数字推理题型的7种类型28种形式
数字推理题型的7种类型28种形式,必会基础
数字推理题型的7种类型28种形式,必会基础!第一种情形----等差数列1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,()A.7B.8C.11D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键第二种情形---等比数列:5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
广东省考数字推理题型的7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,( ) A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,( )A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,( ),( )。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
数字推理题型7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
行测数字推理之解题技巧(精华版)
数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。
如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。
(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。
如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。
)6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。
数字推理题的基本题型和规律
数字推理题的基本题型和规律归纳总结:数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案.在实际解题过程中,我们根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律.1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n 的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,考生必须掌握.但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢这就需要学员在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧.这里我们提供为刚刚接触数字推理题型的学员提供一种最基本的解题思路,学员按照这种思路来训练自己,能够逐步熟悉各种题型,掌握和运用数字推理的基本规律.当学员对题型和规律已经很熟悉后,就可以按照自己的总结的简单方法来解答问题.第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案.第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律.当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律.我们这里所介绍的是数字推理的一般规律,学员在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案的.数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.按照数字排列的规律,数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1537A.2B.8C.9D.12解析:答案是C,整个数列中全都是奇数,而答案中只有答案C是奇数2、全是偶数:例题:2648A.1B.3C.5D.10解析:答案是D,整个数列中全都是偶数,只有答案D是偶数.3、奇、偶相间例题:2134176A.8B.10C.19D.12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C.练习:2,1,4,3,,599年考题二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A.三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,,14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=95+9=149+14=2314+23=37,因此,答案为D;练习:6,9,,24,39//1,0,1,1,2,3,5,2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,99年考题A.162B.156C.148D.145解析:22+35-1=5635+56-1=9056+90-1=145,答案为D.