九年级数学综合练习2
九年级上数学期末综合练习(1-4)
九年级数学期末综合练习1班级 学号 姓名 成绩一、填空题:1、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= 。
2、一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:111u v f+=。
若f =6cm ,v =8cm ,则物距u = 厘米。
3、正方形ABCD 内接于⊙O ,E 为DC 的中点,如果⊙O 2,则O 点到直线BE 的距离为______。
4、关于x 的方程2210x k x +-=有两个不相等的实数根,则k 的取值范围是 。
5、顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 。
6、将抛物线22(3)5y x =---向左平移2个单位,再向上平移3个单位,则其顶点为 。
二、选择题:7、如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) A 、0.4 B 、0.3 C 、0.2 D 、0.158、抛物线24y x x c =-++的顶点在x 轴上,则c 的值为( ) A 、16 B 、-16 C 、4 D 、-49、已知21,x x 是方程22310x x --=的两个根,那么2111x x +等于( ) A 、3 B 、3- C 、31 D 、 31- 10、一个圆锥的侧面展开图是一个半径为6cm 的半圆,则此圆锥的底面半径是( ) A 、23cm B 、2cm C 、3cm D 、6cm. 11、在ΔABC 中,∠A=30º,∠B=60º,AC=6,则ΔABC 的外接圆的半径为( ) A 、23 B 、33 C 、3 D 、 312、如果两圆半径为R 、r ,圆心距为d ,且R 、r 、d 满足关系式2222R d Rd r +=+,则两123453489123圆位置关系是( ) A 、外切 B 、内切 C 、相切 D 、相交 三、解答题: 13、先化简后求值:)252(23--+÷--x x x x ,其中22x = 14、如图,在□ABCD 中,点E 、F 在BD 上,且BF =DE 。
九年级上数学第12周 综合训练2
第十二周综合练习2一.选择题1、下列式子中,是最简二次根式的有 ( ).①3a ,②2-m ,③3x ,④ab 8 ,⑤22y x - A 、1个 B 、2个 C 、3个 D 、4个 2、使式子12-+x x 有意义的x 的取值范围是 ( ). A 、x >-2 B 、x ≥-2 C 、x ≥-2 且1≠x D 、1≠x 3、一元二次方程0322=+-x x 的根的情况是 ( ) A. 有两个相等的实根 B.有两个不相等的实根 C.无实数根 D.有一个根 4、在等边三角形、平行四边形、矩形、菱形、正方形、圆中,是中心对称图形但不是轴对称图形的有( )A 、1个B 、2个C 、 3个D 、 4个 5、如图,在⊙O 中,AB ⌒=CD ⌒,∠1=45°,则∠2=A. 60° B. 30° C. 45° D. 40°6、如图,P 为等边△ABC 外接圆上的一点,则∠APB =( ) A. 150° B. 135° C. 115° D. 120°二、填空题(每空2分,共24分)7、点(2,-3)关于原点对称的点的坐标是 ,关于x 轴对称的点的坐标是 ,关于y 轴对称的点的坐标是 。
第6题B第7题8、计算:=+4520 ,()()322322+-= . 9、已知21,x x 是方程0362=-+x x 的两个实数根,则2111x x +=__________ 10、如图,∠A=30°,AB=4,则BC = 。
11、如图,∠A =30°,则∠D = 。
12、如图,AB ⌒=AC ⌒,∠AOB=130°,则∠ACB = ,若AB =3,则A C = .三、解答题1.计算(每小题4分,共16分): (1)xxx 12932- (2)()226324÷- (3)()1828122-+- (4)()()5232-+2.解方程:(每小题4分,共8分):(1)042=-x (2)05322=--x xB3.已知关于x 的一元二次方程()06222=-++x k x 的一个根是2,求方程的另一个根和k 的值。
初三数学专题七~综合练习(2)
综合练习(二)1.正方体骰子的六个面上分别刻有1到6的点数,抛掷二枚相同的正方体骰子并掷得点数和为8,且这两个点数均为奇数的概率是__________2.点M (-sin60°,cos60°)关于x 轴对称的点的坐标是_____________3.如图,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是_________4.抛物线y =ax 2+bx +c 的图角如图3,则下列结论:①abc >0;②a +b +c =2;③a >21;④b <1.其中正确的结论是__________ 5.求函数xx y 312+-=的定义域为__________________。
6.若关于x 的方程32)1(2=+--k kx x k 有两个不相等的实数根,则k 的取值范围是__________________。
