2分由②得 x< 2. (3)分∴ 此不等式组的解集为221<≤-x . (4)分∴此不等式组的整数解为0,1. (5)分16.(本小题5分)证明:在梯形ABCD中,AB=DC,∴∠ABC=∠DCB,∠BAD=∠CDA. (1)分∵ AE、DF分别为∠BAD与∠CDA的平分线,∴11BAE BAD,CDF CDA22∠=∠∠=∠.∴∠BAE=∠CDF.………………………………………………………………………2分∴△ABE≌△DCF.………………………………………………………………………3分∴BE=CF ……………………………………………………………………………………4分∴BE-BC=CF-BC.即BF=CE.……………………………………………………………………………………5分17.(本小题5分)解:(1)40 ………………………………………………………………………………………1分0.4………………………………………………………………………………………2分(2)如图………………………………………………………………3分(3)10% ………………………………………………………………………………………4分(4)85~90分数段 ……………………………………………………………………………5分18.(本小题5 分)解:(1)设电动船租了x 条,脚踏船租了y 条, ……………………………………… 1分 依题意,得x 50x 40y+=⎧⎨+=⎩ ……………………………………………………………3分 解得x y 1=⎧⎨=⎩ ………………………………………………………………………………4分(2)4x+6y=36+90=126. ……………………………………………………………5分 答:电动船租了9条,脚踏船租了15条,这次划船的同学共有126人.19.(本小题5分)解:由已知可得∠B=30°,∠ACD=60°.……………………………………………………1分在Rt △ADC 中,sin ∠ACD=ACAD,…………………………………………………………2分∵ AD=24,∴ AC =163. ……………………………………………………………………………3分∵ ∠BAC=∠ACD -∠B =30°=∠B , ………………………………………………………4分∴BC=AC=163≈27.7米. ………………………………………………………………5分∴ 河宽BC 的值约是27.7米. 20.(本小题5分)解:将直线y kx =向上平移3个单位后的解析式为3+=kx y ,………………………1分∵ 点(2,)A m 是直线3+=kx y 与双曲线ky x=的交点, ∴ ⎪⎩⎪⎨⎧=+=2,32km k m ……………………………………………………………………………2分解得 k = -2. ………………………………………………………………………………3分∴ 平移后的直线解析式为32+-=x y ,反比例函数解析式为xy 2-=.………………5分21.(本小题5分)(1)证明:连接CO .∵ ∠CDB=∠OBD=30°, ∴ ∠BOC=60°. ……………………………………1分∵ AC ∥BD , ∴ ∠A=∠OBD=30°.∴ ∠ACO=90°.∴ AC 为⊙O 切线. ……………………………………2分 (2)解:∵ ∠ACO =90°,AC ∥BD , 90BEO ACO ∴∠=∠=°. ∴ DE=BE=3321=BD .…………………………………………………………………3分 在Rt BEO △中,sin ∠O=sin60°=OBBE,∴ OB3323=.∴OB=6. 即O ⊙的半径长为6cm . ···································································· 4分(3)解:∵∠CDB=∠OBD=30°,又CED BEO ∠=∠,BE ED =, CDE OBE ∴△≌△ .∴ ππ6360660S 2OBC =⨯==扇阴S (cm 2) ·························································· 5分 答:阴影部分的面积为6πcm 2.22.(本小题5分) (1)连接AC ,在Rt △ABC 中,AB=4,BC=8,由勾股定理得AC =54.………………………………………………………………………1分(第21题图) D B AC EO∴ ππ521805490=⨯. (3)分即点A 在旋转过程中所走过的路径的长为ππ521805490=⨯;(2)如图,设BP=x ,则PG=12-x .∵ A P ⊥EP ,∴ ∠APB+∠EPG =90°. 又 ∠EPG+∠PEG =90°, ∴ ∠APB=∠PEG . ∴ tan ∠APB=tan ∠PEG . ∴EGPGPB AB =.即8124x x -=. 解得x 1=4,x 2=8(不符合题意,舍去).∴x=4,即BP=4. ……………………………………………………………………………4分当BP=4时,PG=8,∴ AP=42,PE=82,3228242121=⨯⨯=⋅=∆PE AP S APE . …………………5分23.(本小题7分)解:(1)如图,将△BPC 绕点B 逆时针旋转90°,得△BP′A ,则△BPC ≌△BP′A .∴AP′=PC=1,BP=BP′=2. 连结P P′,在Rt △BP′P 中,∵ BP=BP′=2,∠P BP′=90°,∴ P P′=2,∠BP′P=45°. ………………………………2分 在△AP′P 中, AP′=1,P P′=2,AP=5, ∵ 22212(5)+=,即AP′ 2 + P P′ 2 = AP 2.∴ △AP′P 是直角三角形,即∠A P′ P=90°. ∴ ∠AP′B=135°. ∴ ∠BPC=∠AP′B=135°. ……………………………………………………………… 4分(2)过点B 作BE ⊥AP′ 交AP′ 的延长线于点E . ∴ ∠E P′ B=45°. ∴ E P′=BE=1. ∴ AE=2.∴ 在Rt △ABE 中,由勾股定理,得AB=5. ………………………………………7分∴ ∠BPC=135°,正方形边长为5. 24.(本小题7分)解:(1)∵ 直线y=kx-3过点A (4,0), ∴ 0 = 4k -3,解得k=34. ∴直线的解析式为y=34x-3. ………………………………………………………………1分 由直线y=34x-3与y 轴交于点C ,可知C(0,-3) .∵ 抛物线234y x mx n =-++经过点A(4,0)和点C, ∴ 2344304m -⨯+-=,解得 m=154.