四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,,3,-3A.0B.1C.2D.3答案是A解析:6-3=33-3=03-0=30-3=-3提醒:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10,15,A.16B.20C.25D.30答案是B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,A.102B.101C.100D.99答案是B解析:邻数之间的差值为5、4、3、2,等差数列,差值为1103-2=1014、二级等比:相减的差是等比数列例题:0,3,9,21,45,相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,,29---99年考题解析:-1--2=1,1--1=2,5-1=4,13-5=8,29-13=16后一个数减前一个数的差值为:1,2,4,8,16,所以答案是135、相减的差为完全平方或开方或其他规律例题:1,5,14,30,55,相邻的数的差为4,9,16,25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38B.42C.46D.51解析:53-50=350-47=348-45=345-3=42答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,前两个数的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2例题:6,14,30,62,A.85B.92C.126D.250解析:6×2+2=1414×2+2=3030×2+2=6262×2+2=126,答案为C 练习:28,54,106,210,3、两数相乘的积呈现规律:等差,等比,平方,...例题:3/2,2/3,3/4,1/3,3/899年海关考题A.1/6B.2/9C.4/3D.4/9解析:3/2×2/3=12/3×3/4=1/23/4×1/3=1/41/3×3/8=1/83/8×=1/16答案是A六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,162、前一个数的平方是第二个数.1直接得出:2,4,16,解析:前一个数的平方等于第三个数,答案为256.2前一个数的平方加减一个数等于第二个数:1,2,5,26,677前一个数的平方减1等于第三个数,答案为6773、隐含完全平方数列:1通过加减化归成完全平方数列:0,3,8,15,24,前一个数加1分别得到1,4,9,16,25,分别为1,2,3,4,5的平方,答案为6的平方36. 2通过乘除化归成完全平方数列:3,12,27,48,3,12,27,48同除以3,得1,4,9,16,显然,答案为753间隔加减,得到一个平方数列:例:65,35,17,,1A.15B.13C.9D.3解析:不难感觉到隐含一个平方数列.进一步思考发现规律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,所以下一个数应该是2的平方减1等于3,答案是D.练习1:65,35,17,3,1A.15B.13C.9D.3练习2:0,2,8,18,24A.24B.32C.36D.5299考题八、开方:技巧:把不包括根号的数有理数,根号外的数,都变成根号内的数,寻找根号内的数之间的规律:是存在序列规律,还是存在前后生成的规律.九、立方:1、立方数列:例题:1,8,27,64,解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125.2、立方加减乘除得到的数列:例题:0,7,26,63,解析:前四项分别为1,2,3,4的立方减1,答案为5的立方减1,为124.十、特殊规律的数列:1、前一个数的组成部分生成第二个数的组成部分:例题:1,1/2,2/3,3/5,5/8,8/13,答案是:13/21,分母等于前一个数的分子与分母的和,分子等于前一个数的分母.2、数字升高或其它排序,幂数降低或其它规律.例题:1,8,9,4,,1/6A.3B.2C.1D.1/3解析:1,8,9,4,,1/6依次为1的4次方,2的三次方,3的2次方平方,4的一次方, ,6的负一次方.存在1,2,3,4,,6和4,3,2,1,,-1两个序列.答案应该是5的0次方,1.例题:1、4,5,7,11,19A、27B、31C35D41解题思路:1、首先此题不是隔项数列.两个数相加不等于第三数.两个数相减的差为1,2,4,8,分别是2的0次方,1次方,2次方,3次方,因此,答案应为19加上2的4次方,即35,答案为C.例题2:343635353437A36,33B33,36C37,34D34,37解题思路:首先观察数列,看是否为隔项数列.此数列,隔项分别为343537和363534两个数列,答案为A.。
公务员行测考试中图形数字推理备考要点
三、三角形形式数字推理三角形数字推理的规律通常是寻找三角形的数字与中心数字之间的联系1.3 2 6 22 11 68 ?1 1 32 2 4 4 3A:10 B:15 C:19 D:21【答案】C.解析:“左下角的数”的“顶尖数的次方”+右下角的数=中间的数,比如 1的3次方+1=2 ,3的2次方+2=11, 2的6次方+4=68,结果为4的2次方+3=19,所以答案应为C.2.8 7 16 612 21 4 ?6 4 9 3 2 8 9 18A:3 B:5 C:7 D:9【答案】A.解析:6×8÷4=12,7×9÷3=21,16×2÷8=4,6×9÷18=(3)所以答案应为A. 6×8÷4=122.11 9 7 1046 48 32 ?7 5 8 7 3 6 5 4A:36 B:38 C:42 D:44【答案】B.解析:(11+7+5)×2=46 , (9+8+7)×2=48 , (7+3+6)×2= 32, (10+5+4)×2=(38)四、其他图形形式数字推理1.【答案】D.解析:下面2个数字之和的平方-上面一个数字的平方=中间的数字(5+2)^2-6^2=13 , (10+4)^2-12^2=52 , (3+7)^2-9^2=192.【答案】D.解析:交叉计算,(8-2)*(4+2)=36 ,(1-2)*(3+3)=-6 ,(5-5)*(5+5)=0 3.