高一数学测试题(1)
高一数学必修1测试卷(含详细答案)
则 f ( 0 ) f (x ) f ( x )
f ( x)
f ( x)
(0)
,, 3 分
所以 f ( x ) 为 R 上的奇函数
,, 6 分
(3 )令 x y 1
则 f (1 1) f (2) f (1) f (1) 2
,, 8 分
f ( 2 a ) f (a 1 ) 2 f ( a2 ) f a( 1 ) f
( D ) { x x 0}
1 (C ) y
2
x
(D) y
2
( x)
2
x
3. 集合 A {( x, y ) y x} ,集合 B {( x, y )
2x y 1 } 之间的关系是
x 4y 5
( A) A B
(B) B A
(C ) A B
(D ) B A
4. 已知函数 f ( x ) log 2 x 1 , 若 f ( a ) 1, 则 a
取值范围 .
22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分) ( A 类) 定义在 R 上的函数 y f ( x ) ,对任意的 a, b R ,满足
f ( a b) f (a ) f (b ) ,当 x 0 时,有 f ( x ) 1,其中 f (1) 2 .
( 1) 求 f ( 0 ) 、 f ( 1) 的值; ( 2) 证明 y f ( x ) 在 (0, ) 上是增函数;
10. 已知 f ( x)
2
1 1
x x2
,则
f
( x ) 不.满.足. 的关系是
( A) f ( x) f ( x )
1 (C ) f ( )
x
f (x)
高一数学必修一试题含答案
高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。
高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。
高一数学上学期期末试卷(一)
高一期末数学试卷(一)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={x|x2−16<0},B={−5,0,1},则( )A. A∩B=⌀B. B⊆AC. A∩B={0,1}D. A⊆B2. 若幂函数y=f(x)的图象经过点(2,√2),则f(3)=( )B. √3C. 3D. 9A. 133. 祖暅原理也称祖氏原理,一个涉及几何体体积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A,B为两个等高的几何体,p:A、B的体积相等,q:A、B在同一高处的截面积相等.根据祖暅原理可知,p是q的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4. 函数y=4x的图象大致为( )x2+1A. B.C. D.5. 设a=log30.4,b=log23,则( )A. ab>0且a+b>0B. ab<0且a+b>0C. ab>0且a+b<0D. ab<0且a+b<06. 某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e为自然对数的底数,k,b为常数),若该食品在0°C的保鲜时间是384小时,在22°C的保鲜时间是24小时,则该食品在33°C的保鲜时间是小时( )A. 6B. 12C. 18D. 247. 黄金分割比例广泛存在于许多艺术作品中.在三角形中,底与腰之比为黄金分割比的三角形被称作黄金三角形,被认为是最美的三角形,它是两底角为72°的等腰三角形.达芬奇的名作《蒙娜丽莎》中,在整个画面里形成了一个黄金三角形.如图,在黄金三角形ABC 中,BC AC=√5−12,根据这些信息,可得sin54°=( )A. 2√5−14B. √5+14C. √5+48D. √5+388. 已知函数f(x)={12x+1,x ≤0lgx,x >0,若存在不相等的实数a ,b ,c ,d 满足|f(a)|=|f(b)|=|f(c)|=|f(d)|,则a +b +c +d 的取值范围为( )A. (0,+∞)B. (−2,8110] C. (−2,6110] D. (0,8110]二、多选题(本大题共4小题,共20.0分。
高一数学必修1第一章测试题及答案
高一第一章测试题(一)一.选择题(本大题共12小题,第小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.设集合{}1->∈=x Q x A ,则( ) A . A ∅∉ B .2A ∉ C .2A ∈ D .{}2⊆A2、已知集合A 到B 的映射f:x→y=2x+1,那么集合A 中元素2在B 中对应的元素是:A 、2B 、5C 、6D 、83.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤ 4.函数21y x =-的定义域是( )1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞ 5.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则集合)A B =U (C ( )A .{0,2,3,6}B .{ 0,3,6}C . {2,1,5,8}D .∅6.已知集合{}{}13,25A x x B x x A B =-≤<=<≤=,则( )A. ( 2, 3 )B. [-1,5]C. (-1,5)D. (-1,5]7.下列函数是奇函数的是( )A .x y =B .322-=x yC .21x y = D .]1,0[,2∈=x x y 8.化简:2(4)ππ-+=( )A . 4B .2 4π-C .2 4π-或4D .4 2π-9.设集合{}22≤≤-=x x M ,{}20≤≤=y y N ,给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )10、已知f (x )=g (x )+2,且g(x)为奇函数,若f (2)=3,则f (-2)=。
A 0B .-3C .1D .311、已知f (x )=20x π⎧⎪⎨⎪⎩000x x x >=<,则f[f(-3)]等于A 、0B 、πC 、π2D 、912.已知函数()x f 是R 上的增函数,()1,0-A ,()1,3B 是其图像上的两点,那么()1f x <的解集是( )A .()3,0-B .()0,3C .(][),13,-∞-⋃+∞D .(][),01,-∞⋃+∞二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f =. 14.已知2(1)f x x -=,则 ()f x =.15. 定义在R 上的奇函数()f x ,当0x >时,()2f x =;则奇函数()f x 的值域是.16.关于下列命题:①若函数x y 2=的定义域是{}0|≤x x ,则它的值域是}1|{≤y y ;② 若函数x y 1=的定义域是}2|{>x x ,则它的值域是}21|{≤y y ; ③若函数2x y =的值域是}40|{≤≤y y ,则它的定义域一定是}22|{≤≤-x x ;④若函数x y 2=的定义域是}4|{≤y y ,则它的值域是}80|{≤<x x .其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上).(第II 卷)三、解答题:本大题共5小题,共70分.题解答应写出文字说明,证明过程或演算步骤.17.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x ∈R ,如果A∩B=B ,求实数a 的取值范围。
高一数学必修一测试题
高一数学必修一测试题一、选择题(每题4分,共20分)1. 已知函数 f(x) = 2x + 3,求 f(4) 的值是多少?A) 7 B) 11 C) 10 D) 92. 两个数的和是48,它们的差是14,求这两个数分别是多少?A) 31和17 B) 29和19 C) 27和21 D) 26和223. 已知直角三角形两直角边的长度分别为3和4,求斜边的长度。
A) 6 B) 7 C) 5 D) 104. 若 a + b = 10,且 a^2 + b^2 = 52,求 a 和 b 的值。
A) 2和8 B) 3和7 C) 4和6 D) 5和55. 某商店原售价150元的商品打8折出售,现售价是多少?A) 12元 B) 15元 C) 120元 D) 105元二、简答题(每题10分,共30分)1. 已知 a:b = 3:5,b:c = 4:7,求 a:b:c 的比值。
2. 某数与84的比是2:5,这个数与70的比是多少?3. 已知两个角的和为180度,其中一个角的补角是另一个角的3倍,求这两个角的度数。
三、解答题(每题30分,共50分)1. 已知直线 l1 过点 A(1, 2),斜率为1/3。
求直线 l1 的解析式,并画出其图像。
2. 某地去年的人口是20万,今年增长了5%,求今年的人口数。
3. 若 a:b = 2:3,且 a:b:c = 4:6:9,求 c 的值。
四、证明题(每题20分,共50分)1. 已知三角形 ABC,其中 AB = AC,过点 B 作 AC 的垂线,交于点 D。
证明:BD = CD。
2. 若 a + b = b + c,证明 a = c。
答案与解析:一、选择题1. A) 7解析:将 x = 4 代入 f(x) = 2x + 3,得到 f(4) = 2(4) + 3 = 8 + 3 = 11。
2. B) 29和19解析:设其中一个数为 x,则另一个数为 48 - x,根据题意可列出方程 x - (48 - x) = 14,解得 x = 29,那么另一个数为 48 - 29 = 19。
新课标高一数学期末测试题[1]
VED 新课标高一数学综合检测题(1)(必修一+必修二)一、选择题:(本题共12小题,每小题5分,共60分) 1.已知集合{}13A x x =<<,{}21log 2B x x =<<,则A B 等于( )A.{}03x x <<B.{}23x x <<C.{}13x x <<D.{}14x x <<【答案】B【解析】{}{}21log 224B x x x x =<<=<<,A B {}23x x =<<. 2.函数)1ln(x x y -=的定义域为 BA.(0,1)B.[0,1)C.(0,1]D.[0,1]3.已知函数()⎩⎨⎧≥+<+=1,1,122x ax x x x f x ,若()()a f f 40=,则实数a 等于( )A .21 B.54C.2D.94. 方程05log 2=-+x x 在下列哪个区间必有实数解( ) A (1,2) B (2,3) C (3,4) D (4,5)5.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( A )A.(),a b 和(),b c 内B.(),a -∞和(),a b 内C.(),b c 和(),c +∞内D.(),a -∞和(),c +∞内6.已知函数()x f 为奇函数,且当0>x 时,()xx x f 12+=,则()=-1f A (A) 2- (B) 0 (C) 1 (D) 27.若关于x 的不等式21x x a ++-<的解集为φ,则a 的取值范围是( C ) A.()3,+∞ B.[)3,+∞ C.(],3-∞ D. (),3-∞8.设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则n m ⊥ ②若αβ//,γβ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( )A .①和②B .②和③C .③和④D .①和④9.如右图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,,,D E F 分别是 ,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( B )A .030B . 090C . 060D .随P 点的变化而变化。
高一数学必修1第一章测试题及答案
高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
高一数学第一章集合单元测试题
高一数学第一章集合单元测试题(一)班级__________ 学号___________姓名_____________一、选择题1、己知A= {x | x > - 1},那么正确的是 ( )(A )0⊆A (B){0}⊆A (C)A={0} (D)Φ∈A2、设U ={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6} 则集合 {2,7,8}是 ( )(A )A B (B )A B(C )(C U A ) (C U B ) (D )(C U A ) (C U B )3、下列四个命题 :①空集没有子集 ②空集是任何一个集合的真子集 ③空集中元素个数为0 ④任一集合必有两个或两个以上的子集。
