八下数学提高题

合集下载

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题一、选择题1.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是( )A .35°B .30°C .25°D .20°2.如图,四边形,ABCD AD 与BC 不平行,AB CD =.,AC BD 为四边形ABCD 的对角线,,,E F ,G H 分别是,,,BD BC AC AD 的中点下列结论:①EG FH ⊥;②四边形EFGH 是矩形;③HF 平分;EHG ∠④()1 2EG BC AD =-;⑤四边形EFGH 是菱形.其中正确的个数是 ( )A .1个B .2个C .3个D .4个3.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是( )A .14B .116C .132D .164 4.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .45.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE =552;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .56.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若BF =3,AB =2.5,则AE 的长为( )A .2B .4C .8D .57.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .48.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个9.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 310.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.12.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.14.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.15.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).16.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.17.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.23.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.24.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1)当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.25.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.26.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).27.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.28.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

华师大版数学八年级下册_《平均数》提高训练

华师大版数学八年级下册_《平均数》提高训练

《平均数》提高训练一、选择题(本大题共5小题,共25.0分)1.(5分)某班5位同学进行投篮比赛,每人投10次,平均每人投中8次,已知第一、三、四、五位同学分别投中7次,9次,8次,10次,那么第二位同学投中()A.6次B.7次C.8次D.9次2.(5分)已知一组数据x1,x2,x3的平均数为7,则x1+3,x2+2,x3+4的平均数为()A.7B.8C.9D.103.(5分)已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A.93B.95C.94D.964.(5分)已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.105.(5分)某公司招聘考试分笔试和面试,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小红笔试成绩为90分,面试成绩为80分,那么小红的总成绩为()A.80分B.85分C.86分D.90分二、填空题(本大题共5小题,共25.0分)6.(5分)为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分、80分、85分,若依次按50%、30%、20%的比例确定成绩,则该选手的最后得分是分.7.(5分)某公司决定招聘经理一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分数)808090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.8.(5分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如下表所示(单位:分),如果根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比例计算两人的总成绩,得分高者被录用,那么将被录用.教学能力科研能力组织能力甲818586乙9280749.(5分)某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:成绩听说读写张明95909090若把听、说、读、写的成绩按4:3:2:1计算平均成绩,则张明的平均成绩为.10.(5分)某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据两人的平均成绩,公司将录取.三、解答题(本大题共5小题,共50.0分)11.(10分)某食品商店将甲、乙、丙3种糖果的质量按5:4:1配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/kg、20元/kg、27元/kg.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.12.(10分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:测试项目测试成绩甲乙丙专业知识748790语言能力587470综合素质874350(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x=,y=.(写出x与y的一组整数值即可).13.(10分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.跳绳个数与标准数量的差值﹣2﹣10456人数61216105(1)求6年1班40人一分钟内平均每人跳绳多少个?(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?14.(10分)学校广播站要招聘一名播音员,需考查应聘学生的应变能力、知识面、朗读水平三个项目,决赛中,小文和小明两位同学的各项成绩如下表,评委计算三项测试的平均成绩,发现小明与小文的相同.(1)评委按应变能力占10%,知识面占40%,朗诵水平占50%计算加权平均数,作为最后评定的总成绩,成绩高者将被录用,小文和小明谁将被录用?(2)若(1)中应变能力占x%,知识面占(50﹣x)%,其中0<x<50,其它条件都不改变,使另一位选手被录用,请直接写出一个你认为合适的x的值.测试项目测试成绩小文小明应变能力7080知识面8072朗诵水平878515.(10分)某商场欲招聘一名员工,现有甲、乙两人竞聘.通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示:应试者计算机语言商品知识甲705080乙606080(1)若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,计算两名应试者的平均成绩.从成绩看,应该录取谁?(2)若商场需要招聘电脑收银员,计算机、语言和商品知识成绩分别占50%,30%,20%,计算两名应试者的平均成绩.从成绩看,应该录取谁?《平均数》提高训练参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)某班5位同学进行投篮比赛,每人投10次,平均每人投中8次,已知第一、三、四、五位同学分别投中7次,9次,8次,10次,那么第二位同学投中()A.6次B.7次C.8次D.9次【分析】设第二位同学投中x次,根据算术平均数的计算公式列方程即可得到结论.【解答】解:设第二位同学投中x次,∵平均每人投中8次,∴=8,解得:x=6,∴第二位同学投中6次,故选:A.【点评】本题考查了算术平均数,根据题意列方程是解题的关键.2.(5分)已知一组数据x1,x2,x3的平均数为7,则x1+3,x2+2,x3+4的平均数为()A.7B.8C.9D.10【分析】先根据原数据的平均数为7知x1+x2+x3=21,再根据平均数计算公式得(x1+3+x2+2+x3+4)÷3,代入计算可得.【解答】解:∵数据x1,x2,x3的平均数为7,∴x1+x2+x3=21,则x1+3,x2+2,x3+4的平均数为:(x1+3+x2+2+x3+4)÷3=(21+3+2+4)÷3=10.故选:D.【点评】本题考查的是算术平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.3.(5分)已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A.93B.95C.94D.96【分析】设他的数学分为x分,由题意得,(88+95+x)÷3=92,据此即可解得x的值.【解答】解:设数学成绩为x分,则(88+95+x)÷3=92,解得x=93.故选:A.【点评】本题考查了平均数的应用.记住平均数的计算公式是解决本题的关键.4.(5分)已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.10【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:由题意知:n=108÷12=9.故选:C.【点评】本题考查了平均数的概念.平均数是所有数据的和除以数据的总个数.5.(5分)某公司招聘考试分笔试和面试,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小红笔试成绩为90分,面试成绩为80分,那么小红的总成绩为()A.80分B.85分C.86分D.90分【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:根据题意得:小红的总成绩为:90×60%+80×40%=86(分),故选:C.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.二、填空题(本大题共5小题,共25.0分)6.(5分)为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分、80分、85分,若依次按50%、30%、20%的比例确定成绩,则该选手的最后得分是86分.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意得:90×50%+80×30%+85×20%=45+24+17=86(分).答:该选手的最后得分是86分.故答案为:86.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.7.(5分)某公司决定招聘经理一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分数)808090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是82分.【分析】利用加权平均数的计算公式列式计算可得.【解答】解:该应聘者的总成绩是=82(分),故答案为:82.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的计算公式.8.(5分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如下表所示(单位:分),如果根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比例计算两人的总成绩,得分高者被录用,那么乙将被录用.教学能力科研能力组织能力甲818586乙928074【分析】根据加权平均数的定义判断即可.【解答】解:甲的加权平均数==83.2(分)乙的加权平均数==84.8(分),∵84.8>83.2,∴乙的成绩比较好,故答案为乙.【点评】本题考查加权平均数的定义,解题的关键是记住加权平均数的定义,属于中考常考题型.9.(5分)某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:成绩听说读写张明95909090若把听、说、读、写的成绩按4:3:2:1计算平均成绩,则张明的平均成绩为92.【分析】根据加权平均数的计算公式进行计算即可.【解答】解:张明的平均成绩为=92,故答案为:92.【点评】此题考查了加权平均数的计算公式,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.10.(5分)某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据两人的平均成绩,公司将录取乙.【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),因为乙的平均分数最高,所以乙将被录取.故答案为:乙.【点评】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.三、解答题(本大题共5小题,共50.0分)11.(10分)某食品商店将甲、乙、丙3种糖果的质量按5:4:1配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/kg、20元/kg、27元/kg.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.【分析】根据加权平均数的概念进行解答即可.【解答】解:这样定价不合理,理由如下:加权平均数:=16×+20×+27×=18.7(元/kg).算术平均数==21(元/kg),21>18.7,∴将这种什锦糖果的单价定为这三种糖果单价的算术平均数不合理,答:该什锦糖果合理的单价为18.7元/kg.【点评】本题考查了加权平均数的计算公式,熟知加权平均数的概念,正确列出算式是解题的关键.12.(10分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:测试项目测试成绩甲乙丙专业知识748790语言能力587470综合素质874350(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x=1,y=8.(写出x与y的一组整数值即可).【分析】(1)运用求平均数公式即可求出三人的平均成绩,比较得出结果;(2)将三人的总成绩按比例求出测试成绩,比较得出结果.(3)根据专业知识、语言能力和综合素质三项测试得分可知,乙的语言能力最好,可将语言能力的比例提高,乙将被录用.【解答】解:(1),,.∵73>70>68,∴甲将被录用;(2)综合成绩:4+3+1=8,,,,∵77.5>76.625>69.625,∴丙将被录用;(3)x=1,y=8或x=2,y=7或x=3,y=6或x=4,y=5时,乙被录用.(答案不唯一,写对一种即可)故答案为:1,8.【点评】本题考查了平均数和加权成绩的计算.平均数等于所有数据的和除以数据的个数.13.(10分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.跳绳个数与标准数量的差值﹣2﹣10456人数61216105(1)求6年1班40人一分钟内平均每人跳绳多少个?(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?【分析】(1)根据加权平均数的计算公式进行计算即可;(2)根据评分标准计算总计分,然后与200比较大小.【解答】解:(1)6(1)班40人中跳绳的平均个数为100+=102个,答:40人一分钟内平均每人跳绳102;(2)依题意得:(4×6+5×10+6×5)×3﹣(﹣2×6﹣1×12)×(﹣1)=288>250.所以6(1)班能得到学校奖励.【点评】主要考查正负数在实际生活中的应用.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.14.(10分)学校广播站要招聘一名播音员,需考查应聘学生的应变能力、知识面、朗读水平三个项目,决赛中,小文和小明两位同学的各项成绩如下表,评委计算三项测试的平均成绩,发现小明与小文的相同.(1)评委按应变能力占10%,知识面占40%,朗诵水平占50%计算加权平均数,作为最后评定的总成绩,成绩高者将被录用,小文和小明谁将被录用?(2)若(1)中应变能力占x%,知识面占(50﹣x)%,其中0<x<50,其它条件都不改变,使另一位选手被录用,请直接写出一个你认为合适的x的值.测试项目测试成绩小文小明应变能力7080知识面8072朗诵水平8785【分析】(1)根据加权平均数的定义列式计算可得;(2)取x=40,依据加权平均数的定义列式计算,答案不唯一.【解答】解:(1)小文的总成绩=70×10%+80×40%+87×50%=82.5(分),小明的总成绩=80×10%+72×40%+85×50%=79.3(分),因为82.5>79.3,所以小文将被录用.(2)取x=40,则小文的总成绩=70×40%+80×10%+87×50%=79.5(分),小明的总成绩=80×40%+72×10%+85×50%=81.7(分),因为81.7>79.5,所以小明将被录用.【点评】本题考查了加权平均数的计算方法:把各数据分别乘以它们的权后相加,再除以数据的总个数即得加权平均数.15.(10分)某商场欲招聘一名员工,现有甲、乙两人竞聘.通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示:应试者计算机语言商品知识甲705080乙606080(1)若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,计算两名应试者的平均成绩.从成绩看,应该录取谁?(2)若商场需要招聘电脑收银员,计算机、语言和商品知识成绩分别占50%,30%,20%,计算两名应试者的平均成绩.从成绩看,应该录取谁?【分析】(1)根据加权平均数的定义计算可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)==69,==70,∵<,∴应该录取乙;(2)=70×50%+50×30%+80×20%=66,=60×50%+60×30%+80×20%=64,∵>,∴应该录取甲.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.。

北师大版八年级数学下册第一二章提高练习(有答案)

北师大版八年级数学下册第一二章提高练习(有答案)

第一二章提高练习解答题1.作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)2.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.3.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.4.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.5.解不等式﹣≥x﹣,并把它的解集在数轴上表示出来.6.解不等式组:并将解集在数轴上表示.7.已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.求证:①BM=DM;②MN⊥BD.8.如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.9.如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.10.已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.13.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.14.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.15.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.16.在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10cm,试求出△P AO的周长.(不用写过程,直接写出答案)(2)若AB=AC,∠BAC=110°,试求∠P AO的度数.(不用写过程,直接写出答案)(3)在(2)中,若无AB=AC的条件,你能求出∠P AO的度数吗?若能,请求出来;若不能,请说明理由.17.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.18.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.19.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?20.某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?22.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.23.如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.24.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.25.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.26.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;(3)当t为何值时,△BCP为等腰三角形?参考答案1.解:①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;③连接BF,则直线BF即为∠ABC的角平分线;⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于H,G两点;⑥连接GH交BF延长线于点P,则P点即为所求.2.解:①以A为圆心,以任意长为半径画圆,分别交铁路a和公路b于点B、C;②分别以B、C为圆心,以大于BC为半径画圆,两圆相交于点D,连接AD,则直线AD即为∠BAC的平分线③连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于E、F,连接EF,则直线EF即为线段MN的垂直平分线;④直线EF与直线AD相交于点O,则点O即为所求点.同法点O′也满足条件.故答案为O或O′处.3.解:如图所示,点P是AB线段的垂直平分线与直线m的交点.4.解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.5.解:原不等式去分母得:2x﹣4﹣9x﹣15≥6x﹣4+2x,移项得:2x﹣9x﹣6x﹣2x≥﹣4+4+15,合并同类项的:﹣15x≥15,解得x≤﹣1.解集在数轴上表示为:6.解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.7.(1)证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC,∴BM=DM;(2)∵点N是BD的中点,BM=DM,∴MN⊥BD.8.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∴110°+∠B+∠C=180°,∴x+y=70°.∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴∠EAD=∠B,∠F AC=∠C.∴∠DAF=∠BAC﹣(x+y)=110°﹣70°=40°.(2)∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).9.解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.10.解:①根据y1=2y2,∴6﹣x=2×2+14x,解得:x=.②由y1比y2小﹣3,∴y1=y2﹣(﹣3),∴6﹣x=2+7x﹣(﹣3),解得:x=.③由y1与y2互为相反数,∴y1+y2=0,∴6﹣x+7x+2=0,解得:x=.11.解:,由①得:x>﹣,由②得:x<2a,则不等式组的解集为:﹣<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.12.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.13.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.14.证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.15.(1)证明:∵CF⊥AB,垂足为F,M为BC的中点,∴MF=BM=CM=BC,∵ME=MF,∴ME=BM=CM=BC,∴BE⊥AC;(2)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM,∴∠BMF+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB)=360°﹣2×130°=100°,在△MEF中,∠FME=180°﹣100°=80°.16.解:(1)∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴△P AO的周长=AP+PO+AO=BO+PO+OC=BC,∵BC=1Ocm,∴△P AO的周长10cm;(2)∵AB=AC,∠BAC=110°,∴∠B=∠C=(180°﹣110°)=35°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B=35°,∠CAO=∠C=35°,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=110°﹣35°﹣35°=40°;(3)能.理由如下:∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B,∠CAO=∠C,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=∠BAC﹣(∠B+∠C)=110°﹣70°=40°.17.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.18.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.19.解:(1)设甲种商品每件的进价是x元,乙两种商品每件的进y元.,解得:,答:甲种商品每件的进价是120元,乙两种商品每件的进100元;(2)设甲种商品可购进a件.(145﹣120)a+(120﹣100)(40﹣a)≥870解得:a≥14,答:甲种商品至少可购进14件.20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.21.解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.22.解:(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:600x+450(10﹣x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:45x+30(10﹣x)≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.23.解:(1)根据图象可得不等式2x﹣4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=﹣x+5;(3)把x=0代入y=﹣x+5得:y=5,所以点B(0,5),把y=0代入y=﹣x+5得:x=2,所以点A(5,0),把y=0代入y=2x﹣4得:x=2,所以点D(2,0),所以DA=3,所以四边形BODC的面积=.24.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.25.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.26.解:(1)△ABC中,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴t=12÷2=6(秒);(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴t=13÷2=6.5(秒),∴CP=AB=×10=5cm;(3)△BCP为等腰三角形时,分三种情况:①如果CP=CB,那么点P在AC上,CP=6cm,此时t=6÷2=3(秒);如果CP=CB,那么点P在AB上,CP=6cm,此时t=5.4(秒)(点P还可以在AB上,此时,作AB边上的高CD,利用等面积法求得CD=4.8,再利用勾股定理求得DP=3.6,所以BP=7.2,AP=2.8,所以t=(8+2.8)÷2=5.4(秒))②如果BC=BP,那么点P在AB上,BP=6cm,CA+AP=8+10﹣6=12(cm),此时t =12÷2=6(秒);③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13(cm),t=13÷2=6.5(秒);综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.。

2024年浙教版数学八年级下学期第二章 一元二次方程 单元练习提高(含简单答案)

2024年浙教版数学八年级下学期第二章 一元二次方程 单元练习提高(含简单答案)

2024年浙教版数学八年级下学期第二章一元二次方程单元练习提高一、选择题(每题3分,共30分)1.下列方程属于一元二次方程的是( )A.2x+1=0B.x²−3x+1=0C.x²+y=1D.1=1x22.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=13.方程x2+5x=0的解为( )A.x=5B.x=-5C.x₁=0,x₂=5D.x₁=0,x₂=−54.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是( )A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=-3D.x1=-1,x2=35.关于x的一元二次方程x2−4x−k=0没有实数根,则k的取值范围是( )A.k>4B.k<4C.k>−4D.k<−46.三角形两边长分别为2和4,第三边是方程x2−11x+30=0的解,则这个三角形的周长是( )A.11B.11或12C.12D.107.已知x₁,x₂是方程:x2−x−2024=0的两个实数根,则代数式x31−2024x1+x22的值是( )A.4 049B.4 047C.2 024D.18.假期老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是( )A.7B.8C.9D.109.方程x2-2013|x|+2014=0的所有实数解的和是( )A.-2013B.0C.2 013D.2 01410.对于一元二次方程a x2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2−4ac≥0;②若方程a x2+c=0有两个不相等的实根,则方程a x2+bx+c=0必有两个不相等的实根;③若c是方程a x2+bx+c=0的一个根,则一定有ac+b+1=0成立;②若x0是一元二次方程a x2+bx+c=0的根,则b2−4ac=(2ax0+b)2其中正确的( )A.只有①②④B.只有①②③C.①②③④D.只有①②二、填空题(每题4分,共24分)11.x=2是关于x的方程x2+mx+4=0的解,则m的值是 .12.若(x2+y2)(x2+y2-2)=8,则x2+y2的值为 .13.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是 .14.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=_________.15.已知关于x的一元二次方程,x2+ax+(m+1)(m+2)=0对任意的实数a均有实数根,则实数m的取值范围是_____.16.《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7−4=3.”小唐按此方法解关于x的方程x2+12x=m时,构造出如图2所示的图形,已知阴影部分的面积为64,则该方程的正数解为 .三、解答题(共8题,共66分)17.解下列方程.(1)x2-2=x;(2)2x2+x-1=018.已知关于x的方程x2−(m+2)x+(2m−1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,求另一个根及m的值.19.已知方程x2-3x-1=0的两根也是方程x4+ax2+bx+c=0的根,求a+b-2c的值.20.已知关于x的方程k x2+(k+1)x+k=0有实数根.4(1)当k=4时,求解上述方程.(2)求k的取值范围.(3)是否存在实数k,使方程有两个根且两根的倒数和为1? 若存在,请求出k的值;若不存在,请说明理由.21.定义:若一元二次方程ax2+bx+c=0(a≠0)满足b=ac.则称此方程为“和美”方程.(1)当b<0时,判断此时“和美”方程ax2+bx+c=0(a≠0)解的情况,并说明理由.(2)若“和美”方程2x2+mx+n=0有两个相等的实数根,请解出此方程.22.已知a>0,b>a+c,判断关于x的方程ax2+bx+c=0的根的情况.23.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