∴ 抛物线解析式为23153.44y x x =-+- ……………2分(2)对于抛物线3x 415x 43y 2-+-=, 令y=0,则03x 415x 432=-+-,解得x 1=1,x 2=4.∴ B(1,0).∴ AB=3,AO=4,OC=3,AC=5,AP=3-t ,AQ=5-2t .① 若∠Q 1P 1A=90°,则P 1Q 1∥OC (如图1), ∴ △AP 1Q 1∽△AOC . ∴11AP AQ AO AC=, ∴3t 52t45--=.解得t=53; ………………………………………………3分 ② 若∠P 2Q 2A=90°, ∵∠P 2AQ 2 =∠OAC , ∴ △AP 2Q 2∽△AOC. ∴22AP AQ AC AO=, ∴3t 52t54--=.解得t=136; ………………………………………………4分 ③若∠QAP=90°,此种情况不存在. ………………………………………………………5分综上所述,当t 的值为53或136时,△PQA 是直角三角形. (3)答:存在.过点D 作DF ⊥x 轴,垂足为E ,交AC 于点F (如图2). ∴ S △ADF =12DF ·AE ,S △CDF =12DF ·OE . ∴ S △ACD = S △ADF + S △CDF=12DF ·AE +12DF ·OE =12DF×(AE+OE) =12×(DE+DF)×4 =12×(23153x x 3x 3444-+--+)×4 =23x 6x 2-+. (6)分∴ S △ACD =23(x 2)62--+(0<x<4). 又0<2<4且二次项系数023<-,∴ 当x=2时,S △ACD 的面积最大. 而当x=2时,y=32. ∴ 满足条件的D 点坐标为D (2, 32). …………………………………………………7分25.(本小题8分)解:(1)CF= 6 cm ; …………………………………………2分(2)① 如图1,当点E 在BC 上时,延长AB ′交DC 于点M , ∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ FCABCE BE =. ∵CEBE=2, ∴ CF=3. ∵ AB ∥CF ,∴∠BAE=∠F .又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF . 设MA=MF=k ,则MC=k -3,DM=9-k . 在Rt △ADM 中,由勾股定理得: k 2=(9-k)2+62, 解得 k=MA=132. ∴ DM=52. ∴ sin ∠DAB ′=135=AM DM ; ……………………………4分图1②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N , 同①可得NA=NE .设NA=NE=m ,则B ′ N=12-m . 在Rt △AB ′ N 中,由勾股定理,得 m 2=(12-m)2+62, 解得 m=AN=152. ∴ B ′ N=92. ∴sin∠DAB′=53='AN N B . ………………………………………………………………6分 (3)①当点E 在BC 上时,y=18xx 1+; ………………………………………………………7分(所求△A B ′ E 的面积即为△ABE 的面积,再由相似表示出边长)②当点E 在BC 延长线上时,y=18x 18x-. ……………………………………………8分说明:各解答题其他正确解法请参照给分.。

北京市通州区2013年初三中考数学一模试题与答案 word

北京市通州区2013年初三中考数学一模试题与答案 word

2013年北京市通州区中考第一次模拟考试数学试卷 2013年5月考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称和姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共32分,每小题4分) 1.3-的倒数是A .3B .3-C .13-D .132.在下列几何体中,主视图、左视图和俯视图形状都相同的是A B C D3.2012年,北京实现地区生产总值约17800亿元,比2011年增长百分之七点多.将17800用科学记数法表示应为 A .17.8×103B .1.78×105C .0.178×105D .1.78×1044.如图,A 、B 、C 是⊙O 上的三个点,∠ABC =32°, 则∠AOC 的度数是 A .32°B .64°C .16°D .58°5.端午节吃粽子是中华民族的传统习俗.妈妈买了2只红豆粽和3只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是 A .25 B .12C .15D .236. 一个扇形的圆心角为90°,半径为2,则这个扇形的面积是 A .6πB .4πC .2πD .π7.某班开展以“提倡勤俭节约,反对铺张浪费”为主题教育活动. 为了解学生每天使用零花钱的情况,小明随机调查了10名同学,结果如下表:每天使用零花钱(单位:元)0 2 3 4 5 人数12412关于这10名同学每天使用的零花钱,下列说法正确的是 A .平均数是2.5B .中位数是3C .众数是2D .方差是4O BAC8. 如图,在直角坐标系xoy 中,已知()01A ,,()0B 3,,以线段AB 为边向上作菱形ABCD ,且点D 在y 轴上.若菱形ABCD 以每秒2个单位长度的速度沿射线AB 滑行,直至顶点D 落在x 轴上时停止.设菱形落在x 轴下方部分的面积为S ,则表示S 与滑行时间的函数关系的图象为第8题图(1) 第8题图(2)二、填空题(本题共16分,每小题4分) 9.若分式2x x-的值为零,则x = . 10.分解因式:322x x x -+= . 11.如图,AB ∥CD ,点E 在AB 上,且DC DE =,70AEC ∠=︒,则D ∠的度数是______.12.定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为kn 2(其中k 是使得kn 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第2013次“F 运算”的结果是 . 三、解答题(本题共30分,每小题5分) 13.计算:()123tan 302312--+-+o.第11题图CDA E BSSSDCBAtO 1234213tO1234213tO12342133124321OtS yxOABCD第8题图(2)第8题图(1)D CBA Oxy14.解不等式组20512(1)x x x -<⎧⎨+>-⎩,.15. 