其中正确的有 ( )(A )0 (B )1 (C )2 (D )34、设A={y | y = -1 + x –2 x 2} ,若m∈A 则必有 ( ) (A )m∈{正有理数} (B )m ∈{负有理数} (C )m ∈{正实数} (D )m ∈{负实数}5、已知=>+-==M C x x x M R U U 则},044{,2( )(A ) R (B )Φ (C ) {2} (D ) {0}6、已知全集},4{},,2{,+++∈==∈===N n n x x B N n n x x A N U 则(A) B A U = (B) B A C U U =(C) )(B C A U U = (D) )()(B C A C U U U =7、已知集合N M y x y x N y x y x M 那么}4),{(},2),{(=-==+=为( )(A)1,3-==y x (B) (3,-1) (C) {3,-1} (D) {(3,-1)}8、已知集合}1{},3,2,1{==A B A 则B 的子集最多可能有( )(A) 5个 (B) 6个 (C) 7个 (D) 8个9、已知},,1{},4,3,2,1{A x x y y B A ∈-===则{0}与B 的关系是( )(A) B ∈}0{ (B) B ⊂}0{ (C) B ⊄}0{ (D) B ⊇}0{10、已知},,14{},,1{22+∈+-==∈+==N m m m x x Q N n n x x P 则P 与Q 的关系是( )(A) Q P = (B) Q P ⊂ (C) P Q ⊂ (D)以上答案都不对11、已知则},,1{},,1{22R x x y y N R x x y y M ∈+-==∈+== N M 是( )(A) {0,1} (B) {(0,1)} (C) {1} (D)C 以上答案均不对12、符合条件{a ,b ,c} ⊆ P ⊆ {a ,b ,c ,d ,e}的集合P 的个数是( )(A )2 (B )3 (C )4 (D )8二、填空题13、{(1,2),(-3,4)}的所有真子集是 ;14、设直线的32+=x y 点集为P =___________________,则点(2,7)与P 的关系为(2,7)____ P15、已知},{b a P =又P 的所有子集组成集合Q ,用列举法表示Q ,则Q =_____________________16、如图所示,阴影部分表示的集合为17、已知,.,},3),{(},12),{(B a A a x y y x B x y y x A ∈∈+==-==则______=a18、若},,34{},,42{22R b b b y y B R a a a x x A ∈+-==∈++==试确定A 与B 的关系为 __________.三、解答题19、已知B A b b B a a A ==++=若},,1{},21,1,1{2,求b a ,20、已知,}1{},62{P Q a x a x Q x x P ⊆+≤≤=≤≤=若求a 的范围21、已知集合},02{2=+-=k x x x P 若集合P 中的元素少于两个,求.k22、已知全集}4{≤=x x U 集合},33{},32{≤<-=<<-=x x B x x A 求B A C B A C B A U U )(),(,23、设A 是数集,满足A a ∈时,必有A a∈-11, (1)若A ∈2,问:①A 中至少有几个元素?并把它列举出来? ② A 中还可以有其它元素吗?(2)若A 中只能有一个元素且A ∉2,实数a 是否存在?。
高一数学必修一试题(带答案)
高中数学必修1检测题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分、共120分,考试时间90分钟、第Ⅰ卷(选择题,共48分) 一、选择题:本大题共12小题,每小题4分,共48分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确得有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确得有 ( ) (1)A 中得任一元素在B 中必须有像且唯一; (2)A 中得多个元素可以在B 中有相同得像; (3)B 中得多个元素可以在A 中有相同得原像; (4)像得集合就就是集合B 、A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 得取值范围就是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数就是同一函数得就是 ( )①()f x =()g x =()f x x =与()g x =; ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④6.根据表格中得数据,可以断定方程02=--x e x 得一个根所在得区间就是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕得值域就是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上得最大值与最小值得与为3,则=a ( )A .21 B .2 C .4 D .41 10、 下列函数中,在()0,2上为增函数得就是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化得一组数据,判断它最可能得函数模型就是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好得顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于就是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只就是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
(完整版)高一数学必修1试题附答案详解
高一数学必修1试题附答案详解一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数 A.5 B.7 C.9 D.112.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则A.A BB.B AC.A =BD.A ∩B =∅3.设A ={x ∈Z||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是 A.5 B.4 C.3 D.2 4.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆ (P ∩Q )成立的所有实数a 的取值范围为 A.(1,9) B.[1,9] C.[6,9)D.(6,9]5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =a x +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为 A.18B.30C. 272D.286.函数f (x )=3x -12-x (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是 A.2 B.-2 C.-1 D.-3 7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 A.3x -2 B.3x +2 C.2x +3 D.2x -3 8.下列各组函数中,表示同一函数的是 A.f (x )=1,g (x )=x 0B.f (x )=x +2,g (x )=x 2-4x -2C.f (x )=|x |,g (x )=⎩⎨⎧x x ≥0-x x <0D.f (x )=x ,g (x )=(x )29. f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0,则f {f [f (-3)]}等于A.0B.πC.π2D.910.已知2lg(x -2y )=lg x +lg y ,则xy 的值为A.1B.4C.1或4D. 14或4 11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则 A.a ≥1 B.a >1 C.0<a ≤1 D.a <112.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是A.(0,12)B.(0,⎥⎦⎤21C.( 12,+∞)D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上) 13.若不等式x 2+ax +a -2>0的解集为R ,则a 可取值的集合为__________.14.函数y =x 2+x +1 的定义域是______,值域为__ ____.15.若不等式3ax x 22->(13)x +1对一切实数x 恒成立,则实数a 的取值范围为___ ___.16. f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为_____ _. 17.函数y =12x +1的值域是__________.18.方程log 2(2-2x )+x +99=0的两个解的和是______.第Ⅱ卷二、填空题13 14 1516 17 18三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.23.已知函数f (x )=a a 2-2 (a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.高一数学综合训练(一)答案二、填空题13. ∅ 14. R [32,+∞) 15. -12 < a < 3216. (-2,-1] 17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤) 19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).(C U A )∩(C U B )={x |-1<x <1}20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集. 考查函数对应法则及单调性的应用. (1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2) 又∵f (2)=1 ∴f (8)=3(2)【解】 不等式化为f (x )>f (x -2)+3∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16) ∵f (x )是(0,+∞)上的增函数∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <16721.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 考查函数的应用及分析解决实际问题能力.【解】 (1)当每辆车月租金为3600元时,未租出的车辆数为 3600-300050=12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,则公司月收益为 f (x )=(100-x -300050 )(x -150)-x -300050×50整理得:f (x )=-x 250 +162x -2100=-150 (x -4050)2+307050∴当x =4050时,f (x )最大,最大值为f (4050)=307050 元22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.考查函数最值及对数函数性质.【解】 令t =log 41x ∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412, ∴t ∈[-1,-12]∴f (t )=t 2-t +5=(t -12 )2+194 ,t ∈[-1,-12 ]∴当t =-12 时,f (x )取最小值 234当t =-1时,f (x )取最大值7.23.已知函数f (x )=a a 2-2(a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.考查指数函数性质.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2 则f (x 2)-f (x 1)= aa 2-2(a 2x -a 2x --a 1x +a 1x -) =aa 2-2 (a 2x -a 1x )(1+211x x aa ⋅) 由于a >0,且a ≠1,∴1+211x x a a >0∵f (x )为增函数,则(a 2-2)( a 2x -a 1x )>0于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-002002121222x x x x a a a a a a 或, 解得a > 2 或0<a <1. . .。
高一数学必修1《集合与函数概念》测试卷(含答案)
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
(完整版)高一数学必修1综合测试题3套[含答案解析],推荐文档
7.已知
f
(
x)
(3a
1)
x
4a,
x
1
是
(,
)
上的减函数,那么
a
的取值范围是
(
)
log x, x 1 a
A (0,1)
1 B (0, )
3
11 C [,)
73
1 D [ ,1)
7
8.设 a 1 ,函数 f (x) log
1
x 在区间 [a, 2a] 上的最大值与最小值之差为 ,则 a (
)