7.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有一组数:1,1,2,3,5,8,13,….其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长构造如图所示的正方形:再分别依次从左到右取2个、3个、4个、5个正方形拼成如下图所示的矩形,并记为①、②、③、④.相应矩形的周长如下表所示:若按此规律继续作矩形,则序号为⑩的矩形周长是 .⋅⋅⋅④③②①335221111111218.如图,网格中的每个四边形都是菱形.如果格点三角形ABC 的面积为S ,按照如图所示方式得到的格点三角形A 1B 1C 1的面积是7S ,格点三角形A 2B 2C 2的面积是19S ,那么格点三角形A 3B 3C 3的面积为 .9.如图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )10.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示). 11.计算:︒-+--+60tan )7(27)31(02π.12.先化简再求值:2221412211m m m m m m --⋅÷+-+-,其中m .……n =1 n =2n =3A A A A BBB BC CCCBCAE 1 E 2 E 3D 4D 1D 2 D 313.已知:如图,在⊙O 中,点A 、B 在圆上,BC ∥OA ,交⊙O 于点D ,且OC ⊥OB ,OCA B ∠=∠. (1)求证:AC 是⊙O 的切线;(2)若OB=1,求BD 的长.14.已知关于x 的一元二次方程022=++x ax(1)求证:当0<a 时,方程022=++x ax 一定有两个不等的实数根;(2)若代数式22++-x x 的值为正整数,且x 为整数时,求x 的值; (3)当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(m M ; 当2a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(n N ; 若点M 在点N 的左边,试比较1a 与2a 的大小.15.已知抛物线1C :22221y ax amx am m =-+++(0,1)a m >>的顶点为A ,抛物线2C 的对称轴是y 轴,顶点为点B ,且抛物线1C 和2C 关于P (1,3)成中心对称. (1)用m 的代数式表示抛物线1C 的顶点坐标; (2)求m 的值和抛物线2C 的解析式;(3)设抛物线2C 与x 轴正半轴的交点是C ,当ABC ∆为等腰三角形时,求a 的值. D C B O A16.直线434:1--=x y l 和直线1431:2-=x y l 相交于点Q ,抛物线b ax ax y +-=62经过点Q ,与x 轴交于点A 、B ,且点A 在直线1l 上。
鲁教版2020九年级数学上册期中综合复习基础过关练习题2(附答案详解)
鲁教版2020九年级数学上册期中综合复习基础过关练习题2(附答案详解) 1.如图,在Rt ∠AOB 的平分线ON 上依次取点C ,F ,M ,过点C 作DE ⊥OC ,分别交OA ,OB 于点D ,E ,以FM 为对角线作菱形FGMH ,已知∠DFE=∠GFH=120°,FG=FE ,设OC=x ,图中阴影部分面积为y ,则y 与x 之间的函数关系式是( )A .y=32xB .y=23xC .y=223xD .y=323x 2.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .图象关于直线x =1对称B .函数y =ax 2+bx +c (a ≠0)的最小值是-52C .-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D .当x <1时,y 随x 的增大而增大 3.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件售价为x 元(x 为非负整数),则若要使每星期的利润最大且每星期的销量较大,x 应为多少元?( )A .41B .42C .42.5D .434.如图,数轴上点A 表示的数是-1,原点O 是线段AB 的中点,∠BAC=30,∠ABC=90°,以点A 为圆心,AC 长为半径画弧,交数轴于点D,则点D 表示的数是A 231-B 23C 43D 431- 5.一件商品原价为50元,连续两次降价,降价率均为x ,两次降价后该商品的售价价格为y 元,则y 与x 的函数关系式为( )A .()501y x =-B .250(1)y x =-C .250y x =-D .502y x =-6.已知抛物线y=ax 2+bx+c(a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A .abc >0B .a+b+c >0C .c <0D .b <07.计算:22sin 45cos 45︒+︒的值为( )A .2B .12C .1D .38.如果以312/m h 的速度向水箱进水,5h 可以注满.为了赶时间,现增加进水管,使进水速度达到()3/Q m h ,那么此时注满水箱所需要的时间()t h 与()3/Q m h 之间的函数关系为( )A .60t Q =B .60t Q =C .6012t Q =-D .6012t Q =+ 9.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:212s gt =.