通信原理实验结果11

合集下载

通信原理实验实验报告

通信原理实验实验报告

通信原理实验实验报告通信原理实验实验报告一、引言通信原理是现代通信技术的基础,而通信原理实验则是学习和理解通信原理的重要途径之一。

本次实验旨在通过实际操作和数据分析,加深对通信原理的理解,并掌握相关实验技能。

二、实验目的本次实验的主要目的是通过实验验证通信原理中的一些基本概念和理论,包括调制、解调、信道传输特性等。

同时,通过实验数据的分析,探究不同参数对通信系统性能的影响。

三、实验原理1. 调制与解调调制是将要传输的信息信号转换成适合传输的调制信号的过程,解调则是将接收到的调制信号恢复成原始信息信号的过程。

常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

2. 信道传输特性信道传输特性是指信号在传输过程中受到的各种干扰和衰减的影响。

常见的信道传输特性包括衰减、失真、噪声等。

在通信系统设计中,需要考虑信道传输特性对信号质量的影响,并采取相应的措施进行补偿或抑制。

四、实验步骤1. 实验一:调制与解调在实验一中,我们选择了幅度调制(AM)作为调制方式。

首先,通过信号发生器产生一个正弦波作为基带信号,然后将其调制到无线电频率范围。

接下来,通过解调器将接收到的信号解调,并与原始信号进行比较分析。

2. 实验二:信道传输特性在实验二中,我们通过建立一个简单的传输系统来研究信道传输特性。

首先,我们将信号源连接到信道输入端,然后通过信道模拟器模拟信道的衰减、失真和噪声等特性。

最后,我们使用示波器观察信号在传输过程中的变化,并记录相关数据。

五、实验结果与分析1. 实验一:调制与解调通过实验一的数据分析,我们可以得出调制信号与原始信号的关系,并进一步了解幅度调制的特点。

同时,我们还可以观察到解调过程中的信号失真情况,并对解调算法进行改进。

2. 实验二:信道传输特性实验二的数据分析主要包括信号衰减、失真和噪声等方面。

通过观察示波器上的波形变化,我们可以了解信号在传输过程中的衰减程度,以及失真和噪声对信号质量的影响。

通信原理实验报告

通信原理实验报告

通信原理实验报告引言:通信原理是现代通信技术的基础,通过实验可以更深入地理解通信原理的各个方面。

本次实验主要涉及到调制解调和频谱分析。

调制解调是将原始信号转换成适合传输的信号形式,频谱分析则是对信号的频域特性进行研究。

通过这些实验,我们可以进一步了解调制解调原理、频谱分析技术以及其在通信领域中的应用。

实验一:调制解调实验调制解调是将信息信号转换为适合传输的信号形式的过程。

在实验中,我们使用了模拟调制技术。

首先,我们通过声卡输入一个带通信号,并将其调制成调幅信号。

接着,通过示波器观察和记录调制信号的波形,并利用解调器将其还原为原始信号。

实验二:频谱分析实验频谱分析是对信号在频域上的特性进行研究。

在实验中,我们使用了频谱分析仪来观察信号的频谱分布情况。

首先,我们输入一个具有特定频率和幅度的正弦信号,并使用频谱分析仪来观察其频谱。

然后,我们改变信号的频率和幅度,继续观察和记录频谱的变化情况。

实验三:应用实验在实际通信中,调制解调和频谱分析技术有着广泛的应用。

通过实验三,我们可以了解到这些技术在通信领域中的具体应用。

例如,我们可以模拟调制解调技术在调制解调器中的应用,观察和分析不同调制方式下的信号特性。

同样,我们可以使用频谱分析仪来研究和理解不同信号在传输过程中的频谱分布。

这些实验将帮助我们更好地理解通信系统中的调制解调和频谱分析技术,从而为实际应用提供支持。

结论:通过本次实验,我们对通信原理中的调制解调和频谱分析技术有了更深入的了解。

调制解调是将信息信号转换为适合传输的信号形式,而频谱分析则是对信号的频域特性进行研究。

这些技术在通信领域中有着广泛的应用,对于实际通信系统的设计和优化非常重要。

通过实验的学习和实践,我们能够更好地掌握调制解调和频谱分析的原理和应用,从而提高我们在通信领域中的能力和技术水平。

总结:通过本次实验,我们对通信原理中的调制解调和频谱分析技术进行了学习和实践。

通过实验的过程,我们深入了解了这些技术的原理和应用,并通过观察和记录不同信号的波形和频谱特征,加深了我们对通信原理的理解。

通信原理的实验报告

通信原理的实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。

2. 掌握模拟通信和数字通信的基本技术。

3. 熟悉调制、解调、编码、解码等基本过程。

4. 培养实际操作能力和实验技能。

三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。

1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。

模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。

2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。

数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。

五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。

(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。

2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。

(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。

六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。

(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。

2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。

(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。

七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。

试验11DPSK调制解调

试验11DPSK调制解调

实验11 DPSK调制解调一、实验目的1.掌握差分编码与差分译码的原理及实现方法。

2.掌握DPSK调制与解调的原理及实现方法。

3.由“倒n”现象分析DPSK调制方式。

二、实验原理1.差分编码与差分译码DPSK调制是在原2PSK调制的基础上增加了差分编码的过程。

图11-1差分编码电路原理差分编码原理如上图所示,它是由异或门知触发器组成。

基带信号作为异或门的一个输入端,另一输入端接至D触发器的输出端,而异或门的输出作海触发器的输入。

设差分输出上一时刻为‘0",当前时刻输入数字信号”,此时有异或门的输出为“,当位同步的上升沿到来时,D触发器输出“1”。

在下一时刻,数字信号输入为0",异或门另一输入端为0触发器当前时刻的输出1”,故异或门的输出仍为1”,当位同步的上升沿到来时,D触发器输出“1”,如下所示。

NRZ输入1 0 110 1差分输出0110110差分译码的过程和差分编码正好相反,信号先输入到0触发器,同时作为异或门的一个输入端,异或门的另一输入端为)触发器的输出,因此差分译码的实质就是此刻的状态和前一时刻的状态的异或,如下图所示。