1 B.
8
C. 2
(B)a≥-3
(C)a≤5
(D)a≥3
9.函数 y (2a2 3a 2)ax 是指数函数,则 a 的取值范围是
(
)
(A) a 0, a 1
(B) a 1
(C)
a
1 2
( D)
a
1或a
1 2
10.已知函数 f(x) 4 ax1 的图象恒过定点 p,则点 p 的坐标是
(
)
(A)( 1,5 )
范文范例参考
高一数学综合检测题(1)
一、选择题:(每小题 5 分,共 60 分,请将所选答案填在括号内) 1.已知集合 M {4,7,8},且 M 中至多有一个偶数,则这样的集合共有
(A)3 个
(B) 4 个
(C) 5 个
(D) 6 个
()
2.已知 S={x|x=2n,n∈Z}, T={x|x=4k±1,k∈Z},则
)
(A) 16 a 0
(B) a 16
(C) 16 a 0
x 5(x 6)
5.
已知
f
(
【解析版】数学高一上期末测试题(课后培优)(1)
一、选择题1.(0分)[ID :12118]已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<2.(0分)[ID :12116]已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >>D .c a b >>3.(0分)[ID :12093]设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则BA =( ) A .()0,1B .[)0,1C .(]0,1D .[]0,14.(0分)[ID :12127]在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦5.(0分)[ID :12121]若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞)C .[-2,+∞)D .(-∞,-2]6.(0分)[ID :12076]若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 7.(0分)[ID :12058]已知函数()2log 14x f x x ⎧+=⎨+⎩0x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .68.(0分)[ID :12057]设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( ) A .()()1,00,1-⋃ B .()(),11,-∞-⋃+∞ C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃9.(0分)[ID :12036]已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<10.(0分)[ID :12032]函数121y x x =-++的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)11.(0分)[ID :12031]设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是( ) A .()1,2B .()2,+∞C .()31,4D .()34,212.(0分)[ID :12071]已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( ) A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,213.(0分)[ID :12069]已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( )A .1sin x +B .1sin x -C .1sin x --D .1sin x -+14.(0分)[ID :12038]曲线241(22)y x x =-+-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 15.(0分)[ID :12074]对数函数y =log a x(a >0且a ≠1)与二次函数y =(a −1)x 2−x 在同一坐标系内的图象可能是( )A .B .C .D .二、填空题16.(0分)[ID :12208]已知()y f x =是定义在R 上的奇函数,且当0x 时,11()42x xf x =-+,则此函数的值域为__________. 17.(0分)[ID :12191]已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.18.(0分)[ID :12176]若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.19.(0分)[ID :12165]已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 20.(0分)[ID :12161]已知函数1()41x f x a =+-是奇函数,则的值为________. 21.(0分)[ID :12158]对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____. 22.(0分)[ID :12142]若函数()242xx f x a a =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.23.(0分)[ID :12137]已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m 的取值范围为______.24.(0分)[ID :12133]已知二次函数()f x ,对任意的x ∈R ,恒有()()244f x f x x +-=-+成立,且()00f =.设函数()()()g x f x m m =+∈R .若函数()g x 的零点都是函数()()()h x f f x m =+的零点,则()h x 的最大零点为________.25.(0分)[ID :12131]高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题26.(0分)[ID :12323]定义在()(),00,-∞⋃+∞上的函数()y f x =满足()()1f xy f x f y ⎛⎫=- ⎪⎝⎭,且函数()f x 在(),0-∞上是减函数.(1)求()1f -,并证明函数()y f x =是偶函数; (2)若()21f =,解不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭. 27.(0分)[ID :12322]已知函数2()ln(3)f x x ax =-+. (1)若()f x 在(,1]-∞上单调递减,求实数a 的取值范围; (2)当3a =时,解不等式()x f e x ≥.28.(0分)[ID :12298]已知函数2()1()f x x mx m =-+∈R . (1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围;(2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 29.(0分)[ID :12286]已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.30.(0分)[ID :12238]已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若B A ⊆,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.D 3.B 4.C 5.B 6.C 7.C8.C9.C10.A11.D12.C13.B14.A15.A二、填空题16.【解析】【分析】可求出时函数值的取值范围再由奇函数性质得出时的范围合并后可得值域【详解】设当时所以所以故当时因为是定义在上的奇函数所以当时故函数的值域是故答案为:【点睛】本题考查指数函数的性质考查函17.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题18.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【19.【解析】【分析】由题意可得f(x)g(x)的图象均过(﹣11)分别讨论a>0a<0时f(x)>g(x)的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题20.【解析】函数是奇函数可得即即解得故答案为21.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力22.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解23.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没24.4【解析】【分析】采用待定系数法可根据已知等式构造方程求得代入求得从而得到解析式进而得到;设为的零点得到由此构造关于的方程求得;分别在和两种情况下求得所有零点从而得到结果【详解】设解得:又设为的零点25.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<,c a b ∴<<.故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.2.D解析:D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.B解析:B 【解析】 【分析】先化简集合A,B,再求BA 得解.【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}BA x x =≤<.故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.4.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.5.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.6.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,30.5230.8660.343066f ππ⎛⎫=≈-=-<⎪⎝⎭,20.7850.7070.078044f ππ⎛⎫=≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫ ⎪⎝⎭. 故选:C【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.7.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.8.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 9.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=,则()()()012f f f <-<故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.10.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】 由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.11.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解12.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.13.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.14.A解析:A 【解析】试题分析:1(22)y x =-≤≤对应的图形为以0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法15.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】由题意,若0<a <1,则y =log a x 在(0,+∞)上单调递减,又由函数y =(a −1)x 2−x 开口向下,其图象的对称轴x =12(a−1)在y 轴左侧,排除C ,D. 若a >1,则y =log a x 在(0,+∞)上是增函数,函数y =(a −1)x 2−x 图象开口向上,且对称轴x =12(a−1)在y 轴右侧, 因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题16.【解析】【分析】可求出时函数值的取值范围再由奇函数性质得出时的范围合并后可得值域【详解】设当时所以所以故当时因为是定义在上的奇函数所以当时故函数的值域是故答案为:【点睛】本题考查指数函数的性质考查函解析:11,44⎡⎤-⎢⎥⎣⎦【解析】 【分析】可求出0x ≥时函数值的取值范围,再由奇函数性质得出0x ≤时的范围,合并后可得值域. 【详解】设12x t =,当0x ≥时,21x ≥,所以01t <≤,221124y t t t ⎛⎫=-+=--+ ⎪⎝⎭,所以104y ≤≤,故当0x ≥时,()10,4f x ⎡⎤∈⎢⎥⎣⎦. 