其中s 表示自某一高度下落的距离,t 表示下落的时间,g 是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离s 和时间t 函数图象大致为( )A .B .C .D . 10.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--11.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,若AD=BC ,则cos ∠B=_____.12.二次函数2y ax bx c =++的图象如图所示,则①abc ,②24b ac -,③2a b +,④a b c ++这四个式子中,值为正数的有________(填序号).13.两个反比例函数3y x =,6y x=在第一象限内的图象如图所示,点P 1,P 2,P 3,…,P 2011在反比例函数6y x=图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2011,纵坐标分别是1,3,5,…,共2011个连续奇数,过点P 1,P 2,P 3,…,P 2011分别作y 轴的平行线,与3y x =的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2011,y 2011),则y 2011=________.14.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1,给出以下结论:①abc <0,②24b ac ->0,③4b +c <0,④若B 15(,)2y -、C 21(,)2y -为函数图象上的两点,则12y y ,⑤当31x -≤≤时,0y ≥.其中正确的结论是(填写代表正确结论的序号) .15.若函数y=(k 2-4)x 2+(k+2)x+3是二次函数,则k______.16.如图,正方形ABCD 的顶点A ,B 在函数k y x=(x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变.(1)当k =2时,正方形A ′B ′C ′D ′的边长等于____.(2)当变化的正方形ABCD 与(1)中的正方形A ′B ′C ′D ′有重叠部分时,k 的取值范围是______________.17.如图,商业大厦与电视台大厦的大楼顶部各有一个射灯,两条光柱的仰角(即光柱与水平面的夹角)∠2,∠3分别是60°,40°,则光柱相交时(在同一个平面内)的夹角∠1=__°.18.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A 处测得岛礁P 在东北方向上,继续航行1.5小时后到达B 处,此时测得岛礁P 在北偏东30°方向,同时测得岛礁P 正东方向上的避风港M 在北偏东60°方向.为了在台风到来之前用最短时间到达M 处,渔船立刻加速以75海里/小时的速度继续航行_____小时即可到达.(结果保留根号)19.已知点()14,A y -、()23,B y -三点都在抛物线22y x =+的图象上,则1y 、2y 的大小关系是________.(填“<、>、=”)20.抛物线y=2x 2+6x+c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是_____. 21.如图1,经过原点O 的抛物线()y ax2bx a 0=+≠与x 轴交于另一点3A ,02⎛⎫⎪⎝⎭,在第一象限内与直线y x =交于点()B 2,t . ()1求这条抛物线的表达式;()2在第四象限内的拋物线上有一点C ,满足以B ,O ,C 为顶点的三角形的面积为2,求点C 的坐标;()3如图2,若点M 在这条抛物线上,且MBO ABO ∠∠=,①求点M 的坐标;②在()2的条件下,是否存在点P,使得POC∽MOB?若存在,求出点P的坐标;若不存在,请说明理由.22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?23.如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(2,0)、B(﹣4,0)两点,与y 轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F,G分别在线段BC、AC上.(I)求抛物线的解析式;(II)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;(III)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF.若点M 在抛物线上,求k的值.24.一次函数y kx b =+的图象经过点()A 2,0,且与二次函数2y ax =的图象相交于B 、()C 2,4-两点.(1)求这两个函数的表达式及B 点的坐标;(2)在同一坐标系中画出这两个函数的图象,并根据图象回答:当x 取何值时,一次函数的函数值小于二次函数的函数值;(3)求△BOC 的面积.25.某商店将每件进价为80元的某种商店按每件110元出售,每天可售出100件.该商店想通过降低售价、增加销售量的方法来提高利润.经市场调查,发现这种商品每件每降价5元,每天的销售量可增加50件.