已知:如图,AB =AC ,点D 、E 分别在AB 、AC 上,且使AE =AD .求证:∠B =∠C .16.化简求值:2221y x y x y x ⎛⎫-+ ⎪-⎝⎭g ,其中30x y -=,且0y ≠.17.已知(42)A -,,(24)B -,是一次函数y kx b =+的图象和反比例函数my x=图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)将一次函数y kx b =+的图象沿y 轴向上平移n 个单位长度,交y 轴于点C ,若12ABC S =V ,求n 的值.ECA D B18. 列方程或列方程组解应用题:根据城市发展规划设计,某市工程队为该城市修建一条长4800米的公路.铺设600米后,为了缩短工期,该工程队增加了人力和设备,实际每天修建公路的长度是原计划的2倍,结果共用9天完成任务.问原计划每天修建公路多少米?四、解答题(本题共20分,每小题5分)19.某中学组织全校1000名学生参加了有关“低碳环保”知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).请根据以上提供的信息,解答下列问题: (1)直接写出频数分布表中a ,b 的值,补全频数分布直方图;(2)学校将对成绩在90分以上(不含90分)的学生进行奖励,请估计全校1000名学生中约有多少名获奖?20.如图,在矩形ABCD 中,AB =3,BC =3,△DCE 是等边三角形,DE 交AB 于点F ,求△BEF 的周长.分组/分 频数 频率 50<x ≤60 10 a 60<x ≤70 b 70<x ≤80 0.2 80<x ≤90 52 0.26 90<x ≤100 0.37 合计1频数 8070 60 50 40 30 20 10 0成绩/分50 60 70 80 90 100ADFEB C21.已知:如图,AB 是⊙O 的直径,AC 是弦.过点A 作∠BAC 的角平分线,交⊙O 于点D ,过点D 作AC 的垂线,交AC 的延长线于点E . (1)求证:直线ED 是⊙O 的切线;(2)连接EO ,交AD 于点F ,若5AC =3AB ,求EOFO的值.22. 如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD 的边长为2,E 是AD 的中点,沿CE 将菱形ABCD 剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为S 1、S 2、S 3,周长分别记为l 1、l 2、3l ,判断所拼成的三种图形的面积、周长的大小关系(用“=”、“>”、“<”、“):面积关系是 ; 周长关系是 .第22题图(矩形)(等腰梯形)(直角三角形)E DCBA ②①E A BCDO第22题图五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 已知二次函数()2214y x k x k =-++的图象与x 轴分别交于点()1,0A x 、()2,0B x ,且32-<1x <12-. (1)求k 的取值范围;(2)设二次函数()2214y x k x k =-++的图象与y 轴交于点M ,若OM OB =,求二次函数的表达式;(3)在(2)的条件下,若点N 是x 轴上的一点,以N 、A 、M 为顶点作平行四边形,该平行四边形的第四个顶点F 在二次函数()2214y x k x k =-++的图象上,请直接写出满足上述条件的平行四边形的面积.24.已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB的两侧.(1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.A DB C25.我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数223y x x =--的图象与x 轴交于点A 、B ,与y 轴交于点D ,AB 为半圆直径,半圆圆心为点M ,半圆与y 轴的正半轴交于点C . (1)求经过点C 的“蛋圆”的切线的表达式; (2)求经过点D 的“蛋圆”的切线的表达式;(3)已知点E 是“蛋圆”上一点(不与点A 、点B 重合),点E 关于x 轴的对称点是F ,若点F 也在“蛋圆”上,求点E 的坐标.yCM A O B x D第25题图通州区初三数学模拟考试参考答案及评分标准2013.5 一、选择题:1.C 2.C 3.D 4.B 5.A 6.D 7.B 8.A 二、填空题:9. 2x =; 10. ()21x x -; 11. 40 ; 12. 1,4;三、解答题: 13. 解:原式= 13312323-⨯++, ……………… 4分;= 131232-++, =332+ . ……………… 5分. 14. ()205121x x x -<⎧⎨+>-⎩, .①②解:解不等式①,得 2x <, ……………… 1分;解不等式②,5122x x +>-, ……………… 2分; 5221x x ->--, ……………… 3分;33x >-,1x >-, ……………… 4分;∴这个不等式组的解集是12x -<< . (5)分.15. 证明:在△ABE 和△AC D 中∵ .AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,, ……………… 3分;∴△ABE ≌△ACD (SAS ). ……………… 4分;∴B C ∠=∠. ……………… 5分.第15题图EDC BA16. 解:原式=x yx y x y y x y x -∙⎪⎪⎭⎫ ⎝⎛-+--2222222,x yx y x x -∙-=222, ……………… 1分; xyx y x y x x -∙-+=))((2, ……………… 2分;=xx y+. ……………… 3分; 由30x y -=,得3x y =, ……………… 4分; ∴原式=33y y y +=34y y =34. ……………… 5分.17. 解:(1) 把(42)A -,,(24)B -,分别代入y kx b =+和my x=中, ∴42244.2-=k b k b m ⎧⎪-+=⎪+=-⎨⎪⎪⎩,, ……………… 1分;解得:128.k b m =-⎧⎪=-⎨⎪=-⎩,, ……………… 2分;∴反比例函数的表达式为8y x=-,一次函数的表达式为2y x =-- ; (2)设一次函数2y x =--的图象与y 轴的交点为D ,则()0D ,-2, (3)分;∵12=∆ABC S , ∴12221421=∙∙+-∙∙CD CD , ……………… 4分;∴4CD =,∴4n =. (5)分.18. 