2020—2021学年人教版数学八年级下册第18章《平行四边形》常考题提高练习(一)

2020—2021学年人教版数学八年级下册第18章《平行四边形》常考题提高练习(一)

人教版数学八年级下册第18章《平行四边形》常考题提高练习(一)1.已知,△ABC、△ADE是等腰三角形,AB=AC,AD=AE,D是BC上一点,∠DAE=∠BAC,过点E作BC的平行线交AB于点F,连接CF.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接BE、DF,若AD⊥BC,在不添加任何辅助线的情况下,请直接写出图2中长度等于BC的长的的线段.2.如图,在▱ABCD中,点P在对角线AC上一动点,过点P作PM∥DC,且PM=DC,连接BM,CM,AP,BD.(1)求证:△ADP≌△BCM;(2)若P A=PC,设△ABP的面积为S,四边形BPCM的面积为T,求的值.3.如图,四边形ACFD是平行四边形,B,E,C,F在一条直线上,已知BE=CF.(1)求证:四边形ABED是平行四边形.(2)若∠ABC=60°,且AC⊥BF,AB=6,BF=5,求AD的长.4.如图,在▱ABCD中,AE⊥BC于点E,点F在线段DE上,且△ADF∽△DEC,若DC=4cm,AD=cm,AF=cm.(1)求DE的长;(2)求▱ABCD的面积.5.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC 到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE=,求AE的长.6.如图,已知菱形ABCD的对角线AC、BD相交于点O,分别过A、D两点作AO、DO的垂线,两垂线交于点E.(1)求证:四边形AODE是矩形;(2)若四边形AODE的面积为12,AD=5,求四边形AODE的周长.7.如图,在矩形ABCD中,E是BC上一点,DF⊥AE于点F,设=λ(λ>0).(1)若λ=1,求证:CE=FE;(2)若AB=3,AD=4,且D、B、F在同一直线上时,求λ的值.8.如图,分别以Rt△ACB的直角边AC和斜边AB向外作等边△ACE,等边△ABD,取AB 的中点F,连接DF、EF,已知∠BAC=30°.(1)求证:四边形ADFE是平行四边形;(2)若BD=4,求四边形BCEF的面积.9.如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是∠ABC的外角∠MAC 的平分线,延长DF交AN于点E,连接CE.(1)求证:四边形ADCE是矩形;(2)若AB=BC=4,则四边形ADCE的面积为多少?(3)直接回答:当△ABC满足时,四边形ADCE是正方形.10.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.11.已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1,d2,d3,且d1=d3=2,d2=3.我们把四个顶点分别在l,m,n,k这四条平行线上的四边形称为“线上四边形”.(1)如图1,正方形ABCD为“线上四边形”,BE⊥l于点E,EB的延长线交直线k于点F,求正方形ABCD的边长.(2)如图2,菱形ABCD为“线上四边形”且∠ADC=60°,△AEF是等边三角形,点E在直线k上,连接DF,且直线DF分别交直线l、k于点G、M,求证:EC=DF.12.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.13.如图,在△ABC中,点D,E分别是BC,AC的中点,延长BA至点F,使得AF=AB,连接DE,AD,EF,DF.(1)求证:四边形ADEF是平行四边形;(2)若AB=6,AC=8,BC=10,求EF的长.14.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC 上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x 的值.15.如图,四边形ABCD的对角线AC⊥BD于点E,点F为四边形ABCD外一点,且∠FCA =90°,BC平分∠DBF,∠CBF=∠DCB.(1)求证:四边形DBFC是菱形;(2)若AB=BC,∠F=45°,BD=2,求AC的长.参考答案1.(1)如答图1,证明:连接BE,∵∠BAC=∠DAE,∴∠DAC=∠EAB,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴CD=BE,∠ACD=∠ABE,∵EF∥BC,∴∠ABC=∠EFB,∴∠ABE=∠EFB,∴EB=EF,∴EF=CD,∵EF∥BC,∴四边形EDCF是平行四边形;(2)∵AB=AC,AD⊥BC,∴BD=CD=BC,由(1)知CD=BE=EF,∴BD=EF,∵E作BC的平行线交AB于点F,即BD||EF,∴四边形BEFD是平行四边形,∴BD =CD =BE =EF =DF =BC ,故答案为:BD ,CD ,BE ,EF ,DF .2.解:(1)∵PM ∥DC ,且PM =DC ,∴四边形CDPM 是平行四边形,∴PD =MC ,∵AB ∥DC ,且AB =DC ,PM ∥DC ,且PM =DC ,∴AB ∥PM ,且AB =PM ,∴四边形ABMP 是平行四边形,∴AP =BM ,∵四边形ABCD 是平行四边形,∴AD =BC ,∴△ADP ≌△BCM (SSS );(2)由(1)可得S △ADP =S △BCM ,∴S 四边形BMCP =S △BCM +S △BCP =S △ADP +S △BCP =S 平行四边形ABCD , 又∵P A =PC ,∴S △ABP =S △ABC =S 平行四边形ABCD ,∴的值为=.3.证明:(1)∵四边形ACFD 是平行四边形,∴AD ∥CF ,AD =CF ,∵B ,E ,C ,F 在一条直线上,∴AD ∥BE ,∴AD=BE,∴四边形ABED是平行四边形;(2)∵四边形ACFD是平行四边形,∴AD=CF,∵∠ABC=60°,且AC⊥BF,AB=6,∴∠BAC=30°,∴BC=AB=3,∵BF=5,∴CF=BF﹣BC=2,∴AD=2.4.解:(1)∵△ADF∽△DEC,∴,∴,∴DE=6;(2)∵四边形ABCD为平行四边形,∠EAD=∠AEB=90°,∴在Rt△EAD中,,∴AE=3(cm),∴S▱ABCD=BC•AE=.5.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AB=13,∴BC=AB=13,AC⊥BD,OA=OC=AC,OB=OD=BD,∵AE⊥BC,∴∠AEC=90°,∴OE=AC=OA=2,AC=2OE=4,∴OB===3,∴BD=2OB=6,∵菱形ABCD的面积=BD×AC=BC×AE,即×6×4=13×AE,解得:AE=12.6.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∵EA⊥AO,DE⊥DO,∴∠EAO=∠DOA=90°,∴四边形AODE是矩形;(2)解:由(1)知,四边形AODE是矩形,∴∠AED=90°,OA=DE,OD=AE,∵四边形AODE的面积为12,∴OA•OD=12,在Rt△AOD中,根据勾股定理,得OA2+OD2=AD2=25,∴(OA+OD)2=OA2+2OA•OD+OD2=25+24=49,∴OA+OD=7,∴四边形AODE的周长为2(OA+OD)=14.7.解:(1)证明:连接DE,如图:∵四边形ABCD为矩形,∴∠C=90°,AD∥BC,∴∠ADE=∠CED,∵DF⊥AE,∴∠DFE=90°,∴∠DFE=∠C,∵=λ=1,∴AD=AE,∴∠ADE=∠FED,∴∠FED=∠CED,在△DFE和△DCE中,,∴△DFE≌△DCE(AAS),∴CE=FE;(2)当D、B、F在同一直线上时,如图所示:∵四边形ABCD为矩形,∴∠BAD=∠ABC=90°,在Rt△ADB中,AB=3,AD=4,∴tan∠ABD==,∵DF⊥AE,∴∠BFE=90°,∵∠ABD+∠DBC=90°,∠DBC+∠FEB=90°,∴∠FEB=∠ABD,∴=tan∠FEB=tan∠ABD=,∵AB=3,∴BE=,在Rt△ABE中,由勾股定理得,AE==,∴λ====.8.(1)证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABD是等边三角形,F是AB的中点,∴AD=AB=BD,AB=2AF,DF⊥AB,∴AF=BC,在Rt△AFD和Rt△BCA中,,∴Rt△AFD≌Rt△BCA(HL),∴DF=AC,∵△ACE是等边三角形,∴∠EAC=60°,AC=AE,∴∠EAB=∠EAC+∠BAC=90°,∴DF=AE,又∵DF⊥AB,∴DF∥AE,∴四边形ADFE是平行四边形;(2)解:由(1)得:△AEF的面积=△ADF的面积=△ABC的面积,AB=BD=4,BC =AB=2,AC=BC=2,∴四边形BCEF的面积=△ACE的面积+△ABC的面积﹣△AEF的面积=△ACE的面积=×(2)2=3.9.(1)证明:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵F为AC的中点,D为BC的中点,∴FD∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形ADCE为平行四边形,∵AB=AC,点D为BC中点,∴AD⊥BC,∴AD⊥AE,∴∠DAE=90°,∴四边形ADCE为矩形;(2)解:由(1)知四边形ADCE是矩形,∵BC=AB=4,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC=4,∵D为BC的中点,∴∠ADC=90°,BD=CD=2,∴AD=2,∴四边形ADCE的面积为CD×AD=2×2=4;(3)解:答案不唯一,如当∠BAC=90°时,四边形ADCE是正方形.∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∵D为BC的中点,∴AD=DC,∵四边形ADCE为矩形,∴四边形ADCE为正方形.故答案为:∠BAC=90°.10.(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)解:∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.11.解:(1)如图1,∵l∥m∥n∥k,BE⊥l,∴BE⊥k,BE⊥m,BE⊥n,∴∠AEB=∠BFC=90°,BE=5,BF=2,∴∠CBF+∠BCF=90°,∵正方形ABCD为“线上四边形”,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠ABE=∠BCF,∴△ABE≌△BCF(AAS),∴FC=BE=5,∴BC===;(2)如图2,连接AC,∵四边形ABCD是菱形,∴AD=CD,∵∠ADC=60°,∴△ADC是等边三角形,∴AD=AC,∠CAD=60°,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∴∠EAF=∠CAD,∴∠EAC=∠DAF,∴△EAC≌△F AD(SAS),∴EC=DF.12.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BF A=90°=∠AED,∴△ABF≌△DAE(AAS),∴AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形BFDE是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形BFDE不可能是平行四边形.13.(1)证明:∵点D,E分别是BC,AC的中点,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∵AF=AB,∴DE=AF,DE∥AF,∴四边形ADEF是平行四边形;(2)解:由(1)得:四边形ADEF是平行四边形,∴EF=AD,∵AB=6,AC=8,BC=10,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∵点D是BC的中点,∴AD=BC=5,∴EF=AD=5.14.(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,AC===5,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM是矩形,∴MN=AB=3,在△AME和△CNF中,,∴△AME≌△CNF(SAS),∴EM=FN,∠AEM=∠CFN,∴∠MEF=∠NFE,∴EM∥FN,∴四边形EMFN是平行四边形,又∵AE=CF=1,∴EF=AC﹣AE﹣CF=3,∴MN=EF,∴四边形EMFN为矩形.(2)解:连接MN,作MH⊥BC于H,如图2所示:则四边形ABHM是矩形,∴MH=AB=3,BH=AM=x,∴HN=BC﹣BH﹣CN=4﹣2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC﹣AE﹣CF=4,在Rt△MHN中,由勾股定理得:32+(4﹣2x)2=42,解得:x=2±,∵0<x<2,∴x=2﹣.15.(1)证明:∵AC⊥BD,∠FCA=90°,∠CBF=∠DCB.∴BD∥CF,CD∥BF,∴四边形DBFC是平行四边形;∵BC平分∠DBF,∴∠CBF=∠CBD,∵∠CBF=∠DCB,∴∠CBD=∠DCB,∴CD=BD,∴四边形DBFC是菱形;(2)解:∵四边形DBFC是平行四边形,∴CF=BD=2,∵AB=BC,AC⊥BD,∴AE=CE,作CM⊥BF于M,如图:∵BC平分∠DBF,∴CE=CM,∵∠F=45°,∴△CFM是等腰直角三角形,∴CM=CF=,∴AE=CE=,∴AC=2.。

八年级数学下册考点知识与题型专题讲解与提升练习48 一次函数图象的平移问题

八年级数学下册考点知识与题型专题讲解与提升练习48 一次函数图象的平移问题

八年级数学下册考点知识与题型专题讲解与提升练习专题48 一次函数图象的平移问题一、单选题1.把直线1y x =--向上平移3个单位长度,得到图像解析式是()A .4y x =--B .2y x =-+C .4y x =-D .2y x =+2.在平面直角坐标系中,将直线y =kx ﹣6沿x 轴向左平移3个单位后恰好经过原点,则k 的值为( )A .﹣2B .2C .﹣3D .33.直线2(1)y x =-向下平移3个单位长度得到的直线是().A .2(4)y x =-B .33y x =-C .25y x =-D .22y x =-4.将函数y =-4x 的图象沿y 轴向下平移2个单位后,所得到的函数图象对应的函数表达式()A .42y x =-+B .6y x =-C .42y x =--D .2y x =-5.函数4y x =的图象可由函数44y x =-的图象沿y 轴()A .向上平移4个单位得到B .向下平移4个单位得到C .向左平移4个单位得到D .向右平移4个单位得到6.把正比例函数y=2x 图象向上平移3个单位,得到图象解析式是( )A .y=2x-3B .y=2x+3C .y=3x-2D .y=3x+27.把直线y=2x-1向下平移1个单位,平移后直线得关系式为()A .y=2x-2B .y=2x+1C .y=2xD .y=2x+28.对于一次函数132y x =-+,下列结论正确的有()个. (1)该函数图像与y 轴交点()0,3,与x 轴交点为()6,0.(2)将函数12y x =-的图像向上平移3个单位,可得函数132y x =-+的图像,(3)该函数图像不经过第四象限,(4)函数值y 随自变量x 的增大而减小.A .1个B .2个C .3个D .4个9.把经过点(-1,1)和(1,3)的直线向右移动2个单位后过点(3,a),则a 的值为()A .1B .2C .3D .410.将直线y=2x 向上平移两个单位,所得的直线是A .y=2x+2B .y=2x-2C .y=2(x-2)D .y=2(x+2)11.在平面直角坐标系中,将直线6y kx =-沿x 轴向右平移3个单位后恰好经过原点,则k 的值为()A .2-B .2C .3-D .312.把直线21y x =-+向右平移2个单位后,所得直线的解析式为()A .23y x =-+B .21y x =--C .23y x =--D .25y x =-+13.在平面直角坐标系中,将一次函数3324y x =-的图象沿x 轴向左平移m (m ≥0)个单位后经过原点O ,则m 的值为( )A .43B .34C .2D .1214.将直线112y x =-向上平移3个单位,所得直线是() A .122y x =+ B .142y x =-- C .122y x =- D .1y x 42=- 15.一次函数21y x =-+图象沿y 轴向下平移2个单位,则平移后与y 轴的交点的纵坐标为()A .3B .2C .1-D .016.将直线3y x =沿y 轴向下平移1个单位长度后得到的直线解析式为()A .31y xB .31y x =-C .1y x =+D .1y x =-17.关于一次函数y =3x -1的描述,下列说法正确的是()A .图象经过第一、二、三象限B .函数的图象与x 轴的交点是(0,-1)C .向下平移1个单位,可得到y =3xD .图象经过点(1,2)18.将直线y =3x +1沿y 轴向下平移3个单位长度,平移后的直线所对应的函数关系式( )A .y =3x +4B .y =3x ﹣2C .y =3x +4D .y =3x +219.将直线26y x =-向右平移5个单位,再向上平移1个单位后,所得的直线的表达式为()A .215y x =+B .215y x =-C .26y x =+D .26y x =-20.把直线3y x =向上平移1个单位长度,再向左平移4个单位长度,得到的直线的表达式为( )A .311y x =-B .313y x =+C .313y x =--D .311y x =--21.将直线l :23y x =+,先向下平移3个单位,再向右平移4个单位得直线1l ,则平移后得到直线1l 的解析式为()A .24y x =+B .24y x =-C .28y x =-D .28y x =+22.关于函数3y x =-,下列说法正确的是()A .在y 轴上的截距是3B .它不经过第四象限C .当x≥3时,y≤0D .图象向下平移4个单位长度得到7y x =-的图象23.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到24.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .B .C .D .525.关于一次函数2y x b =-+(b 为常数),下列说法正确的是()A .y 随x 的增大而增大B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点26.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是()A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小27.对于一次函数24y x =-+,下列结论错误的是( )A .函数的图象与x 轴的交点坐标是()0,4B .函数值随自变量的增大而减小C .函数的图象不经过第三象限D .函数的图象向下平移4个单位长度得到2y x =-的图象28.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+629.在平面直角坐标系中,将直线b :y =﹣2x+4平移后,得到直线a :y =﹣2x ﹣2,则下列平移方法正确的是()A .将b 向左平移3个单位长度得到直线aB .将b 向右平移6个单位长度得到直线aC .将b 向下平移2个单位长度得到直线aD .将b 向下平移4个单位长度得到直线a30.将一次函数y kx b =+的图象向上平移9个单位得到直线36y x =+,()A .3B .C .3±D .31.下列说法中正确的是()A B .两个一次函数解析式k 值相等,则它们的图像平行C .连接等腰梯形各边中点得到矩形D .一组数据中每个数都加3,则方差增加332.把直线3y x =--向上平移m 个单位后,与直线24y x =+的交点在第二象限,则m 的取值范围是()A .17m <<B .34m <<C .1mD .4m <33.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位34.在同一直角坐标系中,若直线y =kx +3与直线y =-2x +b 平行,则( )A .k =-2,b ≠3 B.k =-2,b =3 C .k ≠-2,b ≠3 D.k ≠-2,b =335.如图在平面直角坐标系中,直线对应的函数表达式为,直线与、轴分别交于A 、B ,且∥,OA=2,则线段OB 的长为( )A .3B .4C .D .第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题36.在平面直角坐标系中,把直线y =2x ﹣1向上平移3个单位长度后,所得到的直线对应的函数解析式是_____.37.已知一次函数y =2x +m 的图象是由一次函数y =2x ﹣3的图象沿y 轴向上平移8个单位得到的,则m =_____.38.在平面直角坐标系中,一次函数56y x =-+与53y x =--的图象的位置关系为______.39.将函数31y x 的图像平移,使它经过点()2,0-,则平移后的函数表达式是______.40.直线23y x =-是由25y x =+向下平移__________个单位得到的.41.如图所示,一次函数y=kx +b 的图象是正比例函数y=-2x 的图象平移得到,且经过点A (2,3),则kb =______________.42.将直线y=x+3沿y 轴向上平移3个单位得到的一次函数的解析式是_____.43.已知将直线y kx =向上平移2个单位后,恰好经过点(1,0)-,则不等式42x kx -<+的解集为_____.44.在平面直角坐标系中,平行四边形OABC 的边OC 落在x 轴的正半轴上,且点(4,0),(6,2)C B ,直线41y x =+以每秒2个单位的速度向下平移,经过______秒该直线可将平行四边形OABC 的面积平分.45.如图,一次函数24y x =+与x 轴交于点A ,与y 轴交于点B .点C 的坐标为()2,3,若点D 在直线24y x =+上,点E 在x 轴上,若以B 、C 、D 、E 为顶点的四边形为平行四边形,则点E 的坐标为______.46.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的图象交于A ,B 两点(点A 在点B 的左边).(1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.47.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.48.直线22y x =+沿y 轴向下移动6个单位长度后,与x 轴的交点坐标为_______三、解答题49.把一次函数21y x =-的图象沿y 轴向上平移2个单位长度,所得图象对应的函数表达式为________.50.(1)先列表,再画出函数21y x =+的图象.(2)若直线21y x =+向下平移了1个单位长度,直接写出平移后的直线表达式.51.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)将所得函数图象平移,使它经过点(2,﹣1),求平移后直线的解析式.52.如图,一次函数y= -3x+6的图象与x轴、y轴分别交于A、B两点.(1)将直线AB向左平移1个单位长度,求平移后直线的函数关系式;(2)求出平移过程中,直线AB在第一象限扫过的图形的面积.53.在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围(2)将线段AB绕点A逆时针旋转90°,得到线段AC,请在网格中画出线段AC.(3)若直线AC的函数解析式为y=kx+b,则y随x的增大而(填“增大”或“减小”).54.直线1y kx =+沿着y 轴向上平移b 个单位后,经过点(2,0)A -和y 轴正半轴上的一点B ,若ABO (O 为坐标原点)的面积为4,求b 的值.55.已知y 是x 的一次函数,且当0x =,1y =;当1x =-时,2y =.(1)求这个一次函数的表达式:(2)将该函数图象向下平移3个单位,求平移后图象的函数表达式.56.如图,点A 的坐标为()1,0-,点B 在直线24y x =-上运动.(1)若点B 的坐标是()1,2-,把直线AB 向上平移m 个单位后,与直线24y x =-的交点在第一象限,求m 的取值范围.(2)当线段AB 最短时,求点B 的坐标.57.如图,直线AB :2y x k =-过点M (k ,2),并且分别与x 轴,y 轴相交于点A 和点B .(1)求k 的值;(2)求点 A 和点B 的坐标;(3)将直线AB 向上平移3个单位得直线l ,若C 为直线l 上一点,且3AOCS =,求点C的坐标.58.平面直角坐标系内一条直线AB ,A (a ,0),B (0,b ),a ,b 40b -=, (1)求直线AB 的表达式,(2)直接写出把这条直线向上平移3个单位长度后得到的表达式.59.已知一次函数的图象与直线1y x =-+平行,且过点()2,5-,求该一次函数的表达式. 60.如图,正比例函数y =kx 的图象经过点A ,点A 在第二象限.过点A 作AH ⊥x 轴,垂足为H .已知点A 的横坐标为﹣3,且△AOH 的面积为4.5. (1)求该正比例函数的解析式.(2)将正比例函数y =kx 向下平移,使其恰好经过点H ,求平移后的函数解析式.61.如图直线l 经过点A (-3,1),B (0,-2),将直线l 向右平移两个单位得到直线l 1.(1)在图中画出平移后的直线l 1;(2)求直线l 1的表达式.62.已知一次函数y kx b =+,当1x =时,1y =-;当1x =-,5y =-. (1)在所给坐标系中画出一次函数y kx b =+的图象: (2)求k ,b 的值;(3)将一次函数y kx b =+的图象向上平移2个单位长度,求所得到新的函数图象与x 轴、y 轴的交点坐标.63.在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图像由函数y x =的图像平移得到,且经过点()1,2.(1)请在所给平面直角坐标系中画出这个一次函数的图像并求该一次函数的解析式;(2)当1x >时,对于x 的每一个值函数y mx =(0m ≠)的值大于一次函数y kx b =+的值,求出m 的取值范围.64.如图,在平面直角坐标系中,直线11:3l y x =与直线2l 交点A 的横坐标为3,将直线1l 沿y 轴向下平移3个单位长度,得到直线3l ,直线3l 与y 轴交于点B ,与直线2l 交于点C ,点C 的纵坐标为1-,直线2l 与y 轴交于点D .(1)求直线2l 的解析式; (2)连接AB ,求ABC 的面积.65.学习“一次函数”时,我们从“数”和“形”两方面研究一次函数的性质,并积累了一些经验和方法,尝试用你积累的经验和方法解决下面问题. (1)在平面直角坐标系中,画出函数y =|x|的图象: ①列表:完成表格②画出y =|x|的图象;(2)结合所画函数图象,写出y =|x|两条不同类型的性质; (3)写出函数y =|x|与y =|x ﹣2|图象的平移关系.66.已知一次函数23414m y x m +=+-. (1)当32m >-时,这个函数的函数值y 随x 的增大而增大还是随x 的增大而减小呢? (2)当这个函数的图象与直线3y x =-平行时,求m 的值.67.已知一次函数y kx b =+(,k b 是常数,且0k ≠)的图象过()A 3,5与()2,5B --两点.(1)求一次函数的解析式;(2)若点()3,a a --在该一次函数图象上,求a 的值;(3)把y kx b =+的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式. 68.在平面直角坐标系中,直线532y x =--交x 轴于点A ,交y 轴于点B ,直线334y x =-+交x 轴于点C ,交y 轴于点D .()1如图1,连接BC ,求BCD 的面积;()2如图2,在直线334y x =-+上存在点E ,使得45ABE ∠=︒,求点E 的坐标; ()3如图3,在()2的条件下,连接OE ,过点E 作CD 的垂线交y 轴于点F ,点Р在直线EF上,在平面中存在一点Q ,使得以OE 为一边,O E P Q ,,,为顶点的四边形为菱形,请直接写出点Q 的坐标.。