设商品降价x 元,每天销售该商品获得的利润为y 元.(1)求y (元)关于x (元)的函数关系式,并写出x 的取值范围.(2)求当x 取何值时y 最大?并求出y 的最大值.(3)若要是每天销售利润为3750元,且尽可能最大的向顾客让利,应将该商品降价多少元?26.如图,已知直线12y x =与双曲线k y x=(k >0)交于A 、B 两点,点B 的坐标为(﹣4,﹣2),C 为双曲线k y x =(k >0)上一点,且在第一象限内,若△AOC 的面积为6.(1)求双曲线的解析式;(2)求点C 的坐标.27.如图,直线l :y =﹣12x+1与x 轴、y 轴分别交于点B 、C ,经过B 、C 两点的抛物线y =x 2+bx+c 与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD∥x 轴交l 于点D ,PE∥y 轴交l 于点E ,求PD+PE 的最大值;(3)设F 为直线l 上的点,以A 、B 、P 、F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.28.如图,在平面直角坐标系中,点A 是抛物线2142y x x =-+与x 轴正半轴的交点,点B 在抛物线上,其横坐标为2,直线AB 与y 轴交于点.C 点M 、P 在线段AC 上(不含端点),点Q 在抛物线上,且MQ 平行于x 轴,PQ 平行于y 轴.设点P 横坐标为m .(1)求直线AB 所对应的函数表达式.(2)用含m 的代数式表示线段PQ 的长.(3)以PQ 、QM 为邻边作矩形PQMN ,求矩形PQMN 的周长为9时m 的值.29.为了美化环境,学校准备在如图所示的矩形ABCD 空地上进行绿化,规划在中间的一块四边形MNQP 上种花,其余的四块三角形上铺设草坪,要求AM=AN=CP=CQ ,已知BC=24米,AB=40米,设AN=x 米,种花的面积为y 1平方米,草坪面积y 2平方米.(1)分别求y 1和y 2与x 之间的函数关系式(不要求写出自变量的取值范围);(2)当AN 的长为多少米时,种花的面积为440平方米?(3)若种花每平方米需200元,铺设草坪每平方米需100元,现设计要求种花的面积不大于440平方米,设学校所需费用W (元),求W 与x 之间的函数关系式,并求出学校所需费用的最大值.30.如图,在Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边AC于点D,延长BD 至点E,且BD=2DE,连接AE.(1)求线段CD 的长;(2)求△ADE 的面积.参考答案1.B【解析】【分析】【详解】∵ON 是Rt ∠AOB 的平分线,∴∠DOC =∠EOC =45°, ∵DE ⊥OC ,∴∠ODC =∠OEC =45°, ∴CD =CE =OC =x ,∴DF =EF ,DE =CD +CE =2x ,∵∠DFE =∠GFH =120°, ∴∠CEF =30°,∴CF =CE •ta n30°,∴EF =2CF x ,∴S △DEF =12DE •CF 2, ∵四边形FGMH 是菱形,∴FG =MG =FE =3x , ∵∠G =180°﹣∠GFH =60°, ∴△FMG 是等边三角形,∴S △FGH 2,∴S 菱形FGMH 2,∴y =S △DEF +S 菱形FGMH 2.故选B .【点睛】此题考查了菱形的性质、等腰直角三角形的性质、等边三角形的判定与性质以及三角函数等知识.注意证得△OCD与△OCE是等腰直角三角形,△FGM是等边三角形是关键.2.D【解析】【分析】直接根据二次函数的图象进行解答即可.【详解】解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数y=ax2+bx+c(a≠0)的最小值是-52,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c=0(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当x<1时,y随x的增大而减小,错误,故本选项符合题意。
(完整)九年级数学上册第一章综合练习题及答案(2)
慧学云教育九 年 级 数 学 试 题(图形与证明二)一.选择题1、顺次连接任意四边形各边中点所得到的四边形一定是( )A 平行四边形B 菱形C 矩形D 正方形2、 国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中正确的是( ) A .红花、绿花种植面积一定相等 B .绿花、黄花种植面积一定相等 C .红花、蓝花种植面积一定相等 D .蓝花、紫花种植面积一定相等3.如图,直线1l ∥2l ,若155,265∠=︒∠=︒,则3∠A 50︒B 55︒C 60︒D 65︒4、若等腰三角形的一个底角为50°,则顶角为( A .50° B .100° C .80° D .65°5、如图1,□ABCD 的周长是28㎝,△ABC 的周长是22㎝,则AC 的长为 ( )A .14㎝B .12㎝C .10㎝D .8㎝1 26、下列命题中,真命题是 ( )A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7、已知菱形的两条对角线长分别为6和8,则菱形的周长为( ) A .20 B .30 C .40 D .108、如图2,在菱形ABCD 中,不一定成立的是( ) A .