解法一:解:设原计划每天修建公路x 米, 则实际每天修建公路2x 米, …… 1分;根据题意得:600480060092x x-+=, ……………… 3分;∴27009x=, ∴300x =.经检验:x =300是原方程的解,且符合实际问题的意义. ……………… 4分; 答: 原计划每天修建公路300米. ……………… 5分. 解法二:解:设铺设600米用x 天, 则增加人力和设备后,用()9x -天完成任务.……………… 1分; 根据题意得:600480060029x x-⨯=-, ……………… 3分; 解得:2x =.经检验:2x =是原方程的解,且符合实际问题的意义. ……………… 4分; ∴6003002=, 答:原计划每天修建公路300米. ……………… 5分. 四、解答题19. (1)0.05a =,24b =. ……………… 2分; 补全频数分布直方图正确; ……………… 4分; (2)0.371000370⨯=. ……………… 5分. 估计全校1000名学生中约有370名获奖. 20.解法一:∵矩形ABCD ,△DCE 是等边三角形,∴30ADF ECB ∠=∠=o,3ED EC ==, 在Rt △ADF 中,90A ∠=o ,3AD =,G 第20题图A BCDEF∴tan AFADF AD∠=, tan 33033AF ==o, ∴1AF =,∴312FB AB AF =-=-=,2FD =, ……………… 1分; ∴321EF ED DF =-=-=, ……………… 2分; 过点E 作EG CB ⊥,交CB 的延长线于点G . ……………… 3分; 在Rt △ECG 中,90EGC ∠=o ,3EC =,30ECG ∠=o , ∴1322EG EC ==,cos GCECG EC∠=, cos 33032GC ==o , ∴332GC =, ∴3133322GB GC BC =-=-=, 由勾股定理得,222EB EG GB =+,∴3EB =(舍去负值) ……………… 4分; ∴△BEF 的周长=33EF FB EB ++=+. ……………… 5分. 解法二:∵矩形ABCD ,△DCE 是等边三角形,∴60EDC ECD ∠=∠=o ,3ED EC ==,过点E 作EH CD ⊥交CD 于点H ,交AB 于点G . ……………… 1分; ∴点H 是DC 的中点,点G 是AB 的中点, 30FEG ∠=o ,3GH AD ==,在Rt △EHD 中,90EHD ∠=o ,3ED =, ∴sin EH EDH ED∠=, sin 36032EH ==o ,∴332EH =, ∴3133322EG EH GH =-=-=. 在Rt △EGF 中,90EGF ∠=o ,60EFG ∠=o , ∴sin EGEFG EF∠=, sin 1332602EF ==o , ∴1EF =, ……………… 2分; ∴1122FG EF ==, ∵点G 是AB 的中点,3AB =,∴1322GB AB ==, ∴13222FB FG GB =+=+=, ……………… 3分;由勾股定理得,222EB EG GB =+,∴3EB =(舍去负值) ……………… 4分; ∴△BEF 的周长=33EF FB EB ++=+. ……………… 5分. 解法三:∵矩形ABCD ,△DCE 是等边三角形,∴30ADF ECB ∠=∠=o ,3ED EC ==, 在Rt △ADF 中,90A ∠=o ,3AD =,∴tan AFADF AD∠=, tan 33033AF ==o, ∴1AF =,∴312FB AB AF =-=-=,2FD =, ……………… 1分; ∴321EF ED DF =-=-=, ……………… 2分; 过点B 作BG CE ⊥,交CE 于点G . ……………… 3分; 在Rt △BCG 中,90BGC ∠=o ,3BC =,30ECB ∠=o ,H F E D CBA第20题图G∴1322BG BC ==,cos GCBCG BC∠=, cos 33023GC ==o, ∴32GC =, ∴33322GE EC GC =-=-=, 由勾股定理得,222EB EG GB =+,或BG 是线段EC 的垂直平分线,∴3EB =(舍去负值)或BE =BC , ………… 4分;∴△BEF 的周长=33EF FB EB ++=+. ………………5分.21. (1)证明:连接OD.∵OD OA =,∴OAD ODA ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴ODA CAD ∠=∠, ……………… 1分; ∴AE ∥OD , ∵DE AE ⊥, ∴ED DO ⊥,∵点D 在⊙O 上,∴ED 是⊙O 的切线; ……………… 2分;(2)解法一:连接CB ,过点O 作OG AC ⊥于点G .…………… 3分; ∵ AB 是⊙O 的直径, ∴90ACB ∠=o , ∵OG AC ⊥, ∴OG ∥CB , ∴AG ACAO AB=, ∵5AC =3AB ,第21题图OE D CBAG 第21题图OF ED CBAG 第20题图ABCDEF∴35AG AO =, ……………… 4分; 设35AG x AO x ==,, ∵DE AE ⊥,ED DO ⊥, ∴四边形EGOD 是矩形, ∴EG OD =,AE ∥OD ,∴5DO x =,5GE x =,8AE x =, ∴△AEF ∽△DFO ,∴EF AEFO OD =, ∴85EF FO = ,∴135EO FO =. (5)分.解法二:连接CB ,过点A 作AH DO ⊥交DO 的延长线于点H . ………… 3分; ∵DE AE ⊥,ED DO ⊥, ∴四边形AHDE 是矩形, ∴EA DH =,AE ∥HD ,AH ∥ED ,∴CAB AOH ∠=∠, ∵ AB 是⊙O 的直径, ∴90ACB ∠=o , ∴ACB AHO ∠=∠, ∴△AHO ∽△BCA , ∴OH ACAO AB=, ∵5AC =3AB ,∴35OH AO =, ……………… 4分;设35OH x AO x ==,, ∴5DO x =,8AE DH x ==, ∵AE ∥HD ,∴△AEF ∽△DFO ,HABC D EFO第21题图∴EF AEFO OD =, ∴85EF FO = ,∴135EO FO =. ……………… 5分.