七年级下学期期末复习数学综合卷(二)
青岛版2020七年级数学下册期末综合复习基础训练题2(附答案)
青岛版2020七年级数学下册期末综合复习基础训练题2(附答案)1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( )A .5元B .10元C .20元D .10元或20元2.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°3.下列式子中,计算结果为2215x x +-的是( )A .(5)(3)x x +-B .(5)(3)x x -+C .(5)(3)x x ++D .(5)(3)x x -- 4.(2011•恩施州)下列运算正确的是( )A .a 6÷a 2=a 3B .a 5﹣a 3=a 2C .(3a 3)2=6a 9D .2(a 3b )2﹣3(a 3b )2=﹣a 6b 25.(x +3ab )(x -3ab )等于( )A .x 2 -9a 2b 2B .x 2 -9ab 2C .x 2 -ab 2D .x 2 -a 2b 26.下列说法正确的个数( )①线段有两个端点,直线有一个端点;②点A 到点B 的距离就是线段AB ;③两点之间线段最短;④ 若AB=BC ,则点B 为线段AC 的中点;⑤同角(或等角)的余角相等.A .4个B .3个C .2个D .1个7.平面直角坐标系内AB ∥y 轴,AB=5,点A 的坐标为(﹣5,3),则点B 的坐标为( )A .(﹣5,8)B .(0,3)C .(﹣5,8)或(﹣5,﹣2)D .(0,3)或(﹣10,3)8.如图,将一张正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为23m +,则原正方形边长是 ( )A .6m +B .3m +C .23m +D .26m +9.若12512'∠=o ,225.12∠=o ,325.2∠=o ,则下列结论正确的是( )A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠1=∠2=∠3 10.下列各方程组中,不是二元一次方程组的是()A.2583x yx y-=⎧⎨+=⎩B.113x zx y+=⎧⎪⎨=⎪⎩C.3225x yx y-=⎧⎨+=⎩D.1122311332x yx y⎧+=⎪⎪⎨⎪-=⎪⎩11.-0.000031用科学记数法表示为:__________________________12.钟面上8 点30 分时,时针与分针的夹角的度数是________ .13.已知一点到圆上的最短距离是2,最长距离是4,则圆的半径为____.14.已知4x=2x+3,则x=_________.32÷8n-1=2n,则n=_________.15.(x+2y-3)(x-2y-3)=_____-_____.16.有长为20m的铁栏杆,利用它和一面墙围成一个矩形花圃ABCD(如图),若花圃的面积为48m2,求AB的长.若设AB的长为xm,则可列方程为______.17.若2330x y++=,则927x y⋅=________.18.把多项式4m2﹣16n2分解因式的结果是_____.19.已知方程132x y-=,用含x的代数式表示y=_________________________。
2022-2023学年人教版七年级下册期末达标测数学试卷(二)(含详细解析)
期末达标测试卷(二)时间:90分钟 分值:120分 得分:__________分一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是( )2.下列各数中,是无理数的是( )A .-5B .12C .16D .3.143.若{x =1,y =2是关于x ,y 的方程x +ay =3的一个解,则a 的值为( )A .1B .-1C .3D .-34.下列计算正确的是( )A .9=±3B .3-27=-3C .(-4)2=-4D .32+22=55.如图,将三角形ABC 沿BC 所在的直线向右平移得到三角形DEF ,已知∠ABC =90°,则下列结论中,错误的是( )第5题图A .EC =CFB .∠A =∠DC .AC ∥DFD .∠DEF =90°6.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的扇形统计图,已知甲类书籍有30本,则丙类书籍的数量是( )第6题图A .200本B .144本C .90本D .80本7.已知|x+y+1|+2x-y=0,则x-y的值为( )A.-13B.-1C.13D.18.在平面直角坐标系中,点P(2x-6,x-5)在第三象限,则x的取值范围是( )A.x<5B.x<3C.x>5D.3<x<59.如图,两面平面镜OA,OB形成∠AOB,从OB上一点E射出的一条光线经OA上一点D反射后的光线DC恰好与OB平行,已知∠AOB=35°,∠ODE=∠ADC,则∠DEB的度数是( )第9题图A.35°B.60°C.70°D.85°10.如图,在平面直角坐标系中,A,B,C,D四点的坐标分别是A(1,3),B(1,1),C(3,1),D(3,3),动点P从点A出发,在正方形边上按照A→B→C→D→A→…的方向不断移动,已知P的移动速度为每秒1个单位长度,则第2 023秒,点P的坐标是( )第10题图A.(1,2)B.(2,1)C.(3,2)D.(2,3)二、填空题(本大题5小题,每小题3分,共15分)11.若8点时室外温度为2 ℃,记作(8,2),则21点时室外温度为零下3 ℃,记作__________.1216-|-52|=__________.13.小刚在期中测试中,数学得了95分,语文得了83分,要使三科的平均分不低于90分,则英语至少得__________分.14.如图,直线AB与CD相交于点O,∠AOC-2∠AOE=20°,射线OF平分∠DOE,若∠BOD =60°,则∠AOF=__________.第14题图15.定义:对于实数a,[a]表示不大于a的最大整数,例如:[5.71]=5,[5]=5,[-π]=-4.如果[x+12]=-2,那么x可取的整数值之和为__________.三、解答题(一)(本大题3小题,每小题8分,共24分)16.解方程组:{3x+4y=9,x+y=1.17.当x取何值时,代数式x+43与3x-12的差的值大于1?18.已知2a+1的平方根是±3,3a+2b+4的立方根是-2,求4a-5b+5的算术平方根.四、解答题(二)(本大题3小题,每小题9分,共27分)19.如图,AC∥EF,∠1+∠3=180°.(1)求证:AF∥CD;(2)若AC⊥EB于点C,∠2=40°,求∠BCD的度数.第19题图20.某校组织七年级学生参加汉字听写大赛,并随机抽取部分学生的成绩作为样本进行分析,绘制成如下不完整的统计图表:七年级抽取部分学生成绩的频数分布表成绩x/分频数百分比(%)第1段50≤x<6024第2段60≤x<70612第3段70≤x<809b第4段80≤x<90a36第5段90≤x≤1001530第20题图请根据所给信息,解答下列问题:(1)a=__________,b=__________,并补全频数分布直方图.(2)已知该年级有500名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?(3)请你根据学生的成绩情况提一条合理的建议.21.一家玩具店购进二阶魔方和三阶魔方共100个,花去1 800元,这两种魔方的进价、售价如下表:二阶魔方三阶魔方进价(元/个)1520售价(元/个)2030(1)求购进二阶魔方和三阶魔方的数量;(2)如果将销售完这100个魔方所得的利润全部用于公益捐赠,那么这家玩具店捐赠了多少钱?五、解答题(三)(本大题2小题,每小题12分,共24分)22.如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向向左平移3个单位长度,平移后的线段为CD.(1)点C的坐标为__________,线段BC与线段AD的位置关系是__________.(2)在四边形ABCD中,点P从点A出发,沿AB→BC→CD方向运动,到点D停止.若点P 的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,若在某一时刻四边形ABCP的面积为4,求此时点P的坐标.第22题图23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射出的光线自AM顺时针旋转至AN便立即回转,灯B射出的光线自BP 顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足|a-3b|+(a+b-4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)a=__________,b=__________.(2)若灯B先转动20秒,灯A才开始转动,在灯B射出的光线到达BQ之前,灯A转动多长时间时,两灯射出的光线互相平行?第23题图期末达标测试卷(二)1.D2.A3.A4.B5.A6.D7.C8.B9.C 10.D 11.(21,-3) 12.-21 13.92 14.70° 15.-916.解:{3x +4y =9, ①x +y =1. ②②×3,得3x +3y =3.③①-③,得y =6.把y =6代入②,得x +6=1.解得x =-5.所以这个方程组的解为{x =-5,y =6.17.解:根据题意,得 x +43-3x -12>1.去分母,得2(x +4)-3(3x -1)>6.去括号,得2x +8-9x +3>6.移项,得2x -9x >6-8-3.合并同类项,得-7x >-5.系数化为1,得x <57.18.解:∵2a +1的平方根是±3,∴2a +1=9.解得a =4.∵3a +2b +4的立方根是-2,∴3a +2b +4=-8,即12+2b +4=-8.解得b =-12.当a =4,b =-12时,4a -5b +5=4×4-5×(-12)+5=81.∴4a -5b +5的算术平方根为9.19.(1)证明:∵AC ∥EF ,∴∠1+∠2=180°.又∠1+∠3=180°,∴∠2=∠3.∴AF ∥CD .(2)解:∵AC ⊥EB ,∴∠ACB =90°.又∠3=∠2=40°,∴∠BCD =∠ACB -∠3=90°-40°=50°.20.解:(1)18 18.补全频数分布直方图如答图所示.第20题答图(2)500×0.3=150(人).答:估计该年级成绩为优的有150人.(3)由统计图可知,有34%的学生的成绩低于80分,应鼓励学生多阅读书籍,增强学生识字能力.(答案不唯一,合理即可)21.解:(1)设购进二阶魔方x 个,三阶魔方y 个.依题意,得{x +y =100,15x +20y =1 800.解得{x =40,y =60.答:购进二阶魔方40个,三阶魔方60个.(2)(20-15)×40+(30-20)×60=800(元).答:这家玩具店捐赠了800元.22.解:(1)(-4,2) 平行.(2)①当0≤t <2时,P (-1,t );当2≤t ≤5时,P (-t +1,2);当5<t ≤7时,P (-4,7-t ).②由题意,得AB =2,AD =3,PD =7-t .∴S 四边形ABCP =S 四边形ABCD -S △ADP =AB ·AD -12AD ·PD =2×3-12×3(7-t )=4.解得t =173.∴7-t =7-173=43.∴此时点P 的坐标为(-4,43).23.解:(1)3 1.(2)设灯A 转动t 秒时,两灯射出的光线互相平行(记灯A 射出的光线为AM ′,灯B 射出的光线为BP ′).∵PQ ∥MN ,∠BAN =45°,∴∠MAB =∠ABP =135°.①当0<t ≤60时,此时BP ′在AB 右侧.若AM ′∥BP ′,则AM ′在AB 左侧,且∠M ′AB =∠P ′BA ,即135-3t=135-(20+t)×1.解得t=10.②当60<t<115时,此时BP′在AB右侧.若AM′∥BP′,则AM′在AB左侧,且∠M′AB=∠P′BA,即135-(3t-180)=135-(20+t)×1.解得t=100.③当115≤t≤120时,该情况不存在.④当120<t≤160时,BP′在AB左侧.若AM′∥BP′,则AM′在AB右侧,且∠M′AB=∠P′BA,即3t-360-135=(20+t)×1-135.解得t=190>160(不合题意,舍去).综上所述,当t=10秒或100秒时,两灯的光束互相平行.。
七年级下册二元一次方程组数学综合测试卷及答案(二)解析
一、选择题1.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38 B.40 C.42 D.452.小敏和小捷两人玩“打弹珠”游戏,小敏对小捷说:“把你珠子的一半给我,我就有 30颗珠子”.小捷却说:“只要把你的12给我,我就有 30 颗”,如果设小捷的弹珠数为 x 颗,小敏的弹珠数为 y 颗,则列出的方程组正确的是( )A.230260x yx y+=⎧⎨+=⎩B.230230x yx y+=⎧⎨+=⎩C.260230x yx y+=⎧⎨+=⎩D.260260x yx y+=⎧⎨+=⎩3.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x人,生产螺母的有y人,则可以列方程组( )A.351624x yx y+=⎧⎨=⎩B.352416x yx y+=⎧⎨=⎩C.3516224x yx y+=⎧⎨=⨯⎩D.3521624x yx y+=⎧⎨⨯=⎩4.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km.一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.()()45126456x yx y⎧+=⎪⎨-=⎪⎩B.()312646x yx y⎧+=⎪⎨⎪-=⎩C.()()31264456x yx y⎧+=⎪⎨⎪-=⎩D.()()31264364x yx y⎧+=⎪⎪⎨⎪-=⎪⎩5.下列方程组中,是二元一次方程组的是()A .02x y =⎧⎨=⎩B .28x y y z +=⎧⎨+=⎩C .21xy y =⎧⎨=⎩D .2103x x y ⎧-=⎨+=⎩6.已知方程组46ax by ax by -=⎧⎨+=⎩与方程组35471x y x y -=⎧⎨-=⎩的解相同,则a ,b 的值分别为( )A .521a b ⎧=-⎪⎨⎪=⎩B .521a b ⎧=⎪⎨⎪=-⎩C .521a b ⎧=⎪⎨⎪=⎩D .521a b ⎧=-⎪⎨⎪=-⎩7.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( ) A .3分钟B .4分钟C .5分钟D .6分钟8.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于( )A .60cmB .65cmC .70cmD .75cm9.已知点(),P a b 的坐标满足二元一次方程组52?934?8a b a b +=-⎧⎨-=-⎩,则点P 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限10.若关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2312x y +=的解,则k 的值为( ). A .32-B .23C .23-D .32二、填空题11.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..12.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.13.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.14.学校设置了有关艺术类的甲、乙、丙三个拓展性课程项目,规定甲、乙两项不能兼报,学生选报后作了统计,发现报甲项目的人数与报乙项目的人数之和为报丙项目人数的45;同时兼报甲、丙两项目的人数占报甲项目的人数的13,同时兼报乙、丙两项目的人数占报乙项目的人数的14;兼报甲、丙两项目的人数与兼报乙、丙两项目的人数之和是报丙项目人数的29,则报甲、乙两个项目的人数之比为______.15.若关于x 、y 的二元一次方程组111222,a x b y c a x b y c +=⎧⎨+=⎩的解为3,2x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组111222(1)2,(1)2a x b y c a x b y c ++=⎧⎨++=⎩的解为________.16.问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m 根竹签,n 个山楂,若每根竹签串a 个山楂,还剩b 个山楂,则m 、n 、a 、b 满足的等量关系为 (用含m 、n 、a 、b 的代数式表示).17.若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k =_____.18.若实数a 与b 满足()24320a b a b -+-+=,则ab 的平方根为________.19.已知a ,b 满足方程组2224a b a b +=⎧⎨+=⎩,则a -b 的值为________.20.关于x ,y 的方程组215x ay bx y -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则6a b -的平方根是______.三、解答题21.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()282122a b c -+-=-+(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点, ①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.22.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( ) A .2019 B .2020 C .2021 D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?23.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.24.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.25.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN =43BM ,求m 和n 值.26.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.27.历史上的数学巨人欧拉最先把关于x 的多项式用记号f(x)来表示.例如f(x)=x 2+3x -5,把x =某数时多项式的值用f(某数)来表示.