四边形ABCD 是平行四边形 B .AC ⊥BDDCB AA F C DB E3C .△ABD 是等边三角形 D .∠CAB =∠CAD9、如图3,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是 ( ) A.四边形AEDF 是平行四边形B.如果90BAC ∠=o ,那么四边形AEDF 是矩形 C.如果AD 平分BAC ∠,那么四边形AEDF 是菱形D.如果AD BC ⊥且AB AC =,那么四边形AEDF 是正方形10.如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形, 设△AFC 的面积为S ,则 ( ) A .S=2 B .S=4 C .S=2.4 D .S 与BE 长度有关二.填空题11.已知平行四边形ABCD 中,AB =14cm,BC =16cm,则此平行四边形的周长为 _____cm.12.矩形的两条对角线的夹角为600,较短的边长为12cm,则对角线长为 cm.13.如下图(1),在平行四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =o ∠,则BCE =∠14.在四边形ABCD 中,已知AB ∥CD ,请补充一个条件: ,使得四边形ABCD 是平行四边形。
北京四中2019-2020学年九年级中考综合练习二数学试题(含答案及解析)
北京四中2019-2020学年九年级中考综合练习二数学试题一、选择题1.若式子2x x +有意义,则x 的取值范围是( ) A. 0x ≠B. 2x ≥-且0x ≠C. 2x ≥-D. 0x ≥且2x ≠ 【答案】B【解析】【分析】根据二次根式有意义的条件和分式有意义的条件得到x+2≥0且x≠0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得x+2≥0且x≠0,所以x 的取值范围为x≥-2且x≠0.故选:B .【点睛】本题考查了二次根式有意义的条件:式子a 有意义的条件为a≥0.也考查了分式有意义的条件. 2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:4 400 000 000=4.4×109,故选C .3.实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.4.下列各式中,从左边到右边的变形是因式分解的是( )A. ()ax ay a a x y ++=+B. 221()1x y xy xy x y --=--C. 22244(2)a ab b a b -+=-D. 22(2)(2)4x y x y x y +-=- 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、∵(1)ax ay a a x y ++=++,故A 错误;B 、应把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选:C .【点睛】本题考查了因式分解的定义,因式分解是将一个多项式化为几个整式积的形式,而整式乘法是将几个整式的积展开成一个多项式,它们是互逆的恒等变形.5.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A. 3B. 1C. ﹣1D. ﹣3【答案】D【解析】由11m n -=1利用分式的加减运算法则得出m-n=-mn ,代入原式=222m mn n m mn n--+-计算可得. 【详解】∵11m n-=1, ∴n m mn mn-=1, 则n m mn -=1, ∴mn=n-m ,即m-n=-mn ,则原式=()22m n mnm n mn ---+=22mn mn mn mn ---+=3mn mn-=-3, 故选D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用. 6.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如表:则当1x ≥时,y 的最小值是( )A. 2B. 1C. 12D. 0【答案】B【解析】【分析】先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.【详解】解:∵由表可知,当x=-1时,y=10,当x=0时,y=5,当x=1时,y=2, ∵1052a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得145a b c =⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为y=x 2-4x+5,∴其对称轴为直线x=42 22ba--=-=.∵x≥1,∴当x=2时,y最小=2420161 44ac ba--==.故选择:B.【点睛】本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A. 12B. 14C. 16D. 18【答案】C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】 由抛物线的开口方向、对称轴位置、与y 轴的交点位置判断出a 、b 、c 与0的关系,进而判断①;根据抛物线对称轴为x =2b a-=1判断②;根据函数的最大值为:a+b+c 判断③;求出x =﹣1时,y <0,进而判断④;对ax 12+bx 1=ax 22+bx 2进行变形,求出a (x 1+x 2)+b =0,进而判断⑤.