岩石磨片机双闭环直流调速系统课程设计
(完整word版)双闭环不可逆直流调速系统课程设计
双闭环晶闸管不可逆直流调速系统设计一.设计目的一1了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。
2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。
3熟悉NMCL_18,NMCL_33的结构及调试方法。
4掌握双闭环不可逆直流调速系统的调试步骤,方法及参数的整定。
二.实验内容1 各控制单元调试2 测试电流反馈系数3 测定开环机械特性及闭环静特性三.实验系统组成及工作原理双闭环晶闸管不可逆直流调速系统有电流和转速两个调节器综合调节,由于调速系统调节的主要是转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可拟制电网电压波动对转速的影响,试验系统的组成如图6-8所示。
系统工作时,先给电动机加励磁,改变给定电压的大小即可方便的改变电机的转速。
ASR,ACR均有限幅环节,ASR的输出作为ACR的给定,利用ASR的输出限幅可达到限制启动电流的目的,ACR的输出作为移向触发电路的控制电压,利用ACR的输出限幅可达到限制和的目的。
当加入给定Ug后,ASR即饱和输出,使电动机以限定的最大起动电流加速启动,直到电机转速达到给定转速(即Ug=Ufn),并出现超调后,ASR退出饱和,最后稳定运行在略低于给定转速的数值上。
四.实验设备及仪器1,NMCL系统教学实验台主控制屏。
2,。
NMCL—18组件(适合NMCL—Ⅱ)或那么长了组件(适合NMCL—Ⅲ)。
3.NMCL—33组件或NMCL—53组件。
4.NMCL—03A三相可调电阻(或自配滑线变阻器)。
5.电机导轨及测速装置、直流发电机M01。
6.直流电动机M03。
五.注意事项1.三相主电压源连线时需注意,不可换错相序。
2.电源开关闭合时,过流保护,过压保护的发光二极管可能会亮,只需按下对应的复位开关SB1、SB2即可正常工作。
3.系统开环连接时,不允许突加给定信号Ug启动电机。
4.启动电机时,需吧MEL —13的测功机加载旋钮逆时针旋到底,以免带负载启动。
双闭环直流调速系统课程设计
双闭环调速系统的工作原理及其调试一、双闭环调速系统的分析1.双闭环调速系统的原理图图2-1 转速、电流双闭环调速系统ST ——转速调节器 LT ——电流调节器 SF ——测速发电机LH ——电流互感器 gn U 、fn U ——转速给定和速度反馈电压2.双闭环调速系统的工作原理采用双闭环调速系统即可保证在起动过程中,起动电流不超过某一最大值,而使电机和可控硅元件不会被烧坏,又能保证稳态精度,这主要是依靠电流环和转速环的作用。
3.KZS-1型晶闸管直流调速实验装置其面板布置图如图2-2所示。
4.转速调节器STST 的作用是在起动过程中的大部分时间里,转速调节器ST 处于饱和限幅状态,转速环相当于开环,系统表现为恒值电流调节的单环系统,只有转速超调后,ST 退出饱和后,才真正发挥线性调节作用,使转速不受负载变化的影响。
ST 能将输入的给定和反馈信号进行加法、减法、比例、积分微分等运算,使其输出量按某种规律变化,其原理电路如图2-8所示。
图2-2 面板布置图图2-3 转速调节器(ST )原理电路图ST 采用集成电路运算放大器组成,它具同相输入和反相输入两个输入端,其输出电压与两个输入端电压之差成正比。
2端为给定输入端,1端为反馈信号输入端。
搓在运算放大器输入端前面的阻抗为输入阻抗网络。
接在反相输入端和调节器输出端之间的网络为反馈阻抗网络。
改变输入与反馈阻抗网络参数,就能得到各种运算特性。
反向输入端与调节器输出端之间的场效应管起零速封锁作用。
零速时56端为零电平,场效应管导通,调节器输出锁零,56端为-15V 时,场效应管关断,调节器投入工作。
输出采用二极管箍位的外限幅电路。
电位器1RW 用以调节正向输出限幅值,电位器2RW 用以调节负向输出限幅值。
5.电流调节器LT电流调节器LT 的作用是保证在各种正常工作的条件下不发生过电流,在起、制动情况下维持电流恒定。
达到怛流起、制动,从而加快了起、制动过程。
在电网电压波动时,由于LT 反应快可以很快予以制止,减小了电网电压波动时对转速的影响,提高了抵抗电网电压波动能力。
双闭环直流调速系统