因为()y f x =是定义在R 上的奇函数,所以当0x <时,()1,04f x ⎡⎫∈-⎪⎢⎣⎭,故函数()f x 的值域是11,44⎡⎤-⎢⎥⎣⎦.故答案为:11,44⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查指数函数的性质,考查函数的奇偶性,求奇函数的值域,可只求出0x ≥时的函数值范围,再由对称性得出0x ≤时的范围,然后求并集即可.17.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】 【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤ 【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.18.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1xxx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t -≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-.综上,256a ≥-.故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.19.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦. 故答案为:310,23⎛⎤⎥⎝⎦.【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.20.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x xa a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1221.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1 【解析】 【分析】直接利用对数计算公式计算得到答案. 【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣故答案为:1 【点睛】本题考查了对数式的计算,意在考查学生的计算能力.22.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解解析:2或12【解析】 【分析】 将函数化为()2()26x f x a =+-,分01a <<和1a >两种情况讨论()f x 在区间[]1,1-上的最大值,进而求a . 【详解】()242x x f x a a =+-()226x a =+-, 11x -≤≤,01a ∴<<时,1x a a a -<<,()f x 最大值为()21(1)2610f a --=+-=,解得12a =1a >时,1x a a a -≤≤,()f x 最大值为()2(1)2610f a =+-=,解得2a =,故答案为:12或2. 【点睛】本题考查已知函数最值求参,答题时需要结合指数函数与二次函数性质求解.23.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <- 【解析】 【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围. 【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得23m <-.综上,m 的取值范围为{|2m m >或2}3m <-. 故答案为:{|2m m >或2}3m <-. 【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题.24.4【解析】【分析】采用待定系数法可根据已知等式构造方程求得代入求得从而得到解析式进而得到;设为的零点得到由此构造关于的方程求得;分别在和两种情况下求得所有零点从而得到结果【详解】设解得:又设为的零点解析:4 【解析】 【分析】采用待定系数法可根据已知等式构造方程求得,a b ,代入()00f =求得c ,从而得到()f x 解析式,进而得到()(),g x h x ;设0x 为()g x 的零点,得到()()0000g x h x ⎧=⎪⎨=⎪⎩,由此构造关于m 的方程,求得m ;分别在0m =和3m =-两种情况下求得()h x 所有零点,从而得到结果. 【详解】设()2f x ax bx c =++()()()()2222244244f x f x a x b x c ax bx c ax a b x ∴+-=++++---=++=-+ 44424a a b =-⎧∴⎨+=⎩,解得:14a b =-⎧⎨=⎩又()00f = 0c ∴= ()24f x x x ∴=-+()24g x x x m ∴=-++,()()()222444h x x x x x m =--++-++设0x 为()g x 的零点,则()()0000g x h x ⎧=⎪⎨=⎪⎩,即()()2002220000404440x x m x x x x m ⎧-++=⎪⎨--++-++=⎪⎩即240m m m --+=,解得:0m =或3m =- ①当0m =时()()()()()()()22222244444442h x x x x x x x x x x x x =--++-+=-+-+=---()h x ∴的所有零点为0,2,4②当3m =-时()()()()()2222244434341h x x x x x x x x x =--++-+-=--+--+-()h x ∴的所有零点为1,3,2综上所述:()h x 的最大零点为4 故答案为:4 【点睛】本题考查函数零点的求解问题,涉及到待定系数法求解二次函数解析式、函数零点定义的应用等知识;解题关键是能够准确求解二次函数解析式;对于函数类型已知的函数解析式的求解,采用待定系数法,利用已知等量关系构造方程求得未知量.25.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题 解析:{}1,0,1-【解析】 【分析】求出函数()f x 的值域,由高斯函数的定义即可得解. 【详解】2(1)212192()2151551x x x xe f x e e e +-=-=--=-+++, 11x e +>,1011xe ∴<<+, 2201xe ∴-<-<+, 19195515xe ∴-<-<+, 所以19(),55f x ⎛⎫∈- ⎪⎝⎭,{}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1- 【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题 26.(1)()10f -=,证明见解析;(2)[1,2)(2,3]⋃ 【解析】 【分析】(1)根据函数解析式,对自变量进行合理赋值即可求得函数值,同时也可以得到()f x 与()f x -之间的关系,进而证明;(2)利用函数的奇偶性和单调性,合理转化求解不等式即可. 【详解】(1)令10y x =≠,则()111f x f x f x x ⎛⎫ ⎪⎛⎫⋅=- ⎪ ⎪⎝⎭ ⎪⎝⎭,得()()()10f f x f x =-=,再令1x =,1y =-,可得()()()111f f f -=--, 得()()2110f f -==,所以()10f -=, 令1y =-,可得()()()()1f x f x f f x -=--=, 又该函数定义域关于原点对称, 所以()f x 是偶函数,即证.(2)因为()21f =,又该函数为偶函数,所以()21f -=. 因为函数()f x 在(),0-∞上是减函数,且是偶函数 所以函数()f x 在()0,∞+上是增函数.又412f f x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭()2424x f x f x x -⎛⎫=⋅=-⎪⎝⎭, 所以()()242f x f -≤,等价于240,242,x x ->⎧⎨-≤⎩或240,242,x x -<⎧⎨-≥-⎩解得23x <≤或12x ≤<.所以不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭的解集为[1,2)(2,3]⋃. 【点睛】本题考查抽象函数求函数值、证明奇偶性,以及利用函数奇偶性和单调性求解不等式.27.(1)24a ≤<;(2){0x x ≤或}ln3x ≥ 【解析】 【分析】(1)根据复合函数单调性的性质,结合二次函数性质即可求得a 的取值范围.(2)将3a =代入函数解析式,结合不等式可变形为关于x e 的不等式,解不等式即可求解. 【详解】 (1)()f x 在(,1]-∞上单调递减,根据复合函数单调性的性质可知23y x ax =-+需单调递减则12130a a ⎧≥⎪⎨⎪-+>⎩解得24a ≤<.(2)将3a =代入函数解析式可得2()ln(33)f x x x =-+则由()x f e x ≥,代入可得()2ln 33x x e e x -+≥同取对数可得233x x x e e e -+≥即2(e )430x x e -+≥,所以()(e 1)30x x e --≥即e 1x ≤或3x e ≥ 0x ∴≤或ln x ≥3, 所以原不等式的解集为{}0ln 3x x x ≤≥或【点睛】本题考查了对数型复合函数单调性与二次函数单调性的综合应用,对数不等式与指数不等式的解法,属于中档题. 28.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值.【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m ≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m ≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值,当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去;当()23f =时,解得1m =,此时3为最大值,符合题意.综上所述,1m =.【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型.29.(1)()26f x x π⎛⎫=+ ⎪⎝⎭06,π⎡⎤⎢⎥⎣⎦,2π,π3;(2)a ∈⎣ 【解析】【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式;(2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得.【详解】(1)由题意知2A B A B ⎧+=⎪⎪⎨⎪-+=-⎪⎩解得A =,2B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭, 解得6π=ϕ.所以()26f x x π⎛⎫=+ ⎪⎝⎭ 由222262k x k πππππ-≤+≤+,解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3. (2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x 的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减, 要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解, 即()y g x =的图像与y a =有两个不同的交点,所以a ∈⎣. 【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础. 30.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【解析】【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围.【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足AB =∅.②当A ≠∅时,有121a a -<+,解得 2.a >- 又A B =∅,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥. 综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
(完整版)高一数学必修一测试题及答案
二、填空题:每小题 4 分,共 16 分.
13 . [ 4, 2) ( 2,
) 14.2x-
1
或- 2x+1
15
1 .3 16 . 0,
3
2
三、解答题(共 56 分)
17. (本小题 10 分)
解: Q A I B=
( 1)当 A= 时,有 2a+1 a-1 a -2
( 2)当 A
时,有 2a+1 a-1 a>-2
2x3 与 g (x) x 2x ;② f(x)=x 与 g( x) x2 ;
③ f ( x)
x0 与 g (x)
1 x0 ;④ f ( x)
x2 2x 1 与 g(t)
t 2 2t 1 。
A、①② B 、①③
C 、③④
D 、①④
6.根据表格中的数据,可以断定方程 e x x 2 0 的一个根所在的区间是
所以未出租的车有 12 辆,一共出租了 88 辆。…………………………… 2 分
( 2)设每辆车的月租金为 x 元,( x ≥3000),租赁公司的月收益为 y 元。
15.已知幂函数 y f ( x) 的图象过点 (2, 2 ), 则 f (9)
.