例如x =-1时多项式x 2+3x -5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x 2-3x +1,分别求出g(-1)和g(-2);(2)已知h(x)=ax 3+2x 2-ax -6,当h(12)=a ,求a 的值;(3)已知f(x)=2+3kx a -6x bk --2(a ,b 为常数),当k 无论为何值,总有f(1)=0,求a ,b 的值.28.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?29.如图,α∠和β∠的度数满足方程组2230320αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)用解方程的方法求α∠和β∠的度数; (2)求C ∠的度数.30.学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元. (1)求每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,分别假设未知数,再根据对话内容列出方程组,即可求解答案. 【详解】解:设得3分,4分,5分和6分的共有x 人,它们平均得分为y 分,分两种情况: (1)得分不足7分的平均得分为3分, xy +3×2+5×1=3(x +5+3), xy ﹣3x =13①,(2)得3分及以上的人平均得分为4.5分, xy +3×7+4×8=4.5(x +3+4), 4.5x ﹣xy =21.5②, ①+②得1.5x =34.5, 解得x =2.3,故七(1)班共有学生23+5+3+3+4=38(人). 故选:A . 【点睛】考查了二元一次方程组的应用,解题的关键是了解题意,根据数量关系列出方程组,即可求出结果.2.D解析:D 【解析】 【分析】根据题中的等量关系:①把小捷的珠子的一半给小敏,小敏就有30颗珠子;②把小敏的12给小捷,小捷就有30颗.列出二元一次方程组即可.【详解】解:根据把小捷的珠子的一半给小敏,小敏就有30颗珠子,可表示为y+2x=30,化简得2y+x=60;根据把小敏的12给小捷,小捷就有30颗.可表示为x+y2=30,化简得2x+y=60.故方程组为:260260x y x y +=⎧⎨+=⎩故选:D.【点睛】本题首先要能够根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.3.D解析:D 【分析】首先设x 人生产螺栓,y 人生产螺母刚好配套,利用工厂有工人35人,每人每天生产螺栓16个或螺母24个,进而得出等式求出答案. 【详解】设x 人生产螺栓,y 人生产螺母刚好配套,据题意可得,3521624x y x y +=⎧⎨⨯=⎩. 故选D. 【点睛】此题主要考查了二元一次方程组的应用,根据题意正确得出等量关系是解题关键.4.D解析:D 【详解】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126;又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.5.A解析:A 【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,据此逐一判断即可得答案. 【详解】A 、符合二元一次方程组的定义,故本选项正确;B 、本方程组中含有3个未知数,故本选项错误;C 、第一个方程式的xy 是二次的,故本选项错误;D 、x 2是二次的,故本选项错误. 故选:A . 【点睛】本题考查的是二元一次方程组的定义,掌握定义判断方程组是否是二元一次方程组是解题的关键.6.C解析:C 【分析】先求出第二个方程组的解为21x y =⎧⎨=⎩,再代入方程组46ax by ax by -=⎧⎨+=⎩得出2426a b a b -=⎧⎨+=⎩,再求出方程组的解即可. 【详解】解:解方程组35471x y x y -=⎧⎨-=⎩得:21x y =⎧⎨=⎩,∵方程组46ax by ax by -=⎧⎨+=⎩与方程组35471x y x y -=⎧⎨-=⎩的解相同,∴把21x y =⎧⎨=⎩代入方程组46ax by ax by -=⎧⎨+=⎩得:2426a b a b -=⎧⎨+=⎩,解得:521a b ⎧=⎪⎨⎪=⎩, 故选:C 【点睛】本题考查了方程组的解的定义和解二元一次方程组,理解方程组的解的意义并正确解二元一次方程组是解题关键.7.D解析:D 【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间. 【详解】解:设8路公交车的速度为x 米/分,小王行走的速度为y 米/分,同向行驶的相邻两车的间距为s 米.每隔12分钟从背后驶过一辆8路公交车,则1212x y s -=①每隔4分钟从迎面驶来一辆8路公交车,则 44x y s +=②由①+②可得6s x =, 所以6sx=, 即8路公交车总站发车间隔时间是6分钟. 故选:D . 【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.8.D解析:D 【分析】设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意列出方程组求出解即可得出结果. 【详解】解:设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意,得9060a x y a y x +-=⎧⎨+-=⎩, 两式相加,得 2a =150, 解得 a =75, 故选:D . 【点睛】本题考查了二元一次方程组的应用.解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程中求解.9.B解析:B 【分析】解方程组求出a 、b 的值,再根据各象限内点的坐标特征即可得到答案. 【详解】解:529348a b a b +=-⎧⎨-=-⎩①②,①2⨯得:10418a b +=-③, ②+③得:1326a =-,2a ∴=-,把2a =-代入①得:1029b -+=-,12b ∴=,∴方程组的解为212ab=-⎧⎪⎨=⎪⎩,∴点P的坐标为1 (2,)2 -,∴点P在第二象限,故选:B.【点睛】本题考查了二元一次方程组的解法,各象限内点的坐标特征,正确求出方程组的解是解决本题的关键.10.D解析:D【分析】根据方程组将x、y分别用k表示,然后代入2x+3y=12求出k即可.【详解】解:59x y kx y k+=⎧⎨-=⎩①②,①+②,得2x=14k,即x=7k.①﹣②,得2y=﹣4k,即y=﹣2k.将x=7k,y=-2k代入2x+3y=12得:2×7k+3×(﹣2k)=12,解得k=32.故选D.【点睛】本题主要考查了二元一次方程组的含参问题,将方程组的解用参数表示出来,然后代入等式求解成为解答本题的关键.二、填空题11.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C的进价为50元.再设商品A、B的进价分别为x元,y元,表示出商品A的标价为54x,商品B的标价为75y元,根据“如果同时购买A、B商品各两件,就免费获赠三件C商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.12..【分析】设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,根据题意,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进 解析:3817. 【分析】设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,根据题意,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入124%32x y--中即可求出结论. 【详解】设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,依题意,得:()()534115%243115%x y x y ⎧-=-⎪⎨-=-⎪⎩, 解得:0.170.085x y =⎧⎨=⎩,∴124%383217x y -=-. 故答案为:3817. 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.30【分析】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得可列方程k=9a+7=7b+4=5c+2(k ,a ,b ,c 都是正整数),然后根据整除的性质解答即可.【详解】设每框解析:30【分析】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得可列方程k =9a +7=7b +4=5c +2(k ,a ,b ,c 都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得:k =9a +7=7b +4=5c +2(k ,a ,b ,c 都是正整数)∴9a +7=5c +2,∴9a =5(c -1),∴a 是5的倍数.不妨设a =5m (m 为正整数),∴k =45m +7=7b +4,∴b =4533(1)677m m m ++=+, ∵b 和m 都是正整数,∴m 的最小值为6.∴a =5m =30.故答案为:30.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.14..【分析】设报甲项目的有x 人,报乙项目的有y 人,报丙项目的有z 人,根据题意即可得出关于x,y,z的三元一次方程组,然后进一步化简即可得出答案;【详解】解:设报甲项目的有x人,报乙项目的有y人解析:1:2.【分析】设报甲项目的有x人,报乙项目的有y人,报丙项目的有z人,根据题意即可得出关于x,y,z的三元一次方程组,然后进一步化简即可得出答案;【详解】解:设报甲项目的有x人,报乙项目的有y人,报丙项目的有z人,依题意得:45112 349x y zx y z ⎧+=⎪⎪⎨⎪+=⎪⎩①②由①得:5544③=+z x y将③代入②得:11255() 34944 +=⨯+x y x y化简得:11 1836=x y∴x:y=1:2.故答案为:1:2.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.15.【分析】把代入,结合所求的方程组即可得到关于,的方程,求解即可.【详解】解:把代入得:又∵∴故答案为:【点睛】本题主要考查了二元一次方程的解,结合两个方程组得到关于,的方程是解题的解析:21 xy=⎧⎨=⎩【分析】把32x y =⎧⎨=⎩代入111222a xb yc a x b y c +=⎧⎨+=⎩,结合所求的方程组即可得到关于x ,y 的方程,求解即可. 【详解】解:把32x y =⎧⎨=⎩代入111222a x b y c a x b y c +=⎧⎨+=⎩得:1112223232a b c a b c +=⎧⎨+=⎩ 又∵111222(1)2,(1)2a x b y c a x b y c ++=⎧⎨++=⎩ ∴1322x y +=⎧⎨=⎩⇒21x y =⎧⎨=⎩故答案为:21x y =⎧⎨=⎩ 【点睛】本题主要考查了二元一次方程的解,结合两个方程组得到关于x ,y 的方程是解题的关键.16.竹签有15根,山楂有63个;am+b =n .【分析】设竹签有x 根,山楂有y 个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x ,y 的二元一次方解析:竹签有15根,山楂有63个;am +b =n .【分析】设竹签有x 根,山楂有y 个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x ,y 的二元一次方程组,解之即可得出竹签及山楂的数量;利用山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量,即可找出m 、n 、a 、b 之间的等量关系.【详解】问题解决:设竹签有x 根,山楂有y 个,依题意得:437(6)x y x y+=⎧⎨-=⎩, 解得:1563x y =⎧⎨=⎩. 答:竹签有15根,山楂有63个.山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量∴am +b =n .故答案为:am +b =n .【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.17.-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组中x的值比y的相反数大2,∴x=﹣y解析:-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,∴x=﹣y+2,∴4(﹣y+2)+5y=10,解得:y=2,把y=2代入4x+5y=10中,得:4x+10=10,解得:x=0,则方程组的解是x=0y=2⎧⎨⎩,∴﹣(k﹣1)×2=8,解得:k=﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解.18.±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b;再根据平方根的性质计算,即可得到答案.【详解】∵∴∴①②,得∴∴∴的平方根为±4故解析:±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵()24320a b a b -+-+= ∴()240320a b a b ⎧-=⎪⎨-+=⎪⎩∴40320a b a b -=⎧⎨-+=⎩①② ①-②,得2a =∴48b a ==∴16ab =∴ab 的平方根为±4故答案为:±4.【点睛】本题考查了乘方、绝对值、二元一次方程组、平方根的知识;解题的关键是熟练掌握乘方、绝对值、二元一次方程组、平方根的性质,从而完成求解.19.-2【分析】把方程组中的两个方程相减即可得解;【详解】∵,∴①-②得:;故答案是:.【点睛】本题主要考查了解二元一次方程组,准确计算是解题的关键.解析:-2【分析】把方程组中的两个方程相减即可得解;【详解】∵2224a b a b +=⎧⎨+=⎩①②, ∴①-②得:2a b -=-;故答案是:2-.【点睛】本题主要考查了解二元一次方程组,准确计算是解题的关键.20.±4【分析】将方程组的解代入方程组中求出a 、b 的值,然后代入代数式中求解即可.【详解】解:将代入方程组,得:,解得:,∴=6×3﹣2=16,∴的平方根是±4,故答案为:±4.【点睛解析:±4【分析】将方程组的解代入方程组中求出a 、b 的值,然后代入代数式中求解即可.【详解】解:将21x y =⎧⎨=⎩代入方程组215x ay bx y -=⎧⎨+=⎩,得:41215a b -=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, ∴6a b -=6×3﹣2=16,∴6a b -的平方根是±4,故答案为:±4.【点睛】本题考查二元一次方程组的解、代数式求值、平方根,理解方程组的解,正确求出a 、b 值和平方根是解答的关键.三、解答题21.(1)()0,8A ,()6,0B ,()0,2C -,30ABC S =;(2)n 的取值范围为40n -≤≤;(3)①4324x y +=;②()3,4M【分析】(1)根据()28212a b -+-=a 、b 、c 的值,由此求解即可;(2)分当D 点在直线l 上位于y 轴左侧时和当D 点在直线l 上位于y 轴右侧时讨论求解即可得到答案;(3)①由由AOB AON BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯,由此求解即可;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=,化简得,315x y +=,然后联立4324315x y x y +=⎧⎨+=⎩求解即可. 【详解】解:(1)∵()28212a b -+-=∴()28212a b -+-, ∴80a -=,2120b -=,20c +=,∴8a =,6b =,2c =-,∴()0,8A ,()6,0B ,()0,2C -,∴AC =10,OB =6, ∴1302ABC S AC OB ==; (2)当D 点在直线l 上位于y 轴左侧时,由题意得,()()111510222ACD S AC m m =⨯⨯-=⨯⨯-≤△, 解得,32m ≥-, 当32m =-时,3,02D ⎛⎫- ⎪⎝⎭, 结合图形可知,当32m ≥-时,0n ≤; 同理可得,当D 点在直线l 上位于y 轴右侧时,32m ≤, 当32m =时,3,2D n ⎛⎫ ⎪⎝⎭, 12//,D D AB22,ACD BCD S S ∴=()()13113156262222222n n ⎛⎫⨯+⨯--⨯⨯-⨯⨯--= ⎪⎝⎭, 解得,4n =-, 结合图形可知,当32m ≤时,4n ≥-,∴n 的取值范围为40n -≤≤;(3)①由AOB AOM BOM S S S =+得, 1118668222x y ⨯+⨯=⨯⨯, 化简得,4324x y +=;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=, 化简得,315x y +=,联立方程组4324315x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, ∴()3,4M【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.22.(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B ;(3)19个【分析】(1)设可以加工竖式长方体铁容器x 个,横式长方体铁容器y 个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176x yx y+=⎧⎨+=⎩,解得:100538xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d ac d b+=⎧⎨+=⎩,∴5c+5d=5(c+d)=a+b,∴a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).23.(1)A的单价30元,B的单价15元(2)购买A奖品8个,购买B奖品22个,花费最少【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组3212054210x yx y+=⎧⎨+=⎩,即可求解;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元,根据题意得到由题意可知,1(30)3z z ≥-,3015(30)45015W z z z =+-=+,根据一次函数的性质,即可求解;【详解】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩, 3015x y =⎧∴⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-, 152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;【点睛】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.24.