八年级数学下册考点知识与题型专题讲解与提升练习37 利用菱形的性质证明

八年级数学下册考点知识与题型专题讲解与提升练习37 利用菱形的性质证明

八年级数学下册考点知识与题型专题讲解与提升练习专题37 利用菱形的性质证明一、单选题1.菱形具有而矩形不一定具有的性质是()A.邻边相等B.对角线互相平分C.对角线相等D.邻角互补2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.两组对角分别相等D.对角线互相垂直3.矩形具有,而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对边平行且相等D.内角和为360°4.下列说法中,错误的是()A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形的对角线互相垂直平分D.正方形的对角线相等5.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线平分一组对角C.对角线互相平分D.对角线互相垂直6.下列性质中,矩形具有、正方形也具有、但是菱形却不具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线长度相等D.一组对角线平分一组对角7.菱形具有,而矩形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相垂直8.下列说法中错误的是()A .四边相等的四边形是菱形B .对角线相等的平行四边形是矩形C .菱形的对角线互相垂直且相等D .正方形的邻边相等9.下列哪条性质是平行四边形、矩形、菱形、正方形共有的()A .对角线互相平分B .对角线相等C .对角线互相垂直.D .对角线平分一组对角.10.下列说法中不正确的是( )A .平行四边形的对角相等B .菱形的邻边相等C .平行四边形的对角线互相平分D .菱形的对角线互相垂直且相等11.菱形OACB 在平面直角坐标系中的位置如图所示,若点C 的坐标是()4,0,点A 的纵坐标是1,则点B 的坐标是()A .()2,1B .()2,1-C .()1,2-D .()1,2 12.下列命题中,正确的是( )A .平行四边形的对角线相等B .菱形的对角线互相垂直且平分C .矩形的对角线互相垂直D .对角线互相垂直的平行四边形是正方形 13.菱形不具备的性质是( )A .对角线一定相等B .对角线互相垂直C .是轴对称图形D .是中心对称图形14.矩形一定具有而菱形不一定具有的性质是()A .内角和等于360B .对角线互相垂直C .对边平行且相等D .对角线相等15.矩形具有而菱形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补16.关于菱形,下列说法错误的是()A .四条边相等B .对角线互相垂直C .四个角相等D .对角线互相平分17.下列性质中,菱形具有而矩形不一定具有的性质是().A .对边平行且相等B .对角线互相平分C .内角和等于外角和D .每一条对角线所在直线都是它的对称轴18.如图,把菱形ABCD 向右平移至DCEF 的位置,作EG ⊥AB ,垂足为G ,EG 与CD 相交于点K ,GD 的延长线交EF 于点H ,连接DE ,则下列结论:①BG =AB +HF ;②DG =DE ;③∠DHE =12∠BAD ;④∠B =∠DEF ,其中正确结论的个数是()A .1个B .2个C .3个D .4个19.菱形ABCD 中,60D ∠=︒.点E 、F 分别在边BC 、CD 上,且BE CF =.若2EF =,则AEF 的面积为().A .B .C .D20.如图,四边形ABCD 沿直线l 对折后重合,如果//AD BC ,则结论①AB //CD ;②AB =CD ;③AB BC ⊥;④AO OC =中正确的是()A .1个B .2个C .3个D .4个21.如图,平行四边形ABCD 的对角线AC BD 、相交于点,О下列结论正确的是()A .COD AOB S S ∆= B .AC BD =C .AC BD ⊥D .ABCD 是轴对称图形 22.如图,在菱形ABCD 中,点,,,EFGH 分别是四条边的中点,则四边形EFGH 是()A .正方形B .矩形C .菱形D .无法确定23.下列说法中,错误的是()A .平行四边形的两组对角分别相等;B .一组对边平行另一组对边相等的四边形是平行四边形;C .正方形的对角线互相垂直平分且相等;D .菱形的对角线互相垂直.24.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,延长CB 至E 使BE=CB ,连续AE .下列结论①AE=2OE;②90EAC ∠=︒;③四边形ADBE 为平行四边形;④34AEBO ABCD S S =四边形菱形中,正确的个数有()A .1个B .2个C .3个D .4个25.菱形具有而矩形不一定具有的性质是( )A .对角相等且互补B .对角线互相平分C .对角线互相垂直D .一组对边平行,另一组对边相等26.下列性质中,菱形不具有的是()A .对边平行且相等B .对角线互相垂直C .对角线互相平分D .对角线相等27.如图,在矩形ABCD 中,AB =3,做BD 的垂直平分线E ,F ,分别与AD 、BC 交于点E 、F ,连接BE ,DF ,若EF =AE +FC ,则边BC 的长为()A .B .C .D 28.如图,在菱形ABCD 中, AD=6,∠BAD=60°, 点P 是对角线AC 上的动点,点E 是AB的中点,连结PB 、PE ,则PE+PB 的最小值为()A .B .CD .29.已知,如图,在菱形ABCD 中.(1)分别以C ,D 为圆心,大于12CD 长为半径作弧,两弧分别交于点E ,F ;(2)作直线EF ,且直线EF 恰好经过点A ,且与边CD 交于点M ;(3)连接BM .根据以上作图过程及所作图形,判断下列结论中错误..的是()A .∠ABC =60°B .如果AB =2,那么BM =4C .BC =2CMD .2ABM ADM S S △△30.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB :②GC 平分∠BGD ;③S 四边形BCDG =4CG 2;④∠BGE 的大小为定值.其中正确的结论个数为( )A .1B .2C .3D .431.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将ABCD沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH;③线段BF 的取值范围为3≤BF≤4;④当点H 与点A重合时,EF=A .①②③④B .①④C .①②④D .①③④32.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连结BE 分别交AC ,AD 于点F 、G ,连结OG ,则下列结论:①OG =12AB ;②与△EGD 全等的三角形共有5个;③S 四边形ODGF >S △ABF ;④由点A 、B 、D 、E 构成的四边形是菱形.其中正确的是( )A .①④B .①③④C .①②③D .②③④33.如图所示,等边三角形ABC 沿射线BC 向右平移到DCE ∆的位置,连接AD 、BD ,则下列结论:(1)AD BC =(2)BD 与AC 互相平分(3)四边形ACED 是菱形(4)BD DE ⊥,其中正确的个数是()A.1 B.2 C.3 D.434.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG12=BC;⑤四边形EFGH的周长等于2AB.其中正确的个数是( )A.1 B.2 C.3 D.435.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是③AF=CF;④△ABF的( )个.A.1 B.2 C.3 D. 436.如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A 的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:①若∠A=70°,则∠ABE=35°;②若点F是CD的中点,则S△ABE13=S菱形ABCD下列判断正确的是()A.①,②都对B.①,②都错C.①对,②错D.①错,②对第II卷(非选择题)请点击修改第II卷的文字说明二、填空题37.给出下列命题:①平行四边形的对角线互相平分;②对角线相等的四边形是矩形;③菱形的对角线互相垂直平分;④对角线互相垂直的四边形是菱形.其中_____是真命题(填序号).38.菱形的对角线互相垂直且相等._____(判断对错)39.矩形、菱形和正方形的对角线都具有的性质是_____.40.如图,在平面直角坐标系中,菱形ABCD的顶点A,C 在x轴上,顶点B的坐标为(2,3),那么顶点D的坐标是______________;41.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=8,E是AB的中点,则OE 的长等于_____.42.下列说法:①平行四边形对角相等,对边也相等;②菱形一组对角的和为180︒;③矩形对角线相等;④平行四边形是轴对称图形,对角线所在的直线是对称轴;⑤平行四边形对角线的交点到一组对边的距离相等,其中正确的序号为________________________.43.如图,在菱形ABCD中,AB=3cm,∠A=60°.点E,F分别在边AD,AB上,且DE=1cm.将△AEF沿EF翻折,使点A落在对角线BD上的点A'处,则A'BA'F=______.44.如图,四边形ABCD是菱形,点A,B,C,D的坐标分别是(m,0),(0,n),(1,0),(0,2),则mn=_____.45.如图,在菱形ABCD中,AB=4,CE=DE,AE⊥CD,E为垂足,则AE2+BE2=_____.46.如图,菱形ABCD的对角线相交于点O,过点A作AE CB⊥交CB的延长线于点E,连接OE .若菱形ABCD 的面积等于12,对角线4BD =,则OE 的长为_________.47.如图,菱形ABCD 的边长为1, 60ABC ∠=︒.,E F 分别是,BC BD 上的动点,且CE DF =,则AE AF +的最小值为_______.48.如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④2.BCDG S AB =四边形其中正确的有______.三、解答题49.如图,菱形ABCD 的周长为8,对角线BD =2,E 、F 分别是边AD ,CD 上的两个动点;且满足AE +CF =2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由.50.如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点,点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD 、AN .(1)求证:四边形AMDN 是平行四边形;(2)在点M 移动过程中:①当四边形AMDN 成矩形时,求此时AM 的长;②当四边形AMDN 成菱形时,求此时AM 的长.51.如图,在△ABC 中,AB=AC ,四边形ADEF 是菱形,求证:BE=CE .52.如图,点,E F 分别在菱形ABCD 的边,BC CD 上,BE DF =.求证:.AE AF =53.如图,在菱形ABCD 中,AEF 是等边三角形,E ,F 分别在BC ,CD 上,且EF CD =,求BAD ∠的度数.54.如图,已知菱形 ABCD 中,对角线 AC 、BD 相交于点 O ,过点 C 作 CE∥BD,过点 D 作 DE∥AC,CE 与 DE 相交于点 E .求证:四边形 CODE 是矩形;55.如图,在菱形ABCD 中,点E 在边CD 上,AE 与BD 相交于点F ,连接CF .(1)求证:AED BCF ∠=∠;(2)若60ABC ∠=︒,2AB =,求菱形ABCD 的面积.56.如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O .(1)尺规作图:以OA 、OD 为边,作矩形OAED (不要求写作法,但保留作图痕迹);(2)若在菱形ABCD 中,∠BAD =120 °,AD =2,求所作矩形OAED 的周长.57.如图所示,在四边形ABCD 中,AB DC =,E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,猜一猜EF 与GH 的位置关系,并证明你的结论.58.如图,在菱形ABCD 中,点,E F 分别是,CD BD 边上的点,12∠=∠.求证:(1)FCD EBD ≌;(2)CE BF =.59.如图,在菱形ABCD 中,E 为对角线BD 上一点,且AE ⊥AB ,连结CE .(1)求证:∠ECB =90°;(2)若AE ═ED =1时,求菱形的边长.60.如图1,四边形ABCD 是菱形,5AD =,过点D 作AB 的垂线DH ,垂足为H ,交对角线AC 于M ,连接BM ,且3AH =.(1)求DM 的长;(2)如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设PMB △的面积为(0)S S ≠,点P 的运动时间为t 秒,求S 与t 之间的函数关系式;(3)在(2)的条件下,当点P 在边AB 上运动时,是否存在这样的t 的值,使M PB ∠与BCD ∠互为余角?若存在,求出t 的值;若不存在,请说明理由.61.如图,菱形ABCD 的边长为2.2BD =,E ,F 分别是边AD ,CD 上的两个动点,且满足2AE CF +=.(1)求证:BDE BCF △≌△;(2)判断BEF 的形状,并说明理由.62.如图,在直角坐标系中,3,4OA OC ==,点B 是y 轴上一动点,以AC 为对角线作平行四边形ABCD .(1)求直线AC 的函数解析式;(2)设点(0)B m ,,记平行四边形ABCD 的面积为S ,求S 与m 的函数关系式;(3)当点B 在y 轴上运动,能否使得平行四边形ABCD 是菱形?若能,求出点B 的坐标;若不能,说明理由.63.将一个三角形的三个顶点分别关于各自对边所在直线作对称点,由这三个对称点确定的三角形叫做原三角形的“再生三角形”.(1)一个周长为L ,面积为S 的等边三角形的“再生三角形”的周长是______,面积是______;(2)已知ABC 中,30,ABC BA BC ∠=︒=,A B C '''是ABC 的“再生三角形”,其中点,A ',B ',C '分别是点A ,B ,C 的对称点.A B C '''是_______三角形;(3)已知Rt ABC 中,90CAB ∠=︒,A B C '''是Rt ABC 的“再生三角形”,其中点,,A B C '''分别是点A ,B ,C 的对称点,试猜想A B C '''与Rt ABC 的面积有怎样的关系,并加以证明;(4)小舒认为所有的三角形都存在“再生三角形”,小雪认为不是所有的三角形都存在“再生三角形”.你认为谁的判断是正确的?请说明理由.64.如图,已知正方形ABCD 的边长为3,菱形EFGH 的三个顶点E 、G 、H 分别在正方形的边AB 、CD 、DA 上,1AH =,连接CF .(1)当1DG =时,求证:菱形EFGH 为正方形;(2)设DG x =,请用x 的代数式表示△FCG 的面积;(3)当DG =时,求GHE ∠的度数. 65.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.。

19-2-1正比例函数+提升练习题 人教版八年级数学下册

19-2-1正比例函数+提升练习题 人教版八年级数学下册

正比例函数 提升练习题一、单选题1.函数2y x =-的图象一定经过下列四个点中的( )A .点()1,2B .点()2,1-C .点(12,1-) D .点(1,-12)2.下列函数中,y 是x 的正比例函数的是( )A .1y x = B .5y x =+ C .22y x x =+ D .2y x =-3.若()()222y k x k x =-+-是y 关于x 的正比例函数,则k 的值为( ) A .2± B .2- C .2 D .3 4.正比例函数的图象经过(),1M m ,()2,N n 两点,则mn 的值为( )A .2B .2-C .1D .4 5.当0k >时,正比例函数y kx =的图像大致是( )A .B .C .D .6.当0k >时,正比例函数y kx =的图像大致是( )A .B .C .D .7.已知点()14,y -,()22,y 都在过第一、三象限的同一条直线上,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .以上都有可能 8.函数y =2x ,y =-3x ,y =12x -的共同特点是( )A .图象位于同样的象限B .y 随x 的增大而减小C .y 随x 的增大而增大D .图象都过原点 二、填空题1.解答下列问题:(1) 正比例函数x y 21=的图象经过 象限,y 随x 的增大而 ; (2) 已知正比例函数x k y )3(-=的图象经过第二、第四象限,则k 的取值范围是 .(3)已知32)12(--=mx m y 是关于x 的正比例函数,且y 随x 的增大而减小,则m 的值为 .2.已知y 与x 成正比例,且当1x =时,=2y -,则y 与x 的函数表达式是______. 3.某人从甲地行走到乙地的路程S (千米)与时间t (时)的函数关系如图所示,那么此人行走12千米,所用的时间是_________(时).4.某人从甲地行走到乙地的路程S (千米)与时间t (时)的函数关系如图所示,那么此人行走12千米,所用的时间是_________(时).5.如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________.三、解答题1.已知y -2和x 成正比例,且当x =1时,当y =4。