解法三:连接CB ,分别延长AB 、ED 交于点G . ………… 3分; ∵DE AE ⊥,ED DO ⊥, ∴AE ∥OD ,90ODG ∠=o ,∴CAB DOG ∠=∠, ∵ AB 是⊙O 的直径, ∴90ACB ∠=o, ∴ACB ODG ∠=∠, ∴△GDO ∽△BCA , ∴OD ACOG AB=, ∵5AC =3AB ,∴35OD OG =, ……………… 4分; 设35OD x OG x ==,,∴5AO x =,8AG AO OG x =+=, ∵AE ∥OD ,∴△AEG ∽△ODG ,△AEF ∽△DFO ,∴ AG AE OG OD = , EF AEFO OD =, ∴85EF FO = ,∴135EO FO =. ……………… 5分.22.(1)②①②①②①(直角三角形)①②(等腰梯形)(矩形)第21题图F ABD ECGO画图正确; 每图各1分,共3分;(2)面积关系是 S 1=S 2=S 3 ; ……………… 4分; 周长关系是 l 1>l 2>3l . ……………… 5分. 五、解答题: 23.解:(1)令0y =,则()22140x k x k -++=解方程得:2x k =或2x =, ……………… 1分;由题意得:()20A k ,,()20B ,, ∴ 31222-k <<-, ∴3144k -<<-. ……………… 2分;(2)令0x =,则4y k =,∴()04M k ,, ∵OM OB =,∴ 42k -=, ……………… 3分; ∴ 12k =-, ∴22y x x =--. (4)分;或∵OM OB =,()20B ,, ∴()0M ,-2,把点M 的坐标分别代入()2214y x k x k =-++中,∴42k =-, ……………… 3分; ∴ 12k =-, ∴22y x x =--. (4)分;(3)2,517+,517-. (每个答案各1分) ……………… 7分.24.解:(1)过点A 作AG BC ⊥于点G . ∵∠ADB=60°,2AD =, ∴1DG =,3AG =,∴ 3GB =,∴ tan 33AG ABG BG ∠==, ∴30ABG ∠=o ,23AB =, ……………… 1分; ∵ △ABC 是等边三角形,∴ 90DBC ∠=o ,23BC =, ……………… 2分; 由勾股定理得:()222242327CD DB BC =+=+=. …… 3分;(2)作60EAD ∠=o ,且使AE AD =,连接ED 、EB . ………… 4分; ∴△AED 是等边三角形, ∴AE AD =,60EAD ∠=o ,∵ △ABC 是等边三角形, ∴AB AC =,60BAC ∠=o ,∴EAD DAB BAC DAB ∠+∠=∠+∠,即EAB DAC ∠=∠,∴△EAB ≌△DAC . ……………… 5分; ∴EB =DC .当点E 、D 、B 在同一直线上时,EB 最大,∴246EB =+=, .................. 6分; ∴ CD 的最大值为6,此时120ADB ∠=o . (7)分.另解:作60DBF ∠=o ,且使BF BD =,连接DF 、AF . 参照上面解法给分. 25.解:(1)由题意得:()10A -,,()30B ,,()03-D ,,()10M ,. ∴2AM BM CM ===, ∴223OC CM OM =-=,∴()0C ,3G第24题图D CBA 第24题图ED CBA FABCD 第24题图G第25题图y xMO DC B A∵GC 是⊙M 的切线, ∴90GCM ∠=o∴cos OM MCOMC MC MG∠==, ……………… 1分; ∴122MG=, ∴4MG =,∴()30G -,, ∴直线GC 的表达式为333y x =+. ……………… 2分; (2)设过点D 的直线表达式为3y kx =-,∴2323,y kx y x x =-⎧⎨=--⎩,∴()220x k x -+=,或1202x x k ==+,0)]2([2=+-=∆k ,或12x x =, (3)分;∴2k =-,∴ 过点D 的“蛋圆”的切线的表达式为23y x =--. (4)分;(3)假设点E 在x 轴上方的“蛋圆”上,设()E m n ,,则点F 的坐标为()m n -,. EF 与x 轴交于点H ,连接EM . ∴222HM EH EM +=,∴()2214m n -+=,……① ………… 5分; ∵点F 在二次函数223y x x =--的图象上, ∴223m m n --=-,……②解由①②组成的方程组得:131m n ⎧=+⎪⎨=⎪⎩;131m n ⎧=-⎪⎨=⎪⎩.(0n =舍去)……………… 6分;H F EA B CDO M x y 第25题图由对称性可得:131m n ⎧=+⎪⎨=-⎪⎩;131m n ⎧=-⎪⎨=-⎪⎩. ……………… 7分;∴()1131E +,,()2131E -,,()3131E +,-,()4131E -,-. (8)分.。

西城区初三年级数学一模答案

西城区初三年级数学一模答案

北京市西城区2013年初三一模试卷数学答案及评分参考 2013. 5三、解答题(本题共30分,每小题5分) 13.解:原式=11223-⨯+. ………………………………………………4分 43. ………………………………………………… 5分14.解:由①得4x ≥. …………………………………………………………1分由②得132x <. …………………………………………………………3分∴ 原不等式组的解集是1342x ≤<. ………………………………… 4分 ∴ 它的整数解为4,5,6. ………………………………………… 5分 15. 证明:(1)如图1.∵△DAC 和△DBE 都是等边三角形,∴DA =DC ,DB =DE , …………1分 ∠ADC =∠BDE =60º .∴∠ADC +∠CDB =∠BDE +∠CDB , 即∠ADB =∠CDE . ……………2分 在△DAB 和△DCE 中,4(1)78253x x x x +≤-⎧⎪-⎨-<⎪⎩AB DE图1⎪⎩⎪⎨⎧=∠=∠=,,,DE DB CDE ADB DC DA∴ △DAB ≌△DCE. ………………………………………… 3 分 (2)∵△DAB ≌△DCE ,∴ ∠A =∠DCE=60° . ……………………………………… 4分 ∵∠ADC=60°, ∴ ∠DCE =∠ADC .∴DA ∥EC . ………………………………………………… 5分16. 解:原式=()()2()()2y x y x y x y xy x y -+-⋅- ..….….….…. …..…………..……………………2分 =2x y x+. ………………………………………………………… 3分 ∵3xy=, ∴ 3x y =.∴ 原式=32233y y y +=⨯. ……………………………………………… 5分 17. 