【答案】B.解析:(11+7)-(9+9)÷2=9 ,(3+0)-(5+1)÷2=0 ,(7+7)-(8+2)÷2=9 .4.2 103 6 5 710 1 ?2 11 5 4 13 6A:10 B:11 C:12 D:13 【答案】A.解析:左上角的数×右下角的数-右上角的数-左下角的数=中间的数,答案为5×6-13-7=10五、拓展:图形推理A B C D【解答】正确答案为B.因为只有B能使两套图形具有相似性,仅仅元素不同,一个是半圆,一个是半正方形,但两组图形中元素的排列规律完全相同.在右面的4个图形中,只有一个是由左边的纸板折叠而成.你需要选出正确的一个.A B C D【解答】正确答案为D,在例题中,只有D可以由左边的纸板折叠而成.因此,正确答案是D.行测备考战略之数字推理篇数字推理题因其考察的无背景化,也即不需要较高的数学知识和运算能力就可以做题,是公务员考试行政职业能力测试中一直以来的固定题型。
数字推理总结
仔细观察和分析各数之间的关系,大胆提出假设,迅速将这种假设延伸到下面的数,如果能得到验证,即解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。
(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。
(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;(4)二级等差:相邻数之间的差或比构成了一个等差数列;(5)二级等比数列:相邻数之间的差或比构成一个等比数理;(6)加法规律:前两个数之和等于第三个数,(7)减法规律:前两个数之差等于第三个数(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列(11)A2-B=C这种数列有正负(12)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:2、全是偶数3、奇、偶相间二、排序:题目中的间隔的数字之间有排序规律三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数2、前两数相加再加或者减一个常数等于第三数四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:“空缺项在中间,从两边找规律”2、等差数列:3、二级等差:相减的差值之间是等差数列4、二级等比:相减的差是等比数列5、相减的差为完全平方或开方或其他规律6、相隔数相减呈上述规律:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数2、前一个数乘以一个数加一个常数等于第二个数,N1×m+a=N23、两数相乘的积呈现规律:等差,等比,平方,...六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:2、前一个数的平方是第二个数。
数字推理公务员
数字推理核心提示基础知识:1、质数:只有1和它本身的两个约数合数:除了1和它本身之外还有其他的约数1即不是质数也不是合数2、100以内质数2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、101、103、107、113、127、131、137、139、149、151、157、163、167、173、179、181、191、193、197、199经典分解91=7×13 111=3×37 119=7×17 133=7×19 117=9×13 143=11×13147=7×21 153=9×17 161=7×23 171=9×19 187=11×17 209=19×113、平方、;立方数据背诵1、2、3、4、5等第一章基础数列类型1、常数数列:由一个固定的常数构成的数列1,1,1,1,1∙∙∙∙-7,-7,-7,-7,-7∙∙∙∙2、等差数列(实际上是二级差常数列):相邻两项之差等于固定常数的数列1,2,3,4,5∙∙∙∙3、等比数列(实际上是二级商常数列):相邻两项之比等于固定常数的数列1,2,4,8,16∙∙∙∙4、质数数列:全部有质数构成的数列2,3,5,7,11∙∙∙∙5、合数数列:全部有合数构成的数列4,6,8,9,10,12 ∙∙∙∙6、周期数列:自某项开始重复出现前面相同或相似项的数列1,2,1,2,1,2,1,2 ∙∙∙∙1,2,3,1,2,3,1,2,3∙∙∙∙1,3,5,-1,-3,-5,∙∙∙∙注意:周期数列一般要出现3个2循环节或2个3循环节,包括未知项至少6项。
7、对称数列:关于某一项相同或相似对称的数列1,3,4,5,4,3,1 ∙∙∙∙1,3,4,5,5,4,3,1∙∙∙∙1,3,6,8,-6,-3,-11,3,4,5,-5,4,3,1∙∙∙∙1,3,4,5,-5,-4,-3,-1∙∙∙∙8、递推数列【和】1、1、2、3、5、8、13……【和】1、0、1、1、2、3、5……【和】4、1、5、6、11、17……【和】0、1、2、3、6、11、20……【差】20、11、9、2、7、-5、12……【积】4、1/2、2、1、2、2、4……说明:1、单数字之间的发散联系主要有以下两种形式:1)因式分解 2)幂次26=2×13 26=33-1=52+1(相邻幂次关系)[国考2005一类-32]2,3,10,15,26,()A、29B、32C、35D、372、多数字之间的联系有以下两种形式:1)幂次联系 2)递推联系一般是三个数字片段进行研究居多,例如:1 4 9 =50 41 32=12 22 32(幂次共性关系)9=(4-1)2=(4-1)×3=4+1×5=4×2+1(递推关系)习题:4,9,25,49,121,()A、144B、169C、196D、225第二章幂次数列基础幂次数列关于常数0和10是0的任意自然数次方(0的0次方没有意义)1是任意非零数的0次方,是1的任意次方,是-1的任意偶次方。