双闭环直流调速系统一、课程设计大纲课程设计是本课程教学中极为重要的实践性教学环节,它不仅起着提高本课程教学质量、水平和检验学生对课程内容掌握程度的作用,还将起到从理论过渡到实践的桥梁作用。
通过课程设计,学生将进一步巩固、深化和扩充在交直流调速及相关课程的知识。
二、课程设计任务书该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D10),系统在工作范围内能稳定工作。
动态性能指标:转速超调量n8,电流超调量i5,动态速降n810,调速系统的过渡过程时间(调节时间)ts1s。
说明机械负载对调速系统的基本要求(调速、稳速、加减速控制)。
推导该系统的机械特性方程并进行静特性分析(画出稳态结构框图)。
利用开环频率特性进行校正(在对数坐标纸上画图),使系统满足性能指标要求。
课程设计内容仿真:利用MATLAB进行系统校正仿真,编写仿真程序,在课程设计说明书中附仿真曲线图。
三、摘要本文介绍了双闭环直流调速系统的设计与分析。
该系统通过引入转速负反馈和电流负反馈,分别调节转速和电流,以满足对系统动态性能的较高要求。
在起动过程中,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值。
稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
双闭环直流调速系统具有无静差、良好的稳态精度和快速性,被广泛应用于对动态性能要求较高的领域。
本文还通过Matlab对系统进行了数学建模和仿真,以分析其特性。
四、系统技术数据及要求直流电动机需要三相直流电源,由三相桥式整流电路将三相交流380V电源整流为三相直流电源。
五、调速系统的方案选择系统性能要求:需要明确调速系统的控制目标,包括稳态精度、动态响应、过载能力等。
这些性能指标将直接影响到方案的选择。
例如,对于要求高精度和快速响应的系统,可能需要选择高性能的控制器和执行机构。
双闭环直流调速系统的课程设计
双闭环直流调速系统的课程设计————————————————————————————————作者:————————————————————————————————日期:自动控制原理课程设计——双闭环直流调速系统课程设计班级电气自动化二班姓名程传伦学号110101225指导教师张琦2013年6月10日目录摘要第1章系统方案设计1.1 任务分析1。
2 方案比较论证1.3 系统方案确定第2章系统主电路设计及参数计算2。
1 主电路结构设计与确定2.2 主电路器件选择与计算2.2.1 整流变压器的参数计算和选择2.2.2 整流元件晶闸管的选型2.3 电抗器的设计2.4 主电路保护电路的设计2.4.1 过压保护设计2。
4.2 过流保护设计第3章双闭环调节系统调节器的设计3.1 电流调节器的设计3.2转速调节器的设计小结心得体会参考文献摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的.该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流.并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
第1章系统方案设计1。
1 任务分析本课题所涉及的调速方案本质上是改变电枢电压调速。
该调速方法可以实现大范围平滑调速,是目前直流调速系统采用的主要调速方案.但电机的开环运行性能远远不能满足要求.按反馈控制原理组成转速闭环系统是减小或消除静态转速降落的有效途径。
双闭环直流调速系统课程设计
SHi-MAML;皿;TI hlHI 门JI iljCi g ^iJtKJ-h直流拖动控制系统课程设计报告目: 双闭环直流调速系统设计院: 沈阳工业大学工程学院业: 电气工程及其自动化级: 1101 班名: 孔令慧号: 120112724指导教师: 佟维妍起止日期:2014年6月16日〜2014年6月22日设计概述.2... 第一章系统总体设计 3...1.1 系统电路结构 3...1.2 两个调节器的作用.4..第二章整体电路分析 6...2.1 电流环设计 6...2.2 转速环设计 6...2.3 典型 I 型系统介绍2.4 典型n型系统介绍.8..2.5 转速调节器的实现.9..2.6 电流调节器的实现.9..2.7 校核转速超调量9...第三章参数计算 1..03.1 相关参数 1...03.2 主要参数计算.1..03.2.1 电流环参数计算 1...03.2.2 转速环参数的计算 1..2 MATLAB 仿真 1..5课程设计体会 1...9.双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点。