2 . DPSK 调制解调在2PSK 解调中,如解调用的相干载波与调制端的载波相位反相时,则解调出的基带信号 恰与原始基带信号反相,这就是2PSK 解调中的“倒n”现象。

在PSK 的实验中,我们观察 到相位模糊(“倒n”)的现象,但是如何解决相位模糊的问题呢,在实际系统中一般通过 DPSK 的方法解决该问题。

即在调制前,先对输入的基带信号进行差分编码(绝对硼对码转 换),然后对解调后的信号进行差分译码(相对码-绝对码转换),还原出基带信号,通过这 个方法,即使出现相位模糊的情况,也不会影响最终的解调输出。

通俗来讲,DPSK 调制解 调是在PSK 的基础上增加了差分编码和差分译码。

DPSK 调制信号如下图所示。

在DPSK 解调中,无论解调用的相干载波是否与调制端的载波相位同相或反相,解调出的 基带信号与原始基带信号同相。

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

通信原理实验实验报告

通信原理实验实验报告

通信原理实验实验报告实验名称:通信原理实验实验目的:1. 理解基本的通信原理和通信系统的工作原理;2. 掌握各种调制解调技术以及通信信号的传输方式;3. 熟悉通信系统的基本参数和性能指标。

实验设备和器材:1. 信号发生器2. 采样示波器3. 调制解调器4. 麦克风和扬声器5. 示波器6. 功率分贝计7. 电缆和连接线等实验原理:通信原理主要涉及调制解调、传输媒介、信道编码和解码等方面的内容。

本次实验主要内容为调幅、调频和数字调制解调技术的验证,以及传输信号质量的评估和性能测量。

实验步骤:1. 调幅实验:将信号发生器产生的正弦波信号调幅到载波上,并使用示波器观察调幅波形,记录幅度调制度;2. 调频实验:使用信号发生器产生调制信号,将其调频到载波上,并使用示波器观察调频波形,记录调频的范围和带宽;3. 数字调制实验:使用调制解调器进行数字信号调制解调实验,并观察解调的信号质量,记录解调信号的正确性和误码率;4. 信号质量评估:使用功率分贝计测量信号传输过程中的信噪比和失真程度,并记录测量结果;5. 性能测量:采用示波器和其他测量设备对通信系统的带宽、传输速率等性能指标进行测量,记录测量结果。

实验结果:1. 对于调幅实验,观察到正弦波信号成功调幅到载波上,并记录幅度调制度为X%;2. 对于调频实验,观察到调制信号成功调频到载波上,并记录调频的范围为X Hz,带宽为X Hz;3. 对于数字调制实验,观察到解调后的信号正确性良好,误码率为X%;4. 信号质量评估测量结果显示信噪比为X dB,失真程度为X%;5. 性能测量结果显示通信系统的带宽为X Hz,传输速率为X bps。

实验总结:通过本次实验,我们深入了解了通信原理中的调制解调技术和信号传输方式,并且成功进行了调幅、调频和数字调制解调实验。

通过信号质量评估和性能测量,我们对通信系统的性能指标有了更深入的了解。

在实验过程中,我们还发现了一些问题和改进的空间,例如在数字调制实验中,我们可以进一步优化解调算法,提高解调的正确性。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验目的,通过本次实验,掌握通信原理的基本知识和实验技能,深入了解通信原理的相关概念和原理,提高对通信原理的理解和应用能力。

实验仪器,信号发生器、示波器、天线、调频收音机、调幅收音机等。

实验原理,本次实验主要涉及调制和解调的基本原理,包括调幅调制(AM调制)、调频调制(FM调制)、调幅解调(AM解调)、调频解调(FM解调)等内容。

实验步骤:1. 调幅调制实验,使用信号发生器产生调制信号,连接示波器观察调幅波形,并通过调幅收音机接收调幅信号,记录实验数据。

2. 调频调制实验,使用信号发生器产生调制信号,连接示波器观察调频波形,并通过调频收音机接收调频信号,记录实验数据。

3. 调幅解调实验,使用信号发生器产生调幅信号,连接示波器观察调幅波形,通过调幅解调电路解调信号,观察解调后的波形,记录实验数据。

4. 调频解调实验,使用信号发生器产生调频信号,连接示波器观察调频波形,通过调频解调电路解调信号,观察解调后的波形,记录实验数据。

实验结果与分析:通过实验数据的记录和观察,我们发现调幅调制产生的波形具有幅度变化,而调频调制产生的波形具有频率变化。

在调幅解调实验中,我们成功地将调幅信号解调为原始信号,而在调频解调实验中,我们也成功地将调频信号解调为原始信号。

这些实验结果验证了调制和解调的基本原理,加深了我们对通信原理的理解。

实验总结:通过本次实验,我们深入了解了调制和解调的基本原理,掌握了调幅调制、调频调制、调幅解调、调频解调的实验方法和技巧。

这些实验成果对我们进一步学习和应用通信原理具有重要意义,为我们将来的学习和研究打下了坚实的基础。

实验中也存在一些问题和不足,例如实验数据记录不够详细、实验过程中仪器的操作不够熟练等,这些问题需要我们在今后的学习和实践中加以改进和完善。

通过本次实验,我们不仅增加了对通信原理的理解和掌握,同时也提高了我们的实验操作能力和实验数据处理能力。

这些都为我们今后的学习和科研工作奠定了良好的基础。

通信原理实验实验报告

通信原理实验实验报告

1. 理解并掌握通信系统基本组成及工作原理。

2. 掌握通信系统中信号的传输与调制、解调方法。

3. 学习通信系统性能评估方法及分析方法。

二、实验器材1. 通信原理实验平台2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机及实验软件三、实验内容1. 通信系统基本组成及工作原理(1)观察通信原理实验平台,了解通信系统的基本组成,包括发送端、信道、接收端等。