(1)(40),(03)A B -,,;(2)1BE OE OC-=;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒.【分析】(1)根据非负数的性质和解二元一次方程组求解即可;(2)设(0,),(0,)C c E y ,先根据平移的性质可得(43)D c +,,过D 作DP x ⊥轴于P ,再根据三角形ADP 的面积得出8(3)44(3)222c y y c +++=+,从而可得32c y +=,然后根据线段的和差可得BE OE c OC -=-=,由此即可得出答案;(3)设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ ,设,BAH CAH DFH GFH αβ∠=∠=∠=∠=,由平行线的性质可得180(),1802()QHF DGF αβαβ∠=︒-+∠=︒-+,由此即可得出结论.【详解】(1)∵2(25)0a b ≥++≥,且2(25)0a b ++=∴250220a b a b ++=⎧⎨+-=⎩解得:43a b =-⎧⎨=⎩ 则(40),(03)A B -,,; (2)设(0,),(0,)C c E y∵将线段AB 平移得到CD ,(40),(03)A B -,, ∴由平移的性质得(43)D c +,如图1,过D 作DP x ⊥轴于P∴4,3,,AO OP DP c OE y OC c ===+==-∵ADP AOE OEDP SS S =+梯形 ∴()222AP DP OA OE OE DP OP ⋅⋅+⋅=+ 即8(3)44(3)222c y y c +++=+ 解得32c y += ∴()232BE OE BO OE OE BO OE y c -=--=-=-=-∴1BE OE c OC c--==-;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒,求解过程如下:如图2,设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ∵HD 平分BAC ∠,HF 平分DFG ∠∴设,BAH CAH DFH GFH αβ∠=∠=∠=∠=∵AB 平移得到CD∴//,//AB CD BD AC∴BAH AQC FQH α∠=∠=∠=,180BAC ACD BDC ACD ∠+∠=︒=∠+∠∴2BAC BDC FDG α∠=∠=∠=∵//MN FQ∴,MHQ FQH NHF DFH αβ∠=∠=∠=∠=∴180180()QHF MHQ NHF αβ∠=︒-∠-∠=︒-+∵//KJ DF。
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
湘教版七年级下数学期末复习试卷(二)整式的乘法
期末复习(二) 整式的乘法考点一幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【分析】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等得到.【解答】由已知得a2m+n+1=a6,于是有2m+n+1=6,即2m+n=5,又因为m+2n=4,所以m=2,n=1. 【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.变式练习:1.下列计算正确的是( )A.a+2a=3a2B.(a2b)3=a6b3C.(a m)2=a m+2D.a3·a2=a62.若2x=3,4y=2,则2x+2y的值为__________.考点二多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【分析】先按多项式乘法法则展开,再合并同类项.【解答】原式=2(x2+2x-x-2)-3(6x2-9x-4x+6)=-16x2+41x-22.【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.如果(x+m)与(x+1)的积中不含x项,那么m是( )A.-2B.-1C.1D.24.若2x3-ax2-5x+5=(2x2+ax-1)(x-b)+3,其中a、b为整数,则a+b的值为( )A.-4B.-2C.0D.4考点三乘法公式适用的多项式特点【例3】二次三项式x2-kx+9是一个完全平方式,则k的值是__________.【分析】先把x2-kx+9变形为x2-kx+32或x2-kx+(-3)2,根据两平方项确定中间项为±6x,即可确定k的值.【解答】±6【方法归纳】两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,即“首平方,尾平方,积的2倍在中央”.5.下列各式:①(a+b)(b+a);②(a-b)(a+b);③(-a+b)(a+b);④(-a+b)(-a-b),其中能用乘法公式计算的有( )A.1个B.2个C.3个D.4个考点四利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【分析】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】原式=(4a2-b2)-(a2-4ab+4b2)+5b2=3a2+4ab.当a=-1,b=2时,原式=3×(-1)2+4×(-1)×2=-5.【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.6.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a27.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是__________.8.计算:(1)(a+b)2-(a-b)2-4ab; (2)[(x+2)(x-2)]2; (3)(a+3)(a-3)(a2-9).考点五乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【分析】根据图形可以得到:两个图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】(1)方法一:(a+b)2.方法二:a2+2ab+b2.(2)(a+b)2=a2+2ab+b2.(3)1022=(100+2)2=1002+2×100×2+22=10 404.【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.9.图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2 C.(a-b)2D.a2-b2复习测试:一、选择题(每小题3分,共24分)1.计算(-a2)3的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x3=x5B.(x-2)2=x2-4C.2x2·x3=2x5D.(x3)4=x73.下列各式中,与(1-a)(-a-1)相等的是( )A.a2-1B.a2-2a+1C.a2-2a-1D.a2+14.如果(x-2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6 B.p=-1,q=6 C.p=1,q=-6 D.p=5,q=-65.若m的值使得x2+12x+m=(x+6)2-32成立,则m的值为( )A.2B.3C.4D.56.下列计算:①(a3)3=a6;②a2·a3=a6;③2m·3n=6m+n;④-a2·(-a)3=a5;⑤(a-b)3·(b-a)2=(a-b)5.其中错误的个数有( )A.1个B.2个C.3个D.4个7.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于( )A.3a3-4a2B.a2C.6a3-8aD.6a3-8a28.请你计算:(1-x)(1+x),(1-x)(1+x+x2),…猜想(1-x)(1+x+x2+…+x n)的结果是( )A.1-x n+1B.1+x n+1C.1-x nD.1+x n二、填空题(每小题4分,共16分)9.计算:2m2·m8=__________.10.已知有理数a,b满足:a+b=2,a-b=5,则(a+b)3·(a-b)3的值是__________.11.卫星绕地球运动的速度是7.9×103米/秒,那么卫星绕地球运行3×106秒走过的路程是__________米.12.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为__________.三、解答题(共60分)13.(12分)计算:(1)(-2a2b)3+8(a2)2·(-a)2·(-b)3;(2)a(a+4b)-(a+2b)(a-2b)-4ab;(3)(2x-3y+1)(2x+3y-1).14.(10分)先化简,再求值:(1)(2019·河池)(x+2)2-(x+1)(x-1),其中x=1;(2)(2a+b)(3a-2b)-(a-2b)2,其中a=-2,b=1.15.(8分)已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2; (2)a2-ab+b2.16.(10分)四个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad-bc,这个记号就叫做2阶行列式. 例如:=1×4-2×3=-2 . 若=10,求x的值.17.(10分)如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a、b的代数式表示绿化面积并化简;(2)求出当a=5米,b=2米时的绿化面积.18.(10分)如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.(1)图b中的阴影部分面积为__________;(2)观察图b,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是__________; (3)若x+y=-6,xy=2.75,利用(2)提供的等量关系计算x-y的值.参考答案变式练习1.B2.63.B4.D5.D6.D7.48.(1)原式=a2+2ab+b2-a2+2ab-b2-4ab=0.(2)原式=(x2-4)2=x4-8x2+16.(3)原式=(a2-9)(a2-9)=a4-18a2+81.9.C复习测试1.D2.C3.A4.C5.C6.C7.D8.A9.2m10 10.1 000 11.2.37×101012.±4x或4x413.(1)原式=-8a6b3-8a6b3=-16a6b3.(2)原式=a2+4ab-(a2-4b2)-4ab=a2+4ab-a2+4b2-4ab=4b2.(3)原式=[2x-(3y-1)][2x+(3y-1)]=4x2-(3y-1)2=4x2-(9y2-6y+1)=4x2-9y2+6y-1.14.(1)原式=x2+4x+4-(x2-1)=x2+4x+4-x2+1=4x+5.当x=1时,原式=4×1+5=9.(2)原式=6a2-ab-2b2-a2+4ab-4b2=5a2+3ab-6b2.当a=-2,b=1时,原式=5×(-2)2+3×(-2)×1-6×12=8.15.(1)a2+b2=(a+b)2-2ab=1+12=13.(2)a2-ab+b2=(a+b)2-3ab=12-3×(-6)=1+18=19.16.(x+1)2-(x-2)(x+2)=10,解得x=2.5.17.(1)S=(3a+b)(2a+b)-(a+b)2=6a2+3ab+2ab+b2-a2-2ab-b2=5a2+3ab(平方米).阴影(2)当a=5,b=2时,5a2+3ab=5×25+3×5×2=125+30=155(平方米).18.(1)m2-2mn+n2或(m-n)2.(2)(m+n)2=(m-n)2+4mn.(3)(x-y)2=(x+y)2-4xy=36-11=25,所以x-y的值是±5.。
(完整版)七年级数学下册期末测试题及答案(共五套)
李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
2023年江苏省七年级下学期数学期末试题卷(附答案) (2)
江苏省七年级下学期数学期末试题卷本试卷由填空题、选择题和解答题三大题组成,共29小题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上.1.下列运算正确的是A.a·a2=a2 B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a52.某红外线遥控器发出的红外线波长为0.00 000 094m,用科学记数法表示这个数是A.9.4×10-7m B.9.4×107m C.9.4×10-8m D.9.4×108m3.一个正多边形的每个外角都等于36°,那么它是A.正六边形 B.正八边形 C.正十边形 D.正十二边形4.不等式组221xx≤⎧⎨+>⎩的最小整数解为A.-1 B.0 C.1 D.25.如图,直线l、n分别截∠A的两边,且l∥n.根据图中标示的角,判断下列各角的度数关系,正确的是A.∠2+∠5 >180°B.∠2+∠3< 180°C.∠1+∠6> 180°D.∠3+∠4<180°6.数a、b、c在数轴上对应的点如图所示,则下列式子中正确的是A.a-c>b-c B.a+c<b+cC.ac>bc D.a cb b <7.下列命题中是真命题的是A.质数都是奇数B.如果a=b,那么a=bC.如果a>b,那么(a+b)(a-b)>0 D.若x<y,则x-202X<y-202X8.关于x,y的方程组225y x mx m+=⎧⎨+=⎩的解满足x+y=6,则m的值为A.-1 B.2 C.1 D.49.(3x+2)(-x4+3x5)+(3x+2)(-2x4+x5)+(x+1)(3x4-4x5)与下列哪一个式子相同A.(3x4-4x5) (2x+1) B.-(3x4-4x5)(2x+3)C.(3x4-4x5) (2x+3) D.-(3x4-4x5)(2x+1)10.小新原有50元,表格中记录了他今天所支出各项费用,其中饼干支出的金额被涂黑,若每包饼干的售价为3元,则小明可能剩下的金额数是A.7元B.8元C.9元D.10元二、填空题本大题共8小题.每小题3分,共24分把答案直接填在答题卡相对应的位置上.11.命题“内错角相等”是▲命题(填“真”、“假”).12.(▲)(2a-3b)=12a2b-18ab2.13.已知2x=3y+7,则32x y-=▲.14.如果(x+3)(x+a)=x2-2x-15,则a=▲.15.如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是▲.16.已知关于x的方程x-(2x-a)=2的解是负数,则a的取值范围是▲.17.计算:498×502-5002=▲.18.已知不等式组1xx n<⎧⎨>⎩有解,则n的取值范围是▲.三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分9分,每小题3分)将下列各式分解因式:(1)4m2-36mn+81n2;(2)x2-3x-10;(3)18a2-50.20.(本题满分8分,每小题4分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]·x2y;(2)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=12.21.(本题满分8分,每小题4分)解下列方程组:(1)524235x yx y-=⎧⎨-=-⎩(2)42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,每小题4分)解不等式(组)(1)334642x x--<-,并把解在数轴上表示出来; (2)()32412123x xxx⎧-->-⎪⎨+>-⎪⎩.23.(本题满分5分)如图,EF//AD,∠1=∠2,∠BAC=70°.填空:解:∵EF//AD(已知),∴∠2=▲(▲),∵∠1=∠2( ▲),∴∠1=∠3( ▲),∴AB∥▲( ▲).∴∠BAC+▲=180°( ▲).∵∠BAC=70°( ▲),∴∠AGD=▲°.24.(本题满分5分)某厂家为支援灾区人民,捐赠帐篷16800顶,该厂家备有2辆大货车、8辆小货车运送,每次每辆大货车所运帐篷数比小货车所运帐篷数的2倍少30顶,已知大、小货车每天均运送一次,2天恰好运完,求大、小货车每辆每次各运送帐篷多少顶?25.(本题满分5分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕.(1)试判断B'E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.26.(本题满分6分)已知关于x、y的方程组316215x aybx y-=⎧⎨+=⎩的解是76xy=⎧⎨=⎩(1)求(a+10b)2-(a-10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.27.(本题满分7分)如图,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD =∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?28.(本题满分7分)甲、乙两商场以同样价格出售同样的商品,并且又推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.(1)若小明妈妈准备用120元去商场购物,你建议小明妈妈去▲商场花费少(直接写“甲”或“乙”);(2)根据两家商场的优惠活动方案,问顾客到哪家商场购物花费少?请说明理由.29.(本题满分8分)如图,在△ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以72cm/s的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF+S△ACE<S△ABC.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
人教版七年级数学第二学期期末测试卷1-4Microsoft Word 文档 (2)
A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个 角都是对顶角 C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在 同一直线上,这两个角互为对顶角 10.下列各式中,正确的是( ) A.±=± B.±=; C.±=± D.=± 三、解答题:( 每题6分,共18分) 11.解下列方程组: 12.解不等式组,并在数 轴表示: 13.若A(2x-5,6-2x)在第四象限,求a的取值范围.