【详解】解:①抛物线开口方向向下,则a <0,抛物线对称轴位于y 轴右侧,则a 、b 异号,即b >0,抛物线与y 轴交于正半轴,则c >0,∴abc <0,故①错误;②∵抛物线对称轴为直线x =2b a-=1, ∴b =﹣2a ,即2a+b =0,故②正确;③∵抛物线对称轴为直线x =1,∴函数的最大值为:a+b+c ,∴当m≠1时,a+b+c >am 2+bm+c ,即a+b >am 2+bm ,故③错误;④∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(﹣1,0)的右侧,∴当x =﹣1时,y <0,∴a ﹣b+c <0,故④错误;⑤∵ax 12+bx 1=ax 22+bx 2,∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a (x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0,∴(x 1﹣x 2)[a (x 1+x 2)+b]=0,而x 1≠x 2,∴a (x 1+x 2)+b =0,即x 1+x 2=﹣b a,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的是②⑤,有2个.故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题的关键是会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题9.当m= 时,方程133x mx x-=--无解.【答案】2.【解析】【分析】按照一般步骤解方程,用含有m的式子表示x,因为无解,所以x只能使最简公分母为0 的值,从而求出m.【详解】解:原方程化为整式方程得:x-1=m因为方程无解所以:x-3=0∴x=3当x=3时,m=3-1=2.考点:分式方程的解.10.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.【答案】(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.11.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.如图,在平面直角坐标系中,菱形ABCD的顶点A、B在反比例函数y=kx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为_____.【答案】5 【解析】【分析】连接AC分别交BD、x轴于点E、F.由菱形ABCD的面积为452,可求出AE的长,设点B的坐标为(4,y),则A点坐标为(1,y+154),由反比例函数图像上点的坐标特征可列方程求出y的值,从而可求出点B的坐标,进而可求出k的值.【详解】连接AC分别交BD、x轴于点E、F.由已知,A、B横坐标分别为1,4,∴BE=3,∵四边形ABCD为菱形,AC、BD为对角线∴S菱形ABCD =4×12AE•BE=452,∴AE=154,设点B的坐标为(4,y),则A点坐标为(1,y+154)∵点A、B同在y=kx图象上∴4y=1•(y+154)∴y=54,∴B 点坐标为(4,54) ∴k =5故答案为5. 【点睛】本题考查了菱形的性质,反比例函数的图像与性质. 反比例函数k y x=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .13.根据下列表格中2y ax bx c =++的自变量x 与函数值y 的对应值, x6.17 6.18 6.19 6.20 2y ax bx c =++0.03- 0.01- 0.02 0.04判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是________.【答案】6.18<x <6.19.【解析】【分析】利用二次函数和一元二次方程的性质.【详解】解:由表格中的数据看出-0.01和0.02更接近于0,故x 应取对应的范围.故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.14.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.【答案】3【解析】【分析】过A 作关于直线MN 的对称点A ′,连接A′B ,由轴对称的性质可知A′B 即为PA+PB 的最小值,【详解】解:连接OB ,OA′,AA′,∵AA ′关于直线MN 对称,∴''AN A N =∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O 作OQ ⊥A′B 于Q ,Rt △A′OQ 中,OA′=2,∴A′B=2A′Q=即PA+PB 的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 15.某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为_________. 