(2)分析实验平台中各模块的功能,如调制器、解调器、滤波器等。

(3)通过实验验证通信系统的工作原理。

2. 信号的传输与调制、解调方法(1)学习并掌握模拟信号的调制、解调方法,如AM、FM、PM等。

(2)学习并掌握数字信号的调制、解调方法,如2ASK、2FSK、2PSK等。

(3)通过实验验证调制、解调方法的有效性。

3. 通信系统性能评估方法及分析方法(1)学习并掌握通信系统性能评估方法,如误码率、信噪比、调制指数等。

(2)通过实验测量通信系统性能参数,如误码率、信噪比等。

(3)分析实验数据,总结通信系统性能。

1. 观察通信原理实验平台,了解通信系统的基本组成。

2. 设置实验参数,如调制方式、载波频率、调制指数等。

3. 观察并记录实验过程中各模块的输出信号。

4. 利用示波器、信号分析仪等仪器分析实验数据。

5. 计算通信系统性能参数,如误码率、信噪比等。

6. 分析实验结果,总结实验结论。

五、实验结果与分析1. 通过实验验证了通信系统的基本组成及工作原理。

2. 实验结果表明,调制、解调方法对通信系统性能有显著影响。

例如,在相同条件下,2PSK调制比2ASK调制具有更好的误码率性能。

3. 通过实验测量了通信系统性能参数,如误码率、信噪比等。

实验数据表明,在合适的调制方式、载波频率等参数下,通信系统可以达到较好的性能。

4. 分析实验数据,总结实验结论。

实验结果表明,在通信系统中,合理选择调制方式、载波频率等参数,可以提高通信系统性能。

六、实验总结本次实验通过观察、实验、分析等方法,对通信原理进行了深入学习。

通信原理实验报告

通信原理实验报告

实验一基带信号的常见码型变换一、实验目的1.熟悉NRZ,BNRZ,RZ,BRZ,曼彻斯特,CMI,密勒,PST码型变换原理及工作过程。

2.观测数字基带信号的码型变换测量点波形。

二、实验原理在实际的基带传输系统中,传输码的结构应具有以下主要特性:1).相应的基带信号无直流分量,且低频分量少。

2).便于从信号中提取定时信息。

3).信号中高频分量尽量少,以节省传输频带并减少码间串扰。

4).以上特性不受信息源统计特性的影响,即适应信息源的变化。

5).编译码设备要尽可能简单。

1.单极性不归零码(NRZ码)单极性不归零码中,二进制代码“1”用幅度为E的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。

2.双极性不归零码(BNRZ码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。

3.单极性归零码(RZ码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。

单极性码可以直接提取定时信息,仍然含有直流成分。

4.双极性归零码(BRZ码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。

5.曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。

编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。

例如:消息代码: 1 1 0 0 1 0 1 1 0…曼彻斯特码:10 10 01 01 10 01 10 10 01…曼彻斯特码只有极性相反的两个电平,因为曼彻斯特码在每个码元中期的中心点都存在电平跳变,所以含有位定时信息,又因为正、负电平各一半,所以无直流分量。

6.CMI码CMI码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则:“1”码交替的用“11“和”“00”两位码表示;“0”码固定的用“01”两位码表示。

通信原理实验报告

通信原理实验报告

通信原理实验报告通信原理实验报告一、引言通信原理是现代社会中不可或缺的一部分,它涉及到人与人之间的信息传递和交流。

为了更好地理解通信原理的基本概念和原理,我们进行了一系列的实验。

本报告将介绍实验的目的、实验装置和实验结果,并对实验结果进行分析和讨论。

二、实验目的本次实验的主要目的是通过实际操作,加深对通信原理中调制解调的理解,并掌握调制解调的基本原理和方法。

同时,通过实验还可以了解到信号的传输特性和信道噪声对通信质量的影响。

三、实验装置本实验使用的装置包括信号发生器、调制解调器、示波器和音频输出设备。

信号发生器用于产生不同频率和振幅的信号,调制解调器用于将信号进行调制和解调,示波器用于观察信号的波形,音频输出设备用于听到解调后的信号。

四、实验步骤1. 首先,将信号发生器连接到调制解调器的输入端口,并设置合适的频率和振幅。

2. 将调制解调器的输出端口连接到示波器的输入端口,以便观察信号的波形。

3. 打开信号发生器和调制解调器,并调节合适的参数,使得信号能够正常传输和解调。

4. 使用示波器观察信号的调制和解调过程,并记录下观察到的波形。

5. 将示波器的输出端口连接到音频输出设备,以便听到解调后的信号。

6. 调节音频输出设备的音量,并仔细听取解调后的信号,记录下听到的声音特征。

五、实验结果通过实验,我们观察到了不同频率和振幅的信号在调制和解调过程中的变化。

在调制过程中,信号的频率和振幅被调整,以便在传输过程中更好地适应信道特性。

在解调过程中,信号经过解调器后恢复成原始的频率和振幅。

六、实验分析与讨论通过实验结果的观察和分析,我们可以得出以下结论:1. 调制是将信息信号转换为适合传输的信号的过程,而解调是将传输过程中的信号恢复为原始的信息信号的过程。