北师大版八年级下册数学 第5章《分式与分式方程》实际应用提高练习(二)

北师大版八年级下册数学 第5章《分式与分式方程》实际应用提高练习(二)

北师大版八年级下册数学:第5章《分式与分式方程》实际应用提高练习(三)1.清明时节“雨后绿初见,择艾作青团”.“元祖”推出一款鲜花青团和一款芒果青团,鲜花青团每个售价是芒果青团的倍,4月份鲜花青团和芒果青团总计销售60000个.鲜花青团销售额为250000元,芒果青团销售额为280000元.(1)求鲜花青团和芒果青团的售价?(2)5月份正值“元祖”店庆,计划再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花青团个数的,且不多于鲜花青团的2倍,其中,鲜花青团每个让利3元销售,芒果青团售价不变,问:“元祖”如何设计生产方案?可使总销售额最大,并求出总销售额的最大值.2.为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?3.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?4.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?5.某车间加工24个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,求采用新工艺前每小时加工多少个零件?6.A,B两种机器人都被用来搬运化工原料,A型机器人每小时搬运的化工原料是B型机器人每小时搬运的化工原料的1.5倍,A型机器人搬运900kg所用时间比B型机器人搬运800kg所用时间少1小时.(1)求两种机器人每小时分别搬运多少化工原料?(2)某化工厂有8000kg化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时.现计划先由6个B型机器人搬运3小时,再增加若干个A型机器人一起搬运,请问至少要增加多少个A型机器人?7.为厉行节能减排,倡导绿色出行,我市推行“共享单车“公益活动某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的倍,B 型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?8.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?9.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不大于A类摊位数量的3倍,建造这90个摊位的总费用不超过10850元.则共有哪几种建造方案?(3)在(2)的条件下,哪种方案的总费用最少?最少费用是多少?10.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾分类垃圾桶,学校先用2700元购买了一批给班级使用的小号垃圾桶,再用3600元购买了一批放在户外永久使用的大号垃圾桶,已知每个大号垃圾桶的价格是小号垃圾桶的4倍,且购买的数量比小号垃圾桶少40个,求每个小号垃圾桶的价格是多少元?11.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?12.A、B两地距80千米,一辆公共汽车从A地去B地,15分钟后又从A地同方向开出一辆小汽车去B地,小汽车车速是公共汽车车速的2倍,结果小汽车比公共汽车早33分钟到达B地,求两车速度.13.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?14.12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.15.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运900件帐篷所用车辆与乙种货车装运600件帐篷所用车辆相等.求甲、乙两种货车每辆车可装多少件帐篷?参考答案1.解:(1)设每个芒果青团的售价为x元,则每个鲜花牛奶青团的售价为x元,依题意,得:,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴x=10.答:每个鲜花牛奶青团的售价为10元,每个芒果青团的售价为8元.(2)设生产芒果青团m个,则生产鲜花牛奶青团(12000﹣m)个,依题意,得:,解得:7200≤m≤8000.设总销售额w元,则w=(10﹣3)(12000﹣m)+8m=m+84000.∵1>0,∴w随m的增大而增大,∴当m=8000时,w取得最大值,最大值为92000元.即生产芒果青团8000个、鲜花牛奶青团4000个,使总销售额最大,总销售额的最大值为92000.2.解:设第一批口罩每只的进价是x元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:=2×,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.3.(1)设购进的第一批医用口罩有x包,则=﹣0.5.解得:x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y﹣4000﹣7500≤3500.解得:y≤3.答:药店销售该口罩每包的最高售价是3元.4.解:(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,依题意,得:=2×,解得:x=1.8,经检验,x=1.8是原方程的解,且符合题意,∴x+0.7=2.5,答:A品牌口罩每个进价为1.8元,B品牌口罩每个进价为2.5元.(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,依题意,得:(2﹣1.8)(6000﹣m)+(3﹣2.5)m≥1800,解得:m≥2000.答:最少购进B品牌口罩2000个.5.解:设采用新工艺前每小时加工的零件数为x个,根据题意可知:﹣1=,解得:x=8,经检验,x=8是原方程的解.答:采用新工艺前每小时加工8个零件.6.解:(1)设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运1.5xkg 化工原料,依题意,得:﹣=1,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.5x=300.答:A型机器人每小时搬运300kg化工原料,B型机器人每小时搬运200kg化工原料.(2)设增加y个A型机器人,依题意,得:200×5×6+(5﹣3)×300y≥8000,解得:y≥,∵y为正整数,∴y的最小值为4.答:至少要增加4个A型机器人.7.解:设A型共享单车的成本单价是x元,则B型共享单车的成本单价是(x+20)元,依题意,得:=×,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意.答:A型共享单车的成本单价是200元.8.解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工=(36﹣0.5m)天,依题意,得:0.5m+1.2(36﹣0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.9.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,依题意得:=×,解得:x=3,经检验,x=3是原方程的解,且符合题意,∴x+2=5.答:每个A类摊位的占地面积为5平方米,每个B类摊位的占地面积为3平方米.(2)设建造m个A类摊位,则建造(90﹣m)个B类摊位,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴共有3种建造方案,方案1:建造23个A类摊位,67个B类摊位;方案2:建造24个A类摊位,66个B类摊位;方案1:建造25个A类摊位,65个B类摊位.(3)方案1所需总费用为40×5×23+30×3×67=10630(元),方案2所需总费用为40×5×24+30×3×66=10740(元),方案3所需总费用为40×5×25+30×3×65=10850(元).∵10630<10740<10850,∴方案1的总费用最少,最少费用是10630元.10.解:设每个小号垃圾桶的价格是x元,则每个大号垃圾桶的价格是4x元,依题意,得:﹣=40,解得:x=45,经检验,x=45是原方程的解,且符合题意.答:每个小号垃圾桶的价格是45元.11.解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.12.解:设公共汽车的速度为x千米/时,则小汽车的速度为2x千米/时,由题意的可得:,解得:x=50,经检验:x=50是原方程的解,∴当x=50时,2x=100(千米/时),答:公共汽车的速度为50千米/时,则小汽车的速度为100千米/时.13.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≤200×120,解得:y≥140.答:乙队至少需要140天才能完工.14.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.15.解:设乙种货车每辆车可装x件帐篷,则甲种货车每辆车可装(x+20)件帐篷,依题意,得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴x+20=60.答:甲种货车每辆车可装60件帐篷,乙种货车每辆车可装40件帐篷.。

山东聊城市初中数学八年级下期末提高卷(含解析)

山东聊城市初中数学八年级下期末提高卷(含解析)

一、选择题1.(0分)[ID:10221]若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为()A.7B.6C.5D.42.(0分)[ID:10212]如图,矩形ABCD中,对角线AC BD、交于点O.若60,8AOB BD∠==,则AB的长为( )A.3B.4C.43D.53.(0分)[ID:10210]若代数式11xx+-有意义,则x的取值范围是( )A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 4.(0分)[ID:10207]如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,可添加的条件不正确的是 ( )A.AB=CD B.BC∥AD C.BC=AD D.∠A=∠C5.(0分)[ID:10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若8ab=,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.36.(0分)[ID:10141]12751348)的结果是()A.6B.3C.3D.127.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=2,那么 AC 的长等于()A.12B.16C.43D.82 8.(0分)[ID:10190]下列计算中正确的是()A.325+=B.321-=C.3333+=D.33 42 =9.(0分)[ID:10183]下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个10.(0分)[ID:10178]从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁11.(0分)[ID:10175]函数y=x√x+3的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.613.(0分)[ID:10162]一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .14.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.815.(0分)[ID :10154]在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题16.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.17.(0分)[ID :10328]如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度.18.(0分)[ID :10311]2(3)x -3-x ,则x 的取值范围是__________. 19.(0分)[ID :10298]函数1y x =-x 的取值范围是 . 20.(0分)[ID :10273]在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= .21.(0分)[ID :10271]如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___22.(0分)[ID :10267]如图,如果正方形ABCD 的面积为5,正方形BEFG 的面积为7,则ACE △的面积_________.23.(0分)[ID :10254]若一个多边形的内角和是900º,则这个多边形是 边形. 24.(0分)[ID :10253]某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时) 0 1 2 3 y (升)100928476由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0.25.(0分)[ID :10248]已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.三、解答题26.(0分)[ID :10415]我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA=PB ,PC=PD ,∠APB=∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)27.(0分)[ID :10383]已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是 BC 上的点,过点 H 作 EH ⊥BC ,交线段 OB 于点 E ,连结DH 交 CE 于点 F ,交 OC 于点 G .若 OE =OG , ①求证:∠ODG =∠OCE ; ②当 AB =1 时,求 HC 的长.28.(0分)[ID :10381]若一次函数y kx b =+,当26x -≤≤时,函数值的范围为119y -≤≤,求此一次函数的解析式?29.(0分)[ID :10360]求证:三角形的一条中位线与第三边上的中线互相平分. 要求:(1)根据给出的ABC ∆和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹; (2)据此写出已知,求证和证明过程.30.(0分)[ID :10338]如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是多少?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.D4.C5.D6.D7.B8.D9.C10.A11.B12.C13.A14.D二、填空题16.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF 是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD17.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E18.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤319.x>1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是20.5【解析】试题分析:∵四边形ABCD是矩形∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质21.5【解析】【分析】由是的垂直平分线可得AD=CD可得∠CAD=∠ACD利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B可得CD=BD可知CD=BD=AD=【详解】解:∵是的22.【解析】【分析】根据正方形的面积分别求出BCBE的长继而可得CE的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE-BC=-∴S△ACE==故23.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键24.5【解析】【分析】由表格可知开始油箱中的油为100L每行驶1小时油量减少8L据此可得y与t的关系式【详解】解:由题意可得:y=100-8t当y=0时0=100-8t解得:t=125故答案为:125【25.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x 的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征三、解答题26.27.28.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴AB=22AD BD=5.故它的腰长为5.故选C.2.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.3.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC ∥AD 时,由两组对边分别平行的四边形为平行四边形可知该条件正确; 当∠A=∠C 时,可求得∠B=∠D ,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD 时,该四边形可能为等腰梯形,故该条件不正确; 故选:C . 【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.5.D解析:D 【解析】 【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【详解】解:由题意可知:中间小正方形的边长为:-a b 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-=2()25169a b ∴-=-=3a b ∴-= 故选:D 【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.6.D解析:D 【解析】 【分析】 【详解】12===. 故选:D.7.B解析:B 【解析】 【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】 解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒, ∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.8.D解析:D【解析】分析:根据二次根式的加减法则对各选项进行逐一计算即可.详解:A 23B 23不是同类项,不能合并,故本选项错误;C 、33不是同类项,不能合并,故本选项错误;D 故选:D .点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.9.C解析:C【解析】【分析】根据勾股定理可得①中第三条边长为5∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确.【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.故选C .【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.10.A解析:A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.11.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.12.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C13.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE =0.4米,∴EC =BC ﹣0.4=2(米),∴DC (米),∴梯子的底部向外滑出AD =1.5﹣0.7=0.8(米).故选D .【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.15.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.二、填空题16.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF 是平行四边形再证明AC=DF 即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB =90° 或∠BAC =45°或∠B =45°【解析】【分析】先证明四边形ADCF 是平行四边形,再证明AC=DF 即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF 是正方形,理由:∵E 是AC 中点,∴AE=EC ,∵DE=EF ,∴四边形ADCF 是平行四边形,∵AD=DB ,AE=EC ,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则17.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E解析:75°.【解析】试题分析:根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.解:在矩形ABCD中,∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,∴△BAE为等腰直角三角形,∴BA=BE.∴BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°.故答案为75°.考点:矩形的性质;等边三角形的判定与性质.18.【解析】试题解析:∵=3﹣x ∴x-3≤0解得:x≤3解析:3x ≤【解析】 试题解析:∵()23x -=3﹣x ,∴x -3≤0,解得:x ≤3, 19.x >1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是解析:x >1【解析】【分析】【详解】解:依题意可得10x ->,解得1x >,所以函数的自变量x 的取值范围是1x > 20.5【解析】试题分析:∵四边形ABCD 是矩形∴OA=OB 又∵∠AOB=60°∴△AOB 是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质解析:5。

八年级数学下册考点知识与题型专题讲解与提升练习20 利用勾股定理求梯滑落高度问题

八年级数学下册考点知识与题型专题讲解与提升练习20 利用勾股定理求梯滑落高度问题

八年级数学下册考点知识与题型专题讲解与提升练习专题20 利用勾股定理求梯滑落高度问题一、单选题1.用梯子登上20m高的建筑物,为了安全要使梯子的底面距离建筑物15m,至少需要()m长的梯子.A.20 B.25 C.15 D.52.如图,一架长25米的梯子AB,斜靠在竖直的墙上,梯底端离墙7米,若梯子顶端下滑4米至C点,那么梯子底端将向左滑动()米.A.4 B.6 C.8 D.103.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动()A.5m B.8m C.13m D.15m4.如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A(取取 1.8)沿墙下滑0.5m,那么梯子底端B外移了()A.0.8m B.1.5m C.0.9m D.0.4m5.如图,一根长25m 梯子,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端下滑4m,那么梯足将滑动()A.15m B.9m C.8m D.7m6.一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动()A.0m B.1m C.2m D.3m7.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米8.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为5m,梯子的顶端B到地面的距离为12m,现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于6m ,同时梯子的顶端B 下降至B ',那么BB '( )A .小于1mB .大于1mC .等于1mD .小于或等于1m9.如图,斜靠在墙上的一根竹竿,5=AB m ,3OB m =.若B 端沿地面OB 方向外0.5m ,则A 端沿垂直于地面AC 方向下移()A .等于0.5mB .小于0.5mC .大于0.5mD .不确定10.如图所示,梯子AB 斜靠在墙面上,AO⊥BO,AO =BO =2米,当梯子的顶点A 沿AO 方向向下滑动以a (0<a <2)米时,梯足B 沿OB 方向滑动b (0<b <2)米,则a 与b 的大小关系是( )A .a =bB .a <bC .a >bD .不确定AO 米.若梯子的顶端沿墙面11.如图,一个梯子AB斜靠在一竖直的墙AO上,测得8向下滑动 2米,这时梯子的底端在水平的地面也恰好向外移动 2米,则梯子AB的长度为( )A.10米B.6米C.米 7 D.8米12.已知直角三角形的两边长分别为3,5,则第三边长为()A.4 B.4C D.413.一架2.5米长的梯子,斜立在一竖直的墙上,这时这架梯子的底端距墙底端0.7米,则这架梯子的顶端距离地面的高度为()A.0.7米B.2.5米C.2.4米D.2.0米14.一云梯AB长25米,如图那样斜靠在一面墙上,云梯底端离墙7米,如果云梯的顶端下滑了4米,那么它的底端在水平方向滑动BB'的长是()A.10米B.8米C.6米D.4米15.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.2.7米B.2.5米C.2米D.1.8米16.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5 B.1 C.1.5 D.217.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为()A.3.2m B.3.5m C.3.9m D.4m18.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′()A.小于1m B.大于1m C.等于1m D.小于或等于1m19.如图,梯子AB靠在墙上,梯子的顶端A到墙根O的距离为24m,梯子的底端B到墙根O的距离为7m,一不小心梯子顶端A下滑了4米到C,底端B滑动到D,那么BD的长是()A.2m B.4m C.6m D.8m20.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是()A.0.6米B.0.7米C.0.8米D.0.9米21.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将为1.5米,则小巷的宽为()梯子斜靠在右墙时,梯子顶端到地面的距离A DA.2.5米B.2.6米C.2.7米D.2.8米22.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2 米,则小巷的宽度为()A.1.5 米B.2.2 米C.2.4 米D.2.5 米23.如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面距离为7m,现将梯子的底端A向外移到A',使梯子的底端A'到墙根O距离为3m,同时梯子顶端B下降至B',那么BB' ()A.等于1m B.小于1m C.大于1m D.以上都不对24.如图,一根长5米的竹竿AB斜靠在竖直的墙上,这时AO为4米,若竹竿的顶端A沿墙下滑2米至C处,则竹竿底端B外移的距离BD()A.小于2米B.等于2米C.大于2米D.以上都不对AO 米.若梯子的顶端沿墙下25.如图,一个梯子AB斜靠在一竖直的墙AO上,测得4滑1米,这时梯子的底端也恰好外移1米,则梯子AB的长度为()A.5米B.6米C.3米D.7米26.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的底部在水平方向上向右滑动了8米,那么梯子的顶端下滑()米.A.4米B.6米C.8米D.10米二、填空题27.使用13米长的梯子登建筑物,如果梯子的底部离建筑物的底部的距离不能小于5米,问该梯子最多可登上_____米高的建筑物.28.《九章算术》是我国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种,共收有246个数学问题,分为九章.在第九章“勾股”中有一题目:今有垣高一丈.依木于垣,上与垣齐.引木却行四尺,其木至地,问木长几何?意思是:=尺),一根木棒靠于墙上,木棒上端与墙头齐平,若木棒下端向一道墙高一丈(1丈10后退,则木棒上端会随着往下滑,当木棒下端向后退了四尺时,木棒上端恰好落到地上,则木棒长______________________尺.29.某人要登上6m高的建筑物,为确保安全,梯子底端要离开建筑物2.5m,且顶端不低于建筑物顶部,则梯子长应不少于_________m.30.如图:一架云梯AB长13米,底端离墙的距离BC为5米,当梯子下滑到DE时,AD2=米,则BE=______米.31.长是4米的梯子搭在墙上,与地面成45°角,作业时调整为60°角,则梯子的顶端沿墙面升高了______米32.如图,一架梯子AB斜靠在竖直的墙AC上,这时梯子底部B到墙底端的距离为0.7米;当梯子顶部A沿墙下移0.4米到A'处时,梯子底部B将会外移0.8米达到B′处,则梯子AB长为_________米.33.如图所示,一个梯子AB长2.5米,梯子顶端A靠墙AC上,这时梯子下端B与墙角C 距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,则梯子顶端A下滑了__________米.34.如图,一架13m长的梯子AB斜靠在一竖直的墙AC上,这时AC为12m.如果子的顶端A沿墙下滑7m,那么梯子底端B向外移___m.35.如图所示,是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm)则两圆孔中心A和B的距离是__________mm.36.如图,一架长25m的云梯,斜靠在墙上,云梯底端在点A处离墙7米,如果云梯的底部在水平方向左滑动8米到点B 处,那么云梯的顶端向下滑了_____m .37.如图,一架15m 长的梯子AB 斜靠在一竖直的墙OA 上,这时梯子的顶端A 离地面距离OA 为12m ,如果梯子顶端A 沿墙下滑3m 至C 点,那么梯子底端B 向外移至D 点,则BD 的长为___m .38.一架长为10m 的梯子,斜靠在竖直的墙上,这时梯子的底端与墙的距离为6m ,如果梯子顶端沿墙下滑2m ,那么梯子底端将滑动_____m .39.如图,一个梯子AB 长为5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 间的距离为3米,梯子滑动后停在DE 的位置上,测得DB 的长为1米,则梯子顶端A 下落了__________米.40.一架梯子AB 米,如图那样斜靠在一面墙上(90AOB ∠=︒),梯子底端离墙1米(1OB =米),如果云梯的顶端下滑了1米(1AA '=米),那么它的底端在水平方向滑动的距离BB '的边长是_______米.41.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为了____________米.42.如图,一架长2.5m的梯子斜靠在垂直的墙AO上,这时AO为2m.如果梯子的顶端A 沿墙下滑0.5m,那么梯子的底端B向外移动_________m.43.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑_____米.三、解答题44.如图,一个梯子AB长25米,顶端A靠在墙AC上(墙与地面垂直),这时梯子下端B与墙角C距离为7米.(1)求梯子顶端A与地面的距离AC的长;(2)若梯子的顶端A下滑到E,使4AE=,求梯子的下端B滑动的距离BD的长.45.如图,滑杆在机械槽内运动,ACB∠为直角,已知滑杆AB长2.5米,顶端A在AC 上运动,滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米(D处)时,求滑杆顶端A下滑多少米(E处).46.如图,学校要把宣传标语掛到教学楼的顶部D处.已知楼顶D处离地面的距离DA为8m,云梯的长度为9m,为保证安全,梯子的底部和墙基的距离AB至少为3m,云梯的顶部能到达D处吗?为什么?47.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?48.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,梯子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由.49.一架云梯AB斜靠在墙上,梯子顶端距墙脚的距离AC=24米,梯子底端距墙脚的距离BC=7米.(1)求梯子的长度.(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向也滑动4米吗?为什么?50.如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?51.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将为1.5米.梯子斜靠在右墙时,梯子顶端到地面的距离A D(1)梯子AB的长是多少?(2)求小巷的宽.52.生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子的13,则梯子比较稳定.现有一长度为6 m的梯子,当梯子稳定摆放时,它的顶端能达到多高?53.如图,一架25m的云梯AB斜靠在一竖直的墙AO上,这时AO为24m.(1)求这个梯子的底端距墙的垂直距离有多远;(2)当BD=8m,且AB=CD时,AC的长是多少米;(3)如果梯子AB的底端向墙一侧移动了2米,那么梯子的顶端向上滑动的距离是多少米?54.一架梯子长2.5米,如图斜靠在一面墙上,梯子底端离墙0.7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了0.4米,那么梯子的底部在水平方向也滑动了0.4米吗?55.如图,一梯子AB斜靠在与地面垂直的墙上,顶端A到墙角C的距离AC=8米,点P 为梯子的中点,(1)若梯子的顶端A下滑2米,底端B恰好向外滑行2米,求梯子AB的长;(2)若梯子AB沿墙下滑,则在下滑的过程中,点P到墙角C的距离是否发生变化?并说明理由.56.如图,一根长10米的木棒(AB),斜靠在与地面(ON)垂直的墙(OM)上,OA=8.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=2米时,求BB′的长.57.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?58.如图,一架25米长的梯子AB,斜靠在竖直的墙MO上,梯子底端B到墙底端O的距离为7米.(1)若梯子的顶端A沿墙面下滑4米,那么底端B将向外移动多少米?请写出解题过程.(2)在梯子AB滑动过程中,AB上是否存在点P,它到墙底端O的距离保持不变?若存在,请求出OP的长;如果不存在,请说明理由.AB长10米如图那样斜靠在一面墙上,梯子底端()B离墙6米.59.一架梯子()(1)求这架梯子的顶端()A到地面的距离;(2)如果梯子的顶端下滑了4米,那么它的底部在水平方向滑动了多少米?60.如图,一根长AB,斜靠在竖直的墙AC上,且棒顶端与地面的距离为9米,当木棒A端沿墙下滑至A'处时,B端沿地面向右滑至B'处.(1)求CB的长;(2)当AA'=1米时,求BB'的长.(结果保留根号)61.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB 是多少?62.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米。