在理论和实践方面都是比较成熟的系统,在电力拖动领域中发挥着及其重要的作用。
由于直流电机双闭环调速是各种电机调速系统的基础,本人就直流电机调速进行了比较系统的研究,从直流电机的基本特性到单闭环调速系统,再进行双闭环直流电机设计方案的研究,用实际系统进行工程设计,并用所学的MATLABS 行仿真,分析了双闭环调速系统的工程设计方法中由于忽略和简化造成的误差。
在双闭环直流调速系统中,转速和电流调节器的结构选择与参数设计需从动态校正的需要来解决,设计每个调节器是,都必须先求该闭环的原始系统开环对数频率特性,再根据性能指标确定校正后系统的预期特性,对于经常正反转运动的系统,尽量缩短启、制动过程的时间是提高生产率的重要因素。
为此,在电机最大允许电流和转矩受到限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流为允许的最大值,是电力拖动系统以最大的加速度启动,到达稳定转速时,立即让电流降下来,使转矩马上与负载相平衡,从而装入稳态运行。
双闭环调速系统课程设计
双闭环调速系统课程设计一、课程目标知识目标:1. 学生能理解双闭环调速系统的基本原理和组成部分;2. 学生能掌握双闭环调速系统中速度环和电流环的工作原理及其相互关系;3. 学生能了解双闭环调速系统在工业生产中的应用。
技能目标:1. 学生能运用所学知识,分析并设计简单的双闭环调速系统;2. 学生能通过实际操作,完成双闭环调速系统的调试和优化;3. 学生能运用相关软件或工具,对双闭环调速系统进行仿真和分析。
情感态度价值观目标:1. 学生对双闭环调速系统产生兴趣,培养主动学习和探究的精神;2. 学生认识到双闭环调速系统在工程技术领域的重要性,增强对相关职业的认同感;3. 学生在团队协作中,培养沟通、合作和解决问题的能力。
课程性质:本课程为电气工程及其自动化专业核心课程,旨在使学生掌握双闭环调速系统的基本原理和设计方法。
学生特点:学生具备一定的电路基础和自动控制理论,具有较强的动手能力和探究精神。
教学要求:结合理论教学和实践操作,注重培养学生的实际应用能力和创新意识。
通过分解课程目标为具体学习成果,使学生在掌握知识的同时,提高技能和情感态度价值观。
后续教学设计和评估将以此为基础,确保课程目标的实现。
二、教学内容1. 双闭环调速系统基本原理- 介绍双闭环调速系统的定义、分类及其在工业生产中的应用;- 分析双闭环调速系统的结构及工作原理。
2. 速度环和电流环的工作原理- 详细讲解速度环和电流环的组成、功能及相互关系;- 分析速度环和电流环的参数整定方法及其对系统性能的影响。
3. 双闭环调速系统设计- 介绍双闭环调速系统的设计步骤和方法;- 结合实际案例,分析并设计双闭环调速系统。
4. 双闭环调速系统的调试与优化- 讲解双闭环调速系统调试的原理和方法;- 介绍优化双闭环调速系统性能的途径。
5. 双闭环调速系统的仿真与分析- 介绍常用仿真软件及其在双闭环调速系统中的应用;- 结合实际案例,进行双闭环调速系统的仿真分析。
双闭环直流可逆调速系统设计
双闭环直流可逆调速系统设计
一、实现双闭环直流可逆调速系统的基本原理
双闭环直流可逆调速系统是一种复杂的控制系统,通过控制电机转速
调整和调节,可以实现直流可逆调速系统的功能。
它的工作原理是:当电
机的转速发生变化时,运用程序控制器调整反馈信号。
在反馈信号中,检
测电机转速,并将其作为参考,经过放大器检测调节,将放大器调节的参
数输入给程序控制器,然后根据给定的转速和调节参数,程序控制器根据
相关的算法,调节步进电机的每一步的转速,实现当电机转速发生变化时,程序控制器控制电机转速。
二、双闭环直流可逆调速系统的组成
1.输入信号源:输入信号源主要有可逆调节信号和程序控制参数信号,两者同时作用,确定电机控制的转速范围和精度要求,从而保证可逆调速
系统的精度。
2.程序控制器:程序控制器是可逆调速系统的核心,它根据输入的控
制信号,控制反馈电路,实时获取电机的转速参数,根据算法,按照程序
控制的调节参数调节步进电机,实现调节目标速度。
双闭环直流调速系统课程设计报告
1双闭环直流调速系统课程设计报告第一章主电路设计与参数计算调速系统方案的选择因为电机上网容量较大又要求电流的脉动小应采纳三相全控桥式整流电路供电方案。