16.若一次函数 f (x ) ax b 有一个零点 2,那么函数 g ( x) bx2 ax 的零点是
.
三、解答题: 17.(本小题 10 分)
已知集合 A { x | a 1 x 2a 1} , B { x | 0 x 1} ,若 A I B
()
x
-1
0
1
2
3
ex
0.37
1
2.72
7.39
20.09
(必考题)数学高一上期末经典测试题(含答案解析)(1)
一、选择题1.(0分)[ID :12119]已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则A .-2B .2C .-98D .98 2.(0分)[ID :12118]已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<3.(0分)[ID :12094]设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>4.(0分)[ID :12085]已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >>B .y x z >>C .y z x >>D .x z y >>5.(0分)[ID :12106]若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)6.(0分)[ID :12105]已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>7.(0分)[ID :12080]函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞8.(0分)[ID :12078]把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦ 9.(0分)[ID :12060]已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 BC .14,2 D .14,410.(0分)[ID :12059]函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -11.(0分)[ID :12058]已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .612.(0分)[ID :12032]函数y =的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)13.(0分)[ID :12072]设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,614.(0分)[ID :12042]若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-15.(0分)[ID :12040]下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题16.(0分)[ID :12206]已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________.17.(0分)[ID :12200]已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.18.(0分)[ID :12189]函数()()25sin f x xg x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.19.(0分)[ID :12178]函数()()4log 521x f x x =-+-的定义域为________. 20.(0分)[ID :12170]函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.21.(0分)[ID :12165]已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 22.(0分)[ID :12157]已知35m n k ==,且112m n+=,则k =__________ 23.(0分)[ID :12149]若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log x a f x a t =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.24.(0分)[ID :12143]若函数()121xf x a =++是奇函数,则实数a 的值是_________. 25.(0分)[ID :12162]若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题26.(0分)[ID :12327]某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:2019年9月份第x (130x ≤≤,x +∈N )天的单件销售价格(单位:元20,115()50,1530x x f x x x +≤<⎧=⎨-≤≤⎩,第x 天的销售量(单位:件)()(g x m x m =-为常数),且第20天该商品的销售收入为600元(销售收入=销售价格⨯销售量). (1)求m 的值;(2)该月第几天的销售收入最高?最高为多少?27.(0分)[ID :12310]已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或.(1)求,A B A B ;(2)若()R C C A ⊆,求实数a 的取值范围. 28.(0分)[ID :12275]设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.29.(0分)[ID :12233]已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.30.(0分)[ID :12230]设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.C 3.A 4.A 5.D 6.C 7.C 8.C9.A10.D11.C12.A13.D14.C15.D二、填空题16.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇17.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的18.6【解析】【分析】由题意可得由正弦函数和一次函数的单调性可得的范围是将已知等式整理变形结合不等式的性质可得所求最大值【详解】解:函数可得由可得递增则的范围是即为即即由可得即而可得的最大值为6故答案为19.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次20.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC或CD中选取一个再在AB或O B中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC与线段OB是关于原点对称的线段CD与线段BA也是21.【解析】【分析】由题意可得f(x)g(x)的图象均过(﹣11)分别讨论a>0a<0时f (x)>g(x)的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题22.【解析】因为所以所以故填23.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【24.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 019)=-2. 故选A2.C解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<,c a b ∴<<. 故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.3.A解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.4.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】 解:0.1x 1.11.11=>=, 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.D解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.6.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.7.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞.内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞. 故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.8.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.10.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.11.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.12.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】 由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.13.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.14.C解析:C 【解析】 【分析】 【详解】210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭成立,则等价为a ⩾21x x--对于一切x ∈(0,1 2)成立,即a ⩾−x −1x 对于一切x ∈(0,12)成立, 设y =−x −1x ,则函数在区间(0,12〕上是增函数 ∴−x −1x <−12−2=52-,∴a ⩾52-. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.15.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题16.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论. 【详解】∵函数()12bf x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b bx a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤, 由b D ∈,得20b -≤≤. ∴22015201532019a b ≤-+≤. 故答案为:[2015,2019]. 【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .17.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),2,a ⎡-∞-+∞⎣,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.18.6【解析】【分析】由题意可得由正弦函数和一次函数的单调性可得的范围是将已知等式整理变形结合不等式的性质可得所求最大值【详解】解:函数可得由可得递增则的范围是即为即即由可得即而可得的最大值为6故答案为解析:6 【解析】 【分析】由题意可得()()sin 52g x f x x x -=++,由正弦函数和一次函数的单调性可得()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,将已知等式整理变形,结合不等式的性质,可得所求最大值n .