数量关系之数字推理基本题型及解题规律
数量关系之数字推理基本题型及解题规律数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.按照数字排列的规律, 数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1,5,3,7,( ) A.2 B.8 C.9 D.12解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C是奇数。
2、全是偶数:例题:2,6,4,8,( ) A.1 B.3 C.5 D.10解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。
3、奇、偶相间例题:2,13,4,17,6,( ) A.8 B.10 C.19 D.12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C练习:2,1,4,3,( ),5二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36,( ) A.19 B.18 C.17 D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。
三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,( ),14,23,37 A.6 B.7 C.8 D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;练习:6,9,( ),24,391,0,1,1,2,3,5,( )2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,( ) A.162 B.156 C.148 D.145解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D。
四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,( ),3,-3 A.0 B.1 C.2 D.3答案是A。
行测数字推理题技巧
行测数字推理题技巧数字推理题是公务员考试中常见的题型之一,包含数字序列、数字关系、数字分类等多种形式。
数字推理题不仅考察了考生的数学能力,更重要的是考察了考生的逻辑思维和推理能力。
本文将从四个方面为大家介绍数字推理题的技巧和方法。
一、数字序列题数字序列题是指给出一组数字序列,要求考生根据规律推断出下一个数字或者缺失的数字。
数字序列题考察的是考生的数学能力和逻辑推理能力。
下面介绍一些数字序列题的常见规律和解题方法。
1.等差数列等差数列是指每一项与前一项之差相等的数列,例如1、3、5、7、9……。
在等差数列中,每一项与前一项之差都相等,这个差值称为公差。
在数字序列题中,等差数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公差,然后根据公差推断出下一项或者缺失的项。
2.等比数列等比数列是指每一项与前一项之比相等的数列,例如1、2、4、8、16……。
在等比数列中,每一项与前一项之比都相等,这个比值称为公比。
在数字序列题中,等比数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公比,然后根据公比推断出下一项或者缺失的项。
3.斐波那契数列斐波那契数列是指第一项和第二项都为1,从第三项开始,每一项都是前两项之和的数列,例如1、1、2、3、5、8……。
在斐波那契数列中,每一项都是前两项之和,这个规律称为递推关系。
在数字序列题中,斐波那契数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是根据递推关系推断出下一项或者缺失的项。
二、数字关系题数字关系题是指给出一组数字之间的关系,要求考生根据这些关系推断出其他数字之间的关系。
数字关系题考察的是考生的逻辑推理能力和数学能力。
下面介绍一些数字关系题的常见关系和解题方法。
1.加减乘除加减乘除是数字关系题中最为常见的关系,例如1+2=3,2-1=1,2×3=6,6÷2=3等。
在数字关系题中,加减乘除的规律通常是给出部分数字和运算符号,要求考生推断出其他数字和运算符号。
行测数字推理方法总结
行测数字推理方法总结数字推理是行政职业能力测验(简称行测)中的重要一部分,对于备考者来说,掌握数字推理方法是提高得分的关键。
本文将系统总结数字推理方法,以帮助读者更好地应对此类题型。
一、分类思维法分类思维法是数字推理中常用的方法之一。
这种方法通过将一组数字按照一定的规则进行分类,然后再寻找一个规则与之不符的数字,以此来得出正确答案。
例如,给定一组数字序列:2、4、6、8、10,第一个分类可能是偶数,但是最后一个数字10是一个偶数,与之前的分类规则不符,因此正确答案是另外一种分类规则,即数字逐渐增加2。
二、数列规律法数列规律法是数字推理中常见的方法之一,尤其适用于给定一组数字序列,要求推理下一个数字。
首先观察数字间的间隔关系,即找出相邻数字之间的规律,例如1、3、5、7,可以看出每个数字都比前一个数字大2。
其次,观察数字的增长规律,即数字序列整体的增长关系,例如2、4、8、16,可以看出每个数字都是前一个数字乘以2。
通过观察数字间的间隔关系和数字的增长规律,可以推理出下一个数字是什么。
三、替换法替换法是处理数字推理题目时常用的方法之一。
它通过观察数字序列中的某个数字是否可以通过替换来得到下一个数字。