解:(1)∵正比例函数32y x =-的图象经过点A ,且点A 的横坐标为2-, ∴点A 的纵坐标为3. …………………………………………… 1分 ∵反比例函数ky x=的图象经过点A (2,3-), ∴32k =-. ∴6k =-. ……………………………………………………… 2分∴6y x=-. ……………………………………………………… 3分 (2)点P 的坐标为9(0,)2或9(0,)2-. ……………………………… 5分18.解:设原计划每天生产空气净化器x 台. ……………………………………1分 依题意得 2400120024001.210x x +=⨯+. …………………………………… 2分解得40=x . …………………………………………………………… 3分 经检验,40=x 是原方程的解,并且符合题意. ……………………… 4分答: 原计划每天生产空气净化器40台. ……………………………………………5分 四、解答题(本题共20分,每小题5分) 19.解:(1)如图2.∵平行四边形ABCD 的对角线AC 、BD 交于点∴OA = 12AC ,OB = 12BD . …………… 1分∵AC ︰BD =2︰3, ∴OA ︰OB =2︰3 .设OA =2x (x >0),则OB =3x .∵AC ⊥AB ,∴∠BAC =90°.在Rt △OAB 中,OA 2+AB 2=OB 2. …………………………………… 2分 ∵AB =2, ∴(2x )2+22=(3x )2 . 解得x =±255(舍负).∴AC =2OA = 855. …………………………………………………… 3分(2)∵平行四边形ABCD 的对角线AC 、BD 交于点O ,∴OB =OD .∴S △AOD = S △AOB = 12 AO ·AB = 12×455×2= 455. ……………………… 5分20.(1)证明:连接OD . (如图3) ∵OC =OD ,∴∠OCD =∠ODC .E B图3∵AB =AC , ∴∠ACB =∠B . ∴∠ODC =∠B .∴OD ∥AB . …………………………………………………………… 1分 ∴∠ODF =∠AEF .∵EF ⊥AB ,∴∠ODF =∠AEF =90°.∴OD ⊥EF .∵OD 为⊙O 的半径,∴EF 与⊙O 相切. ………………………………………………2分 (2)解:由(1)知:OD ∥AB ,OD ⊥EF .在Rt △AEF 中,sin ∠CFD = AE AF = 35,AE=6.∴AF =10. ………………………………………………………………3分 ∵OD ∥AB , ∴△ODF ∽△AEF . ∴AEODAF OF =. 设⊙O 的半径为r , ∴10-r 10 = r 6. 解得r = 154 . ……………………………………………………………… 4分∴AB = AC =2r = 152.∴EB =AB -AE = 152 -6= 32 . ………… 5 分21.解:(1)17%; ……………………………2分 (2)所补数据为21.7; ……………………3分补全统计图如图4; ………………… 4分 (3)2015. ………………………… 5分22.解:(1)①如图5;………………………… 1分 ②点D 的坐标为()70,; ………………… 3分图4xyC BAO 图5(2)点P 的坐标为)0. ……………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(1)证明:∵22(4)4216a a a ∆=+-⨯=+, …………………………………1分 而20a ≥,∴2160a +>,即0∆>.∴无论a 为任何实数,此方程总有两个不相等的实数根. …………2分 (2)解:∵当2ax =时,0y =, ∴22()(4)022a aa a ⨯++⨯+=.∴230a a +=,即(3)0a a +=.∵0a ≠,∴3a =-. ………………………………………………………… 3分∴抛物线1C 的解析式为22125232()48y x x x =+-=+-. ∴抛物线1C 的顶点为125(,)48--. ∴抛物线2C 的顶点为(0,3)-.∴抛物线2C 的解析式为223y x =-. …………………………4分(3)解:∵点A (m ,n )和B (n ,m )都在抛物线2C 上,∴223n m =-,且223m n =-. ∴222()n m m n -=-. ∴2()()n m m n m n -=-+. ∴()[2()1]0m n m n -++=.∵A 、B 两点不重合,即m n ≠, ∴2()10m n ++=. ∴12m n +=-. ……………………………………………………… 5分 ∵223m n =+,223n m =+, ∴33222m mn n -+ 22222m m mn n n =⋅-+⋅ n m mn m n ⋅++-⋅+=)3(2)3().(3n m += ………………………………………………………………6分32=-. ………………………………………………………………7分24.解:(1)cos αPMN 周长的最小值为 3 ; ………………………2分 (2)分别将△P AB 、△PBC 、△P AC 沿直线AB 、BC 、AC 翻折,点P 的对称点分别是点D 、E 、F ,连接DE 、DF ,(如图6)则△P AB ≌△DAB ,△PCB ≌△ECB ,△P AC ≌△F AC . ∴AD =AP =AF , BD =BP =BE ,CE =CP =CF .∵由(1)知∠ABC =30°,∠BAC =60°,∠ACB =90°, ∴∠DBE =2∠ABC =60°,∠DAF =2∠BAC =120°, ∠FCE =2∠ACB =180°.∴△DBE 是等边三角形,点F 、C 、E 共线. ∴DE =BD =BPEF =CE +CF =2CP =2. ∵△ADF 中,AD =AF,∠DAF =120°, ∴∠ADF =∠AFD =30°.∴DF.PBACDE F图6∴22210EF DF DE +==.∴∠DFE =90°. ………………………………………………………4分 ∵2ABC DBE DFE DAF BDAFE S S S S S ∆∆∆∆==++多边形,∴2112222ABC S ∆=++=.∴ABC S ∆=. ……………………………………………5分 (3)∠APB =150°. ………………………………………………………… 7分 说明:作BM ⊥DE 于M ,AN ⊥DF 于N .(如图7) 由(2)知∠DBE =2α,∠DAF =1802α-o . ∵BD =BE=n ,AD =AF=m , ∴∠DBM =α,∠DAN =90α-o . ∴∠1=90α-o ,∠3=α. ∴DM =sin n α,DN =cos m α. ∴DE =DF =EF . ∴∠2=60°.