24.
25.(10分)如图,AD为△ABC的中线,BE为△ABD的中 线。 (1)∠ABE=15°,∠BAD=40°,求∠BED的度数; (2)在△BED中作BD边上的高; (3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多 少?
26.(10分)5月12日我国四川汶川县发生里氏8.0级大地震,地 震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发 生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人 民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助 床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些 物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一 辆乙货车可装床架10个和课桌凳10套. (1)学校如何安排甲、乙两种货车可一次性把这些物资运到 灾区?有几种方案? (2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费 1000元,则学校应选择哪种方案,使运输费最少?最少运费是多
3.(05兰州)一束光线从点A(3,3)出发,经过y轴上 点C反射后经过点B(1,0)则光线从A点到B点经过的路 线长是( )A.4 B.5 C.6 D.7
4.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B. 四边形 C.五边形 D.六边形 5.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有 人提出了4种地 砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六 边形.其中不 能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④ 6.如果中的解x、y相同,则m的值是( )(A)1(B)-1 (C)2(D)-2 7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一 队打了14场比赛,负5场,共得19分,那么这个队胜了( )(A) 3场(B)4场(C)5场(D)6场 8.若使代数式的值在-1和2之间,m可以取的整数有( )(A)1个 (B)2个(C)3个 (D)4个 9.把不等式组的解集表示在数轴上,正确的是( ).
数学七年级下册 期末试卷综合测试卷(word含答案) (2)
数学七年级下册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.下列各组图形可以通过平移互相得到的是( ) A .B .C .D .3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5--4.下列说法中,错误的个数为( ).①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交. A .1个B .2个C .3个D .4个5.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10° 6.下列计算正确的是( )A 2(3)3-=-B 366=±C 393=D .382-7.如图,AB ∥CD ,将一块三角板(∠E =30°)按如图所示方式摆放,若∠EFH =25°,求∠HGD 的度数( )A .25°B .30°C .55°D .60°8.如图,()11,0A ,()21,1A ,()31,1A -,()41,1A --,()52,1A -…按此规律,点2022A 的坐标为( )A .()505,505B .()506,505-C .()506,506D .()506,506-二、填空题9.425⨯=______.10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图,△ABC 中∠BAC =60°,将△ACD 沿AD 折叠,使得点C 落在AB 上的点C ′处,连接C ′D 与C ′C ,∠ACB 的角平分线交AD 于点E ;如果BC ′=DC ′;那么下列结论:①∠1=∠2;②AD 垂直平分C ′C ;③∠B =3∠BCC ′;④DC ∥EC ;其中正确的是:________;(只填写序号)12.如图,∠ABC 与∠DEF 的边BC 与DE 相交于点G ,且BA //DE ,BC //EF ,如果∠B =54°,那么∠E =__________.13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.计算(每小题4分)(1323(3)29()--(2)2335(3)20203|2|8(1)---. (44﹣2 | + ( -1 )201718.已知a +b =5,ab =2,求下列各式的值. (1)a 2+b 2; (2)(a ﹣b )2. 19.填空并完成以下过程:已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2. 请你说明:∠E =∠F .解:∵∠BAP +∠APD=180°,(_______)∴AB∥_______,(___________)∴∠BAP=________,(__________)又∵∠1=∠2,(已知)∠3=________-∠1,∠4=_______-∠2,∴∠3=________,(等式的性质)∴AE∥PF,(____________)∴∠E=∠F.(___________)20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′,(1)画出△A′B′C′,写出A′、B′、C′的坐标;(2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标.21.23|49|7a b aa-+-+=0,求实数a、b b的整数部分和小数部分.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.二十三、解答题23.直线AB∥CD,点P为平面内一点,连接AP,CP.(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;(3)如图③,点P在直线CD下方,当∠BAK=23∠BAP,∠DCK=23∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.24.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)①如图1,∠DPC=度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①CPDBPN∠∠为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC 上一点O 作OG ⊥AC ,分别交A B 、A D 、AE 于点G 、H 、F . ①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题 1.B 解析:B 【分析】根据同位角的定义即可求出答案. 【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角. 故选:B . 【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.解析:C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键. 3.C 【分析】根据各象限内点的坐标特征判断即可. 【详解】由图可知,小手盖住的点在第四象限, ∴点的横坐标为正数,纵坐标为负数, ∴(2,-3)符合.其余都不符合 故选:C . 【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键.4.D 【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案. 【详解】①在同一平面内,两条不相交的直线叫做平行线,故本小题错误, ②过直线外一点有且只有一条直线与已知直线平行,故本小题错误, ③在同一平面内不平行的两条直线一定相交;故本小题错误,④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误. 综上所述:错误的个数为4个. 故选D . 【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键. 5.C 【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数. 【详解】解:90F ∠=︒,45D ∠=︒, 45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒, 30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,453015CAE BAE BAC ∴∠=∠-∠=︒-︒=︒,故选:C . 【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质. 6.D 【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可. 【详解】解:A 3,故本选项不合题意;B 6=,故本选项不合题意;C 3≠,故本选项不合题意;D 、2=,故本选项符合题意; 故选:D . 【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键. 7.C 【分析】先根据三角形外角可求∠EHB =∠EFH +∠E =55°,根据平行线性质可得∠HGD =∠EHB =55°即可. 【详解】解:∵∠EHB 为△EFH 的外角,∠EFH =25°,∠E =30°, ∴∠EHB =∠EFH +∠E =25°+30°=55°, ∵AB ∥CD ,∴∠HGD =∠EHB =55°. 故选C . 【点睛】本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.8.C 【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C 【分析】经观察分析所有点,除A 1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A 2022在第一象限;第一象限的点A 2(1,1),A 6(2,2),A 10(3,3)…观察易得到点的坐标=24n +. 【详解】 解:由题可知第一象限的点:A 2,A 6,A 10…角标除以4余数为2; 第二象限的点:A 3,A 7,A 11…角标除以4余数为3; 第三象限的点:A 4,A 8,A 12…角标除以4余数为0; 第四象限的点:A 5,A 9,A 13…角标除以4余数为1; 由上规律可知:2022÷4=505…2 ∴点A 2022在第一象限.观察图形,可知:点A 2的坐标为(1,1),点A 6的坐标为(2,2),点A 10的坐标为(3,3),…,∴第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)∴点A 4n-2的坐标为(24n +,24n +)(n 为正整数), ∴点A 2022的坐标为(506,506). 故选C . 【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)求解.二、填空题 9.10 【分析】先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:;故答案为:10. 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.解析:10 【分析】先计算乘法,然后计算算术平方根,即可得到答案. 【详解】10=; 故答案为:10. 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.10.0; 【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可. 【详解】解:根据对称的性质,得, 解得. 故答案为:0. 【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD 沿AD 折叠,使得点C 落在AB 上的点C′处,∴∠1=∠2,A=AC ,DC解析:①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD 沿AD 折叠,使得点C 落在AB 上的点C ′处,∴∠1=∠2,A C '=AC ,DC =D C ',∴AD 垂直平分C ′C ;∴①,②都正确;∵B C '=D C ', DC =D C ',∴B C '=D C '= DC ,∴∠3=∠B ,∠4=∠5,∴∠3=∠4+∠5=2∠5即∠B =2∠BC C ';∴③错误;根据折叠的性质,得∠ACD =∠A C 'D =∠B +∠3=2∠3,∵∠ACB 的角平分线交AD 于点E ,∴2(∠6+∠5)=2∠B ,653,∴∠+∠=∠∴3,DCE ∴∠=∠∴D C '∥EC∴④正确;故答案为:①②④.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.12.126°【分析】根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.【详解】BA//DE ,BC//EF ,,∠B=54°,,故答案为:126°.【点睛】本题考查解析:126°【分析】根据两直线平行同位角相等得到CGE B ∠=∠,DGC E ∠=∠,结合邻补角的和180°解题即可.【详解】BA //DE ,BC //EF ,CGE B ∴∠=∠,DGC E ∠=∠∠B =54°,54CGE B ∴∠=∠=︒180CGE DGC ∠+∠=︒18054126DGC ∴∠=︒-︒=︒126E ∴∠=︒,故答案为:126°.【点睛】本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键. 13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1,∵(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值. 15.(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为,点P 到y 轴的距离表示为,根据题意得到=,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等∴=∴解析:(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(23)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2(2)原式=(3)原式=2+(-2)+1=1(4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解】解:∵∠BAP +∠APD =180°(已知),∴AB ∥CD .(同旁内角互补两直线平行),∴∠BAP =∠APC .(两直线平行内错角相等),又∵∠1=∠2,(已知),∠3=∠BAP -∠1,∠4=∠APC -∠2,∴∠3=∠4(等式的性质),∴AE∥PF.(内错角相等两直线平行),∴∠E=∠F.(两直线平行内错角相等).【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,解析:44【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,b=21,∵16<21<25,∴44.【点睛】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.24.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和解析:(1)①90;②t为3s或6s或9s或18s或21s或24s或27s;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.【详解】解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,∴∠DPC =180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD ∥PC 时,∵PC ∥BD ,∠DBP =90°,∴∠CPN =∠DBP =90°,∵∠CPA =60°,∴∠APN =30°,∵转速为10°/秒,∴旋转时间为3秒;如图1﹣2,当PC ∥BD 时,∵//,PC BD ∠PBD =90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,AC DP时,如图1﹣6,当////AC DP,∴∠=∠=︒,90DPA PACDPN DPA∠+∠=︒-︒+︒=︒,1803090240∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.当//综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t 秒,则∠BPM =2t ,∴∠BPN =180°﹣2t ,∠DPM =30°﹣2t ,∠APN =3t .∴∠CPD =180°﹣∠DPM ﹣∠CPA ﹣∠APN =90°﹣t ,21802,BPN CPD t ∴∠=∠=︒- ∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.当PD 在MN 下方时,如图,①正确,理由如下:设运动时间为t 秒,则∠BPM =2t ,∴∠BPN =180°﹣2t ,∠DPM =230,t -︒ ∠APN =3t .∴∠CPD =360CPA APN DPB BPN ︒-∠-∠-∠-∠()360603301802t t =︒-︒--︒-︒-=90t ︒-21802,BPN CPD t ∴∠=∠=︒-∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒;180180(206)2262264014∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒F AGF GAF CDF CAE CDF CAE.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