【详解】解:函数()25=--f x x ,()sin g x x =,可得()()sin 52g x f x x x -=++, 由0,2x π⎡⎤∈⎢⎥⎣⎦,可得sin ,5y x y x ==递增, 则()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦, ()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++……,即为()()()()(()()()112211)n n n n g x f x g x f x g x f x g x f x --⎡⎤⎡⎤⎡⎤-+-+⋯+-=-⎣⎦⎣⎦⎣⎦, 即()()()112211sin 5sin 5sin 52(1)sin 52n n n n x x x x x x n x x --++++⋯+++-=++, 即()()(112211sin 5sin 5sin 5)2(2)sin 5n n n n x x x x x x n x x --++++⋯+++-=+, 由5sin 50,12n n x x π⎡⎤+∈+⎢⎥⎣⎦,可得52(2)12n π-≤+, 即5524n π≤+,而55(6,7)24π+∈, 可得n 的最大值为6. 故答案为:6. 【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理能力,属于中档题.19.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可.【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.20.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【解析】 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式. 【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩, 故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.21.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦. 故答案为:310,23⎛⎤⎥⎝⎦.【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.22.【解析】因为所以所以故填【解析】因为35mnk ==,所以3log m k =,5log n k =,11lg5lg3lg152lg lg lg m n k k k+=+==,所以1lg lg152k ==k =23.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.24.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键解析:12-【解析】 【分析】由函数()f x 是奇函数,得到()010021f a =+=+,即可求解,得到答案. 【详解】由题意,函数()121x f x a =++是奇函数,所以()010021f a =+=+,解得12a =-, 当12a =-时,函数()11212xf x =-+满足()()f x f x -=-, 所以12a =-. 故答案为:12-.【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么 解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么三、解答题 26.(1)40m =;(2)当第10天时,该商品销售收入最高为900元. 【解析】 【分析】(1)利用分段函数,直接求解(20)(20)600f g =.推出m 的值.(2)利用分段函数分别求解函数的最大值推出结果即可. 【详解】(1)销售价格20,115,()50,1530,x x f x x x +<⎧=⎨-⎩第x 天的销售量(单位:件)()(g x m x m =-为常数), 当20x时,由(20)(20)(5020)(20)600f g m =--=,解得40m =.(2)当115x <时,(20)(40)y x x =+- 2220800(10)900x x x =-++=--+,故当10x =时,900max y =,当1530x 时,22(50)(40)902000(45)25y x x x x x =--=-+=--, 故当15x =时,875max y =,因为875900<,故当第10天时,该商品销售收入最高为900元. 【点睛】本题考查利用函数的方法解决实际问题,分段函数的应用,考查转化思想以及计算能力,是中档题.27.(1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)[]1,2a ∈ 【解析】【分析】(1)首先求得[]()1,3,,3A B ==-∞,由此求得,A B A B ⋂⋃的值.(2)(),1R C C a a =+,由于()[],11,3a a +⊆,故113a a ≥⎧⎨+≤⎩,解得[]1,2a ∈.【详解】解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)∵{}|1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.28.(1)4,2a b ==(2)21log 2x +=(3)()[]0,240g x ∈ 【解析】 【分析】(1)由()()211,2log 12f f ==解出即可 (2)令0f x得421x x -=,即()22210x x --=,然后解出即可(3)()42xxg x =-,令2x t =,转化为二次函数【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42xxf x =-,令0fx得421x x -=,即()22210x x --=,解得122x =,又120,22x x >∴=,解得21log 2x =; (3)由(1)知()42xxg x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈, 因为g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,29.(1)2a =,1b =;(2)单调递减,见解析;(3)(,1)-∞-【解析】【分析】(1)根据(0)0f =得到1b =,根据(1)(1)f f -=-计算得到2a =,得到答案. (2)化简得到11()221x f x =++,12x x <,计算()()210f x f x -<,得到是减函数. (3)化简得到212kx x <-,参数分离212x k x -<,求函数212()x g x x -=的最小值得到答案.【详解】 (1)因为()f x 在定义域R 上是奇函数.所以(0)0f =, 即102b a -+=+,所以1b =.又由(1)(1)f f -=-,即111214a a-+-=++, 所以2a =,检验知,当2a =,1b =时,原函数是奇函数.(2)()f x 在R 上单调递减.证明:由(1)知11211()22221x x x f x +-==+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++, 因为函数2xy =在R 上是增函数,且12x x <,所以12220x x -<,又()()1221210x x ++>,所以()()210f x f x -<,即()()21f x f x <,所以函数()f x 在R 上单调递减.(3)因为()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)(12)f kx f x f x >--=-,因为()f x 在R 上是减函数,由上式推得212kx x <-, 即对一切1,32x ⎡⎤∈⎢⎥⎣⎦有212x k x -<恒成立,设221211()2()x g x x x x -==-⋅, 令1t x =,1,23t ⎡∈⎤⎢⎥⎣⎦则有2()2h t t t =-,1,23t ⎡∈⎤⎢⎥⎣⎦,所以min min ()()(1)1g x h t h ===-,所以1k <-,即k 的取值范围为(,1)-∞-.【点睛】本题考查了函数解析式,单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键.30.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
人教版高一数学必修1测试题(含答案)
人教版高一数学必修1测试题(含答案)人教版数学必修I测试题(含答案)一、选择题1、设集合U 1,2,3,4,5 ,A 1,2,3 ,B 2,5 ,则A CUB ()A、2B、2,3C、3D、1,32、已知集合M 0,1,2 ,N xx 2a,a M ,则集合M N (A、0 B、0,1C、1,23、函数y 1 log2x, x 4 的值域是()A、2,B、3,C、3, ,4、关于A到B的一一映射,下列叙述正确的是()① 一一映射又叫一一对应② A中不同元素的像不同③ B中每个元素都有原像④ 像的集合就是集合BA、①②B、①②③C、②③④ ①②③④ 5、在y1x2,y 2x,y x2x,y (A、1个B、2个C、3个4个)D、0,2D、D、)D、6、已知函数f x 1 x2 x 3,那么f x 1 的表达式是()A、x2 5x 9B、x2 x 3C、x2 5x 9D、x2 x 17、若方程ax x a 0有两个解,则a的取值范围是()A、0,B、1,C、0,1D、8、若102x 25,则10 x等于()A、1B1 C1 D、55501 6259、若loga a2 1 loga2a 0,则a的取值范围是()11A、0 a 1 B a 1 C、a 1 0 a D、2210、设a 40.9,b 80.481,c21.5,则a,b,c的大小顺序为()A、a b cB、a c bC、b a cD、c a b11、已知f x x2 2 a 1 x 2在,4 上单调递减,则a的取值范围是()A、a 3B、a 3C、a 3D、以上答案都不对12、若f lgx x,则f 3 ()A、lg3B、3 C、103D、310二、填空题13、设A x x 2 ,B xx a 0 ,若AB,则a的取值范围是;14、函数y 的定义域为;15、若x2,则x4的3x 值是;16lg20 log*****、。
三、解答题17、(本小题满分10分)设A 4,2a 1,a2 ,B a 5,1 a,9 ,已知A B 9 ,求a的值。
高一数学必修一《集合》测试卷