例如,给定一组数字序列:3、6、9、12,观察可以发现每个数字都是前一个数字加上3得到的,因此,可以推断下一个数字是15。
四、逻辑推理法逻辑推理法是数字推理中较为复杂的方法之一,它要求考生根据已知条件,通过逻辑思维找出数字序列的规律。
这种方法需要考生具备较强的思辨能力和逻辑分析能力。
例如,给定一组数字序列:1、4、9、16,观察可以发现每个数字都是前一个数字的平方,因此,可以推断下一个数字是25。
五、倒推法倒推法是数字推理中常用的方法之一。
它通过观察数字序列的规律,从已知的最后一个数字开始,一步一步地往前推理,最终找到第一个数字是什么。
例如,给定一组数字序列:36、25、16、9,观察可以发现每个数字都是前一个数字的平方,因此,可以推断第一个数字是6。
数字推理题型的7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
数字推理题型的7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
数字推理讲解及真题完美打印版
数字推理讲解及真题完美打印版数字推理题型的7种类型28种形式解题⽅法数字推理由题⼲和选项两部分组成,题⼲是⼀个有某种规律的数列,但其中缺少⼀项,要求考⽣仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的⼀个,使之符合数列的排列规律。
其不同于其他形式的推理,题⽬中全部是数字,没有⽂字可供应试者理解题意,真实地考查了应试者的抽象思维能⼒。
第⼀种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的⼀组数。
1、等差数列的常规公式。
设等差数列的⾸项为A1,公差为 D,则等差数列的通项公式为 An= A1+(n-1) D(n为⾃然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13 [解析]这是⼀种很简单的排列⽅式:其特征是相邻两个数字之间的差是⼀个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选 C。
2、⼆级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2]2,5,10,17,26,(),50 A.35 B.33 C.37 D.36[解析]相邻两位数之差分别为3,5,7,9,是⼀个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选 C。
3、分⼦分母的等差数列。
是指⼀组分数中,分⼦或分母、分⼦和分母分别呈现等差数列的规律性。
[例3]2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析]数列分母依次为3,4,5,6,7;分⼦依次为2,3,4,5,6,故括号应为7/8。
故选 D。
4、混合等差数列。
是指⼀组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4]1,3,3,5,7,9,13,15,,(),()。
A、1921B、1923C、2123D、2730[解析]相邻奇数项之间的差是以2为⾸项,公差为2的等差数列,相邻偶数项之间的差是以2为⾸项,公差为2的等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键。
第二种情形---等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
故选D。
6、二级等比数列。
是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。
[例6] 4,6,10,18,34,() A、50 B、64 C、66 D、68[解析] 此数列表面上看没有规律,但它们后一项与前一项的差分别为2,4,6,8,16,是一个公比为2的等比数列,故括号内的值应为34+16Ⅹ2=66 故选C。
7、等比数列的特殊变式。
[例7] 8,12,24,60,() A、90 B、120 C、180 D、240[解析] 该题有一定的难度。
题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的:3/2,4/2,5/2,因此,括号内数字应为60Ⅹ6/2=180。
故选C。
此题值得再分析一下,相邻两项的差分别为4,12,36,后一个值是前一个值的3倍,括号内的数减去60应为36的3倍,即108,括号数为168,如果选项中没有180只有168的话,就应选168了。
同时出现的话就值得争论了,这题只是一个特例。
第三种情形—混合数列式:是指一组数列中,存在两种以上的数列规律。
8、双重数列式。
即等差与等比数列混合,特点是相隔两项之间的差值或比值相等。
[例8] 26,11,31,6,36,1,41,() A、0 B、-3 C、-4 D、46[解析] 此题是一道典型的双重数列题。
其中奇数项是公差为5的等差递增数列,偶数项是公差为5的等差递减数列。
故选C。
9、混合数列。
是两个数列交替排列在一列数中,有时是两个相同的数列(等差或等比),有时两个数列是按不同规律排列的,一个是等差数列,另一个是等比数列。
[例9] 5,3,10,6,15,12,(),()A、20 18B、18 20C、20 24D、18 32[解析] 此题是一道典型的等差、等比数列混合题。
其中奇数项是以5为首项、公差为5的等差数列,偶数项是以3为首项、公比为2的等比数列。
故选C。
第四种情形—四则混合运算:是指前两(或几)个数经过某种四则运算等到于下一个数,如前两个数之和、之差、之积、之商等于第三个数。
10、加法规律。
之一:前两个或几个数相加等于第三个数,相加的项数是固定的。