南京师范大学附中树人学校初中数学八年级下期中提高练习(培优练)

南京师范大学附中树人学校初中数学八年级下期中提高练习(培优练)

一、选择题1.(0分)[ID :9931]下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形 2.(0分)[ID :9913]一次函数1y ax b 与2y bx a 在同一坐标系中的图像可能是( ) A . B .C .D .3.(0分)[ID :9900]如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2√3C .3√3D .6 4.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++5.(0分)[ID :9892]正方形具有而菱形不具有的性质是( )A .四边相等B .四角相等C .对角线互相平分D .对角线互相垂直6.(0分)[ID :9883]如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是( )A.203B.252C.20D.257.(0分)[ID:9873]若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.﹣2C.4D.﹣48.(0分)[ID:9862]如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.419.(0分)[ID:9856]如图,四边形ABCD是轴对称图形,且直线AC是否对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④10.(0分)[ID:9853]如图1,∠DEF=25°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕GF折叠成图3,则∠CFE的度数为()A.105°B.115°C.130°D.155°11.(0分)[ID:9850]如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.512.(0分)[ID :9919]甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有( )A .1个B .2个C .3个D .4个13.(0分)[ID :9918]如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <214.(0分)[ID :9840]要使代数式23x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x > C .3x ≥ D .3x ≤15.(0分)[ID :9925]已知一次函数y =﹣x +m 和y =2x +n 的图象都经过A (﹣4,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( )A .48B .36C .24D .18二、填空题16.(0分)[ID :10030]如图,已知在Rt △ABC 中,AB =AC =3√2,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.17.(0分)[ID :10020]若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限.18.(0分)[ID :10016]如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,且另外两条边长均为无理数,满足这样条件的点C 共__个.19.(0分)[ID :9985]如图,在矩形ABCD 中,AD=9cm ,AB=3cm ,将其折叠,使点D 与点B 重合,则重叠部分(△BEF)的面积为_________cm 2.20.(0分)[ID :9976]如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.21.(0分)[ID :9974]小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m ,当它把绳子的下端拉开旗杆4m 后,发现下端刚好接触地面,则旗杆的高为________22.(0分)[ID :9963]已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.23.(0分)[ID :9951]矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.24.(0分)[ID :9950]在平行四边形ABCD 中,若∠A+∠C=140°,则∠B= .25.(0分)[ID :9944]2a =3b =,用含,a b 0.54,结果为________.三、解答题26.(0分)[ID :10128]如图,已知AC 是矩形ABCD 的对角线,AC 的垂直平分线EF 分别交BC 、AD 于点E 和F ,EF 交AC 于点O .(1)求证:四边形AECF 是菱形;(2)若AB =6,AD =8,求四边形AECF 的周长.27.(0分)[ID :10126]某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10到25人,甲乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给每位游客七五折优惠,乙旅行社表示可以先免去一位游客的旅游费用,然后给予其余游客八折优惠.若单位参加旅游的人数为x 人,甲乙两家旅行社所需的费用分别为y 1和y 2.(1)写出y 1,y 2与x 的函数关系式并在所给的坐标系中画出y 1,y 2的草图; (2)根据图像回答,该单位选择哪家旅行社所需的费用最少?28.(0分)[ID :10103]ABC ∆在平面直角坐标系中的位置如图所示,先将ABC ∆向右平移3个单位,再向下平移1个单位到111A B C ∆,111A B C ∆和222A B C ∆关于x 轴对称.(1)画出111A B C ∆和222A B C ∆;(2)在x 轴上确定一点P ,使1BP A P +的值最小,试求出点P 的坐标.29.(0分)[ID :10101]12310101023430.(0分)[ID :10061](1)用>=<、、填空 32 21②23 3252 232(2)观察.上式,请用含1)1,(,1n n n n -+≥的式子,把你发现的规律表示出来,并证明结论的正确性.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.A2.C3.C4.A5.B6.D7.B8.C9.B10.A11.C12.A13.D14.B15.C二、填空题16.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【17.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一18.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ABC使点C在格点上满足这样条件的点C共8个故答案为819.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B20.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF=AC =15∴DF=DE﹣E21.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练22.3【解析】【分析】根据在直角三角形中斜边上的中线等于斜边的一半得到BM=DM=5根据等腰三角形的性质得到BN=4根据勾股定理得到答案【详解】解:连接BMDM∵∠ABC =∠ADC=90°M是AC的中点23.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB24.110°【解析】试题解析:∵平行四边形ABCD∴∠A+∠B=180°∠A=∠C∵∠A+∠C=140°∴∠A=∠C=70°∴∠B=110°考点:平行四边形的性质25.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可.详解:A选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.2.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y1的图象可知a< 0,b> 0;由y2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y1的图象可知a< 0,b> 0;由y2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y1的图象可知a> 0,b> 0;由y2的图象可知a<0,b<0,两结论相矛盾,故错误;故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k及b值的关系是解题的关键.3.C解析:C【解析】【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,AD=3,CM⊥AD,∴DM=12∴CM=√CD2−DM2=3√3,∴PA+PM=PC+PM=CM=3√3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.4.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -的正负,再根据2a 的性质计算即可.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()()2212a b +--()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】本题结合数轴上点的位置考查了2a 的计算性质,熟练掌握该性质是解答的关键. 5.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B .6.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB 的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.7.B解析:B【解析】【分析】利用待定系数法求出m ,再结合函数的性质即可解决问题.【详解】解:∵y =mx (m 是常数,m≠0)的图象经过点A (m ,4),∴m 2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.C解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE,进而利用勾股定理得出AE即可.【详解】∵菱形ABCD,∴CD=AD=5,CD∥AB,∴CE=CD﹣DE=5﹣1=4,∵BE⊥CD,∴∠CEB=90°,∴∠EBA=90°,在Rt△CBE中,BE3==,在Rt△AEB中,AE==故选C.【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD.9.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【详解】解:如图,因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.10.A解析:A【解析】【分析】由矩形的性质可知AD∥BC,由此可得出∠BFE=∠DEF=25°,再根据翻折的性质可知每翻折一次减少一个∠BFE的度数,由此即可算出∠CFE度数.【详解】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=25°.由翻折的性质可知:图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,图3中,∠CFE=∠BFC-∠BFE=105°.故选:A.【点睛】本题考查翻折变换以及矩形的性质,解题的关键是找出∠CFE=180°-3∠BFE.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.11.C【解析】【分析】连接BD ,根据菱形的性质可得AC ⊥BD ,AO=12AC ,然后根据勾股定理计算出BO 长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD 可得答案. 【详解】连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=,∵AC =6,∴AO =3, ∴2594BO =-=, ∴DB =8,∴菱形ABCD 的面积是11682422AC DB ⨯⋅=⨯⨯=, ∴BC ⋅AE =24, 245AE =, 故选C.12.A解析:A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确, 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误, 乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键. 13.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x>2时,kx+b<ax,故选C.点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.14.B解析:B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-3>0,解得x>3.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.15.C解析:C【解析】【分析】把A(﹣4,0)分别代入一次函数y=﹣x+m和y=2x+n中,求得m和n的值,根据所得的两个解析式,求得点B和点C的坐标,以BC为底,点A到BC的垂线段为高,求出△ABC的面积即可.【详解】把点A(﹣4,0)代入一次函数y=﹣x+m得:4+m=0,解得:m=﹣4,即该函数的解析式为:y=﹣x﹣4,把点A(﹣4,0)代入一次函数y=2x+n得:﹣8+n=0,解得:n=8,即该函数的解析式为:y=2x+8,把x=0代入y=﹣x﹣4得:y=0﹣4=﹣4,即B(0,﹣4),把x=0代入y=2x+8得:y=0+8=8,即C(0,8),则边BC的长为8﹣(﹣4)=12,点A到BC的垂线段的长为4,S△ABC11242=⨯⨯=24.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法求一次函数的解析式是解题的关键.二、填空题16.3×122018【解析】【分析】首先根据勾股定理得出BC 的长进而利用等腰直角三角形的性质得出DE 的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:3×(12)2018 【解析】 【分析】 首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出EI KI =PF EF =12,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt △ABC 中,AB =AC =3√2,∴∠B =∠C =45°,BC =√2AB =6,∵在△ABC 内作第一个内接正方形DEFG ;∴EF =EC =DG =BD ,∴DE =13BC =2, ∵取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,∴EIKI =PF EF=12, ∴EI =12KI =12HI ,∵DH =EI ,∴HI =12DE =(12)2﹣1×3, 则第n 个内接正方形的边长为:3×(12)n ﹣1. 故第2019个内接正方形的边长为:3×(12)2018. 故答案是:3×(12)2018.考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.17.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一解析:一【解析】∵一元二次方程x2-2x-m=0无实数根,∴△=4+4m<0,解得m<-1,∴m+1<0,m-1<0,∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.故答案是:一.18.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ABC使点C在格点上满足这样条件的点C共8个故答案为8解析:4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共 8个.故答案为8.19.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B解析:5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D 和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=5,所以△BEF的面积=12BF×AB=12×5×3=7.5.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.20.1【解析】【分析】根据三角形中位线定理求出DE 根据直角三角形的性质求出EF 计算即可【详解】解:∵DE 分别为ABAC 的中点∴DE =BC =25∵AF ⊥CFE 为AC 的中点∴EF =AC =15∴DF =DE ﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,计算即可.【详解】解:∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =2.5, ∵AF ⊥CF ,E 为AC 的中点,∴EF =12AC =1.5, ∴DF =DE ﹣EF =1,故答案为:1.【点睛】 本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.21.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练 解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x 米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x ,解得:7.5x=.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理.22.3【解析】【分析】根据在直角三角形中斜边上的中线等于斜边的一半得到BM=DM=5根据等腰三角形的性质得到BN=4根据勾股定理得到答案【详解】解:连接BMDM∵∠ABC=∠ADC=90°M是AC的中点解析:3【解析】【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到BM=DM=5,根据等腰三角形的性质得到BN=4,根据勾股定理得到答案.【详解】解:连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=12AC=5,∵N是BD的中点,∴MN⊥BD,∴BN=12BD=4,由勾股定理得:MN=22BM BN-=2254-=3,故答案为:3.【点睛】此题主要考查矩形性质、等腰三角形的性质及勾股定理的应用,解题的关键是熟知直角三角形中,斜边上的中线等于斜边的一半.23.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD∴OA=OB,∵∠A0B=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.24.110°【解析】试题解析:∵平行四边形ABCD∴∠A+∠B=180°∠A=∠C∵∠A+∠C=140°∴∠A=∠C=70°∴∠B=110°考点:平行四边形的性质解析:110°【解析】试题解析:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.考点:平行四边形的性质.25.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型解析:3 10 ab【解析】化简后,代入a,b即可.【详解】====a=b=,301=ab故答案为:310ab.【点睛】化简变形,本题属于中等题型.三、解答题26.(1)见解析;(2)25【解析】【分析】(1)根据四边相等的四边形是菱形即可判断;(2)设AE=EC为x,利用勾股定理解答即可.【详解】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∵EF垂直平分AC,∴AF=FC,AE=EC,∴∠FAC=∠FCA,∴∠FCA=∠ACB,∵∠FCA+∠CFE=90°,∠ACB+∠CEF=90°,∴∠CFE=∠CEF,∴CE=CF,∴AF=FC=CE=AE,∴四边形AECF是菱形.(2)设AE=EC为x,则BE=(8-x)在Rt△ABE中,AE2=AB2+BE2,即x2=62+(8-x)2,解得:x=254,所以四边形AECF 的周长=254×4=25. 【点睛】 考查矩形的性质、线段的垂直平分线的性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.27.(1)1150y x =,2160160y x =-,图象见解析;(2)当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【解析】【分析】(1)根据题意可以直接写出甲乙旅行社收费1y 、2y (元)与参加旅游的人数x (人)之间的关系式,再画出图象;(2)根据题意,可以列出相应的不等式,从而可以得到该单位选择哪一家旅行社支付的旅游费用较少.【详解】解:(1)由题意可得,12000.75150y x x =⨯=,即甲旅行社收费1y (元)与参加旅游的人数x (人)之间的关系式是1150y x =; 22000.80(1)160160y x x =⨯-=-,即乙旅行社收费2y (元)与参加旅游的人数x (人)之间的关系式是2160160y x =-;(2)当150160(1)x x =-时,解得,16x =,即当16x =时,两家费用一样;当150160(1)x x >-时,解得,16x <,即当1016x ≤<时,乙社费用较低;当150160(1)x x <-时,解得,16x >,即当1625x <时,甲社费用较低;答:当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.28.(1)详见解析;(2)3,05P ⎛⎫- ⎪⎝⎭【解析】【分析】(1)△ABC 向右平移3个单位,再向下平移1个单位到△A 1B 1C 1,△A 1B 1C 1和△A 2B 2C 2关于x 轴对称,据此作图即可;(2)依据轴对称的性质,连接BA 2,交x 轴于点P ,此时BP+A 1P 的值最小,依据直线BA 2的解析式,即可得到点P 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求;(2)如图所示,连接BA 2,交x 轴于点P ,则点P 即为所求;设直线BA 2的解析式为y kx b =+,由B (-3,2),A 2(3,-3)可得,3233k b k b -+=⎧⎨+=-⎩,解得5612k b ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴直线BA 2的解析式为y=5162x =-- 当y=0时,51062x --=解得35x =- ∴305P ⎛⎫- ⎪⎝⎭,【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点. 29.【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式123234⎛=+-= ⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.30.(1)<,<,<,<,<;(2<【解析】【分析】(1)首先用1除以每个数,求出商是多少;再比较出它们商的大小;然后根据商越大,则原来的数就越小,判断出它们的大小关系即可;(2)根据(1<【详解】解:(1)=1=1>1;2==∵>∴22=2=2>+2<2=2=2>2==>故答案为:<;<;<;<;<;(2<证明:因为22n =+ (24n =②②-①得(222n -=-因为1n ≥<n <所以(220->n>>200∴>【点睛】此题主要考查了实数大小的比较,二次根式的性质,以及不等式的性质,解答此题的关键是要明确:被除数一定时,商越大,则除数越小.。

北师大版八年级数学下册第一二章提高练习(有答案)

北师大版八年级数学下册第一二章提高练习(有答案)