测试卷(一) 集合[测试范围 1.1集合的概念 1.2集合间的基本关系 1.3集合的基本运算](本卷满分150分,考试时间120分钟) 得分栏 一、单项选择题 二、多项选择题三、填空题 四、解答题 总得分第Ⅰ卷(选择题,共60分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.a 是R 中的元素但不是Q 中的元素,则a 可以是( )A.3.14B.-5C.37D.72.用描述法表示函数y =3x -1图象上的所有点的是( )A.{x |y =3x -1}B.{y |y =3x -1}C.{(x ,y )|y =3x -1}D.{y =3x -1}3.已知集合M ={x |x 2-3x +2=0},N ={0,1,2},则集合M 与N 的关系是( )A.M =NB.N MC.M ND.N ⊆M4.集合M ={(x ,y )|y =2x +1},N ={y |y =x -1}.则M ∩N =( )A.{-2}B.{(-2,-3)}C.∅D.{-3}5.已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( )A.{0}B.{1}C.{1,2}D.{0,1,2}6.已知集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B =( )A.{x |3≤x <4}B.{x |x ≥2}C.{x |2≤x <4}D.{x |2≤x ≤3}7.已知集合P ={x |x >0},Q ={x |-1<x <1},则(∁R P )∩Q =( )A.{x |x >-1}B.{x |0<x <1}C.{x |-1<x ≤0}D.{x |-1<x <1}8.已知a ,b 是非零的实数,代数式|a |a +|b |b +|ab |ab的值组成的集合是M ,则下列判断正确的是( ) A.0∈M B.-1∈M C.3∉M D.1∈M二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.若集合A ={x |x ≥0},则满足B ⊆A 的集合可以是( )A.{x |x ≥2}B.{-1}C.{1,2,3}D.{x |x ≥-1}10.方程组⎩⎪⎨⎪⎧x +y =3,x -y =1的解集可表示为( ) A.⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧x +y =3,x -y =1 B.⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧x =2,y =1 C.(1,2) D.{(1,2)}11.已知集合A ={x |x 2=x },集合B 中有两个元素,且满足A ∪B ={0,1,2},则集合B 可以是( )A.{0,1}B.{0,2}C.{0,3}D.{1,2}12.设全集为U,则图中的阴影部分可以表示为()A.∁U(A∪B)B.(∁U A)∩(∁U B)C.∁U(A∩B)D.A∪(∁U B)第Ⅱ卷(非选择题,共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.若集合A={x|ax+1=0,x∈R},不含有任何元素,则实数a=________.14.集合A={0,2,a2},B={1,a},若A∩B={1},则a=________.15.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.16.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是________.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知集合P=∅,Q={-4,-1,1},若集合M满足P M Q.求所有满足条件的集合M.18.(12分)已知集合A={1,2,m3},B={1,m},B⊆A,求m的值.19.(12分)若集合A={x|ax2+2x+1=0,x∈R}只有一个真子集,求a的值.20.(12分)已知集合A={x|x2-px-2=0},B={x|x2+qx+r=0},若A∪B={-2,1,5},A∩B={-2},求p+q+r的值.21.(12分)已知集合A={x|x2-4x+2m+6=0},B={x|x<0},U=R,若A∩B≠∅,求实数m的取值范围.22.(12分)已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若A∩B=B,求实数a的取值范围.参考答案第一章集合与常用逻辑用语测试卷(一)集合1.解析R是实数集,Q是有理数集,7是实数但不是有理数.答案 D2.解析A,B都是数为元素,C表示函数y=3x-1图象上的所有点,D的集合是以式子y=3x-1为元素.答案 C3.解析M={1,2},N={0,1,2},∴M N.答案 C4.解析集合M是点的集合,集合N是数的集合,两个集合没有公共元素,M∩N=∅.答案 C5.解析∵A={x|x≥1},B={0,1,2},∴A∩B={1,2}.答案 C6.解析∵B={x|x≥3}.∴A∪B={x|x≥2}.答案 B7.解析∵∁R P={x|x≤0},∴(∁R P)∩Q={x|-1<x≤0}.答案 C8.解析当a,b都为正数时,代数式的值为3.当a,b都为负数时,代数式的值为-1.当a,b一正一负时,代数式的值为-1.综上可知B正确.答案 B9.解析只要满足B中的元素都在A中即可.答案AC10.解析因为方程组的解集为有序实数对,应是点集.答案ABD11.解析∵A={0,1}且A∪B={0,1,2},∴集合B中一定包含2,且不包含除0,1外的其他元素.故选B、D.答案BD12.AB13.解析由题意A=∅,即方程ax+1=0无解,∴a=0.答案014.解析∵A∩B=1,∴a2=1,∴a=±1,由集合元素的互异性知:a≠1,故a=-1.15.解析 {1,3}∪A ={1,3,5},说明集合A 中至少要有元素5,元素个数可以是一个的{5},也可以是两个的{1,5},{3,5},还可以是三个的{1,3,5}.故集合A 的个数是4.答案 416.解析 因为集合A ={x |x <a }=(-∞,a ),B ={x |1<x <2}={1,2},∁R B =(-∞,1]∪[2,+∞),若要A ∪(∁R B )=R ,必有a ≥2,即a ∈[2,+∞).答案 [2,+∞)17.解析 由题意知集合M 为Q 的一个非空真子集,这样的集合有6个分别为{-4},{-1},{1},{-4,-1},{-4,1},{-1,1}.18.解析 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.19.解析 当A 只有一个真子集时,A 为单元素集,这时有两种情况:当a =0时,方程化为2x +1=0,解得x =-12;当a ≠0时,由Δ=4-4a =0, 解得a =1.综上所述,a =0或1.20.解析 因为A ∩B ={-2},所以-2∈A ,代入x 2-px -2=0.解得p =-1,所以A ={-2,1},由A ∪B ={-2,1,5},A ∩B ={-2},得B ={-2,5}.所以-2,5是方程x 2+qx +r =0的两个根,由根与系数的关系可得-q =-2+5,r =(-2)×5.所以q =-3,r =-10,所以p +q +r =-14.21.解析 先求A ∩B =∅的m 的取值范围.①当A =∅时,方程x 2-4x +2m +6=0无实根,所以Δ=(-4)2-4(2m +6)<0,解得m >-1.②当A ≠∅时,方程x 2-4x +2m +6=0的根为非负实根,设方程x 2-4x +2m +6=0的两根为x 1,x 2,则⎩⎪⎨⎪⎧Δ=(-4)2-4(2m +6)≥0,x 1+x 2=4≥0,x 1x 2=2m +6≥0,即⎩⎪⎨⎪⎧m ≤-1,m ≥-3. 所以m 的取值范围为-3≤m ≤-1.22.解析 ①当B =∅时,只需2a >a +3,即a >3;②当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧a +3≥2a ,a +3<-1,或⎩⎪⎨⎪⎧a +3≥2a ,2a >4, 解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.。
高一上学期第一次月考数学试题(含答案解析)
高一上学期第一次月考数学试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共14小题,共56.0分。
在每小题列出的选项中,选出符合题目的一项)1. 设集合A={1,2,3,4},B={−1,0,2,3},C={x∈R|−1≤x<2},则(A∪B)∩C=( )A. {−1,1}B. {0,1}C. {−1,0,1}D. {2,3,4}2. 命题“∀x∈R,x2−2x+1≥0”的否定是( )A. ∃x∈R,x2−2x+1≤0B. ∃X∈R,x2−2x+1≥0C. ∃x∈R,x2−2x+1<0D. ∀x∈R,x2−2x+1<03. 已知集合A={x|−1≤x<4,x∈Z),则集合A中元素的个数为( )A. 3B. 4C. 5D. 64. 已知集合A={x||x|≥2},B={x|x2−3x>0},则A∩B=( )A. ⌀B. {x|x>3,或x≤−2}C. {x|x>3,或x<0}D. {x|x>3,或x≤2}5. 已知p:sinα=√33,q:cos2α=13,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充分条件D. 既不充分也不必要条件6. 若M⊆U,N⊆U,且M⊆N,则( )A. M∩N=NB. M∪N=MC. ∁U N⊆∁U MD. ∁U M⊆∁U N7. 已知集合A={x|x<1},B={x|0≤x≤2},则A∩B=( )A. {x|0≤x<1}B. {x|1<x≤2}C. {x|x<1}D. {x|x≤2}8. 设b>a>0,c∈R,则下列不等式中不一定成立的是( )A. a12<b12B. 1a −c>1b−c C. a+2b+2>abD. ac2<bc29. 满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合的个数是( )A. 4B. 6C. 8D. 910. 若关于x的不等式ax2+bx−1>0的解集是{x|1<x<2},则不等式bx2+ax−1<0的解集是( )A. {x|−1<x<23} B. {x|x<−1或x>23}C. {x|−23<x<1} D. {x|x<−23或x>1}11. 已知集合A={x|x2+x−6=0},B={x|mx+1=0},且B⊆A,则实数m=( )A. {0,12,−13} B. {−12,13} C. {12,−13} D. {0,−12,13}12. 使不等式1+1x>0成立的一个充分不必要条件是( )A. x>0B. x>−1C. x<−1或x>0D. −1<x<013. 已知命题“∃x∈R,4x2+(a−2)x+14<0”是假命题,则实数a的取值范围是( )A. (−∞,0)B. [0,4]C. [4,+∞)D. (0,4)14. 已知a,b∈R,a2+b2=15−ab,则ab最大值是( )A. 15B. 12C. 5D. 3第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)15. 已知a∈R,b∈R,若集合{a,ba,1}={a2,a−b,0},则“a2017+b2018”的值为______.16. 当x<−1时,f(x)=x+1x+1的最大值为______.17. 已知集合A={0,1,2},则集合A的子集共有______个.18. 已知集合A={x|−1<x<2},B={x|−1<x<m+1},若x∈A是x∈B成立的一个充分不必要条件,则实数m的取值范围是______.19. 已知{x|ax2−ax+1<0}=⌀,则实数a的取值范围为.20. 已知正数x,y满足x+y=5,则1x+1+1y+2的最小值为______.三、解答题(本大题共4小题,共40.0分。
高一数学单元测试(1) 新人教版
2010—2011学年度上学期单元测试 高一数学试题(1)【北师大版】必修一第1—2单元全卷满分150分,用时150分钟。