[例11] 2,4,6,10,16,()A、26 B、32 C、35 D、20[解析] 首先分析相邻两数间数量关系进行两两比较,第一个数2与第二个数4之和是第三个数,而第二个数4与第三个数6之和是10。
依此类推,括号内的数应该是第四个数与第五个数的和26。
故选A。
之二:前面所有的数相加等到于最后一项,相加的项数为前面所有项。
[例12] 1,3,4, 8,16,() A、22 B、24 C、28 D、32[解析] 这道题从表面上看认为是题目出错了,第二位数应是2,以为是等比数列。
其实不难看出,第三项等于前两项之和,第四项与等于前三项之和,括号内的数应为前五项之和为32。
故选D。
11、减法规律。
是指前一项减去第二项的差等于第三项。
[例13] 25,16,9,7,(),5 A、8 B、2 C、3 D、6[解析] 此题是典型的减法规律题,前两项之差等于第三项。
故选B。
12、加减混合:是指一组数中需要用加法规律的同时还要使用减法,才能得出所要的项。
[例14] 1,2,2,3,4,6,() A、7 B、8 C、9 D、10[解析] 即前两项之和减去1等于第三项。
故选C。
13、乘法规律。
之一:普通常规式:前两项之积等于第三项。
[例15] 3,4,12,48,() A、96 B、36 C、192 D、576[解析] 这是一道典型的乘法规律题,仔细观察,前两项之积等于第三项。
故选D。
之二:乘法规律的变式:[例16] 2,4,12,48,() A、96 B、120 C、240 D、480[解析] 每个数都是相邻的前面的数乘以自已所排列的位数,所以第5位数应是5×48=240。
故选C。
14、除法规律。
[例17] 60,30,2,15,() A、5 B、1 C、1/5 D、2/15[解析] 本题中的数是具有典型的除法规律,前两项之商等于第三项,故第五项应是第三项与第四项的商。
故选D。
15、除法规律与等差数列混合式。
[例18] 3,3,6,18,() A、36 B、54 C、72 D、108[解析] 数列中后个数字与前一个数字之间的商形成一个等差数列,以此类推,第5个数与第4个数之间的商应该是4,所以18×4=72。
故选C。
思路引导:快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数。
如果假设被否定,立刻换一种假设,这样可以极大地提高解题速度。
第五种情形—平方规律:是指数列中包含一个完全平方数列,有的明显,有的隐含。
16、平方规律的常规式。
[例19] 49,64,91,(),121 A、98 B、100 C、108 D、116[解析] 这组数列可变形为72,82,92,(),112,不难看出这是一组具有平方规律的数列,所以括号内的数应是102。
故选B。
17、平方规律的变式。
之一、n2-n[例20] 0,3,8,15,24,() A、28 B、32 C、35 D、40[解析] 这个数列没有直接规律,经过变形后就可以看出规律。
由于所给数列各项分别加1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62-1=35,其实就是n2-n。
故选C。
之二、n2+n[例21] 2,5,10,17,26,() A、43 B、34 C、35 D、37[解析]这个数是一个二级等差数列,相邻两项的差是一个公差为2的等差数列,括号内的数是26=11=37。
如将所给的数列分别减1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62+1=37,,其实就是n2+n。
故选D。
之三、每项自身的平方减去前一项的差等于下一项。
[例22] 1,2,3,7,46,() A、2109 B、1289 C、322 D、147[解析] 本数列规律为第项自身的平方减去前一项的差等于下一项,即12-0,22-1=3,32-2=7,72-3=46,462-7=2109,故选A。
第六种情形—立方规律:是指数列中包含一个立方数列,有的明显,有的隐含。
16、立方规律的常规式:[例23] 1/343,1/216,1/125,() A、1/36 B、1/49 C、1/64 D、1/27 [解析] 仔细观察可以看出,上面的数列分别是1/73,1/63,1/53的变形,因此,括号内应该是1/43,即1/64。
故选C。
17、立方规律的变式:之一、n3-n[例24] 0,6,24,60,120,216,() A、280 B、320 C、729 D、336[解析] 数列中各项可以变形为13-1,23-2,33-3,43-4,53-5,63-6,故后面的项应为73-7=336,其排列规律可概括为n3-n。
故选D。
之二、n3+n[例25] 2,10,30,68,() A、70 B、90 C、130 D、225[解析] 数列可变形为13+1,23+1,33+3,43+4,故第5项为53+=130,其排列规律可概括为n3+n。
故选C。
之三、从第二项起后项是相邻前一项的立方加1。
[例26] -1,0,1,2,9,() A、11 B、82 C、729 D、730[解析] 从第二项起后项分别是相邻前一项的立方加1,故括号内应为93+1=730。
故选D。
思路引导:做立方型变式这类题时应从前面几种排列中跳出来,想到这种新的排列思路,再通过分析比较尝试寻找,才能找到正确答案。
第七种情形—特殊类型:18、需经变形后方可看出规律的题型:[例27] 1,1/16,(),1/256,1/625 A、1/27 B、1/81 C、1/100 D、1/121 [解析] 此题数列可变形为1/12,1/42,(),1/162,1/252,可以看出分母各项分别为1,4,(),16,25的平方,而1,4,16,25,分别是1,2,4,5的平方,由此可以判断这个数列是1,2,3,4,5的平方的平方,由此可以判断括号内所缺项应为1/(32)2=1/81。