电动机额定电压为220V 为保证供电质量应采纳三相减压变压器将电源电压降低。
为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱。
主变压器采纳 A/D 联络。
因调速精度要求较高应采纳转速负反应调速系统。
采纳电流截止负反应进行限流保护。
出现故障电流时过电流继电器切断主电路电源。
为使线路简单工作靠谱装置体积小宜采纳 KJ004 构成的六脉冲集成触发电路。
该系统采纳减压调速方案故励磁应保持恒定励磁绕组采纳三相不控桥式整流电路供电电源可从主变压器二次侧引入。
为保证先加励磁后加电枢电压主接触器主触点应在励磁绕组通电后方可闭合同时设有弱磁保护环节电动机的额定电压为 220V 为保证供电质量应采纳三相减 2 压变压器将电源电压降低为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱主变压器采纳D/Y 联络。
1.1 整流变压器的设计 1.1.1 变压器二次侧电压U2 的计算U2 是一个重要的参数选择过低就会没法保证输出额定电压。
选择过大又会造成延迟角α加大功率因数变坏整流元件的耐压高升增添了装置的成本。
一般可按下式计算即BAUUd2.112 1-1 式中 A-- 理想状况下α0°时整流电压 Ud0 与二次电压U2 之比即AUd0/U2B-- 延缓角为α时输出电压Ud 与 Ud0 之比即BUd/Ud0 ε——电网颠簸系数系数依据设计要求采纳公式11.2——考虑各样因数的安全BAUUd2.112 1-3由表查得A2.34 取ε 0.9 角α考虑 10°裕量则Bcosα 0.985222011.21061272.340.90.985UV 取 U2120V 。
电压比KU1/U2380/1203.2 。
1.1.2 一次、二次相电流 I1 、I2 的计算由表查得 KI10.816 KI20.816 考虑变压器励磁电流得取1.1.3 变压器容量的计算S1m1U1I1 1-4 S2m2U2I2 1-5S1/2S1S2 1-6 式中 m1、m2 -- 一次侧与二次侧绕组的相数表查得 m13m23 S1m1U1I13× 380×1415.6KVA由S2m2U2I23×110×44.914.85 KVA考虑励磁功率LP220×1.60.352kW 取 S15.6kvA 1.2 晶闸管元件的选择晶闸管的额定电压晶闸管实质蒙受的最大峰值电压TNU 乘以 23 倍的安全裕量参照标准电压等级即可确立晶闸管的额定电压 TNU 即 TNU 23mU 整流电路形式为三相全控桥查表得26UUm 则223236236110539808TNmUUUV 3-7 取晶闸管的额定电流选择晶闸管额定电流的原则是一定使管子同意经过的额定电流有效值TNI 大于实质流过管子电流最大有效值TI8 即 4 TNI 1.57AVTITI 或AVTI57.1TI57.1TIddIIKdI 1-8 考虑 1.52 倍的裕量AVTI1.52KdI 1-9 式中KTI/1.57dI-- 电流计算系数。
双闭环直流调速系统(课程设计)
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
双闭环直流调速系统课程设计
电力拖动自动控制系统课程设计报告题目:晶闸管双闭环直流调速系统摘要双闭环直流调速系统即速度和电流双闭环直流调速系统,是由单闭环直流调速系统发展起来的,调速系统使用比例积分调节器,可以实现转速的无静差调速。
又采用电流截止负反馈环节,限制了起(制)动时的最大电流。
这对一般的要求不太高的调速系统,基本上已经能满足要求。
但是由于电流截止负反馈限制了最大电流,加上电动机反电势随着转速的上升而增加,使电流到达最大值后迅速降下来,这样,电动机的转矩也减小了,使起动加速过程变慢,起动的时间比较长。
在这些系统中为了尽快缩短过渡时间,所以就希望能够充分利用晶闸管元件和电动机所允许的过载能力,使起动的电流保护在最大允许值上,电动机输出最大转矩,从而转速可直线迅速上升,使过渡过程的时间大大的缩短。
另一方面,在一个调节器的输出端有综合几个信号,各个参数互相调节比较困难。
为了克服这一缺点就应用转速,电流双闭环直流调速系统。
关键词:双闭环直流调速系统 ASR ACR1.设计要求直流电动机设计双闭环直流晶闸管调速系统,技术要求如下:1.1直流电动机的额定参数P N=1.1KW、U N=110V、I N=1.2A、n N=1500r/min,电枢电阻R=1a Ω,电枢绕组电感L a=28mH,系统飞轮矩GD2=0.1375Kg·m2,电流过载倍数λ=1.5。