人教版七年级数学下册期末测试卷 (2)
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
七年级下学期数学期末复习卷(2)
七年级下学期数学期末复习卷(2)一、选择题(每小题3分,共30分) 1、下列计算正确的是( )A 、a 2+a 3=2a 5B 、a 4÷a 4=aC 、a 2·a 3=a 6D 、(-a 2)3=-a 6 2、用科学记数法表示0.0000907,并保留两个有效数字得( )A 、9.1×10-4B 、9.1×10-5C 、9.0×10-5D 、9.0×10-4 3、如果两个不相等的角互为补角,那么这两个角( )A 、都是锐角B 、都是钝角C 、一个锐角,一个钝角D 、以上答案都不对 4、课上老师给出了下面的数据,请问哪一个数据是精确的( )A 、2003年美国发动的伊拉克战争每月耗费约40亿美元B 、地球上煤储量为5万亿吨左右C 、人的大脑约有1×1010亿个细胞D 、某次期中考试中小颖的数学成绩是98分5、我校操场面积大约是2500平方米,他的百万分之一能容纳下列哪种动物( )A 、蝉B 、小狗C 、公鸡D 、鸽子 6、某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a 2+3ab -b 2)-(-3a 2+ab +5b 2)=5a 2 ■■■■ -6b 2,空格的地方被墨水弄脏了,请问空格中的一项是( )A 、+2abB 、+3abC 、+4abD 、-ab 7、如图,不能推出a ∥b 的条件是( )A 、∠1=∠3B 、∠2=∠4C 、∠2=∠3D 、∠2+∠3=180° 8、下列各式能用平方差公式计算的是( )A 、(2a +b )(2b -a )B 、(12+1)(-12x -1)C 、(3x -y )(-3x +y )D 、(-x -y )(-x +y ) 9、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,纵向阴影部分为平行四边形,它们的宽都为c ,则空白部分的面积为( ) A 、2c ac ab bc ++- B 、2c ac bc ab +-- C 、ac bc ab a -++2D 、ab a bc b -+-2210、已知3m=4,3n=5,则33m -2n=( )A 、39B 、2C 、64D 4a bc21 43二、填空题(每小题3分,共15分)11、小明从镜子中看到电子表时间是,这时的时刻应是 。
江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)
江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.2.计算x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy23.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣54.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.26.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y (x+2)28.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠39.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=______.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=______.13.已知:x a=4,x b=2,则x a+b=______.14.一个n边形的内角和是1260°,那么n=______.15.若正有理数m使得是一个完全平方式,则m=______.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为______.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=______°.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 中点,且S△ABC=4平方厘米,则S△BEF的值为______.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.解不等式组,并把它的解集在数轴上表示出来.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为______;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC 的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千b瓦时的部分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.【考点】负整数指数幂.【分析】根据负整数指数幂的运算方法:a﹣p=,求出用分数表示4﹣2的结果是多少即可.【解答】解:∵4﹣2==,∴用分数表示4﹣2的结果是.故选:D.【点评】此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.2.计算x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy2【考点】整式的除法.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.根据法则即可求出结果.【解答】解:x2y3÷(xy)2,=x2y3÷x2y2,=x2﹣2y3﹣2,=y.故选C.【点评】本题考查单项式除以单项式运算.(1)单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式;(2)单项式除法的实质是有理数除法和同底数幂除法的组合.3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.5【考点】二元一次方程的解.【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.2【考点】一元一次不等式的整数解.【分析】解不等式求得x的范围,再该范围内可得其最大整数解.【解答】解:移项、合并,得:2x≤5,系数化为1,得:x≤2.5,∴不等式的最大整数解为2,故选:D.【点评】本题主要考查解不等式的能力,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.6.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等【考点】命题与定理.【分析】利用平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,错误,是假命题,符合题意;B、垂直于同一直线的两条直线平行,正确,是真命题,不符合题意;C、对顶角相等,正确,是真命题,不符合题意;D、同角的余角相等,正确,是真命题,不符合题意;故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及余角的定义等知识,难度不大.7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y (x+2)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2Y,进而利用完全平方公式分解因式即可.【解答】解:2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.8.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3【考点】平行线的判定.【分析】根据题意,结合图形对选项一一分析,排除错误答案.【解答】解:A、∠1=∠3正确,内错角相等两直线平行;B、∠2+∠4=180°正确,同旁内角互补两直线平行;C、∠4=∠5正确,同位角相等两直线平行;D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个【考点】平行线的性质;余角和补角.【分析】先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.【解答】解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18【考点】整式的混合运算.【分析】阴影部分面积等于两个正方形面积之和减去两个直角三角形面积,求出即可.【解答】解:∵a+b=ab=6,∴S=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)= [(a+b)2﹣3ab]=×(36﹣18)=9,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=3x2﹣7x+2.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=3x2﹣6x﹣x+2=3x2﹣7x+2,故答案为:3x2﹣7x+2【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=﹣8.【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:∵a+b=﹣2,a﹣b=4,∴a2﹣b2=(a+b)(a﹣b)=﹣8.故答案为:﹣8.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.13.已知:x a=4,x b=2,则x a+b=8.【考点】同底数幂的乘法.【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵x a=4,x b=2,∴x a+b=x a•x b=8.故答案为:8.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.14.一个n边形的内角和是1260°,那么n=9.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.【解答】解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.【点评】此题主要考查了多边形的内角和公式,关键是掌握内角和公式.15.若正有理数m使得是一个完全平方式,则m=.【考点】完全平方式.【分析】根据完全平方式的结构解答即可【解答】解:∵是一个完全平方式,且m为正数,∴m=2×=.故答案为:.【点评】本题是完全平方公式的应用,掌握完全平方式的结构是解题的关键.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为30°.【考点】平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【解答】解:已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°﹣60°﹣90°=30°.故答案为:30°.【点评】此题考查了学生对平行线性质的应用,关键是由平行线性质得出同位角相等求出∠3.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=30°.【考点】平行线的性质.【分析】根据三角形的内角和得到∠C=75°,根据平行线的性质得到∠AED=∠C=75°,由折叠的想知道的∠DEF=∠AED=75°,于是得到结论.【解答】解:∵∠A+∠B=105°,∴∠C=75°,∵BC∥DE,∴∠AED=∠C=75°,∵把△ABC沿线段DE折叠,使点A落在点F处,∴∠DEF=∠AED=75°,∴∠FEC=180°﹣∠AED﹣∠DEF=30°,故答案为:30.【点评】此题考查了折叠的性质以及平行线的性质.此题比较简单,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 中点,且S△ABC=4平方厘米,则S△BEF的值为1cm2.【考点】三角形的面积.【分析】根据等底等高的三角形的面积相等可知,三角形的中线把三角形分成面积相等的两个三角形,然后求解即可.【解答】解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC=×4=2cm2,∵E是AD的中点,∴S△BDE=S△CDE=×2=1cm2,∴S△BEF=(S△BDE+S△CDE)=×(1+1)=1cm2.故答案为:1cm2.【点评】本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:7x=56,即x=8,把x=8代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可【解答】解:,解不等式①得x≥﹣2,解不等式②得x<4,故不等式组的解为:﹣2≤x<4,把解集在数轴上表示出来为:【点评】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【考点】完全平方公式.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【考点】平行线的判定与性质.【分析】(1)根据垂直定义求出∠CDF=∠EFB=90°,根据平行线的判定推出即可;(2)根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出BC∥DG,根据平行线的性质得出∠3=∠ACB即可.【解答】解:(1)CD平行于EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°.【点评】本题考查了平行线的性质和判定的应用,能正确运用性质和判定进行推理是解此题的关键,难度适中.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为3;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.【考点】解二元一次方程.【分析】(1)把x看做已知数求出y即可;(2)把表示出的y代入已知不等式求出x的范围即可;(3)把表示出的x代入已知不等式求出y的范围即可.【解答】解:(1)方程3x﹣2y=6,解得:y=;(2)由题意得:﹣1<≤3,解得:<x≤4;(3)由题意得:x=,代入不等式得:﹣1<≤3,解得:﹣<y≤,则y的最大值为.【点评】此题考查了解二元一次方程,把一个未知数看做已知数表示出另一个未知数是解本题的关键.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC 的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.【考点】三角形内角和定理.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再由角平分线的性质求出∠BAD的度数,由直角三角形的性质求出∠BAE 的度数,根据∠EAD=∠BAD﹣∠BAE即可得出结论;(2)首先利用三角形内角和定理可求出∠BAC的度数,进而可求出∠BAD的度数,由题意可知∠BAG=∠BAC,再利用已知条件和三角形外角和定理即可求出∠G的度数.【解答】解:(1)∵在△ABC中,∠B=62°,∠C=38°,∴∠BAC=180°﹣62°﹣38°=80°.∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=40°.∵AE⊥BC于点E,∴∠AEB=90°,∴∠BAE=90°﹣62°=28°,∴∠EAD=∠BAD﹣∠BAE=40°﹣28°=12°;(2)∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°,∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=(180°﹣x°﹣y°),AG平分∠BAD,∴∠BAG=∠BAD=(180°﹣x°﹣y°),∵∠BDF=∠BAD+∠B,∴∠G=∠BDF﹣∠GAD=x°,【点评】本题考查角平分线的定义、三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【考点】等腰三角形的性质;二元一次方程组的解;三角形三边关系.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千b瓦时的部分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)利用居民甲用电200千瓦时,交电费170元;居民乙用电400千瓦时,交电费400元,列出方程组并解答;(2)根据当居民月用电量0≤x≤150时,0.8x≤0.85x,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,分别得出即可.【解答】解:(1)依题意得出:,解得:.故:a=0.8;b=1.(2)设试行“阶梯电价”收费以后,该市一户居民月用电x千瓦时,其当月的平均电价每千瓦时不超过0.85元.当居民月用电量0<x≤150时,0.8x≤0.85x,故x≥0,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,解得:150≤x≤200,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,解得:x≤,不符合题意.综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过200千瓦时时,其月平均电价每千瓦时不超过0.85元.【点评】此题主要考查了一次函数的应用以及分段函数的应用,根据自变量取值范围不同得出x的取值是解题关键.。