第一二章提高练习解答题1.作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)2.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.3.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.4.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.5.解不等式﹣≥x﹣,并把它的解集在数轴上表示出来.6.解不等式组:并将解集在数轴上表示.7.已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.求证:①BM=DM;②MN⊥BD.8.如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.9.如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.10.已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.13.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.14.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.15.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.16.在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10cm,试求出△P AO的周长.(不用写过程,直接写出答案)(2)若AB=AC,∠BAC=110°,试求∠P AO的度数.(不用写过程,直接写出答案)(3)在(2)中,若无AB=AC的条件,你能求出∠P AO的度数吗?若能,请求出来;若不能,请说明理由.17.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.18.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.19.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?20.某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?22.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.23.如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.24.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.25.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.26.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;(3)当t为何值时,△BCP为等腰三角形?参考答案1.解:①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;③连接BF,则直线BF即为∠ABC的角平分线;⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于H,G两点;⑥连接GH交BF延长线于点P,则P点即为所求.2.解:①以A为圆心,以任意长为半径画圆,分别交铁路a和公路b于点B、C;②分别以B、C为圆心,以大于BC为半径画圆,两圆相交于点D,连接AD,则直线AD即为∠BAC的平分线③连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于E、F,连接EF,则直线EF即为线段MN的垂直平分线;④直线EF与直线AD相交于点O,则点O即为所求点.同法点O′也满足条件.故答案为O或O′处.3.解:如图所示,点P是AB线段的垂直平分线与直线m的交点.4.解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.5.解:原不等式去分母得:2x﹣4﹣9x﹣15≥6x﹣4+2x,移项得:2x﹣9x﹣6x﹣2x≥﹣4+4+15,合并同类项的:﹣15x≥15,解得x≤﹣1.解集在数轴上表示为:6.解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.7.(1)证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC,∴BM=DM;(2)∵点N是BD的中点,BM=DM,∴MN⊥BD.8.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∴110°+∠B+∠C=180°,∴x+y=70°.∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴∠EAD=∠B,∠F AC=∠C.∴∠DAF=∠BAC﹣(x+y)=110°﹣70°=40°.(2)∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).9.解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.10.解:①根据y1=2y2,∴6﹣x=2×2+14x,解得:x=.②由y1比y2小﹣3,∴y1=y2﹣(﹣3),∴6﹣x=2+7x﹣(﹣3),解得:x=.③由y1与y2互为相反数,∴y1+y2=0,∴6﹣x+7x+2=0,解得:x=.11.解:,由①得:x>﹣,由②得:x<2a,则不等式组的解集为:﹣<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.12.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.13.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.14.证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.15.(1)证明:∵CF⊥AB,垂足为F,M为BC的中点,∴MF=BM=CM=BC,∵ME=MF,∴ME=BM=CM=BC,∴BE⊥AC;(2)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM,∴∠BMF+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB)=360°﹣2×130°=100°,在△MEF中,∠FME=180°﹣100°=80°.16.解:(1)∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴△P AO的周长=AP+PO+AO=BO+PO+OC=BC,∵BC=1Ocm,∴△P AO的周长10cm;(2)∵AB=AC,∠BAC=110°,∴∠B=∠C=(180°﹣110°)=35°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B=35°,∠CAO=∠C=35°,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=110°﹣35°﹣35°=40°;(3)能.理由如下:∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B,∠CAO=∠C,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=∠BAC﹣(∠B+∠C)=110°﹣70°=40°.17.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.18.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.19.解:(1)设甲种商品每件的进价是x元,乙两种商品每件的进y元.,解得:,答:甲种商品每件的进价是120元,乙两种商品每件的进100元;(2)设甲种商品可购进a件.(145﹣120)a+(120﹣100)(40﹣a)≥870解得:a≥14,答:甲种商品至少可购进14件.20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.21.解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.22.解:(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:600x+450(10﹣x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:45x+30(10﹣x)≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.23.解:(1)根据图象可得不等式2x﹣4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=﹣x+5;(3)把x=0代入y=﹣x+5得:y=5,所以点B(0,5),把y=0代入y=﹣x+5得:x=2,所以点A(5,0),把y=0代入y=2x﹣4得:x=2,所以点D(2,0),所以DA=3,所以四边形BODC的面积=.24.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.25.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.26.解:(1)△ABC中,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴t=12÷2=6(秒);(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴t=13÷2=6.5(秒),∴CP=AB=×10=5cm;(3)△BCP为等腰三角形时,分三种情况:①如果CP=CB,那么点P在AC上,CP=6cm,此时t=6÷2=3(秒);如果CP=CB,那么点P在AB上,CP=6cm,此时t=5.4(秒)(点P还可以在AB上,此时,作AB边上的高CD,利用等面积法求得CD=4.8,再利用勾股定理求得DP=3.6,所以BP=7.2,AP=2.8,所以t=(8+2.8)÷2=5.4(秒))②如果BC=BP,那么点P在AB上,BP=6cm,CA+AP=8+10﹣6=12(cm),此时t =12÷2=6(秒);③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13(cm),t=13÷2=6.5(秒);综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.。

人教版数学八年级下册《正比例函数》提升练习题

人教版数学八年级下册《正比例函数》提升练习题

正比例函数一、选择题(每小题4分,共12分)1.正比例函数y=2x的图象所过的象限是( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.函数y=2x,y=-3x,y=-x的共同特点是( )A.图象位于同样的象限B.y随x的增大而减小C.y随x的增大而增大D.图象都过原点3.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是( )A.k<1B.k>1C.k≤1D.k≥1二、填空题(每小题4分,共12分)4.(2013·钦州中考)请写出一个图象经过第一、三象限的正比例函数的解析式.5.(2012·上海中考)已知正比例函数y=kx(k≠0),点(2,-3)在函数图象上,则y随x的增大而(增大或减小).6.在正比例函数y=(m-8)x中,如果y随自变量x的增大而减小,那么正比例函数y=(8-m)x的图象在第象限.三、解答题(共26分)7.(8分)已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤,且y随x的减小而减小,求k的值.8.(8分)已知函数y=(m-1)x|m|-2,当m为何值时,正比例函数y随x 的增大而增大?【拓展延伸】9.(10分)正比例函数y=2x的图象如图所示,点A的坐标为(2,0),y=2x的函数图象上是否存在一点P,使△OAP的面积为4,如果存在,求出点P的坐标,如果不存在,请说明理由.答案解析1.【解析】选A.∵正比例函数y=2x中,k=2>0,∴此函数的图象经过第一、三象限.2.【解析】选D.三个函数都是正比例函数,图象都是过原点的直线,而y=2x与其他两个函数的比例系数的符号不同,所以它们经过的象限及增减性有所不同.3.【解析】选B.∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.4.【解析】设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过第一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).答案:y=x(答案不唯一)5.【解析】∵点(2,-3)在正比例函数y=kx(k≠0)的图象上,∴2k=-3,解得:k=-,∴正比例函数解析式是:y=-x,∵k=-<0,∴y随x的增大而减小.答案:减小6.【解析】因为在正比例函数y=(m-8)x中,y的值随自变量x的增大而减小,所以m-8<0,所以8-m>0,所以函数y=(8-m)x的图象在第一、三象限.答案:一、三7.【解析】∵y随x的减小而减小,∴k>0,则有x=-3时,y=-1;x=1时,y=,所以点(-3,-1),(1,)在函数y=kx(k是常数,k≠0)的图象上,所以-1= k·(-3),所以k=.8.【解析】因为此函数是正比例函数,所以|m|-2=1,所以m=±3,因为正比例函数y随x的增大而增大,所以m-1>0,所以m=-3不合题意,应舍去所以m=3时,正比例函数y随x的增大而增大.9.【解析】因为点A的坐标为(2,0),所以OA=2,设点P的坐标为(n,m),因为△OAP的面积为4,所以×OA×|m|=4,即×2×|m|=4,所以m=±4,当m=4时,把x=n,y=m=4代入y=2x,得4=2n,所以n=2,此时点P的坐标为(2,4),当m=-4时,把x=n,y=m=-4代入y=2x,得-4=2n,所以n=-2,此时点P的坐标为(-2,-4),综上所述,存在点P的坐标为(2,4)或(-2,-4).。

南京师范大学附中树人学校八年级数学下册第二十章《数据的分析》提高练习(培优练)

南京师范大学附中树人学校八年级数学下册第二十章《数据的分析》提高练习(培优练)

一、选择题1.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图: 编号 1 2 3 4 5 方差 平均成绩 得分3834■3740■37那么被遮盖的两个数据依次是( ) A .35 2 B .36 4C .35 3D .36 3B解析:B 【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案. 【详解】 解:这组数据的平均数是37,∴编号3的得分是:375(38343740)36⨯-+++=;方差是:222221[(3837)(3437)(3637)(3737)(4037)]45-+-+-+-+-=;故选:B . 【点睛】本题考查平均数和方差的定义,一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,22C解析:C 【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21, 第15个数和第16个数都是22,所以中位数是22. 故选C.3.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5 B.86.5 C.90 D.90.5A解析:A【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可.【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A.【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.4.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是()A.75,70 B.70,70 C.80,80 D.75,80A解析:A【分析】根据中位数和众数的定义解答即可.【详解】共40个数据中第20和第21个数分别是70、80,∴这组数据的中位数是75,这组数据中出现次数最多的是70,所以众数是70,故选:A.【点睛】此题考查了中位数和众数的定义,一组数据最中间的一个数或两个数的平均数是这组数据的中位数,出现次数最多的数是这组数据的众数,正确掌握定义是解题的关键.5.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.6 D.3A解析:A【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a 、3、2平均数为5, ∴(6+4+2+3+a )÷5=5, 解得:a=10, ∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8. 故选:A . 【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是( )A .这组数据的众数是14B .这组数据的中位数是31C .这组数据的标准差是4D .这组是数据的极差是9D解析:D 【解析】 【分析】根据中位数,众数、极差、标准差的定义即可判断. 【详解】解:七个整点时数据为:22,22,23,26,28,30,31 所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+= ;极差是31-22=9,标准差是:()()()()()()()222222222-26+22-26+23-26+26-26+28-26+30-26+31-2686=77故D 正确, 故选:D 【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据7.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( )A .平均数是-2B .中位数是-2C .众数是-2D .方差是5D解析:D 【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断.【详解】解:A、平均数是-2,结论正确,故A不符合题意;B、中位数是-2,结论正确,故B不符合题意;C、众数是-2,结论正确,故C不符合题意;D、方差是203,结论错误,故D符合题意;故选:D.【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.8.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( )A.89,90 B.90,90 C.88,95 D.90,95B解析:B【解析】【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可.【详解】把这组数据从小到大排列:84,89,90,90,90,91,96,最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90;故选B.【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.9.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l2A解析:A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16.故选:A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.10.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( )A.S2甲<S2乙B.S 2甲=S2乙C.S 2甲>S2乙D.无法比较S 2甲和S2乙的大小C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54; S 乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9] =2120; ∵54>2120∴S 甲2>S 乙2 故选C . 【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题11.将一组数据中的每一数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数_______________.42【分析】根据所有数据均减去40后平均数也减去40从而得出答案【详解】解:一组数据中的每一个数减去40后的平均数是2则原数据的平均数是42;故答案为:42【点睛】本题考查了算术平均数解决本题的关键解析:42 【分析】根据所有数据均减去40后平均数也减去40,从而得出答案. 【详解】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42; 故答案为:42. 【点睛】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.12.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.912【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可【详解】∵x1x2…xn 的平均数为2∴x1+x2+…+xn=2n ∴=2×2+5=9∵原平均数为2新数据的平均数变为9则原来解析:9 12【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可. 【详解】∵x 1、x 2、…x n 的平均数为2, ∴x 1+x 2+…+x n =2n , ∴12252525n x x x n++++⋯++ =2×2+5=9,∵原平均数为2,新数据的平均数变为9, 则原来的方差S 12=1n[(x 1-2)2+(x 2-2)2+…+(x n -2)2]=3, 现在的方差S 22=1n[(2x 1+5-9)2+(2x 2+5-9)2+…+(2x n +5-9)2] =1n[4(x 1-2)2+4(x 2-2)2+…+4(x n -2)2]=4×3=12. 故答案为:9,12. 【点睛】此题考查平均数与方差的意义,掌握平均数与方差的计算方法是解题的关键. 13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个解析:2 【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变. 【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变. 故答案为:2. 【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变.14.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.925【分析】根据平均数与方差的定义计算即可得答案【详解】∵每名员工每天都比原先多生产1个零件∴现在日平均生产零件个数为=9设原先每人日生产零件的个数为:x1x2x3……x10∴原先的方差为=25∴解析:9 2.5 【分析】根据平均数与方差的定义计算即可得答案. 【详解】∵每名员工每天都比原先多生产1个零件, ∴现在日平均生产零件个数为8101010⨯+=9, 设原先每人日生产零件的个数为:x 1、x 2、x 3、……x 10, ∴原先的方差为22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, ∴现在的方差为22212101(19)(19)(19)10x x x ⎡⎤+-++-++-⎣⎦…+=22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, 故答案为:9,2.5 【点睛】本题考查平均数与方差,熟练掌握定义与计算公式是解题关键.15.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.4【分析】首先根据其平均数为5求得a 的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s2=(4解析:4 【分析】首先根据其平均数为5求得a 的值,然后再根据方差的计算方法计算即可. 【详解】解:根据题意得(4+5+a+6+8)=5×5, 解得a=2,则这组数据为4,5,2,6,8的平均数为5, 所以这组数据的方差为s 2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4. 故答案为:4 【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可. 【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5, ∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6,∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6,∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.17.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy 的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 83【解析】 【分析】由中位数及众数的定义和给定的条件求出x ,y 的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差. 【详解】由一组数据1,2,x ,y ,4,6的中位数是2.5,众数是2,则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=.∴这组数据的平均数为3;这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83. 故答案为3;83. 【点睛】本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 18.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x 甲=82分,⎺x 乙=82分,S 2甲=245,S 2乙=190.那么成绩较为整齐的是__________班乙【解析】【分析】根据方差的意义方差反映了一组数据的波动大小根据方差越小波动越小故可由两班的方差得到结论【详解】∵S2甲>S2乙∴成绩较为稳定的是乙故答案为乙【点睛】本题考查了方差的意义:反映了一组解析:乙 【解析】 【分析】根据方差的意义,方差反映了一组数据的波动大小,根据方差越小,波动越小,故可由两班的方差得到结论. 【详解】∵S 2甲>S 2乙∴成绩较为稳定的是乙. 故答案为乙. 【点睛】本题考查了方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.已知数据x 1,x 2,…,x n 的方差是2,则3x 1﹣2,3x 2﹣2,…,3x n ﹣2的方差为_____.18【解析】分析:根据数据都加上一个数(或减去一个数)时方差不变;数据都乘以同一个数时方差乘以这个数的平方即可得出答案详解:∵数据x1x2…xn 的方差是2∴3x13x2…3xn 的方差是32×2=18解析:18【解析】分析:根据数据都加上一个数(或减去一个数)时,方差不变;数据都乘以同一个数时,方差乘以这个数的平方即可得出答案. 详解:∵数据x 1,x 2,…,x n 的方差是2, ∴3x 1,3x 2,…,3x n 的方差是32×2=18, ∴3x 1-2,3x 2-2,…,3x n -2的方差为18;故答案为:18.点睛:此题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当数据都乘以同一个数,方差乘以这个数的平方.20.已知5个数据的平均数是7,另外还有3个数据的平均数是k,则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k因此这8个数的和为35+3k因此其平均数为(35+3k)÷8即故答案为:解析:35+3 8k【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k,因此这8个数的和为35+3k,因此其平均数为(35+3k)÷8,即35+3 8k.故答案为:35+3 8k.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?解析:(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=36 40⨯︒︒;(3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元),答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;(2)本次所抽取学生四月份“读书量”的中位数为本;(3)求本次所抽取学生四月份“读书量”的平均数;(4)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.解析:(1)见解析;(2)3;(3)3本;(4)120人【分析】(1)先用读2本的人数除以其所占百分比求出抽取的总人数,进而可求出读4本书的人数与读3本的人数所占百分比,进而可补全统计图;(2)根据中位数的定义解答即可;(3)根据加权平均数的定义求解即可;(4)用扇形统计图中读5本书的人数所占百分比×1200即得结果.【详解】解:(1)所抽取学生总数=18÷30%=60人,60×20%=12人,21÷60=35%;补全两幅统计图如图所示:(2)本次所抽取学生四月份“读书量”的中位数为3本;故答案为:3;(3)3118221312465360⨯+⨯+⨯+⨯+⨯=(本);答:本次所抽取学生四月份“读书量”的平均数为3本;(4)10%×1200=120(人);答:估计该校七年级学生中,四月份“读书量”为5本的学生人数为120人.【点睛】本题考查了条形统计图、扇形统计图、中位数、加权平均数以及利用样本估计总体等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.23.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.解析:(1)9.6度;(2)9度;9度;(3)7603.2度.【分析】(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.24.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是、众数是和中位数是;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?解析:(1)11.6吨,11吨,11吨;(2)约有350户.【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得.【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多,所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数,则中位数是1111112+=(吨),故答案为:11.6吨,11吨,11吨;(2)月平均用水量不超过12吨的户数占比为204010100%70% 100++⨯=,则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.25.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性)解析:(1)20,25;(2)7.9,8;(3)女生队表现更突出,理由见解析【分析】(1)由条形图可得男生总人数,总人数减去男生人数可得女生人数;(2)根据平均数和众数定义可得.(3)可从平均数、方差、众数和中位数的意义求解可得.【详解】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),故答案为:20、25;(2)男生的平均分为120×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的方差小,表示女生队测试成绩比较集中,整体水平较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.【点睛】本题主要考查加权平均数、利用众数、方差、平均数、众数作出决策.注意方差越小,说明数据越稳定.26.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?解析:(1)a =10,b =8,c =8.6;(2)推荐丙班级为网上教学先进班级. 【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断. 【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10 ∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、8 8分出现次数最多, ∴乙班的众数是:8分; ∵(9+10+8+7+9)÷5=8.6(分), ∴丙班的平均分是:8.6分; ∴a =10,b =8,c =8.6.(2) 甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分) 乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分) 丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分), ∴推荐丙班级为网上教学先进班级. 【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.27.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 解析:(1)50; 8;(2)C 组;(3)320人 【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得. 【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a = (2)∵抽样了50人,则最中间的为第25和第26位的平均值 第25位落在C 组,第26位落在C 组 ∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人) 【点睛】本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 28.为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀,这次演讲比赛中甲、乙两组学生(各10名学生)成绩分布的条形统计图如下图:(1)补充完成下列的成绩统计分析表: 组别平均分中位数众数方差合格率优秀率可知,小王是________组的学生;(填“甲”或“乙”)(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.解析:(1)6;8;(2)甲;(3)乙组的成绩更好一些.【分析】(1)先根据条形统计图得出甲、乙两组各学生的成绩,再根据中位数、众数的定义即可求得;(2)根据中位数即可判断,小明的成绩大于中位数;(3)可以从平均分、中位数、众数、方差四个方面综合分析.【详解】解:(1)∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10.∴甲组中位数为6,∵乙组的成绩为:5,5,6,7,7,8,8,8,8,9.∴乙组众数为8,故答案为:6;8.(2)∵小明的成绩为7分属中游略偏上,甲组的中位数是6,乙组的中位数为7.5,∴小明在甲组.故答案为:甲.(3)因为乙组成绩的平均分、中位数、众数均比甲高,而乙组成绩的方差又比甲组小,所以乙组的成绩比甲组更稳定,因此综合分析乙组的成绩更好一些.【点睛】本题考查平均分、中位数、众数、方差等概念,正确掌握这些概念是解题的关键.。

2022-2023学年北师大版八年级数学下册《2-6一元一次不等式组》同步自主提升练习题(附答案)

2022-2023学年北师大版八年级数学下册《2-6一元一次不等式组》同步自主提升练习题(附答案)