1.2电压参数电网电压:线电压U=380V采用三相晶闸管桥式整流电路供电1.3设计要求稳态无静差,电流超调量σi≤5%;转速超调量σn≤10%。
2.双闭环直流调速系统系统总设计为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如下图所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。
该双闭环调速系统的两个调节器ASR和ACR一般都采用PI调节器。
因为PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。
运动控制系统课程设计:双闭环直流电机调速系统设计
运动控制系统课程设计专业:自动化设计题目:双闭环直流电机调速系统设计班级:自动化0942学生姓名:周孝红学号: 08指导教师:雷霞分院院长:许建平教研室主任:叶天迟电气工程学院一、课程设计任务书1.设计参数三相桥式整流电路,已知参数为:P N =555K W ,U N =750V,I N =760A,n N =375r/min,电动势系数Ce=1.82V.min/r,电枢回路总电阻R=0.14Ω,允许电流过载倍数λ=1.5,触发整流环节的放大倍数Ks=75,电磁时间常数Tl=0.031s,机电时间常数Tm=0.112s 电流反馈时间常数Toi=0.002s,转速反馈滤波时间常数Ton=0.02s 。
且调节器输入输出电压U*nm=U*in=U*cm=10V,调节器输入电阻R 0=40K Ω。
2.设计内容1)根据题目的技术要求,分析论证并确定闭环调速系统的组成,画出系统组成的原理框图。
2) 建立双闭环调速系统动态数学模型。
3)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。
4) 利用MATLAB 进行双闭环调速系统仿真分析,并研究参数变化时对直流电动机动态性能的影响。
3.设计要求:1)该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。
2)系统静特性良好,无静差(静差率2S ≤)。
3)动态性能指标:转速超调量δn ≤10%,电流超调量5%i δ<,动态最大转速降810%n ∆≤~,调速系统的过渡过程时间(调节时间)1s t s≤。
4)系统在5%负载以上变化的运行范围内电流连续。
5)主电路采用三项全控桥。
4. 课程设计报告要求1)、要求在课程设计答辩时提交课程设计报告。
2)、报告应包括以下内容:A、系统各环节选型双闭环直流调速系统的工作原理调节器的工程设计Simulink仿真B、系统调试过程介绍,在调试过程中出现的问题,解决办法等;C、课程设计总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的磨片机直流调速系统摘要本系统以AT89C51单片机为控制核心,基于直流电动机调速,通过键盘输入控制直流电的启停和转速以及定时时间的设定。
电机转速与定时时间设定由数码显示管来显示。
整个系统采用包含直流调速系统的设计和基于51单片机的控制器设计两大部分,从而实现对直流电动机的转速调节。
关键词:单片机直流调速系统目录第一章绪论 (1)1.1 直流调速系统简介 (1)1.2.直流调速系统原理 (1)第二章直流调速系统主电路设计 (2)2.1直流调压调速主电路结构 (2)2.2双闭环调速系统的组成和设计 (2)2.3双闭环直流调速系统的数学模型 (4)2.4调节器的具体设计 (4)2.5速度环的设计 (7)第三章基于51系列单片机的控制器 (9)3.1基于51系列单片机的控制器设计 (10)3.2同步信号电路设计 (11)3.3人机接口设计 (12)3.3.1人机接口的电路设计 (13)3.4输入信号及驱动电路设计 (13)第四章软件设计 (14)4.1主流程设计 (14)4.2INTO中断服务程序 (15)4.3定时器0中断子程序(触发脉冲输出) (16)4.4触发角的修改 (16)第五章系统集成与结论 (17)5.1操作说明 (17)5.2结论 (18)第一章 绪论1.1 直流调速系统简介最初的直流调速系统是采用恒定的直流电压向流电动机电枢供电,通过改变电枢回路中的电阻实现调速。
这种方法简单易行,设备制造方便,价格低廉。