河北省2023七年级下学期数学期末考试试卷(II)卷
河北省2023七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2021八上·涟源期末) 下列说法中,正确的个数为()①无限小数都是无理数:②无限不循环小数都是无理数;③无理数都是无限小数:④无理数也有负数;⑤无理数分为正无理数、零、负无理数.A . 1个B . 2个C . 3个D . 4个2. (2分) (2018八上·兰州期末) 已知P(0,a)在y轴的负半轴上,则Q()在()A . y轴的左边,x轴的上方B . y轴的右边,x轴的上方C . y轴的左边,x轴的下方D . y轴的右边,x轴的下方3. (2分) (2021七下·深圳月考) 下列四个图形中,∠1与∠2是对顶角的是()A .B .C .D .4. (2分) (2018七下·浦东期中) 所有和数轴上的点组成一一对应的数组成()A . 整数B . 有理数C . 无理数D . 实数5. (2分)吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最合适的调查方式是()A . 普查B . 抽样调查C . 在社会上随机调查D . 在学校里随机调查6. (2分)不等式1+x<0的解集在数轴上表示正确的是()A .B .C .D .7. (2分) (2020七下·长沙期末) 在平面直角坐标系.将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A . (2,4)B . (1,5)C . (1,-3)D . (-5,5)8. (2分) (2021七下·恩平期末) 某班主任把本班学生上学方式的调查结果绘制成如图,则乘公交车上学的学生人数在扇形统计图中对应的扇形所占的圆心角的度数为()A . 54°B . 60°C . 108°D . 120°9. (2分)已知方程组,且﹣1<x﹣y<0,则m的取值范围是()A . ﹣1<m<﹣B . 0<m<C . 0<m<1D . <m<110. (2分)一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A .B .C .D .11. (2分)(2017·平顶山模拟) 如图,在平行四边形ABCD中,以点A为圆心,一定长为半径作圆弧,分别交AD、AB于点E、F;再分别以点E、F为圆心,大于 EF的长为半径作弧,两弧交于点G;作射线AG,交边CD 于点H.若AB=6,AD=4,则四边形ABCH的周长与三角形ADH的周长之差为()A . 4B . 5C . 6D . 712. (2分)设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有()个.A . 50B . 90C . 99D . 100二、填空题 (共5题;共5分)13. (1分) (2021七下·东城期末) “两条直线被第三条直线所截,内错角相等”是命题.(填“真”或“假”)14. (1分)数学表达式中:①a2≧0②5p﹣6q<0 ③x﹣6=1 ④7x+8y⑤﹣1<0 ⑥x≠3不等式是(填序号)。
七年级数学下册期末考试真题卷含答案解析(2)
七年级数学下册期末考试真题卷一.选择题(共10小题,满分30分,每小题3分)1.计算的结果是()A.﹣9B.C.D.92.下列微信表情图标属于轴对称图形的是()A.B.C.D.3.北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,未来在亚太地区定位精度将优于5米,测速精度优于0.1米/秒,授时精度优于10纳秒,10纳秒为0.00000001秒,0.00000001用科学记数法表示为()A.0.1×10﹣7B.1×10﹣8C.1×10﹣7D.0.1×10﹣8 4.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定5.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.106.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.7.下列说法正确的是()A.一个角的补角一定大于这个角B.延长射线ABC.过点A作AB∥CD∥EFD.对顶角相等从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为,那么盒子内白色乒乓球的行通道,(1)请用代数式表示喷泉的面积并化简;(2)喷泉建成后,需给人行通道铺上地砖方便旅客通行,若每块地砖的面积是平方米,则刚好铺满不留缝隙,求需要这样的地砖多少块.22.(7分)小明沿一段笔直的人行道行走,边走边欣赏风景,在由C处走向D处的过程中,通过隔离带PM的缝隙P,刚好浏览完对面人行道宣传墙AB上的一条标语,具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等,AC,BD相交于点P,PD⊥CD,垂足为D.小明根据自己步行的路程CD长为16m,测出标语AB的长度也为16m,请说明理由.23.(8分)掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率.(1)点数为2.(2)点数为奇数.(3)点数大于1且小于6.24.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.25.(12分)如图,四边形ABCD中,AB∥CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.B.4.C.5.B.6.B.7.D.8.B.9.A.10.C.二.填空题(共4小题,满分12分,每小题3分)11.4.12.116.13.4.14.5.三.解答题(共11小题,满分78分)15.解:(1)原式=(a2+2ab+b2)+(a2﹣b2)﹣2ab =a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)原式=a2﹣2ab﹣b2﹣(a2﹣2ab+b2)=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.16.解:如图,△ABC为所作.17.解:∵点C在AE的垂直平分线上,∴CA=CE,∵AD⊥BE,BD=DC,∴AB=AC,∵△ABC的周长为18,∴AB+BC+AC=18,∴2AC+2DC=18,∴AC+DC=9,∴DE=DC+CE=AC+CD=9(cm).18.解:(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.19.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.20.(1)证明:∵∠D与∠1互余,∴∠D+∠1=90°,∵OC⊥OD,∴∠COD=90°,∴∠D+∠1+∠COD=180°,∴∠D+∠AOD=180°,∴ED∥AB;(2)解:∵ED∥AB,∴∠AOF=∠OFD=70°,∵OF平分∠COD,∴∠COF=∠COD=45°,∴∠1=∠AOF﹣∠COF=25°.21.解:(1)由图可得,喷泉面积为:(3a+b﹣2b)(a+3b﹣2b)=(3a﹣b)(a+b)=3a2+2ab﹣b2;(2)[(3a+b)(a+3b)﹣(3a2+2ab﹣b2)]÷=(3a2+10ab+3b2﹣3a2﹣2ab+b2)×=(8ab+4b2)×=80a+40b,答:需要这样的地砖(80a+40b)块.22.解:CD=AB=16米,理由如下:∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵相邻两平行线间的距离相等,∴PD=PB,在△ABP与△CDP中,,∴△ABP≌△CDP(ASA),∴CD=AB=16米.23.解:(1)P(点数为2)=;(2)点数为奇数的有3种可能,即点数为1,3,5,则P(点数为奇数)==.(3)点数大于1且小于6的有3种可能,即点数为2,3,4,5,则P(点数大于2且小于6)==.24.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.25.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∴∠ACD=60°,∵AB∥CD,∴∠BAC=∠ACD=60°;(2)证明:在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC+∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.。
人教版七年级下数学期末复习质量检测卷(二)(含答案)
数学学习质量检测卷(二)(期末)一.选择题(每题3分,满分27分)1.的平方根是()A.2 B.﹣2 C.D.±22.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)3.下列调查中,最适合全面调查(普查)的是()A.调查某型号炮弹的射程B.调查我市中学生观看电影《少年的你》的情况C.调查某一天离开重庆市的人口数量D.调查某班学生对南开校史知识的了解程度4.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.5.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.若是关于x、y的方程组的解,则a+b的值为()A.3 B.﹣3 C.2 D.﹣27.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.488.已知a>b,则下列四个不等式中,不正确的是()A.a﹣3>b﹣3 B.﹣a+2>﹣b+2 C.a>b D.1+4a>1+4b9.已知关于x、y的方程组,满足x≥y,则下列结论:①a≥﹣2;②a=﹣时,x=y;③当a=﹣1时,关于x、y的方程组的解也是方程x+y=2的解,④若y≤1,则a≤﹣1.其中正确的有()A.1个B.2个C.3个D.4个10.在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.二.填空题(满分18分,每小题3分)11.写出“全等三角形的面积相等”的逆命题.12.已知方程2x+3y﹣1=0,用含x的代数式表示y,则.13.已知角a的余角比它的补角的还少10°,则a=.14.如图,A(4,0),B(0,3),点C为AB中点,以点B为圆心,BC长为半径作圆弧,交线段OB于点D.则点D的坐标为.15.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数,●=.16.某楼梯的截面如图,其中ER=5米,RQ=10米,若在楼梯上铺设地毯,至少需要米.三.解答题17.(10分)(1)解方程组(2)解方程4x2﹣25=0(3)解不等式组,并把解集在数轴上表示出来18.(6分)计算:﹣+()2+|1﹣|.19.(8分)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?20.(8分)感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.阅读下面的解答过程,井填上适当的理由.解:过点E作直线EF∥CD∴∠2=∠D()∵AB∥CD(已知),EF∥CD,∴AB∥EF()∴∠B=∠1()∵∠1+∠2=∠BED,∴∠B+∠D=∠BED()应用与拓展:如图②,直线AB∥CD.若∠B=22°,∠G=35°,∠D=25°,则∠E+∠F=度.方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=80°,则∠D=度.21.(10分)我们居住的地球上有七大洲,各大洲面积之和约为15000万平方千米.根据图形提供的信息,解决下面的问题.(1)设计适当的表格表示数据资料.(2)画扇形统计图表示各大洲所占面积的百分比.(3)用文字语言描述数据资料信息.22.(8分)如图,把△ABC向上平移3个单位,再向右平移3个单位得到△A'B'C′.(1)在图中画出△A'B′C′;(2)请写出点A′,B',C'的坐标;(3)求出△ABC的面积.23.(10分)某农户今年1月初以20000元/亩的价格承包了10亩地用来种植某农作物,已知若按传统种植,每月每亩能产出3000千克,每亩的种植费用为2500元;若按科学种植,每月每亩产量可增加40%,但种植费用会增加2000元/亩,且前期需要再投入25万元,花费4个月的时间进行生长环境的改善,改善期间无法种植.已知每千克农作物市场售价为3元,每月底一次性全部出售,假设前x个月销售总额为y(万元).(1)当x=8时,分别求出两种种植方法下的销售总额y(万元);(2)问:若该农户选择科学种植,几个月后能够收回成本?(3)在(2)的条件下,假如从2020年1月初算起,那么至少要到何时,该农户获得的总利润能够超过传统种植同样时间内所获得的总利润?24.(12分)阅读材料,善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5∴y=﹣1把y=﹣1代入①得x=4∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x、y满足方程组①求x2+4y2的值;②求的值.参考答案一.选择题1. C.2. D.3. D.4. B.5. B.6. A.7. D.8. B.9. C.10. A.二.填空题11.面积相等的三角形全等.12. y=﹣x+.13.60°.14..15. 8.16. 15.三.解答题17.解:(1),由①得:3x﹣2y=8③,②+③得,6x=18,∴x=3,②﹣③得,4y=2,∴y=.故原方程组的解为:;(2)4x2﹣25=0,整理得x2=,解得:x=±;(2),由①得,x≤3,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤3.在数轴上表示为:18.解:原式=﹣2﹣+5+﹣1=2.19.解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.20.解:感知与填空:过点E作直线EF∥CD,∴∠2=∠D(两直线平行,内错角相等),∵AB∥CD(已知),EF∥CD,∴AB∥EF(两直线都和第三条直线平行,那么这两条直线也互相平行),∴∠B=∠1(两直线平行,内错角相等),∵∠1+∠2=∠BED,∴∠B+∠D=∠BED(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G作GN∥AB,则GN∥CD,如图②所示:由感知与填空得:∠E=∠B+∠EGN,∠F=∠D+∠FGN,∴∠E+∠F=∠B+∠EGN+∠D+∠FGN=∠B+∠D+∠EGF=22°+25°+35°=82°,故答案为:82.方法与实践:设AB交EF于M,如图③所示:∠AME=∠FMB=180°﹣∠F﹣∠B=180°﹣80°﹣60°=40°,由感知与填空得:∠E=∠D+∠AME,∴∠D=∠E﹣∠AME=60°﹣40°=20°,故答案为:20.21.解:(1)用表格表示数据资料如下:(2)所画的扇形统计图如图所示:(3)亚洲的面积最大,大洋洲的面积最小,亚洲面积约为大洋洲面积5倍.22.解:(1)如图所示,△A'B′C′即为所求.(2)A′(2,2),B'(7,5),C'(4,6);(3)△ABC的面积为4×5﹣×5×3﹣×2×4﹣×1×3=20﹣7.5﹣4﹣1.5=7.23.解:(1)若按传统种植,当x=8时,y=10×3000×3×8÷10000=72万元;若按科学种植,当x=8时,y=10×3000×(1+40%)×3×(8﹣4)÷10000=50.4万元;(2)设n个月后可收回成本.(n﹣4)﹣2×10﹣25≥0,解得,∴10个月后收回成本;(3)设m个月后该农户获得的总利润能够超过传统种植同样时间内所获得的总利润,根据题意得,,整理得,1.6m>57.4,解得:,∴m=36,∴至少36个月后,该农户获得的总利润能够超过传统种植同样时间内所获得的总利润.24.解:(1)由②得:3x+6x﹣4y=19,即3x+2(3x﹣2y)=19③,把①代入③得:3x+10=19,即x=3,知识像烛光,能照亮一个人,也能照亮无数的人。