2. 调制过程中,信号的频率和振幅会发生变化,这是为了适应信道的特性和噪声的影响。

3. 解调过程中,信号经过解调器后能够恢复成原始的频率和振幅,但可能会有一定的失真和噪声。

通信原理实验报告

通信原理实验报告

通信原理实验报告一、实验目的。

本次实验旨在通过实际操作,加深对通信原理相关知识的理解,掌握调制解调技术的基本原理和实验操作方法,提高学生对通信原理的实际应用能力。

二、实验仪器和设备。

本次实验所需的仪器和设备包括信号发生器、示波器、频谱分析仪、调制解调实验箱等。

三、实验原理。

1. 调制原理。

在通信中,为了将模拟信号传输到远距离,需要将模拟信号转换成数字信号,这就需要用到调制技术。

调制是指将要传输的模拟信号(基带信号)变换成符合载波特性的信号,以便于在信道中传输。

常见的调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)等。

2. 解调原理。

解调是指将调制后的信号还原成原始的模拟信号的过程。

解调技术是调制技术的逆过程,主要包括信号检测、解调器和滤波器等。

四、实验步骤。

1. 调幅调制实验。

(1)将信号发生器的正弦波信号作为调制信号,载波信号为高频正弦波信号。

(2)连接示波器,观察调制前后的信号波形变化。

(3)调节信号发生器的频率和幅度,观察调制信号的变化。

2. 调频调制实验。

(1)将信号发生器的正弦波信号作为调制信号,载波信号为高频正弦波信号。

(2)连接示波器和频谱分析仪,观察调频调制的信号波形和频谱特性。

3. 解调实验。

(1)将调幅调制和调频调制的信号输入到解调器中,观察解调后的信号波形和频谱特性。

(2)调节解调器参数,观察解调效果的变化。

五、实验结果分析。

通过本次实验,我们对调制解调技术有了更深入的了解。

在调幅调制实验中,我们观察到了调制前后信号波形的变化,了解了调幅调制的基本原理。

在调频调制实验中,我们通过观察频谱特性,掌握了调频调制的实验操作方法。

在解调实验中,我们调节解调器参数,观察到了解调效果的变化,加深了对解调原理的理解。

六、实验总结。

通过本次实验,我们对通信原理中的调制解调技术有了更深入的认识,掌握了实验操作方法,提高了实际操作能力。

在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提高自己的专业能力。

通信原理实验报告小结

通信原理实验报告小结

一、实验背景与目的通信原理实验是通信工程专业学生学习通信基础知识的重要环节,旨在通过实际操作加深对通信原理的理解,提高学生的实践能力。

本次实验主要针对通信系统中常用的数字基带信号、调制解调技术、信道模型等方面进行实验研究。

二、实验内容及方法1. 数字基带信号实验(1)实验内容:了解几种常用的数字基带信号的特征和作用,如AMI码、HDB3码等。

(2)实验方法:通过MATLAB软件模拟数字基带信号的生成、传输和接收过程,观察信号波形,分析信号特性。

2. 调制解调技术实验(1)实验内容:学习AM、SSB、FM调制与解调技术,掌握调制解调原理。

(2)实验方法:利用SystemView软件模拟调制解调过程,观察调制解调信号波形,分析调制解调效果。

3. 信道模型实验(1)实验内容:学习加性白高斯噪声信道模型,分析信号在信道中的传输特性。

(2)实验方法:通过MATLAB软件生成加性白高斯噪声,模拟信号在信道中的传输过程,观察信号波形和频谱,分析信号传输效果。

4. 码间串扰实验(1)实验内容:研究码间串扰对数字信号传输的影响,掌握眼图分析方法。

(2)实验方法:通过MATLAB软件生成受码间串扰和未受码间串扰影响的数字信号,绘制眼图,分析眼图特性。

5. 双机通信实验(1)实验内容:掌握单片机串行口工作方式,学习双机通信接口电路设计及程序设计。

(2)实验方法:利用单片机实验模块和数码管显示模块,实现双机通信功能,观察通信过程,分析通信效果。

三、实验结果与分析1. 数字基带信号实验通过实验,我们掌握了AMI码、HDB3码等数字基带信号的特征和作用,了解了信号在传输过程中的特性。

2. 调制解调技术实验通过实验,我们熟悉了AM、SSB、FM调制与解调技术,掌握了调制解调原理,提高了信号处理能力。

3. 信道模型实验通过实验,我们学习了加性白高斯噪声信道模型,了解了信号在信道中的传输特性,为后续通信系统设计提供了理论基础。

4. 码间串扰实验通过实验,我们掌握了眼图分析方法,了解了码间串扰对数字信号传输的影响,为通信系统性能优化提供了参考。

通信原理实验报告(8份)

通信原理实验报告(8份)

通信原理实验报告(8份)姓名:学号:通信原理实验报告姓名:姓名:学号:实验一HDB3码型变换实验一、实验目的了解几种常用的数字基带信号的特征和作用。

掌握HDB3码的编译规则。

了解滤波法位同步在的码变换过程中的作用。

二、实验器材主控&信号源、2号、8号、13号模块双踪示波器连接线三、实验原理1、HDB3编译码实验原理框图各一块一台若干姓名:学号:HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

当没有连续4个连0时与AMI编码规则相同。

当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。

若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。

实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。

同样AMI译码只需将所有的±1变为1,0变为0即可。

而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。

传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。

实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。

四、实验步骤姓名:学号:实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。

将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。

姓名:学号:3、此时系统初始状态为:编码输入信号为256K的PN序列。

4、实验操作及波形观测。

通信原理实验报告

通信原理实验报告

通信原理实验报告通信原理包括很多东西,主要就是解决数据的收发以及传输,具体如下:(1)信源编码:减少码元数目和码元速率以及模拟信号的数字化(2)数字调制:模拟信号转化成数字信号后,我们称之为数字基带信号,大多数情况下,数字基带信号并不适合在信道中传输,这时就需要进行数字调制,如ASK,FSK,PSK等,以适应信道的传输(3)模拟调制:如果在数字系统中就不需要进行模拟调制,当在模拟系统中传输时就需要进行模拟调制,如AM,FM,PM等(4)信道编码:信道编码是为了使数字信息在信道传输时能够具有更好的抗干扰能力(5)模拟解调:解调出数字调制信号(6)数字解调:也就是译码。