2022-2023学年北师大版八年级数学下册《2.6一元一次不等式组》同步自主提升练习题(附答案)一.选择题2.下列选项中是一元一次不等式组的是()A.B.C.D.1.关于x,y的方程组,若2<k<4,则x﹣y的取值范围是()A.﹣1<x﹣y<0B.0<x﹣y<1C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<1 2.不等式组的解集是()A.无解B.x<﹣1C.x≥D.﹣1<x≤3.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3B.﹣3<a<1C.a>﹣3D.a>15.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.a<﹣3D.﹣4<a<6.关于x的不等式组的所有整数解的积为2,则m的取值范围为()A.m>﹣3B.m<﹣2C.﹣3≤m<﹣2D.﹣3<m≤﹣2 7.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.8.“a与5的和是正数且a的一半不大于3”用不等式组表示,正确的是()A.B.C.D.9.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.10.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A.x>23B.23<x≤47C.11≤x<23D.x≤47二.填空题11.写出一个无解的一元一次不等式组为.12.不等式组的解集为.13.不等式组有3个整数解,则a的取值范围是.14.某种植物生长的适宜温度不能低于18℃.也不能高于22℃.如果该植物生长的适宜温度为x℃.则有不等式.15.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是.三.解答题16.解不等式组,并把解集表示在数轴上.17.解不等式组,并把解集在数轴上表示出来.18.已知关于x、y的方程组的解满足,求整数k的值.19.求不等式组的正整数解.20.已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3.请回答以下问题:(1)两个语句表达的意思是否一样(不用说明理由)?(2)把两个语句分别用数学式子表示出来.参考答案一.选择题1.解:A、含有三个未知数,不符合题意;B、未知数的最高次数是2,不符合题意;C、含有两个未知数,不符合题意;D、符合一元一次不等式组的定义,符合题意;故选:D.2.解:,解得:,x﹣y=,∵2<k<4,∴0<x﹣y<1,故选:B.3.解:解不等式3﹣2x<5,得:x>﹣1,解不等式2(x﹣2)≤1,得:x≤,则不等式组的解集为﹣1<x≤,故选:D.4.解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.5.解:解不等式x﹣a>0,得:x>a,解不等式3﹣2x>0,得:x<1.5,∵不等式组的整数解有5个,∴﹣4≤a<﹣3.故选:B.6.解:由x≤﹣且不等式组的所有整数解的积为2知整数解为﹣1、﹣2这2个,所以﹣3≤m<﹣2,故选:C.7.解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列不等式组为:,即.故选:C.8.解:由题意可得:.故选:A.9.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.10.解:由题意得,,解不等式①得,x≤47,解不等式②得,x>23,∴23<x≤47,故选:B.二.填空题11.解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.12.解:解不等式x﹣1≤2,得:x≤3,解不等式3﹣4x<﹣5,得:x>2,则不等式组的解集为2<x≤3,故答案为:2<x≤3.13.解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解集为:4<x≤2﹣a,由关于x的不等式组有3个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故答案为:﹣6<a≤﹣514.解:根据题意温度不能低于18℃可得x≥18,根据不能高于22℃可得x≤22,故18≤x≤22.故答案为:18≤x≤22.15.解:矩形的周长是2(x+10)cm,面积是10xcm2,根据题意,得,解不等式:2(x+10)<80,解得:x<30,解不等式:10x>100,解得:x>10,所以x的取值范围是:10<x<30.故答案为:10<x<30.三.解答题16.解:.解不等式①,得:x≥﹣3;解不等式②,得:x<2.∴不等式组的解集为:﹣3≤x<2.将其表示在数轴上,如图所示.17.解:解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式>x﹣1,得:x<4,则不等式组的解集为x≤1,将不等式组的解集表示在数轴上如下:18.解:两方程分别相加和相减可得,∴,解得,∴整数k的值为1、2.19.解:解不等式5x﹣12≤2(4x﹣3),得:x≥﹣2,解不等式<5,得:x<3,则不等式组的解集为﹣2≤x<3,所以不等式组的正整数解为1、2.20.解:(1)一样;(2)①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;②式子2x﹣1的值不小于1且不大于3可得.。

八年级数学下册考点知识与题型专题讲解与提升练习33 根据矩形的性质与判定求面积

八年级数学下册考点知识与题型专题讲解与提升练习33 根据矩形的性质与判定求面积

八年级数学下册考点知识与题型专题讲解与提升练习专题33 根据矩形的性质与判定求面积一、单选题1.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3102.如图,点P 是矩形ABCD 的对角线上一点,过点P 作//EF BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为()A .3B .6C .9D .123.如图,矩形ABCD 的AB =4cm ,BC =7cm ,在AD 、BC 上分别取点E 、F ,四边形EBFD 是菱形.那么,F 到直线BE 的距离是( )A .3cmB .4cmC .5cm D4.如图,ABC 的顶点坐标分别为()()()1,0,4,0,1,4A B C ---,将ABC 向左平移,当点C 落在直线26y x =--上时,线段BC 扫过的面积为()A .16B .C .8D .45.如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =4,则该矩形的面积是( )A .16B .8C .D .6.矩形一个角的平分线分矩形一边为2cm 和3cm 两部分,则这个矩形的面积为()A .10cm 2B .15cm 2C .12cm 2D .10cm 2或15cm 27.如图,矩形ABCD 的面积为28,对角线交于点O ;以AB 、AO 为邻边作平行四边形1AOC B ,对角线交于点1O ;以AB 、1AO 为邻边作平行四边形12AO C B ;…依此类推,则平行四边形67AO C B 的面积为()A .78B .716C .732D .7648.一个矩形的围栏,长是宽的2倍,面积是230m ,则它的宽为()A B . C D .9.设矩形的面积为S ,相邻两边的长分别为a,b ,已知,则a 等于( )A .B C .6 D 10.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证,则下列说法不一定成立的是()A .ABC ADC S S ∆∆=B .AEF ANF S S ∆∆=C .NFGD EFMB S S =矩形矩形 D .ANF NFGD S S ∆=矩形11.如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为( )A B .2 C .D .612.以矩形ABCD 两对角线的交点O 为原点建立平面直角坐标系,且x 轴过BC 中点,y轴过CD中点,y=12x﹣2与边AB、BC分别交于点E、F,若AB=10,BC=3,则△EBF的面积是( )A.4 B.5 C.6 D.713.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为()A.B.C D.14.如图,矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2,则矩形的面积为()A.B.2 C.4 D.15.长方形的一边长为4,对角线与长方形另外一条边相差2,则长方形的面积为()A.8 B.4 C.6 D.1216.矩形ABCD的长为5,宽为3,点E、F将AC三等分,则△BEF的面积为().A.32B.53C.52D.517.如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()A .只有①和②相等B .只有③和④相等C .只有①和④相等D .①和②,③和④分别相等18.如图,在长方形ABCD 中,AB AD <,AF BD ⊥于点E ,AF 交BC 于点F ,连接DF ,则下列结论中,不正确的是()A .ABD CDB ∆≅∆ B .ABE DEF S S ∆∆=C .ADB CDF ∠=∠D .DFC BAF ∠>∠19.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为 ()A .280B .140C .70D .19620.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为( )A .56B .192C .20D .以上答案都不对21.如图1,在矩形ABCD 中,动点P 从点B 出发,沿着BC CD DA 、、运动到点A 停止,设点Р运动的路程为,x ABP 的面积为y ,如果y 与x 的函数图象如图2所示,则ABC 的周长为()A.6+B.8+C.17D.2422.如图,E是矩形ABCD中AD边的中点,BE交AC于点F,AEF的面积为2,则四边CDEF的面积为()A.6 B.8 C.10 D.1223.如图,矩形ABCD的对角线BD=6,∠AOD=120°,则矩形ABCD的面积为()A.9 B.C.12 D.24.如图,在矩形ABCD中,点P从点B出发,沿B→C→D运动,设P点运动的路程为x,则△APB的面积S与x之间的函数关系大致是()A.B.C.D.25.如图,点P是矩形ABCD的对角线AC上一点,过点P作//EF BC,分别交AB、CD 于E、F,连接PB、PD.若2AE=,4PF=,则图中阴影部分的面积为()A.8 B.10 C.12 D.1426.如图,在矩形ABCD 中,F 是BC 中点,E 是AD 上一点,且∠ECD =30°,∠BEC =90° ,EF = 4cm ,则矩形的面积为()A.16cm2B.2C.2D.32cm227.如图,正方形ABCD边长为4,边BC上有一点E,以DE为边作矩形EDFG,使FG过点A,则矩形EDFG的面积是()A.B.C.D.1628.如图,在矩形ABCD中,EF//AB,GH//BC,EF、GH的交点P在BD上,图中面积相等的矩形有( )A.1对B.2对C.3对D.4对EF BC,分别交AB、CD于29.如图点P是矩形ABCD的对角线AC上一点,过点P作//PF=,则图中阴影部分的面积为()点E、F,连接PB、PD,若1AE=,8A.5B.6C.8D.930.如图,矩形ABCD中,AB=4,对角线AC,BD交于点O,若∠AOB=60º,则矩形ABCD 的面积为()A.16 B.C.D.331.如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2 '''',则阴影部分面积是( )个单位得到长方形A B C DA .12B .10C .8D .632.如果,在矩形ABCD 中,矩形EBFG 通过平移变换得到矩形HMND ,点E F N H 、、、都在矩形ABCD 的边上,若3123,4,4BE BF S S S ===+,且四边形AEJH 和CFKN 都是正方形,则图中阴影部分3S 的面积为()A .2B .5CD .33.如图,矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则△DCE 的面积为( )A .52B .32C .2D .134.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3,则图中阴影部分的面积为( )A .3B .4C .5D .635.矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为( )A .12B .24C .48D .5036.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ,以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于点O 1,以AB 、AO 1为邻边作平行四边形AO 1C 2B …依此类推,则平行四边形AO 2019C 2020B 的面积为( )cm 2.A .201652B .201752C .201852D .20195237.如图,已知在四边形ABCD 中,AB =DC ,AD =BC ,连结AC ,BD ,AC 与BD 交于点O ,若AO =BO ,AD =3,AB =2,则四边形ABCD 的面积为()A .4B .5C .6D .738.如图,矩形ABCD 的面积为10cm 2,它的两条对角线交于点O 1,以AB 、AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB 、AO 2为两邻边作平行四边形ABC 2O 2,…,依此类推,则平行四边形ABC n O n 的面积为( )A .210n cm 2B .1102n -cm 2C .12n cm 2D .102ncm 2 39.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B 处,若'9AB =,60EFB ∠︒=,则'B EF 的面积是()A .B .C .D .40.课外活动时,王老师让同学们做一个对角线互相垂直的矩形形状的风筝,其面积为450cm 2,则两条对角线所用的竹条至少需( ).A .B .30cmC .60cmD .41.矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则它的面积为( )A .3cm 2B .4 cm 2C .12 cm 2D .4 cm 2或12 cm 242.如图,矩形ABCD 的面积为20cm 2,对角线相交于点O .以AB 、AO 为邻边画平行四边形AOC 1B ,对角线相交于点O ;以AB 、AO 为邻边画平行四边形AO 1C 2B ,对角线相交于点O 2 :……以此类推,则平行四边形AO 4C 5B 的面积为()A .58cm 2B .54cm 2C .516cm 2D .5 32cm 2 43.如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3, 4AB AD ==,那么()A .125PE PF +=B .121355PE PF <+< C .5PE PF +=D .34PE PF <+<第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题 44.《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).45.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作//EF BC ,分别交AB CD 、于E F 、,连接PB PD 、.若3,5AE PF ==.则图中阴影部分的面积为_________46.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)47.矩形的一条边长为4cm ,面积为20cm 2,则这个矩形的一条对角线长是_____cm .48.矩形的周长是22cm ,相邻两边的差是1cm ,那么这个矩形的面积是__________2cm .49.两个完全相同的长方形如图放置,每个长方形的面积为28,图中阴影部分的面积为20,则其中一个长方形的周长为________.50.如图,E 为□ABCD 的边AD 上任意一点,□ABCD 的面积为6,则图中阴影部分的面积为_____.51.如图,长方形ABCD 的面积为S ,延长CB 至点E ,延长CD 至点F ,已知BE•DF=k ,则△AEF 的面积为______(用S 和k 的式子表示).52.如图,线段EF 过矩形ABCD 对角线的交点,O 且分别交,AB CD 于点E F ,,已知3,5AB AC ==,那么阴影部分的面积是_______.53.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为_____cm2.54.在一张长为6cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上)则剪下的等腰三角形的面积为________2cm.55.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°.某班学习委员得到四个结论:①DC=3OG;②OG=12 BC;③OGE是等边三角形;④S △AOE=16S矩形ABCD,问:学习委员得到结论正确的是___________.(填写所有正确结论的序号)三、解答题56.已知矩形ABCD中,AD,AB,求这个矩形的对角线AC的长及其面积.57.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG 是平行四边形;(2)若AB =4cm ,BC =3cm ,求线段EF 的长.58.如图:在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,AB =4cm ,AD =.(1)判定△AOB 的形状;(2)计算△BOC 的面积.59.如图,矩形ABCD 中,AC 与BD 相交于点O .若 AO=3,∠OBC=30°,求矩形的周长和面积.60.如图,平面直角坐标系中,已知(7,1)A -,(1,1)B -,(1,5)C -,且点D 的坐标(,)x y ,满足2522x y +=,四边形ABCD 的面积为37,求x ,y 的值.61.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F,点B在CF上,点D 在CE上.(1)求证:△ABC≌△ADE;(2)若AC=10,求四边形ABCD的面积;(3)若∠FAD=120°,求∠ADC的度数.62.如图1,分别沿矩形纸片ABCD和正方形EFGH纸片的对角线AC,EG剪开,拼成如图2所示的平行四边形KLMN,若中间空白部分恰好是正方形OPQR.(1)若AB=m,BC=n,用含m、n的代数式表示正方形EFGH的边长;(2)若正方形EFGH的面积为25,求平行四边形KLMN的面积;(3)平行四边形KLMN是否能为菱形?请说明理由.63.已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.64.已知:矩形ABCD 的一条对角线AC 长8,两条对角线的一个交角∠AOB =60°,求这个矩形的面积.65.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,BE AC 交DC 的延长线于点E ,BD BE =.(1)求证:四边形ABCD 是矩形;(2)若60AOB ∠=︒,4AB =,求矩形ABCD 的面积.66.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若△ABC是边长为2的正三角形,求四边形AODE的面积.,轴的67.如图,把长方形纸片OABC放入平面直角坐标系中,使OA OC,分别落在x y的正半轴上,连接AC,且AC=2=.AO CO(1)求点A C,的坐标;∆(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分CEF 的面积;(3)求EF所在直线的函数表达式,并求出对角线AC与折痕EF交点D的坐标.68.若x满足 (9−x)(x−4)=4,求 (4−x)2+(x−9)2的值.设 9−x =a ,x −4=b ,则 (9−x )(x −4)=ab =4,a +b =(9−x )+(x −4)=5 ,∴(9−x )2+(x −4)2=a 2+b 2=(a +b )2−2ab =52−2×4=13请仿照上面的方法求解下面问题:(1)若x 满足 (5−x )(x −2)=2,求 (5−x )2+(x −2)2的值(2)已知正方形ABCD 的边长为x ,E ,F 分别是AD 、DC 上的点,且AE =1 ,CF =3 ,长方形EMFD 的面积是 48 ,分别以MF 、DF 作正方形,求阴影部分的面积.69.将矩形ABCD 折叠使点A ,C 重合,折痕交BC 于点E ,交AD 于点F ,可以得到四边形AECF 是一个菱形,若AB=4,BC=8,求菱形AECF 的面积.70.如图在平面直角坐标系中,O 是坐标原点,矩形OACB 的顶点A ,B 分别在x 轴、y 轴上,已知3OA =,点D 为y 轴上一点,其坐标为(0,1),若连接CD ,则5CD =,点P 从点A 出发以每秒1个单位的速度沿线段A C B --的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒(1)求B ,C 两点坐标;(2)求OPD ∆的面积S 关于t 的函数关系式;(3)当点D关于OP的对称点E落在x轴上时,请直接写出点E的坐标,并求出此时的t 值.71.如图,矩形ABCD中,AB=,BC=AC,点O为AC的中点,点E 为线段BC上的一个动点,连结OE,将△AOE沿OE翻折得到△FOE,EF与AC交于点G,若△EOG的面积等于△ACE的面积的14,则BE=_____.72.如图,矩形ABCD的两条对角线AC、BD相交于点O,∠AOD=120°,AB=2.求矩形边BC的长和矩形ABCD的面积.73.矩形ABCD中,对角线AC和BD相交于O,∠AOB=60°,AC=10.(1)求矩形较短边的长;(2)矩形较长边的长;(3)矩形的面积.74.如图所示,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠BOC =120°,AC =6,求:(1)AB 的长;(2)矩形ABCD 的面积.75.如图,ABC ∆中,AB AC =,AD 是BC 边上的高.点O 是AC 中点,延长DO 到E ,使OE OD ,连接AE ,CE .若6BC =,60DOC ∠=︒.(1)求证:四边形ADCE 是矩形;(2)求四边形ADCE 的面积.76.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1、C 1,得到矩形OA 1B 1C 1;在直线AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2、C 2,得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3、C 3,得到矩形OA 3B 3C 3;……;则点B 1的坐标是;第3个矩形OA 3B 3C 3的面积是;第n个矩形OA n B n C n的面积是(用含n的式子表示,n是正整数).。

八年级下册数学一次函数提高习题(有难度)

八年级下册数学一次函数提高习题(有难度)

八年级下册数学一次函数提高习题(有难度)1、已知一次函数y=(m+4)x+m+2的图象不过第二象限,则m为多少?2、若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b为多少?3、在同一直角坐标系内,直线y=2x+1和直线y=kx-3的交点为(2,5),则k为多少?4、当m满足什么条件时,一次函数y=mx-2的图象过点(3,-4)?5、函数y=(2x/3)与直线y=2x/3-5都经过点(-2,5),且与y 轴交于负半轴,求x的取值范围。

6、一个长120m,宽100m的矩形场地要扩建成一个正方形场地,设长增加xm,宽增加ym,则y与x的函数关系是什么?自变量的取值范围是多少?且y是x的函数。

7、如图1是函数y=-|x+5|的图象,求:(1)自变量x的取值范围;(2)当x取-5时,y的最小值为多少;(3)在(1)中x的取值范围内,y随x的增大而?8、已知函数y=(k-1)x+k2-1,当k=0时,它是一次函数,当k=2时,它是正比例函数.9、已知一次函数y=kx+b的图象经过点(-2,5),且它与y 轴的交点和直线y=-x+3与y轴的交点关于x轴对称,求这个一次函数的解析式。

10、一次函数y=kx+b的图象过点(m,1)和(1,m)两点,且m>1,则k为多少?b的取值范围是什么?11、一次函数y=kx+b-1的图象如图2,则3b与2k的大小关系是什么?当b=1时,y=kx+b-1是正比例函数。

12、当b为多少时,直线y=2x+b与直线y=3x-4的交点在x轴上。

13、已知直线y=4x-2与直线y=3m-x的交点在第三象限内,求m的取值范围。

14、要使y=(m-2)x^(n-1)+n是关于x的一次函数,n,m应满足什么条件?选择题:1、图3中,表示一次函数y=mx+n与正比例函数y=mx(m、n是常数,且m≠0,n<0)的图象的是()。