2023-2024学年七年级数学下学期期末模拟卷02(人教版)(全解全析)A4版
2023-2024学年七年级数学下学期期末模拟卷02全解全析能力提升培优测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第五章~第十章(人教版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.计算√64−√643的结果是( )A .0B .16C .12D .4【答案】D【分析】先计算算术平方根,立方根,再进行减法运算.【详解】解:√64−√643=8−4=4,故选:D .【点睛】本题考查求算术平方根,立方根,正确计算是解题的关键.2.下列调查中,调查方式选择合理的是( )A .为了了解某一品牌家具的甲醛含量,选择全面调查B .为了了解神舟飞船的设备零件的质量情况,选择抽样调查C.为了了解某公园全年的游客流量,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【答案】C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:为了了解某一品牌家具的甲醛含量,具有破坏性,选择抽样调查,A错误;为了了解神舟飞船的设备零件的质量情况,每个零件都很重要,都要检查,选择全面调查,B错误;为了了解某公园全年的游客流量,范围广,选择抽样调查,C正确;为了了解一批袋装食品是否含有防腐剂,具有破坏性,选择抽样调查,D错误,故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列命题属于真命题的是()A.坐标轴上的点不属于任何象限B.若ab=0,则点P(a,b)表示原点C.点A、B的横坐标相同,则直线AB∥x轴D.(1,−a2)在第四象限【答案】A【分析】根据各象限内点的坐标特征以及坐标轴上的点的坐标特征对各选项分析判断即可得解.【详解】解:A、坐标轴上的点不属于任何象限,属于真命题,本选项符合题意;B、若ab=0,则点P(a,b)可能是原点,也可能在坐标轴上,原命题属于假命题,本选项不符合题意;C、点A、B的横坐标相同,则直线AB∥y轴,原命题属于假命题,本选项不符合题意;D、当a≠0时,点(1,−a2)在第四象限,原命题属于假命题,本选项不符合题意;故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.下列各选项中能用“垂线段最短”来解释的现象是()A.B.C.D.【答案】A【分析】根据直线的性质,线段的性质对各选项分析判断即可得解.【详解】解:A、测量跳远成绩是利用了“垂线段最短”,故本选项合题意.B、木板弹出一条墨迹是利用了“两点确定一条直线”,故本选项不合题意;C、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项不合题意;D、把弯曲的河道改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项不符合题意;故选:A.【点睛】本题考查了线段的性质,直线的性质,解题时注意:两点的所有连线中可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.5.若a≠0,下列不等式一定成立的是()A.2023−a>2022+a B.−2023a>−2022aC.2023a >2022aD.−a−2023<−a−2022【答案】D【分析】根据不等式的性质逐一判定即可;要判定一个说法错误,只需要找一个反例即可.【详解】A、令a=1,则2023−a=2022,2022+a=2023,2022<2023,∴此时2023−a<2022+a,即A选项错误,不符合题意;B、令a=1,则−2023a=−2023,−2022a=−2022,−2023<−2022∴此时−2023a<−2022a,即B选项错误,不符合题意;C、令a=−1,则2023a =−2023,2022a=−2022,−2023<−2022∴此时2023a <2022a,即C选项错误,不符合题意;D、因为−2023<−2022,所以−a−2023<−a−2022,∴D选项正确,符合题意;故选:D.【点睛】本题考查不等式的性质,利用反例推断一个命题错误和掌握不等式的性质是解题的关键.6.若3a−22和2a−3是实数m的平方根,则√1m的值为()A.17B.15C.135D.119【答案】A【分析】根据一个正数的平方根有两个,且互为相反数,求出a,从而即可得解.【详解】解:∵3a−22和2a−3是实数m的平方根,∴3a−22+2a−3=0,解得a=5,∴2a−3=7,∴m=49,m=49,∴√1m =√149=17,故选A.【点睛】本题考查了平方根,熟练掌握一个一个正数的平方根有两个,且互为相反数是解题的关键.7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,∠E=45°,则∠DBC的度数为()A.10°B.15°C.20°D.25°【答案】B【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=∠ABD−ABC=45°−30°=15°.故选:B.【点睛】本题考查平行线的性质,根据平行线的性质得出∠ABD的度数是解题的关键.8.平面直角坐标系中,已知A(−3,1),B(1,−2),作AC∥x轴交y轴于点C,点D在直线AC上,则线段BD长度的最小值是()A.2 B.3 C.4 D.5【答案】B【分析】先画出符合题意的图形,再根据“点到直线的距离垂线段最短”可得到答案.【详解】解:如图,AC∥x轴交y轴于点C,点D在直线AC上,∴BD⊥AC时,BD最小,∵A(−3,1),B(1,−2),∴D(1,1),此时:BD=1−(−2)=3.故选:B.【点睛】本题考查的是坐标与图形,点到直线的距离,垂线段最短,掌握以上知识是解题的关键.9.若方程组{2a−3b=133a+5b=30.9的解是{a=8.3b=1.2,则方程组{2(x+2)−3(y−1)=133(x+2)+5(y−1)=30.9的解是()A.{x=8.3y=1.2B.{x=10.3y=2.2C.{x=6.3y=2.2D.{x=10.3y=0.2【答案】C【分析】由二元一次方程组的解的定义得出{x+2=8.3y−1=1.2,求解即可.【详解】由题意知,{x+2=8.3y−1=1.2,解得,{x=6.3y=2.2,故选:C.【点睛】本题考查二元一次方程组的解,解题的关键是掌握换元法,体现了整体思想.10.某校的劳动实践基地有一块长为10m、宽为8m的长方形空地,学校准备在这块空地上沿平行于长方形各边的方向割出3个大小和形状完全相同的小长方形菜地(图中阴影部分)分别种上辣椒、茄子、土豆,如图所示,则每个小长方形菜地的面积是()A.7m2B.8m2C.9m2D.10m2【答案】B【分析】设一个小长方形菜地的长为x m,宽为y m,根据题意列出二元一次方程组,解方程组即可求解.【详解】解:设一个小长方形菜地的长为x m,宽为y m,根据题意得:{2x+y=102y+x=8,解得{x=4y=2,∴一个小长方形菜地的面积为xy=2×4=8(m2).故选:B.【点睛】本题考查了二元一次方程组的应用,根据图形列出二元一次方程组是解题的关键.11.如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点,其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→⋅⋅⋅根据这个规律,第2023个点的坐标为()A.(45,1)B.(45,2)C.(45,3)D.(45,4)【答案】B【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2023最接近的平方数为2025,然后写出第2023个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看作按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看作按照运动方向离开x轴,∵452=2025,∴第2025个点在x轴上坐标为(45,0),则第2023个点在(45,2)故选:B.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.12.已知关于x的不等式组{x−3x−52<22x−a≤−1,下列四个结论:①若它的解集是1<x≤3,则a=7;②当a=3,不等式组有解;③若它的整数解仅有3个,则a的取值范围是11≤a<13;④若它有解,则a>3.其中正确的结论个数()A.1个B.2个C.3个D.4个【答案】B【分析】本题主要首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式组,从而求出a的范围.【详解】解:{x−3x−52<2①2x−a≤−1②,解不等式①,得x>1.解不等式②,得x≤a−12,∴不等式组的解集为1<x≤a−12.①若它的解集是1<x≤3,则a−12=3,解得a=7,故结论正确;②当a=3时,a−12=3−12=1,不等式组无解,故结论不正确;③若它的整数解仅有3个,则4≤a−12<5,解得9≤a<11.则a的取值范围是9≤a<11,故结论不正确;④若它有解,a−12>1,解得a>3,故结论正确.综上可知,正确的有①④,共2个.故选B.【点睛】本题考查解一元一次不等式组,一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.第II卷(非选择题)二、填空题13.已知432=1849,442=1936,452=2025,462=2116.若n为整数且n<√2023<n+1,则n的值是.【答案】44【分析】由已知条件的提示可得√1936<√2023<√2025,即44<√2023<45,从而可得答案.【详解】解:∵1936<2023<2025,∴√1936<√2023<√2025,即44<√2023<45,又∵n<√2023<n+1,n为整数,∴n=44.故答案为:44.【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.14.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.【答案】10【分析】根据组距,最大值、最小值、组数以及样本容量的关系进行计算即可.【详解】解:(143-50)÷10=9.3≈10,故可以分成10组,故答案为:10.【点睛】本题考查频数分布直方图的制作方法,理解组距、组数,极差以及样本容量之间的关系是正确解答的关键.15.点A(6−2x, x−3)在x轴的上方,将点A向上平移4个单位长度,再向左平移1个单位长度后得到点B,点B到x轴的距离大于点B到y轴的距离,则x的取值范围是.【答案】3<x<6【分析】先根据平移表示出点B的坐标,再根据点B到x轴的距离大于点B到y轴的距离列不等式求解即可.【详解】解:∵点A(6−2x, x−3)在x轴的上方,将点A向上平移4个单位长度,再向左平移1个单位长度后得到点B,∴A(6−2x−1, x−3+4),即A(5−2x, x+1),且x−3>0即x>3,∴x+1>0,5−2x<0,∵点B到x轴的距离大于点B到y轴的距离,∴|x+1|>|5−2x|,即x+1>2x−5,解得:x<6,∴3<x<6.故答案为3<x<6.【点睛】本题主要考查了点的平移、点到坐标轴的距离、解不等式、取绝对值等知识点,灵活运用相关知识是解答本题的关键.16.把一根长18m的钢管截成2m长和3m长两种规格的钢管,不浪费材料,共有种不同的截法.【答案】2【分析】设可以截成x段3m长,y段2m长的钢管,根据截成钢管的总长度为18m,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出结论.【详解】解:设可以截成x段3m长,y段2m长的钢管,依题意得:3x+2y=18,∴y=18−3x2.又∵x,y均为非负整数,∴{x=2y=6或{x=4y=3,∴共有2种不同的截法.故答案为:2.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.如图,已知长方形纸片ABCD,点E,F在BC边上,点G,H在AD边上,分别沿EG,FH折叠,点B和点C 恰好都落在点P处.若∠EPF=50°,则α+β=.【答案】115°/115度【分析】根据平行线的性质可得∠BEG=∠DGE=α,∠CFH=∠AHF=β,再由折叠的性质可得∠PEB=2∠BEG=2α,∠PFC=2∠CFH=2β,然后根据三角形内角和定理,即可求解.【详解】解:根据题意得:AD∥BC,∴∠BEG=∠DGE=α,∠CFH=∠AHF=β,由折叠的性质得:∠BEG=∠PEG=α,∠CFH=∠PFH=β,∴∠PEB=2∠BEG=2α,∠PFC=2∠CFH=2β,∴∠PEF=180°−∠PEB=180°−2α,∠PFE=180°−∠PFC=180°−2β,∵∠PEF+∠PFE+∠EPF=180°,∠EPF=50°,∴180°−2α+180°−2β=180°−50°,即α+β=115°.故答案为:115°【点睛】本题主要考查了平行线的性质,折叠,三角形内角和,解决问题的关键是熟练掌握折叠性质,三角形内角和定理,平行线的性质.18.定义:在平面直角坐标系xOy 中,将点P (x,y )变换为P (kx +b,by +k )(k 、b 为常数),我们把这种变换称为“T 变换”.已知点B(2,1),C (m −52,n),D (m −12,m +12n)经过“T 变换”的对应点分别是E(4,3)、F 、G .若CF ∥x 轴,且点G 落在x 轴上,则三角形DFG 的面积为 .【答案】12/0.5【分析】先根据B(2,1)经过“T 变换”的对应点是E(4,3),求出k,b 的值,进而表示出F,G 的坐标,根据CF ∥x ,得到C,F 的纵坐标相同,点G 落在x 轴上,得到G 点的纵坐标为0,求出m,n 的值,再进行求解即可.【详解】解:∵点B(2,1)经过“T 变换”的对应点是E(4,3),∴{2k +b =4b +k =3 ,解得:{k =1b =2, ∴C (m −52,n),D (m −12,m +12n)经过“T 变换”的对应点为F (m −52+2,2n +1),G (m −12+2,2m +n +1),即:F (m −12,2n +1),G (m +32,2m +n +1),∵CF ∥x ,点G 落在x 轴上,∴{n =2n +12m +n +1=0 ,解得:{n =−1m =0, ∴D (−12,−12),F (−12,−1),G (32,0),∴DF ⊥OG,DF =12,∴三角形DFG 的面积为12×12×(32+12)=12;故答案为:12.【点睛】本题考查坐标与图形.解题的关键是理解并掌握“T 变换”,以及平行于坐标轴的直线上的点的特点和坐标轴上点的特点.三、解答题19.解下列方程(组):(1)2(x −1)2−18=0;(2){3(x +y )−4(x −y )=−9x+y 2+x−y 6=1 .【答案】(1)x =4或x =−2;(2){x =2y =−1【分析】(1)根据求平方根的方法解方程即可;(2)先整理原方程组,然后利用加减消元法求解即可.【详解】(1)解:∵2(x −1)2−18=0,∴2(x −1)2=18∴(x −1)2=9∴x −1=±3,∴x =4或x =−2;(2)解:{3(x +y )−4(x −y )=−9x+y 2+x−y 6=1 整理得{−x +7y =−9①2x +y =3② ①×2+②得:15y =−15,解得y =−1,把y =−1代入②得:2x −1=3,解得x =2,∴方程组的解为{x =2y =−1. 【点睛】本题主要考查了解二元一次方程组,根据求平方根的方法解方程,正确计算是解题的关键.20.解不等式组{5x−2≤3xx−3 3<x+12−1,并将不等式组的解集表示在数轴上.【答案】−3<x≤1,见解析【分析】分别求出每一个不等式的解集,并在数轴上表示,即可确定不等式组的解集.【详解】解:{5x−2≤3xx−3 3<x+12−1①②解不等式①,得:x≤1,解不等式②,得:x>−3,则不等式组的解集为−3<x≤1,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”或根据数轴表示解集是解答此题的关键21.如图所示的平面直角坐标系中,O为坐标原点,A(4,3),B(3,1),C(1,2),将△ABC平移后得到△DEF.已知B点平移的对应点E点(0,−3)(A点与D点对应,C点与F点对应).(1)画出平移后的△DEF,并写出点D的坐标为___________,点F的坐标为___________;(2)直接写出△ABC的面积___________;(3)连OC、OB,则y轴上是否存在P点,使S△POC=S△ABC,若存在,直接写出P点坐标___________;【答案】(1)作图见解析,D(1,−1),F(−2,−2),(2)52(3)(0,5)或(0,−5).