第Ⅰ卷(共36分)一、(60分,每小题5分)1.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82.定义集合A*B ={x|xA,且x ∉B },若A ={1,3,5,7},B ={2,3,5},则A*B 的子集个数为 ( ) A .1 B .2 C .3 D .43.定义{|,xA B z z xy y ⊗==+,}x A y B ∈∈,设}2,1{},2,0{==B A ,则B A ⊗中所有元素和为 ( ) A .1 B .3 C .9 D .184.满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是 ( )A .1B .2C .3D .4 5.已知集合N M M a a x x N M 则集合},,2|{},2,1,0{∈===等于( )A .{0}B .{0,2}C .{1,2}D .{0,1}6.设 A ={(x,y )|y=-4x+6}, B ={(x,y )|y=3x -8},则A ∩B 等于 ( ) A .{(2,-2)} B .{(2,-1)} C .{(3,-1)} D .{(4,-2)} 7.下列各图中,可表示函数y=f(x)的图象的只可能是 ( )8.下列四个函数中,在(0,+∞)上为增函数的是 ( ) A .x x f -=3)(B .x x x f 3)(2-=C .||)(x x f -=D .23)(+-=x x f9.函数9()1f x x=+是 ( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数10.一个面积为100 cm 2的等腰梯形,上底长为xcm,下底长为上底长的3倍,则把它的高y表示成x 的函数为 ( ) A .y=x50(x>0)B .y=100x(x>0)C .y=50x(x>0)D .y=x100(x>0)11.已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,则m 的值是( ) A .0或2 B .0 C .1 D .212.已知 f(x)=x 2-2x+8,如果g(x)=f(x+2),则g(x) ( )A .在区间(-∞,1)上是单调减函数,在区间[1,+∞]上是单调增函数B .在区间(-∞,0)上是单调减函数,在区间[0,+∞]上是单调增函数C .在区间(-∞,-1)上是单调减函数,在区间[-1,+∞]上是单调增函数D .在区间(-∞,3]上是单调减函数,在区间[3,+∞)上是单调增函数第Ⅱ卷 (共90分)二、(16分,每小题4分)13.设全集{}|010,U x x x N *=<<∈,若{}3AB =,{}1,5,7U AC B =,{}9U U C A C B =,则A =___________,B =___________.14.若集合{}a x x A ≥=|,{}052|>-=x x B ,且满足B A ⊆,则实数a 的取值X 围是_____________.15.函数y=-2x 2+4x-1(x ∈[0,3])的最大值是M ,最小值是m ,则M-m=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学测试题(1)一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确答案)1.已知2sin 3α=,则cos(2)πα-=(A )53-(B )19- (C )19 (D )532.设向量11(1,0),(,)22a b ==,则下列结论中正确的是(A ) ||||a b = (B ) 22a b =(C ) a ∥b (D ) a b -与b 垂直3.在等差数列}{n a 中,686a a +=,则数列}{n a 的前13项之和为(A ) 239 (B ) 39 (C )1172 (D ) 784.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是(A )23 (B ) 43 (C ) 32(D ) 35.在△ABC 中,060,3,sin sin sin a b cA a ABC ++==++则等于(A ) 2 (B )12 (C )3 (D )326.已知平面内不共线的四点C B A O ,,,满足OC OA OB 3231+=,则AB :BC =(A ) 3:1 (B ) 1:3 (C ) 2:1 (D ) 1:27.函数6cos 2cossin 2sin55y x x ππ=-的单调递增区间是(A )3[,]()105k k k Z ππππ++∈ (B )37[,]()2020k k k Z ππππ-+∈ (C )3[2,2]()105k k k Z ππππ++∈ (D ) 2[,]()510k k k Z ππππ-+∈ 8.在等差数列{n a }中,4681012120,a a a a a ++++=则9102a a -=(A ) 20 (B ) 22 (C )24 (D )28 9.在等比数列{n a }中,记12...,n n S a a a =+++已知546523,23,a S a S =+=+则此数列的公比q 为 (A ) 2 (B )3 (C )4 (D )510.已知数列:1213214321,,,,,,,,,,...,1121231234依它的前10项的规律,这个数列的第2010项2010a 满足(A )20101010a << (B )20101110a ≤<(C )2010110a ≤≤ (D )201010a >二、填空题(本大题共4小题,每小题4分,共16分)11.已知向量(3,4)a =,则与a 垂直的单位向量的坐标是 12.在ABC ∆中,已知222,a b ab c ++=则C ∠=____________. 13.将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是______14、设各项都不同的等比数列{n a }的首项为a ,公比为q ,前n 项和为n S ,要使数列{n p S -}为等比数列,则必有q =________.三、解答题(本大题共5小题,共44分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题8分) 已知函数2()sin 22sin f x x x =- (1)求函数()f x 的最小正周期.(2)求函数()f x 的最大值及()f x 取最大值时x 的集合.16. (本小题8分) 已知数列{}n a 的前n 项和为n S ,点(,)n S n n 在直线11122y x =+上;数列{}n b 满足2120()n n n b b b n N *++-+=∈,且311b =,它的前9项和为153. (1)求数列{}n a 、{}n b 的通项公式; (2)设3(211)(21)n n n c a b =--,求数列{}n c 的前n 项和为n T .17. (本小题8分)在平面直角坐标系xOy 中,点A (-1,-2)、B (2,3)、C (-2,-1)。
(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(OC t AB -)·OC =0,求t 的值。
18. (本小题10分)已知,,OA a OB b ==点G 是OAB ∆的重心,过点G 的直线PQ 与,OA OB 分别交于,P Q 两点.(1)用,a b 表示OG ;(2)若,,OP ma OQ nb ==试问11m n+是否为定值,证明你的结论.19.(本小题10分)“雪花曲线”因其形状类似雪花而得名,它可以以下列方式产生,如图,有一列曲线123,,...P P P ,已知1P 是边长为1的等边三角形,1n P +是对n P 进行如下操作得到:将n P 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(1,2,3...n =).(1)记曲线n P 的边长和边数分别为n a 和n b (1,2,...n =),求n a 和n b 的表达式; (2)记n S 为曲线n P 所围成图形的面积,写出n S 与1n S -的递推关系式,并求n S .QAOBGPP 3P 1P 2……高一数学测试题(1)参考答案一、选择题(本大题共10小题,每小题5分,共50分。
每小题只有一个正确答案)。
1 2 3 4 5 6 7 8 9 10 B D B C A D D C B B二、填空题(本大题共4小题,每小题5分,共20分)11. 43(,)55-或43(,)55-; 12. 23π13. y =1sin()210x π-14. 1a p -三、解答题(本大题共5小题,共44分。
解答应写出文字说明、证明过程或演算步骤) 15.已知函数2()sin 22sin f x x x =-(I )求函数()f x 的最小正周期。
(II ) 求函数()f x 的最大值及()f x 取最大值时x 的集合。
16.已知数列{}n a 的前n 项和为n S ,点(,)n S n n 在直线11122y x =+ 上;数列{}n b 满足2120()n n n b b b n N *++-+=∈,且311b =,它的前9项和为153. (1)求数列{}n a 、{}n b 的通项公式; (2)设3(211)(21)n n n c a b =--,求数列{}n c 的前n 项和为n T 。
解:(1)因为n n S n 211212+=;故 当2≥n 时;51+=-=-n S S a n n n ;当1=n 时,611==S a ;满足上式; 所以5+=n a n ;又因为0212=+-++n n n b b b ,所以数列}{n b 为等差数列;由1532)(9739=+=b b S ,113=b ,故237=b ;所以公差3371123=--=d ; 所以:23)3(3+=-+=n d n b b n ; (2)31111()(211)(21)(21)(21)22121n n n c a b n n n n ===----+-+∴1221n n nT c c c n =+++=+ 17. 在平面直角坐标系xOy 中,点A (-1,-2)、B (2,3)、C (-2,-1)。
(3)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (4)设实数t 满足(OC t AB -)·OC =0,求t 的值。
(1)法1:由题设知(3,5),(1,1)AB AC ==-,则(2,6),(4,4).AB AC AB AC +=-= 所以||210,||4 2.AB AC AB AC +=-= 故所求的两条对角线的长分别为42、210。
法2设该平行四边形的第四个顶点为D ,两条对角线的交点为E ,则:E 为B 、C 的中点,E (0,1)又E (0,1)为A 、D 的中点,所以D (1,4) 故所求的两条对角线的长分别为BC=42、AD=210; (2)由题设知:OC =(-2,-1),(32,5)A B t O C t t -=++。
由(OC t AB -)·OC =0,得:(32,5)(2,1)0t t ++⋅--=, 从而511,t =-所以115t =-。
18.已知,,OA a OB b ==点G 是OAB ∆的重心,过点G 的直线PQ 与,OA OB 分别交于,P Q 两点.(1)用,a b 表示OG ;(2)若,,OP ma OQ nb ==试问11m n+是否为定值,证明你的结论。
QAOBGP解:(1)1()3OG a b =+ (2)1111(),()3333PG m a b GQ a n b =-+=-+-PG GQ λ=设得1111()[()]3333m a n b λλ-+=-- 又,a b 不共线,故1111()03333m n λλ-+=--= 故113m n+= 19.“雪花曲线”因其形状类似雪花而得名,它可以以下列方式产生,如图,有一列曲线123,,...P P P ,已知1P 是边长为1的等边三角形,1n P +是对n P 进行如下操作得到:将n P 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(1,2,3...n =). 记S n 为曲线P n 所围成图形的面积.(1) 记曲线n P 的边长和边数分别为n a 和n b (1,2,...n =),求n a 和n b 的表达式; (2) 记n S 为曲线n P 所围成图形的面积,写出n S 与1n S -的递推关系式,并求n S .解(1): 11()3n n a -=,113()4n nb -= (2) 11134()49n n n S S S --=+ 11134()49n n n S S S --=+ 212134()49n n n S S S ---=+ (21134)49S S S =+将上面试式子累加得21111113444[()...()]4999834[()]5593834[()]4559n n n n S S S S ---=++++=-=-P 3P 1P 2。