这个过程比较复杂,需要进行载波同步和位同步,以及抽样判决一、通信的目的:将信息从发端”搬运“到收端。

二、衡量通信过程的指标:有效性和可靠性。

三、完成通信的手段:和具体信道和收发端有关系。

其实这也是题主问题里所问的一切,那一切的东西,都是手段。

一切通信都离不开这三个方面。

就如同你和其他人交流的时候可以通过声音,你想表达的是你的信息,通过的信道是空气。

那么你的通信手段就是: 首先将你想说的内容调制到声音频率上,然后发送你想说的话给你的听众,然后你的听众接收到了你的发送信号(声音),然后理解(解调和译码)了你的意思。

你看这就是一个通信过程。

那么考虑这样或那样的问题,面对不同的信道,不同的人群,如何能有效并可靠的将你的信息给别人呢?那就要考虑各种实际的问题了。

如果你在太空中,没有任何声音可以传播的介质,你能通过大声喊(就认为这是一种编码、调制并发送的过程好了)让别人听见吗?答案当然是否啦。

不过近距离的话你可以通过手势,眼神等其他(编码、调制)方式来完成交流,这就是面对不同信道的一种解决方案了。

那么再考虑另外一种情况,如果你和一个略通中文歪果仁用中文对话,你当然不可能用很快的语速来交流了,那么降低你的说话频率(码率或者速率)就是一种不错的解决方案了。

通信原理实验报告

通信原理实验报告

通信原理实验报告本实验旨在通过实际操作和实验数据的分析,加深对通信原理的理解,并掌握通信原理实验中所使用的基本仪器设备和实验方法。

具体目的如下:理解调制与解调的基本原理和方法;掌握调幅(AM)和调频(FM)的调制与解调实验;研究利用示波器、信号源等仪器设备进行实验操作;分析实验数据,掌握数据处理方法和结果的分析。

这些实验目的的达成将有助于提高我们对通信原理的理论知识的掌握程度,加深对通信原理的应用场景的认识,为今后的研究和研究打下坚实基础。

本实验涉及的通信原理相关知识包括信号传输、调制与解调、信道编码等。

信号传输是指将信息从发送方传输到接收方的过程。

在通信中,常用的信号传输方法包括模拟传输和数字传输。

模拟传输是指将连续的模拟信号通过信道传输,如模拟电话通信;数字传输是指将离散的数字信号通过信道传输,如数字电视。

调制与解调是实现模拟信号和数字信号之间的转换。

调制是将模拟信号转换为数字信号的过程,常见的调制方式有频移键控(FSK)、相位移键控(PSK)和振幅移键控(ASK)等。

解调是将数字信号转换为模拟信号的过程,常见的解调方式包括相干解调和非相干解调。

信道编码是为了提高信号传输的可靠性而对信号进行编码的过程。

通过添加冗余信息,可以实现对传输中的错误进行检测和纠正。

常见的信道编码技术包括奇偶校验、海明码和卷积码等。

在本实验中,我们将研究和实践以上通信原理相关知识,以加深对通信原理的理解和掌握。

实验步骤本实验的目的是介绍通信原理相关实验的具体步骤和操作过程,以及所需的仪器设备和实验材料。

准备工作确保所有实验仪器和设备的正常工作状态。

检查实验材料的数量和质量,确保其符合实验要求。

实验仪器和设备根据实验要求准备相应的通信原理实验仪器和设备,如计算机、信号发生器、示波器等。

实验材料根据实验要求准备相应的实验材料,如电磁波发射器、接收器、天线等。

实验步骤按照实验要求连接实验仪器和设备,并确保其工作正常。

设置信号发生器的参数,确保产生适当的信号波形和频率。

通信原理实验报告

通信原理实验报告

一、实验目的1. 理解通信原理的基本概念和原理。

2. 掌握通信系统的主要组成部分及其功能。

3. 熟悉信号调制、解调、传输和接收等基本过程。

4. 培养动手能力和实验操作技能。

二、实验器材1. 信号发生器2. 双踪示波器3. 模拟通信系统实验平台4. 信号源5. 电缆连接线三、实验原理通信原理实验主要包括以下内容:1. 信号调制与解调:通过信号发生器产生不同类型的信号,如正弦波、方波、三角波等,然后利用模拟通信系统实验平台进行调制和解调实验,观察不同调制方式(如调幅、调频、调相)对信号的影响。

2. 信号传输与接收:利用模拟通信系统实验平台模拟信号在信道中的传输过程,观察信号在传输过程中的衰减、噪声和干扰等现象,分析信道的特性。

3. 信号编码与解码:通过信号发生器产生数字信号,利用模拟通信系统实验平台进行编码和解码实验,观察不同编码方式(如二进制编码、十进制编码)对信号的影响。

四、实验步骤1. 信号调制与解调实验:(1)设置信号发生器产生不同频率的正弦波信号。

(2)将正弦波信号输入模拟通信系统实验平台,进行调幅、调频、调相等调制实验。

(3)观察调制后的信号波形,分析调制方式对信号的影响。

(4)将调制后的信号输入模拟通信系统实验平台,进行解调实验。

(5)观察解调后的信号波形,分析解调方式对信号的影响。

2. 信号传输与接收实验:(1)设置信号发生器产生不同频率的信号。

(2)将信号输入模拟通信系统实验平台,模拟信号在信道中的传输过程。

(3)观察传输过程中的信号衰减、噪声和干扰等现象。

(4)分析信道的特性,如带宽、噪声系数等。

3. 信号编码与解码实验:(1)设置信号发生器产生数字信号。

(2)将数字信号输入模拟通信系统实验平台,进行编码实验。

(3)观察编码后的信号波形,分析编码方式对信号的影响。

(4)将编码后的信号输入模拟通信系统实验平台,进行解码实验。

(5)观察解码后的信号波形,分析解码方式对信号的影响。

五、实验结果与分析1. 在信号调制与解调实验中,我们发现调幅、调频、调相等调制方式对信号的影响较大,调制后的信号波形与调制前的信号波形有明显差异。

通信原理实验报告

通信原理实验报告

通信原理实验报告1. 实验简介该实验旨在探究通信原理中的基础概念和技术,通过实际操作和数据收集,加深对通信原理的理解和应用。

2. 实验目的通过实验,达到以下目的:- 理解调制、解调、信道传输等基本通信原理- 学习并应用相关通信原理工具和设备- 分析实验结果,总结出相关规律和结论- 提高实验操作能力和数据处理能力3. 实验过程3.1 实验设备和器材预备准备以下设备和器材:- 调制解调器- 信号发生器- 示波器- 噪声源- 电缆和连接线3.2 实验步骤步骤1:使用信号发生器产生载波信号,并将其连接到调制解调器的输入端口。