【分析】(1)画出图象即可解决问题;(2)利用割补法求解面积即可;(3)设出坐标,列一元一次方程即可解决问题;【详解】(1)解∶∵A(4,3),B(3,1),C(1,2),B点平移的对应点E点(0,−3),∴△ABC向左平移3个单位,再向下平移4个单位得△DEF,△DEF如图所示,D(1,−1),F(−2,−2),故答案为∶D(1,−1),F(−2,−2),;(2)解:S△ABC=2×3−12×1×3−2×12×1×2=52,故答案为52;(3)解:y轴上是否存在P点,使S△POC=S△ABC,设P(0,m),∵S△POC=S△ABC,S△ABC=52,S△POC=12×|m|×1,∴1 2×|m|×1=52,解得m=5或m=−5∴P(0,5)或P(0,−5),故答案为(0,5)或(0,−5).【点睛】本题考查作图之平移变换,三角形的面积以及解一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22.如图,用两个面积为50cm2的小正方形纸片拼成一个大正方形.(1)求拼成的大正方形纸片的边长;(2)若沿此大正方形纸片的边的方向剪出一个长方形,能否使剪出的长方形纸片的长、宽之比为3:2且面积为54cm2若能,试求出剪出的长方形的长与宽;若不能,请说明理由.【答案】(1)10cm(2)能;剪出的长方形的长为9cm,宽为6cm【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出大正方形的边长;(2)先求出长方形的边长,再判断即可.【详解】(1)解:大正方形的边长为:√50+50=√100=10(cm);(2)解:设长方形纸片的长为3x cm,宽为2x cm,根据题意得:3x⋅2x=54,解得:x=3或x=−3(舍去),长方形的长为3×3=9(cm),宽为2×3=6(cm),∵9<10,∴沿此大正方形边的方向剪出一个长方形,能使剪出的长方形纸片的长宽之比为3:2,且面积为54cm2.【点睛】本题考查了算术平方根和平方根的应用,能根据题意列出算式是解此题的关键.23.已知AB∥CD,E是两直线内一点,F、G分别为AB、CD上的点.(1)如图,连EF,EG,直接写出∠FEG与∠AFE和∠CGE之间的数量关系___________;(2)如图,∠AFE与∠CGE的平分线交于H点,探究∠FEG与∠FHG之间的数量关系,写出这个数量关系,并说明理由;(3)若H为AB、CD间的一点,且满足∠HFE=1n ∠AFE,∠HGE=1n∠CGE,则直接写出∠FEG与∠FHG之间的数量关系___________;【答案】(1)∠FEG=∠AFE+∠CGE(2)∠FHG=12∠FEG,理由见解析;(3)∠FHG=n−1n∠FEG,理由见解析.【分析】(1)根据平行线的判定和性质即可写出结论;(2)根据平行线的判定和性质以及角平分线的定义,即可求解;(3)根据平行线的判定和性质以及角的和差的关系,即可求解.【详解】(1)解∶如图∶过点E作EH∥AB,∵AB∥CD,∴EH∥CD,∴∠AFE=∠FEH,∠CGE=∠GEH,∵∠FEG=∠FEH+∠GFE,∴∠FEG=∠AFE+∠CGE,故答案为∶∠FEG=∠AFE+∠CGE;(2)解:由(1)得∠FHG=∠AFH+∠CGH,∠FEG=∠AFE+∠CGE,∵∠AFE与∠CGE的平分线交于H点,∴∠AFH=12∠AFE,∠CGH=12∠CGE,∴∠FHG==∠AFH+∠CGH=12(∠AFE+∠CGE)=12∠FEG,∴∠FHG=12∠FEG;(3)解:由(1)得∠FHG=∠AFH+∠CGH,∠FEG=∠AFE+∠CGE,∵∠HFE=1n ∠AFE,∠HGE=1n∠CGE,∴∠HFA=n−1n ∠AFE,∠HGC=n−1n∠CGE,∴∠FHG==∠AFH+∠CGH=n−1n (∠AFE+∠CGE)=n−1n∠FEG,∴∠FHG=n−1n∠FEG.【点睛】本题考查了平行线的判定和性质以及角平分线的定义,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.24.实验中学八年级数学社团随机抽取部分学生,对“学习习惯”进行问卷调查设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A:很少,B:有时,C:常常,D:总是.将调查结果的数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a=________%,b=________%,“常常”对应扇形的圆心角的度数为________;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生共有多少名?【答案】(1)200、12、36、108°(2)见解析(3)“常常”和“总是”对错题进行整理、分析、改正的学生共有2112名.【分析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可;(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可;(3)用该校学生的人数分别乘“常常”和“总是”对错题进行整理、分析、改正的学生占的百分率即可.【详解】(1)解:∵44÷22%=200(名),∴该调查的样本容量为200,a%=24÷200×100%=12%,则a=12,b%=72÷200×100%=36%,则b=36,“常常”对应扇形的圆心角为:360°×30%=108°.故答案为:200、12、36、108°;(2)解:200×30%=60(名),;(3)解:∵3200×30%=960(名),∴“常常”对错题进行整理、分析、改正的学生有960名.∵3200×36%=1152(名),∴“总是”对错题进行整理、分析、改正的学生有1152名.960+1152=2112(名)答:“常常”和“总是”对错题进行整理、分析、改正的学生共有2112名.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.某经销商购进10件A产品和20件B产品需要155元,购进20件A产品和10件B产品需要130元.A产品每件售价5元,B产品的销量不超过200件,每件8元;销量超过200件时,超过的部分每件7元.(1)求每件A,B产品的进价;(2)该经销商每天购进A,B产品共300件,并在当天都销售完.①要求购进B产品的件数多于A产品件数的2倍,B产品的总利润不超过A产品总利润的4倍,设每天购进A产品x件(x为正整数),求x的取值范围;②端午节这天,经销商让利销售,将A产品售价每件降低m元,B产品售价每件定为7元,且A,B产品的总利润的最小值不少于318元,在①中x的取值条件下,直接写出m的最大值.【答案】(1)每件A产品的进价为3.5元,每件B产品的进价为6元(2)①5007≤x<100(x为正整数);②0.25【分析】(1)设每件A产品的进价为a元,每件B产品的进价为b元,根据“购进10件A产品和20件B产品需要155元,购进20件A产品和10件B产品需要130元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)①设每天购进A产品x件,则购进B产品(300-x)件,根据“购进B产品的件数多于A产品件数的2倍,B产品的总利润不超过A产品总利润的4倍”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围;②设A,B两种商品全部售完后获得的总利润为w元,利用总利润=每件的销售利润×销售数量(进货数量),即可得出w关于x的函数关系式,再利用一次函数的性质即可找出关于m的一元一次不等式组,解之取其中的最大值即可得出结论.【详解】(1)解:设每件A产品的进价为a元,每件B产品的进价为b元,由题意得:{10a+20b=15520a+10b=130,解得:{a=3.5b=6,答:每件A产品的进价为3.5元,每件B产品的进价为6元.(2)①设每天购进A产品x件,则购进B产品(300-x)件,由题意得:{300−x>2x(8−6)×200+(7−6)(300−x−200)≤4×(5−3.5)x,解得:5007≤x<100.∴x的取值范围为5007≤x<100(x为正整数).②设A,B两种商品全部售完后获得的总利润为w元,则w=(5-m-3.5)x+(7-6)(300-x)=(0.5-m)x+300,∵销售A,B两产品的总利润的最小值不少于318元,且5007≤x<100,x为正整数,∴{0.5−m>072(0.5−m)+300≥318,解得:m≤0.25.答:在①中x的取值条件下,m的最大值为0.25.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②根据各数量之间的关系,找出w关于x的函数关系式.26.在平面直角坐标系中,有点A(a,0),B(0,b),点P(m,2m)在第一象限,若a,b满足(a+b−7)2+|a−2b+2|=0.(1)求点A,B的坐标;(2)若点P在直线AB上方,且1<S△ABP≤5,求m的取值范围;(3)点C在直线AB上,且S△PAC=2S△PBC,求点C的坐标.【答案】(1)A(4,0),B(0,3)(2)1411<m≤2(3)C(43,2)或C(−4,6)【分析】(1)由已知可以得到关于a、b的二元一次方程组,解方程组可以得到A、B的坐标;(2)连接OP,即可用m表示出三角形AOP和三角形BOC的面积,根据S△ABP=S AOP+S△BOP−S△AOB可以用m表示出三角形ABP的面积,再由已知条件得到关于m的不等式即可;(3)分点C在线段AB上和点C在射线AB上两种情况讨论.【详解】(1)∵(a+b−7)2+|a−2b+2|=0,∴{a+b−7=0a−2b+2=0,解得,{a=4b=3,∴A(4,0),B(0,3),(2)如图1,连接OP,则S△AOB=12×3×4=6,S△AOP=12×4×2m=4m,S△BOC=12×3×m=32m,∴S△ABP=S AOP+S△BOP−S△AOB=4m+32m−6=112m−6,∵1<S△ABP≤5,∴1<112m−6≤5,解得:1411<m≤2;(3)连接OC,设C(x,y)如图2,当点C在线段AB上时,∵S△PAC=2S△PBC,∴AC=2BC,S△AOC=2S△BOC,∴S△BOC=13S△AOB=13×6=2,∴12×3x=2,解得,x=43;又S△AOC=23S△AOB=23×6=4,∴12×4y=4,解得,y=2;∴C(43,2)如图3,当点C在射线AB上时,同理可求得,C(−4,6)综上所述,C(43,2)或C(−4,6)由直线围成的图形面积的求解及不等式的求解是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期数学期末考试卷(B )
七年级 班 座号 姓名 成绩
一、 填空题:(每小题2分,共24分)
1.正八边形能否铺满地面?答: ,
理由是 . 2.如图,在ABC ∆中,AB=AC ,PA=PB ,把BPA ∆绕着
点A 旋转到'ACP ∆,连结'PP ,
则图中有 个等腰三角形.
3.某班20
已知平均数为2.3,
b = . 则
a = ,
4.等腰三角形的周长是40cm ,以一边为边作等边三角形,它的周长是45cm ,那么这个等腰三角形的底边长为 .
5.三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则这个三角形三个内角分别为 . 6.若方程组⎩⎨
⎧=+=+5
4
ay bx by ax 的解满足3=+y x ,则b a 33+= .
7.已知ABC ∆的周长为18cm ,且c b a 2=+,2
c
b a =
-,则=a , =b ,=c .
8.投出一个骰子,得到下面结果的成功率是多少? (1) 掷得的数字是偶数的成功率为 . (2) 掷得的数字小于7的成功率为 . (3) 掷得的数字是两位数的成功率为 . (4) 掷得的数字是3的倍数的成功率为 . 9.等腰三角形的顶角α大于︒90,如果过它的顶角顶点作一直线能把它分成两个等腰三角形,那么α等于 .
10.三个儿童年龄之和为33,多少年后三人的年龄之和为现在年龄之和的2倍,设x 年后
三人年龄之和是现在年龄的2倍,则可列方程 .
11.已知方程84-=x 和k x +=1同解,则代数式k
k 1
32+的值为 .
12.一种商品的售价为120元,由于购买的人多,商家便提价25%销售,但提价后,商品 滞销,商家只好再降价x 元,使商品售价恢复了原价,那么x = .
二、 选择题;(每小题2分,共16分)
13.下列说法中,错误的是( )
A . 线段有两条对称轴
B .直角有一条对称轴
C .等边三角形有三条对称轴
D .任何直角三角形都没有对称轴 14.有100张已编号的卡片(从1号到100号),从中任取一张,卡片是7的倍数的可能性应是( )
A .0.07
B .0.05
C .0.14
D . 0.01 15.如图所示,ABC ∠的平分线与ACB ∠的外角平分线交于点︒=∠20D ,则A ∠的度数为( )
A .︒20
B .︒30
C .︒40
D . ︒50
P
16.下列事件中不确定事件是( )
A . 7月份有31天
B .投掷两粒骰子,朝上面的数字和为13
C .一枚硬币投掷两次,正面都朝上
D .从0到11的整数中有5个偶数
17.关于x 的方程)()(m x m k x k -=-有唯一解,则k ,m 应满足的条件是( ) A .0≠k ,0≠m B .0≠k ,0=m C .0=k ,0≠m D .m k ≠ 18.如图,已知AB=AC=BD ,则1∠与2∠的大小关系是(
A .221∠=∠
B .︒=∠+∠180231
C .︒=∠+∠180212
D .︒=∠-∠180213 19.如果⎪⎩⎪⎨⎧-==1
2
1y x 是方程组⎩⎨⎧=+=-1253by x y ax 的一个解,那么2)(3a b a --的 值为( )
A .4
B .2
C .4-
D . 以上都不对
20.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m 元后,又降价20%,现在售价为n 元,那么该电脑的原售价为( )
A .元)54(m n +
B .元)45(m n +
C .元)5(n m +
D . 元)5(m n +
三、 解答题(共42分)
21.(5分)m 为何值时,方程组522312x y m
x y m -=⎛
+=-⎝ 的解互为相反数。
22.(5分)已知:如图,AB=AC ,AE 平行BC ,那么AE 是否平分DAC ∠,请说明理由。
23.(5分)m 为何值时,关于x 的方程x x m +=+2
1
125的解比关于x 的方程)1()1(x m m x +=+的解大2
24.(6分)有一组数据a ,b ,c ,d ,e ,f ,
其中12-=a ,0=b ,10=c ,6=d ,15=e ,30=f .问B
(1)减小a 对平均数、中位数和众数有影响吗? (2)去掉b 对平均数、中位数和众数有影响吗?
(3)去掉d ,将c 扩大2倍对平均数、中位数和众数有影响吗?
(4)去掉d 将b 与c 先求平均数,再把这个平均数放入原数据组中之后,对平均数、中位数和众数有影响吗?
(5)试各举一改变原数据组的例子,来分别改变这三个统计量. 25.(6分)用剪刀将如图所示的纸片沿着一条直线剪成两部分,要使这两部分既能拼成平行四边形,又能拼成三角形和梯形,应该怎么剪?请画出图形,当AB=8,BC=4时,试比较拼成的平行四边形、三角形、梯形的面积的大小关系
26.(6分)如图所示,BE 是ABD ∠的平分线,CF 是ACD ∠的平分线, BE 和CF 交于点G ,若︒=∠140BDC ,︒=∠110BGC , 求A ∠的度数
27(6分).已知代数式
23+a 与81541-a 互为相反数,121+b 与65互为倒数,92
=c , 求 )627(3
1)(222
222c bc b bc a a --+--的值
C
B
28.(8分)如图,等腰ABC 中,AB=AC ,AD 是底边上的高。
(1) 请你写出从图中所能获取的尽可能多的结论(至少写出10条)
(2) 作直线MN AB ,然后画出ABC 关于直线MN 的对称图形。
(3) 量出图中Rt ABD 的三边长,它们分别是 cm , cm , cm (精确到整数)。
你能猜想出这三个正整数之间有什么关系吗?你能否用一个等式把它们之间的关系表示出来? 29.(8分)某农户1998年承包若于亩地,投资了7800元,改造后种果树2000棵,其成活率为90%,在2002年夏季全部结果时,随意摘下10棵果树水果,称得重量如下:(单位:千克)8,9,12,13,8,9,11,10,12,8
(1) 根据样本平均数估计该农户今年水果的总产量是多少?
B
D
(2)此水果在市场上每千克售价为1.3元,在果园内每千克售价为1.1元,该农户用车将水果拉到市场出售,平均每天出售1000千克,需8人帮助,每人每天付工资25元,若两种出售方式都在相同的时间内售完全部水果,选择哪种出售方式合理?为什么? 30.(10分)某校初三年级共有48位教师,一天年级组织全体教师去南湖春游,并组织全体教师划船活动,每只小船坐3人,租金5元,每只大船坐5人,租金8元,要求大、小船都要租,且每船必须坐满人,设租用小船y 只,大船x 只,
(1) 请你写出所有可能的租船方案
(2) 如果要使租金p 元最省,你会采用哪种方案。
四、附加题:(共20分)
31.(10分)现行劳务报酬纳税方法满足下列关系,若设个人每次劳务报酬为x 元,相应的纳税金额为
y 元,那么⎪⎩
⎪
⎨⎧
≤-≤-≤=)
100004000(%)201%(20)40001000()
800%(20)
1000(%3x x x x x x y 小王和小张两个人一共取得劳务报酬10000元,已知小王的报酬是小张的2倍多,两人共缴个人所得税
1560元,问小王和小张各得劳务报酬多少元?
所在的平面内补上三个点D、32.(10分)已知等腰三角形ABC的一个顶角A是36 ,请你在ABC
E、F,使其当以A、B、C、D、E、F这6点当中选取合适的三个点辚顶点时,所构成的等腰三角形不少于12个。
请画出示意图,并说明如何确定这三个点。