∴∠APB =∠BDA =∠1+∠2+∠3=150°.25.解:(1)∵直线l :34y x m =+经过点B (0,1-),∴1m =-.∴直线l 的解析式为314y x =-.∵直线l :314y x =-经过点C (4,n ),∴34124n =⨯-=. ………………………………………………1分∵抛物线212y x bx c =++经过点C (4,2)和点B (0,1-),∴21244,21.b c c ⎧=⨯++⎪⎨⎪-=⎩ 321NMP A CD EB图7解得5,41.b c ⎧=-⎪⎨⎪=-⎩ ∴抛物线的解析式为215124y x x =--. …………………………2分 (2)∵直线l :314y x =-与x 轴交于点A , ∴点A 的坐标为(43,0).∴OA=43.在Rt △OAB 中,OB=1,∴AB53=∵DE ∥y 轴, ∴∠OBA =∠FED .∵矩形DFEG 中,∠DFE =90°, ∴∠DFE =∠AOB =90°.∴△OAB ∽△FDE .∴OA OB ABFD FE DE==. ∴45OA FD DE DE AB =⋅=,35OB FE DE DE AB =⋅=. …………………………………………4分∴p =2(FD+ FE )=43142()555DE DE ⨯+=.∵D (t ,215124t t --),E (t ,314t -),且04t <<,∴223151(1)(1)24242DE t t t t t =----=-+.∴22141728(2)5255p t t t t =⨯-+=-+. …………………………… 5分∵2728(2)55p t =--+,且705-<,∴当2t =时,p 有最大值285. …………………………………… 6分 (3)点A 1的横坐标为34或712-. ……………………………………………8分说明:两种情况参看图9和图10,其中O 1B 1与x 轴平行,O 1A 1与y 轴平行.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西城区22.先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A 、B 、C 、D 均 为⊙O 上的点,则有∠C =∠D .小明还发现,若点E 在⊙O 外,且与点D 在直线AB 同侧, 则有∠D >∠E .请你参考小明得出的结论,解答下列问题:(1) 如图1,在平面直角坐标系xOy 中,点A 的坐标为(0,7),点B 的坐标为(0,3), 点C 的坐标为(3,0).①在图1中作出△ABC 的外接圆(保留必要的作图痕迹,不写作法);②若在x 轴的正半轴上有一点D ,且∠ACB =∠ADB ,则点D 的坐标为 ;(2) 如图2,在平面直角坐标系xOy 中,点A 的坐标为(0,m ),点B 的坐标为(0,n ),其中m >n >0.点P 为x 轴正半轴上的一个动点,当∠APB 达到最大时,直接写出此时点P 的坐标.22.解:(1)①如图5;………………………… 1分②点D 的坐标为()70,; ………………… 3分(2)点P的坐标为)0. ……………… 5分昌平区22. (1)人教版八年级数学下册92页第14题是这样叙述的:如图1,□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,HG ∥AB ,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为 和 ;(2)如图2,点P 为□ABCD 内一点,过点P 分别作AD 、AB 的平行线分别交□ABCD的四边于点E 、F 、G 、H . 已知S □BHPE = 3,S □PFDG = 5,则PAC S ∆= ; (3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD 的面积为11,则菱形EFGH 的周长为 .图2图3图1⑤④③②①H PA BGEH DF C ABGEP DF C HGFE DCBA22.解:(1)□AEPH 和□PGCF 或□ABGH 和□EBCF 或□AEFD 和□HGCD . …………… 1分 (2)1. ……………………………………………………………………………………… 2分(3)24. ……………………………………………………………………………………… 4分房山区22.已知,矩形纸片ABCD 中,AB =8cm ,AD =6cm ,按下列步骤进行操作:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用);如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片. (注:裁剪和拼图过程均无缝且不重叠)(1)通过操作,最后拼成的四边形为 (2)拼成的这个四边形的周长的最小值为_______________________________cm,最大值为___________________________cm .22. (1)平行四边形;-----------------------------1分(2)拼成的平行四边形上下两条边的长度等于原来矩形的边AD=6,左右两边的长等于线段MN 的长,当MN 垂直于BC 时,其长度最短,等于原来矩形的边AB 的一半,等于4,于是这个平行四边形的周长的最小值为2(6+4)=20;----------------------------3分当点E 与点A 重合,点M 与点G 重合,点N 与点C 重合时,线段MN 最,此时,这个四边形的周长最大,其值为2(6+=12+ ----------------------------------------5分怀柔区22. 理解与应用:我们把对称中心重合、四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等..... 一条直线l 与方形环的边线有四个交点M 、'M 、'N 、N .小明在探究线段'MM 与N N ' 的数量关系时,从点'M 、'N 向对边作垂线段E M '、F N ',利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)直线l 与方形环的对边相交时(22题图1),直线l 分别交AD 、D A ''、C B ''、BC 于M 、'M 、'N 、N ,小明发现'MM 与N N '相等,请你帮他说明理由;(2)直线l 与方形环的邻边相交时(22题图2),l 分别交AD 、D A ''、C D ''、DC 于M 、'M 、'N 、N ,l 与DC 的夹角为α,请直接写出NN MM ''的值(用含α的三角函数表示).122题图图①图②图③EC BE G HM NA D22. 