步骤2:将待发送的消息信号连接到调制解调器的输入端口。

步骤3:通过示波器观察并记录调制解调器输出的调制信号。

步骤4:使用示波器观察并记录解调器输出的解调信号。

步骤5:将噪声源连接到调制解调器的输入端口,并观察解调器输出的抗噪性能。

步骤6:根据实验结果进行数据分析和总结。

4. 实验结果与讨论4.1 调制信号观察与记录通过示波器观察到的调制信号波形如下图所示:(可以插入图片)4.2 解调信号观察与记录通过示波器观察到的解调信号波形如下图所示:(可以插入图片)4.3 抗噪性能观察与分析连接噪声源后,示波器观察到的解调信号波形相对于无噪声的情况产生了一定程度的畸变。

通过分析解调信号的信噪比和误码率等指标,可以进一步评估抗噪性能,并提出改进建议。

5. 结论通过本次实验,我们深入探讨了通信原理相关的调制、解调和信道传输等基本概念。

通过观察实验结果和数据分析,得出以下结论:- 调制技术可以将消息信号转换为适合传输的载波信号,进而实现有效的数据传输。

- 解调技术可以将接收到的调制信号还原为原始的消息信号。

- 通信系统在存在噪声的情况下,解调信号的质量和抗噪能力会受到一定影响。

6. 改进建议根据实验结果和结论,我们提出以下改进建议:- 进一步优化调制和解调算法,提高传输效率和抗噪性能。

- 使用更先进的设备和器材,提升实验数据的准确性和稳定性。

通信原理实验报告

通信原理实验报告

通信原理实验报告本次实验是关于通信原理的实验,学生需要通过实验掌握通信原理的基本知识和技能。

实验目的:通过实验了解调制、解调、信道编码和解码的原理和实现方法;通过实验了解不同调制方式的特点及其在不同场合下的应用;通过实验掌握信道编码和解码的基本知识和技能。

1.调制和解调调制是将信息信号与载波信号相互作用,使信息信号的某种特征随载波信号的某种特征而变化,以便在通信中传输信息信号。

解调是将调制好的信号传输后,再进行还原,恢复出原始的信号。

2.信道编码和解码信道编码是为了增加信道传输的可靠性而引入的方法。

信道编码器在将信息码变成接收端能够正确识别的码的同时,对信息码进行附加冗余编码,以容忍信道中出现的错误。

信道解码则是接收端对接收到的码进行校验,发现错误并进行纠正或重传。

实验内容:先通过MATLAB生成一个基带数字信号,然后分别采用ASK,FSK,PSK三种调制方式进行调制,并对调制后的信号进行解调,核实解调后音频信号是否与原始基带信号保持一致。

利用信号发生器和示波器进行调制和解调过程演示,实现调幅调频和调相调频的音频信号传输。

分别采用卷积码,RS码,Turbo码三种编码方式对信息进行编码,在发送端进行编码,接收端进行解码。

实验结果:在信号发生器上设置998Hz的音频信号,采用模拟调制调幅调频和调相调频两种方式传输音频信号。

在示波器上观测到调幅调频的信号波形和音频信号波形基本保持一致,调相调频的信号波形相位偏移后变化,但音频信号波形基本保持一致。

通过本次实验,学生掌握了调制、解调、信道编码和解码的基础知识和技能,通过实验了解不同调制方式的特点及其在不同场合下的应用,掌握卷积码,RS码和Turbo码三种编码方式的基本知识和技能。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验目的,通过本次实验,掌握数字通信原理的基本知识,了解数字信号的调制与解调原理,掌握数字通信系统的基本结构和工作原理。