但缺点是效率低、机械特性软、不能在较宽围内平滑调速,所以目前极少采用。
30年代末,出现了发电机一电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能。
如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性;另一方面又可减少能量的损耗,提高效率。
但发电机一电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大、费用高、效率低、安装需有地基、运行有噪声、维修困难等。
1.2.直流调速系统原理直流电动机具有良好的起、制动性能,易于在大范围平滑调速,在金属切削机床、轧钢机、矿井卷扬机、海洋钻机、高层电梯等需要高性能电力拖动中得到了广泛应用。
直流电机的转速表达式: K Φ=IR-U n式中,U 为直流电动机电枢两端的电压,I 通过电枢的电流,R式电枢回路的电阻,Φ为励磁磁通,K e 是励磁常数。
由上式可以看出,有三种调节电动机转速的方法:① 调节电枢供电电压U 。
② 改变电动机主磁通 Φ。
③ 改变电枢回路电阻 R 。
第二章直流调速系统主电路设计2.1直流调压调速主电路结构图2.1 主电路原理图三相全控制整流电路由晶闸管VT1、VT3、VT5接成共阴极组,晶闸管VT4、VT6、VT2接成共阳极组,在电路控制下,只有接在电路共阴极组中电位为最高又同时输入触发脉冲的晶闸管,以及接在电路共阳极组中电位最低而同时输入触发脉冲的晶闸管,同时导通时,才构成完整的整流电路。
2.2双闭环调速系统的组成和设计双闭环调速系统是建立在单闭环自动调速系统上的,实际的调速系统除要求对转速进行调整外, 很多生产机械还提出了加快启动和制动过程的要求,这就需要一个电流截止负反馈系统。
23在电机启动时, 启动电流很快加大到允许过载能力值dm I , 并且保持不变, 在这个条件下, 转速n 得到线性增长, 当开到需要的大小时, 电机的电流急剧下降到克服负载所需的电流fz I 值,对应这种要求可控硅整流器的电压在启动一开始时应为dm I R ∑, 随着转速n 的上升,dm e U I R C n ∑=+也上升, 达到稳转速时, fz e U I R C n ∑=+。
这就要求在启动过程中把电动机的电流当作被调节量, 使之维持 在电机允许的最大值dm I , 并保持不变。
这就要求一个电流调节馈系统启动电流波形器来完成这个任务。
带有速度调节器和电流调节器的双闭环调速系统便是在这种要求下产生的。
为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级联接,如图所示。
这就是说把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。
从闭环结构上看,电流调节环在里面,叫内环;转速调节环在外边,叫做外环,这样就形成了转速、电流双闭环调速系统。
-图2.2 双闭环调速系统的电流环结构图2.3双闭环直流调速系统的数学模型双闭环控制系统数学模型的主要形式仍然是以传递函数或零极点模型为基础的系统动态结构图。
双闭环直流调速系统的动态结构电流调节器的传递函数。
为了引出电流反馈,在电动机的动态结构框图中必须把电枢电流Id显露出来。
2.4调节器的具体设计本设计为双闭环直流调速系统,整流装置采用三相桥式全控整流电路基本数据如下:1)晶闸管装置放大系数Ks=30;2)电枢回路总电阻R=0.18Ω;3)时间常数:电磁时间常数T1=0.012s;454)机电时间常数Tm=0.12s;5)调节器输入电阻R0=20Ω;设计指标:1)静态指标:无静差;2)动态指标:电流超调量不大于5%;空载起动到额定转速时的转速超调量不大于20%。
计算反馈关键参数:)min (015.0100015n *U n im r V ===α (2-1)A V I U n im 026.03055.112*=⨯==λβ(3-2)(1)确定时间常数整流装置滞后时间常数;Ts=0.0022s 。
电流滤波时间常数:Toi=0.002 s (三相桥式电路每个波头是时间是3.3ms ,为了基本滤平波头,应有Toi=3.33ms ,因此取Toi=2ms=0.002s )。
按小时间常数近似处理。
0042.0i o s i =+=∑T T T (Ts 和Toi 一般都比Tl 小得多,可以当作小惯性群近似地看作是一个惯性环节)(2)选择电流调节器结构根据设计要求:i σ%≤5%,且转速环:i σ%≤20%61086.20042.0012.0<==∑i l T T可按典型Ⅰ型设计电流调节器。