A。

A。

B。

B。

C。

C。

D。

D2、直线y=kx+b经过一、二、四象限,则直线y=bx-k的图象只能是图4中的()。

八年级数学下册考点知识与题型专题讲解与提升练习23 利用勾股定理台阶上的地毯长度

八年级数学下册考点知识与题型专题讲解与提升练习23 利用勾股定理台阶上的地毯长度

八年级数学下册考点知识与题型专题讲解与提升练习专题23 利用勾股定理台阶上的地毯长度一、单选题1.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm2.在高5m,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要()A.13m B.5m C.12m D.17m3.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m4.如图,在一个高为6米,长为10米的楼梯表面铺地毯,则地毯长度至少是()A.6米B.10米C.14米D.16米5.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,点B 与点相对,要爬行的最短路程(π取3)是()A.20cm B.14cm C.10cm D.无法确定6.一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程为()A B.25C.30D.357.如图,一个底面圆周长为24m,高为5m的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12m B.15m C.13m D.9.13m8.如图是一个长为12cm,宽为5cm,高为8cm的长方体,一只蜘蛛从一条侧棱的中点A 沿着长方体表面爬行到顶点B去捕捉蚂蚁,此时蜘蛛爬行的最短距离是()A.13 cm B.15 cm C.21 cm D.25cm9.如图,长方体的长为3cm,宽为2cm,高为4cm,点B到点C的距离为1cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.4 B.5 C D10.如图,测得楼梯的长为5米,高为3米,计划在楼梯表面铺地毯,地毯的长度至少是()A.4米B.5米C.7米D.10米11.如图,在一个高是3m,长是5 m的楼梯表面铺地毯,则地毯长度是( )A.5 m B.7 m C.8 m D.9 m12.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m13.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元14.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.20dm B.25dm C.30dm D.35dm15.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m二、填空题16.如图,要为一段高5m,长13m的楼梯铺上红地毯,至少需要红地毯______m.17.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米20元,请你帮助计算一下,铺完这个楼道至少需要______元钱18.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,AB,AC的夹角为θ(θ=30°).要在楼梯上铺一条地毯,已知CA=,楼梯宽1 cm,则地毯的面积至少需要______平方米.19.如图,一只蚂蚁从长为9cm、宽为5cm,高是7cm的长方体纸箱的A点沿纸箱爬到B 点,那么它所走的最短路线的长是________cm.20.如图,有一个三级台阶,它的每一级的长,宽和高分别是16,3,1,点A和点B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶表面爬到B点的最短路程是____.21.如图是一个三级台阶,它的每一级的长、宽、高分别为100cm,15cm和10cm,A和B是这个台阶的两个端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度为_________cm.22.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米100元,请你帮助计算一下,铺完这个楼道至少需要____________元钱;23.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是_______.24.如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯米.25.如图所示的长方体的长、宽、高分别为3厘米、2厘米、4厘米.若一只蚂蚁从A点出发沿着长方体的表面爬行到棱BC的中点M处.则蚂蚁需爬行的最短路程是_______________厘米.26.如图是一个没有盖的圆柱形罐头盒,盒高3cm,盒底周长为8cm,盒外一只蚂蚁在底部A处,想吃到盒内对侧B处的食物,蚂蚁爬行的最短路程是_______cm.27.如图,一个边长为4cm的正方体,A、B为两相对的顶点,一只蚂蚁从点A沿表面爬到点B,它爬行的最短距离为________cm.28.如图一只蚂蚁从长为5cm,宽为3cm,高为4cm的长方体纸箱的A点沿纸箱爬到B点,那么它爬行的最短距离是__________cm .29.如图,长方体的长5BE cm =,宽3AB cm =,高6BC cm =,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是__________cm .30.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿着圆柱的侧面移动到BC 的中点S 的最短距离为______.31.如图的楼梯上铺地毯,则需要地毯的总长是_______米.32.一个底面周长为10cm ,高为12cm 的圆柱,有一只小虫从底部点A 处爬到上底B 处,则小虫所爬的最短路径长是______cm .33.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要____________元钱.34.如图,要为一段高为6米,长为10米的楼梯铺上红地毯,则红地毯至少要___________米长.35.在高5cm,长13cm的一段台阶上铺上地毯,台阶的剖面如图所示,地毯的长度至少需要______m.36.如图所示,在一个高BC为6米,长AC为10米,宽为2.5米的楼梯表面铺地毯.若每平方米地毯50元铺满整个楼梯至少需_________元.37.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.38.如图,在高为3m,斜坡长为5m的楼梯表面铺地毯,则地毯的长度至少需要___m;若楼梯宽2m,每平方米地毯需30元,那么这块地毯需要花_______元.39.某楼梯的侧面图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为__________米.40.如图,在一个长为20m,宽为16m的矩形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2m的正方形,一只蚂蚁从点A处爬过木块到达点C处需要走的最短路程是__m.41.某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要_____元.42.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是_____米.43.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B 点,那么它所走的最短路线的长是__cm.44.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需________米.46.如图,一个圆柱形水杯深20cm,杯口周长为36cm,在杯子外侧底面A点有一只蚂蚁,它想吃到杯子相对的内壁上点B处的蜂蜜,已知点B距离杯子口4cm,不考虑杯子的厚度,蚂蚁爬行的最短距离为________ .三、解答题47.若图是一个高为3米,长为5米的楼梯表面铺地毯.(1)求地毯的长是多少米?(2)如果地毯的宽是2米,地毯每平方售价是10元,铺这个楼梯一共需要多少元?48.如图,要为一段高5m,长13m的楼梯铺上红地毯.问:红地毯至少需要多少米?49.如图,要修建一个育苗棚,棚高h=5 m,棚宽a=12 m,棚的长d为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?50.如图,小明准备把一支笔放入铅笔盒ABCD,竖放时笔的顶端E比铅笔盒的宽AB还要长2cm,斜着放入时笔的顶端F与铅笔盒的边缘AB距离为6cm,求铅笔盒的宽AB的长度.51.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?52.如图,要在一个高为3米,长为5米的楼梯表面铺地毯,若楼梯宽为1.5米,地毯的单价为20元/平方米,请你为该楼梯铺地毯做出预算.53.如图,测得某楼梯的长为5m,高为3m,宽为2m,计划在表面铺地毯,若每平方米地毯50元,你能帮助算出至少需要多少钱吗?54.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A、B 是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是多少米?55.如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?56.如图所示为一棱长为3cm的正方体,把所有的面分成3×3个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至右侧面点B处,最少要花几秒钟?。

八年级数学下册考点知识与题型专题讲解与提升练习63 数据的波动程度:方差

八年级数学下册考点知识与题型专题讲解与提升练习63 数据的波动程度:方差

八年级数学下册考点知识与题型专题讲解与提升练习专题63 数据的波动程度:方差一、单选题1.为备战2022年北京冬奥会,甲、乙两名运动员训练测验,两名运动员的平均分相同,且2s 甲=0.01,2s 乙=0.006,则成绩较稳定的是() A .乙运动员B .甲运动员C .两运动员一样稳定D .无法确定2.在统计中,样本的方差可以近似地反映总体的() A .平均状态B .分布规律C .波动大小D .极差3.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是8环,其中甲的成绩的方差20.3S =甲,乙的成绩的方差22.1S =乙,则()A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为2 0.56s =甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是()A .甲B .乙C .丙D .丁5.甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如表:如果从这四人中,选出一位成绩较好且状态稳定的选手参加比赛,那么应选( ) A .甲B .乙C .丙D .丁6.对于两组数据A ,B ,如果22A B s s >,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些7.下表是甲、乙、丙、丁四名射击运动员在一次预选赛中的射击成绩则成绩较好且状态稳定的运动员是() A .甲B .乙C .丙D .丁8.甲、乙、丙、丁四支仪仗队队员身高的平均数及方差如表所示:则身高较为整齐的仪仗队是() A .甲B .乙C .丙D .丁9.某校八年级进行了3次立定跳远测试,甲、乙、丙、丁4名同学3次立定跳远的平均成绩均为175cm ,方差分别是2 3.6S =甲,2 4.6S =乙,2 6.3S =丙,27.3S =丁,则这4名同学3次立定跳远成绩最稳定的是() A .甲B .乙C .丙D .丁10.某校选拔五名运动员参加市阳光体育运动会,这五名队员的年龄分别是17、15、17、16、15,其方差是0.8,则三年后这五名队员年龄的方差() A .变大B .变小C .不变D .无法确定11.一组数1、2、2、3、3、a 、b 的众数为2,平均数为2,则这组数据的方差为( ) A .17B .27C .37D .4712.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是( ) A .平均数是﹣2B .中位数是﹣2C .众数是﹣2D .方差是﹣213.甲、乙、丙、丁四人各进行10次射击测试,它们的平均成绩相同,方差分别是21=甲s ,2 1.1s =乙,20.6s =丙,2 0.9=丁s ,则射击成绩比较稳定的是()A .甲B .乙C .丙D .丁14.一次演讲比赛中五名同学的成绩如下表所示,其中有两个数据被遮盖,那么被遮盖的两个数据依次是( )A .80,2B .80C .78,2D .7815.下列说法正确的是( )A .调查重庆市空气质量情况应该采用普查的方式B .A 组数据方差2A S =0.03,B 组数据方差2B S =0.2,则B 组数据比A 组数据稳定C .重庆八中明年开运动会一定不会下雨D .2,3,6,9,5这组数据的中位数是516.下表是某校合唱团成员的年龄分布,对于不同的x ,下列关于年龄的统计量不会发生改变的是()A .平均数,中位数B .平均数,方差C .众数,中位数D .中位数,方差 17.下列命题是假命题的是()A 是最简二次根式B .点(2,5)A 关于y 轴的对称点的坐标是(2,5)-CD .一组数据的极差、方差、标准差越小,这种数据就越稳定18.八年级(1)班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差如表,老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选()A.甲B.乙C.丙D.丁19.某校准备组织初中英语听说大赛,某同学在比赛前进行上机模拟测试了7次,测试成绩分别为:10,12,9,10,12,10,14,对于这7次上机模拟训练的得分,有如下结论,其中不正确的是()A.众数是10 B.方差是187C.平均数是11 D.中位数是1220.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.62,S丙2=0.48,S丁2=0.45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D.丁21.已知一组数据x1,x2,x3,把每个数据都减去2,得到一组新数据x1-2,x2-2,x3-2,对比这两组数据的统计量不变的是()A.平均数B.方差C.中位数D.众数22.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A.甲B.乙C.丙D.丁23.已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.424.如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是1525.小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是()A.小黄的成绩比小韦的成绩更稳定B.两人成绩的众数相同C.小韦的成绩比小黄的成绩更稳定D.两人的平均成绩不相同2,乙组数据的方差26.已知:甲乙两组数据的平均数都是5,甲组数据的方差S甲2=,下列结论中正确的是()S乙A .甲组数据比乙组数据的波动大B .乙组数据比甲组数据的波动大C .甲组数据与乙组数据的波动一样大D .甲乙两组数据的波动大小不能比较 27.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( ) A .平均数 B .众数 C .中位数 D .方差第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题28.甲、乙、丙、丁四人进行100m 短跑训练,统计近期10次测试的平均成绩都是13.2s ,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.29.某次射击练习,甲、乙二人各射靶5次,命中的环数如下表:通过计算可知7x x ==甲乙,2 0.8S =甲,22S =乙,所以射击成绩比较稳定的是_______.30.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为20.2s =甲,20.08s =乙,成绩比较稳定的是__________(填“甲”或“乙”)31.已知样本数据1234x x x x ,,,的方差为2,则12344444x x x x ,,,的方差是__________. 32.已知1x ,2x ,…,n x 的方差为2,则12x ,22x ,…,2n x 的方差为______. 33.有一组数据如下:2,3,a ,5,6,它们的平均数是4.则这组数据的标准差是_____. 34.如图为甲、乙10次射击训练成绩的折线统计图.这些成绩的方差的大小关系是:S 2甲____S 2乙.(选填“>”“=”“<”)35.校运会上,七、八、九年级同学分别组建了红、黄、蓝三支仪仗队,各队队员身高(cm )的平均数(x )与方差(2s )如表所示,则三支仪仗队中身高最整齐的___________.36.王老师统计了自己三位科代表近五次的定时训练成绩,其中1—5号为甲同学近五次成绩,6—10号为乙同学近五次成绩,11—15号为丙同学近五次成绩,相关信息如下: (1)三人近五次定时训练成绩平均数如下(2)三人近五次定时训练成绩统计图如下记甲、乙、丙近五次定时训练成绩的方差分别为21s 、22s 、23s ,请根据图表判断21s ,22s ,23s 的大小关系为_______(用“ ”连接)37.已知甲同学五次数学检测的成绩分别是:92,89,88,87,94,则甲同学这五次数学成绩的方差是__________.38.我市某中学举行“校园好声音”歌手大赛,甲、乙两班根据初赛成绩各选出5名选手组成甲班代表队和乙班代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如图所示:根据图示信息,整理分析数据如表:(1)填空:甲班2号选手的预赛成绩是分,乙班3号选手的预赛成绩是分,班的预赛成绩更平衡,更稳定;(2)求出表格中a=,b=,c=;(3)学校决定在甲、乙两班中选取预赛成绩较好的5人参加该活动的区级比赛,这5人预赛成绩的平均分数为.三、解答题39.某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,如图记录的是这两名同学5次投篮中所投中的个数.(1)填写下表:(2)若你是教练,你打算选谁?简要说明理由.40.甲、乙两人在5次打靶测试中命中的环数如下:从数据来看,谁的成绩较稳定?请你通过计算方差说明理由.41.某学位八(2)班组织了一次数学速算比赛,甲、乙两队各10人的比赛成绩(10分制)如统计图所示.(1)此次比赛,甲队中获得8分的人数是人;(2)观察统计图,甲队成绩的众数是分,乙队成绩的中位数是分;(3)请列式计算甲队成绩的平均分;(4)已知甲队的方差是1.4,乙队的平均分是9分,求乙队成绩的方差,并判断哪队成绩较平稳.(参考公式:()()()2222121ns x x x x xx n ⎡⎤=-+-+-⎢⎥⎣⎦)42.从甲、乙两厂生产的同一种零件中各抽取5个,量得它们的尺寸(单位:mm )如下:(1)分别计算从甲、乙两厂抽取的5个零件的平均尺寸;(2)分别计算从甲、乙两厂抽取的5个零件的方差,根据计算结果,你认为哪个厂生产的零件更符合规格.(零件的规定尺寸为9mm )43.某市举行知识大赛,A 校.B 校各派出5名选手组成代表队参加比赛.两校派出选手的比赛成绩如图所示.根据以上信息.整理分析数据如表:(1)a =;b =;(2)填空:(填“A 校”或“B 校”)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是; ②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是; ③从两校比赛成绩的方差的角度来比较,代表队选手成绩的方差较大.44.我市某中学举行“校园好声音”歌手大赛,初、高中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如图所示:根据图示信息,整理分析数据如表:(1)求出表格中a、b、c.(2)小明同学已经算出高中代表队决赛成绩的方差是160,请你计算出初中代表队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.45.某团体开展知识竞赛活动,甲队、乙队根据初赛成绩各选派6名队员参加复赛,两支队伍选出的6名选手复赛成绩分别如下:甲队:65、80、85、85、95、100乙队:65、90、80、100、100、75(1)根据数据填写下表,分析哪支队伍选手的复赛成绩较好;(2)已知甲队6名选手复赛成绩的方差2125S =甲,请计算出乙队6名选手复赛成绩的方差,并判断哪支队伍的选手复赛成绩较为均衡.(()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦) 46.2020年,一场突如其来的疫情打乱了中国人回家团圆的脚步,但无数迎难而上、舍身战“疫”的英雄最让人难忘.某校举办题为“致敬最美逆行者”的演讲比赛,甲、乙两组学生成绩分布的折线统计图如图所示(学生成绩均为整数):(1)根据以上信息完成下表:(2)如果学校准备选派其中一组参加区级比赛,你认为选派哪一组参赛更好?请结合以上数据进行分析说明.47.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分)整理,分析过程如下:(1)两组数据的极差、平均数、中位数、众数、方差如下表所示,请补充完整:(2)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙”),理由为.48.为选派一名学生参加全市实践活动技能竞赛,A,B两位同学在学校实习基地单位时间内现场进行加工直径为20mm的零件的测试,他俩各加工的10个零件的相关数据依次如图表所示(单位mm):根据测试得到的有关数据,试解答下列问题:(1)考虑平均数与完全符合要求的个数,你认为哪个同学的成绩好些?(2)计算出S B2的大小,考虑平均数与方差,说明谁的成绩好些?(3)考虑图中折线走势,你认为派谁去参赛较合适?说明你的理由.49.某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:综合评价得分统计表(单位:分)(1)请根据表中的数据完成下表(注:方差的计算结果精确到0.1)(2)根据折线统计图中的信息,请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.50.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)求统计调查的初中学生每天睡眠时间的平均数和方差.51.“防控疫情,全民力行”,某中学开展防疫知识线上竞赛活动,八年级(1),(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)请你计算两个班的平均成绩各是多少分;(2)写出两个班竞赛成绩的中位数,结合两班竞赛成绩的平均数和中位数,你认为哪个班的竞赛成绩较好:(3)已知八(2)班竞赛成绩的方差是114,请计算八(1)班竞赛成绩的方差,并说明哪个班的成绩较为整齐.52.为加强抗击疫情的教育宣传,某中学开展防疫知识线上竞赛活动,八年级(1)、(2)班各选出5名选手参加竞赛,两个班各选出的5名选手的竞赛成绩(满分为100分)如图所示:(1)请你计算两个班的平均成绩各是多少分;(2)写出两个班竞赛成绩的中位数,结合两个班竞赛成绩的平均数和中位数,你认为哪个班的竞赛成绩较好;(3)计算两个班竞赛成绩的方差,并说明哪个班的竞赛成绩较为整齐.53.有甲、乙两个小组参加一项知识竞赛,其中一道满分为10分的题目,两个小组的得分情况如下:请你根据以上信息解决下列问题:(1)请分别计算两个小组该题的平均得分和方差;(2)从调查中发现,两个小组该题的得分情况,大致能够代表他们在该项知识竞赛中的总体得分情况,如果要从两个小组中选择一组参加更上一级比赛,你认为选择哪一组更合适?请简述你的理由.54.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:.8085,A x <.8590,.9095,.95100B x C x D x <<).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C 组中的数据是:94,94,90. 根据以上信息,解答下列问题: (1)直接写出图表中,,a b c 的值;(2)计算d 的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由; (3)该学校七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(95x ≥)的学生人数是多少?七、八年级抽取的学生竞赛成绩统计表55.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示,根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c,的值,并求甲的方差2s;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员.56.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c,d的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?57.疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整埋、描述和分析如下:成绩得分用x表示,共分成四组:A.8085≤<,C.9095≤<,xx≤<,B.8590xD.95100≤≤.x七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:94,90,92.七、八年级抽取的学生成绩统计表八年级抽取的学生成缵扇形统计图根据以上信息,解答下列问题:(1)这次比赛中_________年级成绩更平衡,更稳定;(2)直接写出上述a、b、c的值;a=_________,b=_________,c=_________.x≥)(3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(90的学生人数是多少?58.某市射击队甲、乙两名优秀队员在相同的条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析看谁的成绩好些:①从平均数和方差结合看.②从平均数和中位数相结合看;③从平均数和命中9环以上的次数结合看;④如果省射击队到市射击队选拔苗子进行培养,你认为应该选谁.59.某中学举行“中国梦”校园好声音歌手比赛,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,根据这10人的决赛成绩(满分为100分),制作了如下统计表:(1)根据上图提供的数据填空:a的值是,b的值是;(2)结合两队的平均数和众数,分析哪个队的决赛成绩好;(3)根据题(1)中的数据,试通过计算说明,哪个代表队的成绩比较稳定?60.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).根据图表信息,回答问题:(1)直接写出表中a,b,c,d的值;(2)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(3)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图1的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.
(1)如图2,《思维游戏》这本书的长为21cm,宽为15cm,厚为1cm,现有一张面积为875cm2的矩形纸包好了这本书,展开后如图1所示.求折叠进去的宽度;
(2)若有一张长为60cm,宽为50cm的矩形包书纸,包2本如图2中的书,书的边缘与包书纸的边缘平行,裁剪包好展开后均如图1所示.问折叠进去的宽度最大是多少?
2.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
3.如图,已知:在平行四边形ABCD中,点E、F、G、H
分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且
EG平分∠HEF.求证:
(1)△AEH≌△CGF;
(2)四边形EFGH是菱形
4.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是
5.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.
(1)求出S关于t的函数关系式;
(2)当点P运动几秒时,S△PCQ=S△ABC?
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结
6.如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形;
7.如图,直线y=-x+1与x ,y 轴分别交于A 、B 两点,P (a ,b )为双曲线y=x
21 (x >0)上的一动点,PM ⊥x 轴与M ,交线段AB 于F ,PN ⊥y 轴于N ,交线段AB 于E
(1)求E 、F 两点的坐标(用a ,b 的式子表示);
(2)当a=4
3时,求△EOF 的面积. (3)当P 运动且线段PM 、PN 均与线段AB 有交点时,探究:
①BE 、EF 、FA 这三条线段是否能组成一个直角三角形?说明理由;
②∠EOF 的大小是否会改变?若不变,求出∠EOF 的度数,若会改变,请说明理由。

相关文档
最新文档