理解与应用:⑴解: 在方形环中,∵AD BC F N AD E M ,',⊥⊥'∥BC∴M ’E=N ’F …………………………………………1分 ∠M ’EM=∠N ’FN=90°,∠EMM ’=∠N ’NF∴△E MM '≌△F NN ' ……………………………2分 ∴N N M M '=' ……………………………3分 ⑵ 则 αtan =''N N M M (或ααcos sin ) ……………………………5分密云县22.如图,长方形纸片ABCD 中,AB =8cm ,AD =6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180︒,使线段GB 与GE 重合,222题图222题图122题图将MN 右侧纸片绕H 点按逆时针方向旋转180 ,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠). (1)所拼成的四边形是什么特殊四边形?(2)拼成的这个四边形纸片的周长的最小值是多少? 22.(1)平行四边形……………………………………2分 (2)最小值为12+2×4=20,………………………5分朝阳区22.阅读下面材料:小雨遇到这样一个问题:如图1,直线l 1∥l 2∥l 3 ,l 1与l 2之间的距离是1,l 2与l 3之间的距离是2,试画出一个等腰直角三角形ABC ,使三个顶点分别在直线l 1、l 2、l 3上,并求出所画等腰直角三角形ABC 的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l 1任取一点A ,作AD ⊥l 2于点D ,作∠DAH =90°,在AH 上截取AE =AD ,过点E 作EB ⊥AE 交l 3于点B ,连接AB ,作∠BAC =90°,交直线l 2于点C ,连接BC ,即可得到等腰直角三角形ABC .请你回答:图2中等腰直角三角形ABC 的面积等于 . 参考小雨同学的方法,解决下列问题:如图3,直线l 1∥l 2∥l 3, l 1与l 2之间的距离是2,l 2与l 3之间的距离是1,试画出一个等l 1l 1l 2l 3图1l 1l 2l 3图2边三角形ABC ,使三个顶点分别在直线l 1、l 2、l 3上,并直接写出所画等边三角形ABC 的面积(保留画图痕迹).22. 解: 5;……………………………………………2分 如图; ………………………………………3分. ………………………………………5分大兴区22.分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD 1E 1和正方形BCD 2E 2,连结D 1D 2.(1)如图1,过点C 作直线HG 垂直于直线AB 于点H ,交D 1D 2于点G .试探究线段GD 1与线段GD 2的数量关系,并加以证明.(2)如图2,CF 为AB 边中线,试探究线段CF 与线段D 1D 2的数量关系,并加以证明.22.(1)答:FD 1 = FD 2 。

………………………………………1分l 1l 2l 3图2D 2D 1E 2E 1F CBA图1E 图2E分别将△ACH与△BCH绕着点C顺时针、逆时针旋转90º,使AC、BC分别与CD1、CD2重合,得到△CD1H1与△CD2H2,H1、C、H2三点共线,且CH1 = CH2 .∵∠H1 = ∠H1CH = ∠H2 = 90º,∴ D1H1∥CF ∥D2H2 .∴ FD1 = FD2 . ………………………………………2分(2)答:D1 D2 = 2CF . …………………………………3分分别将△ACF与△BCF绕着点C顺时针、逆时针旋转90º,使AC、BC分别与CD1、CD2重合,得到△CD1F1与△CD2F2,F1、C、F2三点共线,且CF1 = CF2 = CF .∵∠AFC + ∠BFC = 180º,∴∠D1F1C + ∠D2F2C = 180º.∴D1F1∥D2F2 .又D1F1 = AF = BF = D2F2 ,∴D1F1 F2D2是平行四边形.∴D1 D2 = F1F2 = 2CF . ………………………………………5分东城区22. 如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE 重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm ,最大值为________cm . 22.(本小题满分5分)解: (1)拼接成的四边形所图虚线所示; ………………2分 (2)8+;8+ …………………………5分(注:通过操作,我们可以看到最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来菱形的边AB =4,左右两边的长等于线段MN 的长,当MN 垂直于BC 时,其长度最短,等于原来菱形的高的一半,于是这个平行四边形的周长的最小值为2)=8+E 与点A 重合,点M 与点G 重合,点N 与点C 重合时,线段MN 最长,等于8+)丰台区22.操作与探究:如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0).将线段0OM 绕原点O 沿逆时针方向旋转45,再将其延长到1M ,使得001OM M M ⊥,得到线段1OM ;又将线段1OM 绕原点O 沿逆时针方向旋转45 ,再将其延长到2M ,使得112OM M M ⊥,得到线段2OM ,如此下去,得到线段(1)写出点M 5的坐标; (2)求56OM M △的周长;(3)我们规定:把点)(n n n y x M ,(=n 0,1,2,3…)的横坐标n x ,纵坐标n y 都取绝对值后得到的新坐标()n ny x,称之为点n M 的“绝对坐标”.根据图中点n M的分布规律,请写出点n M 的“绝对坐标”.22.解:(1)M 5(―4,―4)………………………………………4分 (2)由规律可知,245=OM ,2465=M M ,86=OM ……………6分 ∴56M OM △的周长是288+……………………………………8分(3)解法一:由题意知,0OM 旋转8次之后回到x 轴的正半轴,在这8次旋转中,点n M 分别落在坐标象限的分角线上或x 轴或y 轴上,但各点“绝对坐标”的横、纵坐标均为非负数,因此,点n M 的“绝对坐标”可分三类情况: 令旋转次数为n① 当点M 在x 轴上时: M 0(0,)2(0),M 4(0,)2(4),M 8(0,)2(8),M 12(0,)2(12),…, 即:点n M 的“绝对坐标”为(0,)2(n )。

相关文档
最新文档