实验仪器,数字信号发生器、示波器、频谱分析仪、数字通信系统实验箱等。

实验原理,数字通信是利用数字信号进行信息传输的通信方式。

在数字通信中,数字信号经过调制器调制成模拟信号,通过信道传输到接收端,再经过解调器解调为数字信号,最终恢复原始信号。

本次实验主要涉及到的调制方式有ASK、FSK和PSK。

实验步骤:1. 连接实验仪器,首先将数字信号发生器连接到示波器和频谱分析仪上,然后将示波器连接到数字通信系统实验箱的发送端,频谱分析仪连接到接收端。

2. 设置数字信号发生器,根据实验要求,设置数字信号发生器的频率、幅度和波形。

3. 进行调制实验,依次进行ASK、FSK和PSK的调制实验,观察发送端的波形和频谱,并记录相关数据。

4. 进行解调实验,将接收端连接到示波器上,依次进行ASK、FSK和PSK的解调实验,观察接收端的波形和频谱,并记录相关数据。

5. 数据分析,根据实验数据,分析不同调制方式的特点和性能,比较它们的优缺点。

实验结果:经过实验,我们得到了不同调制方式的波形和频谱图,通过数据分析,我们得出了以下结论:1. ASK调制适用于带宽较窄的通信系统,但抗干扰能力较差。

2. FSK调制适用于抗干扰能力要求较高的通信系统,但带宽较宽。

3. PSK调制适用于对频谱利用率要求较高的通信系统。

结论,本次实验通过实际操作,加深了对数字通信原理的理解,掌握了数字信号的调制与解调原理,对数字通信系统的基本结构和工作原理有了更深入的认识。

实验总结,数字通信技术是现代通信领域的重要组成部分,通过本次实验,我们对数字通信原理有了更加深入的了解,这对我们今后的学习和工作都具有重要意义。

通过本次实验,我们不仅学到了理论知识,还掌握了实际操作的技能,这对我们今后的学习和工作都具有重要意义。

希望在今后的实验中,我们能够继续努力,不断提高自己的实验能力,为今后的科研工作打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AMclose all; clear all; dt=0.001; fm=1; fc=10; T=5; t=0:dt:T;mt=sqrt(2)*cos(2*pi*fm*t); %NO = 0.01; %AM modulation A=2;s_am=(A+mt).*cos(2*pi*fc*t); B=2*fm; figure(1) subplot(311)plot(t,s_am);hold on; plot(t,A+mt,'r--');title('AM 调制信号及其包络'); xlabel('t');%AM demodulation rt=s_am.*cos(2*pi*fc*t); rt=rt-mean(rt); [f,rf]=T2F(t,rt); rt=lpf(f,rf,2*fm); subplot(312) plot(t,rt);hold on; plot(t,mt/2,'r--');title('相干解调后的信号波形与输入信号的比较');xlabel('t'); subplot(313)[f,sf]=T2F(t,s_am); psf=(abs(sf).^2)/T; plot(f,psf);axis([-2*fc 2*fc 0 max(psf)]); title('AM 信号功率谱密度'); xlabel('f');------------------------------------------------f2t —lpf---t2f--------------------------------------------------------- F2T.m function[t,st]=F2T(f,sf) df=f(2)-f(1); Fmx=(f(end)-f(1)+df); dt=1/Fmx; N=length(sf); T=dt*N; t=0:dt:T-dt; sff=fftshift(sf); st=Fmx*ifft(sff); LPF.m function st=lpf(f,sf,B) df=f(2)-f(1); T=1/df; hf=zeros(1,length(f)); bf=[-floor(B/df):floor(B/df)]+floor(length(f)/2); hf(bf)=1; yf=hf.*sf; [t,st]=f2t(f,yf); st=real(st); T2F.m function[f,sf]=T2F(t,st) dt=t(2)-t(1); T=t(end); df=1/T; N=length(st);f=-N/2*df:df:N/2*df-df; sf=fft(st); sf=T/N*fftshift(sf);AMINO.1NO.2% 本 程 序 中 时 间 单 位 是 ms ,频 率 单 位 是 kHz ,码 元 速 率 单 位 是 kbit/s clear all close all N = 2^13; L = 32; M = N/L; Rb = 2; Ts = 1/Rb; fs = L/Ts; Bs = fs/2; T = N/fs;t = -T/2 + [0:N - 1]/fs; f = -Bs + [0:N - 1]/T; EP = zeros(1,N); for loop = 1:1000%产 生 数 据 序 列 a = (rand(1,M)>0.5); %AMI 编 码 tmp1 = 1 - 2 * a;tmp2 = cumprod(tmp1); b = - a.* tmp2;%产 生 AMI 码 波 形s = [ones(L/2,1) * b; zeros(L/2,M)]; s = s(:)'; S = t2f(s,fs);%样 本 信 号 的 功 率 谱 密 度 P = abs(S).^2/T;%随 机 过 程 的 功 率 谱 密 度 是各 个 样 本 的 功 率 谱 密 度 的 数 学 期 望EP = EP*(1 - 1/loop) + P/loop; endfigure(1) plot(t,s)xlabel('t (ms)') ylabel('s(t) (v)') axis([ - 4,4, - 2,+ 2]) figure(2) plot(f,EP)% xlabel('f (kHz)')% ylabel('功率谱(W/kHz)') % axis([ - 4,4,-2,+2]) f2t.mfunction s=f2t(S,fs) N=length(S); T=N/fst=[-(T/2):1/fs:(T/2-1/fs)]; tmp1=fft(S)/T; tmp2=N*ifft(S)/T;s(1:N/2)=tmp1(N/2+1:-1:2); s(N/2+1:N)=tmp2(1:N/2); s=s.*exp(-j*pi*t*fs); end t2f.mfunction S=t2f(s,fs) %s 为输入信号,S 为s 的频谱,fs 为采样率; N=length(s); T=1/fs*N;f=[-N/2:(N/2-1)]/T; tmp1=fft(s)/fs; tmp2=N*ifft(s)/fs;S(1:N/2)=tmp2(N/2+1:-1:2); S(N/2+1:N)=tmp1(1:N/2); S=S.*exp(j*pi*f*T); endFMFM.m %FM modulation and demodulation,mfm.m clear all; close all; Kf = 5; fc = 10; T = 5; dt = 0.001; t = 0:dt:T;%信源 fm = 1; %mt = cos(2 * pi * fm * t) + 1.5 * sin(2 * pi * 0.3 * fm * t); %信源信号 mt = cos(2 * pi * fm * t); %信源信号 %FM 调制 A = sqrt(2); %mti = 1/2/pi/fm * sin(2 * pi * fm * t) - 3/4/pi/0.3/fm * cos(2 * pi * 0.3 * fm * t); %mt 的积分函数 mti = 1/2/pi/fm * sin(2 * pi * fm * t); %mt 的积分函数 st = A * cos(2 * pi * fc * t + 2 * pi * Kf * mti); figure(1)subplot(311); plot(t,st);hold on; plot(t,mt,'r--'); xlabel('t');ylabel('调 频 信 号') subplot(312) [f,sf] = T2F(t,st); pst=(abs(sf).