电流环控制对象是双惯性型的,所以把电流调节器设计成PI 型的.检查对电源电压的抗扰性能:1024.30037.0012.0<==∑s s T T i l(3)选择电流调节器的参数ACR 超前时间常数s 012.0i i ==T τ;电流环开环时间增益:11.1350037.05.05.0-==∑=s s T K i i (2-1)ACR 的比例系数:37.0026.03018.0012.01.135=⨯⨯⨯==s i i i K R K K βτ (2-2)(4)校验近似条件电流环截止频率:ci ω=Ki=135.1S-11)晶闸管装置传递函数近似条件:s T 31i c <ω (2-3)7 即1.1351.1960017.03131>=⨯=s T s (2-4)满足近似条件;2) 忽略反电动势对电流环影响的条件:,13l m ci T T ≥ω (2-5) 即ci l m s T T ω〈=⨯=-⨯10012.012.0106.79313(2-6)满足近似条件;3) 小时间常数近似处理条件:ois ci T T 131≤ω (2-7) 即oi s T T 131=ci s ω>=⨯-169.1610025.00017.0131(2-8)电流环可以达到的动态指标为:%5%3.4%<=σ,也满足设计要求。
2.5速度环的设计选择转速调节器结构按跟随和抗扰性能都能较好的原则,在负载扰动点后已经有了一个积分环节,为了实现转速无静差,还必须在扰动作用点以前设置一个积8 分环节,因此需要Ⅱ由设计要求,转速调节器必须含有积分环节,故按典型Ⅱ型系统—选用设计PI 调节器。
3)选择调节器的参数s hT n n 107.00214.05=⨯=∑=τ (3-13)转速开环增益:2222203.2620214.0521521-=⨯⨯+=∑+=s T h h K n N (3-14)ASR 的比例系数:()48.60214.018.0015.05212.02.0026.0621=⨯⨯⨯⨯⨯⨯⨯=∑+=n me n RT h T C h K αβ (3-15)(4)近似校验转速截止频率为:11103.28107.003.262--=⨯===s s K K n N Ncn τωω (3-16) 电流环传递函数简化条件:cn i s T ω>=⨯=∑-105.540037.05151(3-17)(5)检验转速超调量9当h=5时,%6.37n =σ,不能满足要求.按ASR 退饱和的情况计算超调量:%,2.81%max =∆b C C min 5.2742.018.0305rC R I n e d n =⨯==∆,满足设计要求。
第三章 基于51系列单片机的控制器控制器采用51系列单片机为控制核心,通过键盘输入控制直流电机的启停和转速以及定时时间的设定,电机转速与定时时间设定通过一组数码管显示。
驱动电路在同步信号的控制下发出晶闸管的移相触发脉冲,检测电路包括过零检测,电源逻辑状态检测等部分。
AT89C51型号,键盘选用通用可编程键盘,数码管采用LED 数码管。
1/0电路的设计包括同步信号获得电路、触发脉冲整形及驱动电路等。
在确定磨片机转速控制的直流电机调速系统的组成后,要具体设计各单元模块。
元件和芯片的选取原则为既要满足设计要求,又要考虑经济效益。
各模块的核心器件确定后,要进行可行的电路设计。
3.1基于51系列单片机的控制器设计直流调速系统的控制器设计如图3.1所示G控制器由单片机、人机对话电路、同步信号获得电路、触发脉冲整形及驱动电路构成。
考虑到设计程序大小,及整个系统所用需要的单片机资源,拟选用51系列单片机。
人机对话部分根据设计要求,采用4x4键盘、8位数码管显示、显示接口控制芯片8279:拟采用典型可编程键盘、8个LED数码管、显示接口控制芯片8279。
其中显示接口控制芯片8279最多可接32位数码管、4xs键盘,完全满足设计要求。
8279有编码和译码两种方式,由于译码方式只能实现4位扫描,外接显示管不能多于4位,不能满足设计要求,所以采用编码方式。
采用10编码方式需要配合适当的译码器完成译码功能。
由于扫描位不大于8位所以采用3一8译码器即可以满足要求。
拟采用74SL138实现译码功能。
由于8279的UOTX端口的驱动能力不能满足数码管的段驱动要求,而74SL138的输出也不能满足数码管的位驱动要求,所以均需要加驱动电路。