^2)/T; plot(f, pst); axis([ - 25 25 0 max(abs(sf).^2)]) xlabel('f');ylabel('调频信号幅度谱') ;%FM 解调 for k = 1:length(st) - 1 rt(k) = (st(k + 1) - st(k))/dt; end rt(length(st)) =0; subplot(313) plot(t,rt); hold on; plot(t,A * 2 * pi * Kf * mt + A * 2 * pi * fc,'r--'); xlabel('t');ylabel('调 频 信 号 微 分 后 包 络') -----------------------------------------------------f2t,t2f--------------------------------------------------------------------------F2T.m function[t,st]=F2T(f,sf)df=f(2)-f(1);Fmx=(f(end)-f(1)+df); dt=1/Fmx; N=length(sf); T=dt*N; t=0:dt:T-dt; sff=fftshift(sf); st=Fmx*ifft(sff); T2F.m function[f,sf]=T2F(t,st) dt=t(2)-t(1); T=t(end); df=1/T;N=length(st);f=-N/2*df:df:N/2*df-df; sf=fft(st);sf=T/N*fftshift(sf);带通调制daitong1NO.1NO.2Daitong1.a%OOK,2PSK,文件名binarymod.m clear all; close all; A=1;fc=2; %2Hz N_sample=8;N=500; %码元数 Ts=1; %1Buad/sdt=Ts/fc/N_sample; %波形采样间隔 t=0:dt:N*Ts-dt; Lt=length(t); T=t(end);%产生二进制信源 d=sign(randn(1,N));dd=sigexpand((d+1)/2,fc*N_s ample);gt=ones(1,fc*N_sample); %N RZ 波形 figure(1);subplot(221); %输入NRZ 信号波形(单极性) d_RNZ=conv(dd,gt);plot(t,d_RNZ(1:length(t))); axis([0 10 0 1.2]);ylabel('输入信号');subplot(222); %输入NRZ 频谱[f,d_RNZf]=T2F(t,d_RNZ(1:l ength(t)));plot(f,10*log10(abs(d_RNZf).^2/T));axis([-2 2 -50 10]);ylabel('输入功率频谱密度(dB/Hz)'); %ook 信号ht=A*cos(2*pi*fc*t); s_2ask=d_RNZ(1:Lt).*ht; subplot(223); plot(t,s_2ask); axis([0 10 -1.2 1.2]);ylabel('ook');[f,s_2ask]=T2F(t,s_2ask);subplot(224);plot(f,10*log10(abs(s_2ask).^2/T)); axis([-fc-4 fc+4 -50 10 ]);ylabel('ook 功率谱密度(dB/Hz)');figure(2);%2psk 信号 d_2psk=2*d_RNZ-1; s_2psk=d_2psk(1:Lt).*ht; subplot(221); plot(t,s_2psk); axis([0 10 -1.2 1.2]);ylabel('2psk'); subplot(222);[f,s_2psk]=T2F(t,s_2psk); plot(f,10*log10(abs(s_2psk).^2/T)); axis([-fc-4 fc+4 -50 10]);ylabel('2psk 功率频谱密度(dB/Hz)'); %2FSK%s_2fsk=Acos(2*pi*fc*t+int( 2*d_RNZ-1));sd_2fsk=2*d_RNZ-1;s_2fsk=A*cos(2*pi*fc*t+2*p i*sd_2fsk(1:length(t)).*t); subplot(223);plot(t,s_2fsk);axis([0 10 -1.2 1.2]);xlabel('t');ylabel('2fsk'); subplot(224);[f,s_2fsk]=T2F(t,s_2fsk); plot(f,10*log10(abs(s_2fsk).^ 2/T));axis([-fc-4 fc+4 -50 10]);xlabel('f');ylabel('2FSK功率频谱密度(dB/Hz)');F2T.m function[t,st]=F2T(f,sf)df=f(2)-f(1);Fmx=(f(end)-f(1)+df);dt=1/Fmx;N=length(sf);T=dt*N;t=0:dt:T-dt;sff=fftshift(sf);st=Fmx*ifft(sff);--------------------sigexpand.mfunction [out] =sigexpand(d,M) %将输入的系列扩展成间隔为N-1个0的系列N = length(d);out = zeros(M,N);out(1,:) = d;out =reshape(out,1,M*N);T2F.mfunction[f,sf]=T2F(t,st)dt=t(2)-t(1);T=t(end);df=1/T;N=length(st);f=-N/2*df:df:N/2*df-df;sf=fft(st);sf=T/N*fftshift(sf);抽样定理Chouyanbg1.m%低通抽样定理,filename:dtchy.mclear all;close all;dt=0.01;t=0:dt:10;xt=0.1*cos(0.15*pi*t)+1.5*sin(2.5*pi*t)+0.5*cos(4*pi*t);[f,xf]=T2F(t,xt); %抽样信号,抽样速率为4Hzfs=4;sdt=1/fs;t1=0:sdt:10;st=0.1*cos(0.15*pi*t1)+1.5*sin(2.5*pi*t1)+0.5 *cos(4*pi*t1);[f1,s1]=T2F(t1,st); %恢复原始信号t2=-50:dt:50;gt=sinc(fs*2);stt=sigexpand(st,sdt/dt);xt_t=conv(stt,gt);figure(1);subplot(311);plot(t,xt);title('原始信号');subplot(312);plot(t1,st);title('抽样信号');subplot(313);t3=-50:dt:60+sdt-dt;stem(t1,st,'*');title('抽样信号恢复');axis([0 10-4 4])[F2T.mT2F.m函数见实验一附录]FDMFDM.m --------------clear all;t=0:0.000001:0.4;e1=sin(100*t);e2=(sin(200*(t-0.2))+eps)./(200*(t-0.2)+eps); a=e1.*cos(1000*t)+e2.*cos(10000*t); [nb,na]=butter(4,500,'s');sys=tf(nb,na);b1=a.*cos(1000*t);c1=lsim(sys,b1,t);b2=a.*cos(10000*t);c2=lsim(sys,b2,t);subplot(3,1,1)plot(t,a);subplot(3,1,2)plot(t,c1);subplot(3,1,3)plot(t,c2);。

相关文档
最新文档