【答案】13【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x ,可得:0.51600800x x =++ ; 解得:x=2400,经检验:x=2400是原方程的解且符合实际意义∴由题意可得,捞到鲤鱼的概率为16001160024008003=++, 故答案为:13. 【点睛】本题考查了应用频率估计的概率应用,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:a .男生人数多于女生人数;b .女生人数多于教师人数;c .教师人数的2倍多于男生人数.①若教师人数为4,则女生人数的最大值为________ ②该小组人数的最小值为_______ 【答案】 (1). 6 (2). 12 【解析】 【分析】首先根据题意,设男生数,女生数,教师数分别为a b c 、、,然后根据条件列出a b c 、、的大小关系式,即可推断取值.【详解】设男生数,女生数,教师数分别为a b c 、、,则2,,,c a b c a b c N ∈>>> ①max 846a b b ⇒=>>>②min 3,635,412c a b a b a b c =⇒==⇒++=>>> 故答案为:6;12.【点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断.三、解答题17.计算:02021|3(4)2tan60(1)π-+--+-︒. 【答案】3- 【解析】 【分析】根据负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质进行化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=3121+- =3-【点睛】本题主要考查了负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质在实数混合计算中的综合运,难度适中.属于中考常考的基础题.18.解不等式组:2+1-1{1+2x-13x x ≥>,并把不等式组的解集在数轴上表示出来.【答案】﹣1≤x<4 【解析】【分析】求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【详解】解:解不等式①得:x≥-1; 解不等式②得:x <4.则不等式组的解集是:-1≤x <4.19.如图,正方形 ABCD 中, G 为 BC 边上一点, BE ⊥ AG 于 E , DF ⊥ AG 于 F ,连接 DE.(1)求证: ∆ABE ≅ ∆DAF ;(2)若 AF = 1,四边形 ABED 的面积为6 ,求 EF 的长. 【答案】(1)证明见详解;(2)2 【解析】 【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF ,即可根据AAS 证明△ABE ≌△DAF ; (2)设EF=x ,则AE=DF=x+1,根据四边形ABED 的面积为6,列出方程即可解决问题. 【详解】证明:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°, ∴∠BAE=∠ADF , 在△ABE 和△DAF 中BAE ADF AEB DFA AB AD ∠∠∠∠⎧⎪⎨⎪⎩=== ,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6∴2×12×(x+1)×1+12×x×(x+1)=6,整理得:x2+3x-10=0,解得x=2或-5(舍弃),∴EF=2.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.20.已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.【答案】(1)m<2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+16.∵方程有两个不相等的实数根,∴△>0.即﹣8m+16>0.解得m<2;(2)∵m<2,且m 为非负整数,∴m=0 或m=1,当m=0 时,原方程为x2-2x-3=0,解得x1=3,x2=﹣1(不符合题意舍去),当m=1 时,原方程为x2﹣2=0,解得 x 1=x 2=, 综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.【答案】(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析 【解析】 【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况. (3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案. 【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩,∴y=﹣2x+200 (40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(结果保留小数点后两位)0.68 0.74 0.68 0.69 0.68 0.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36 【解析】 【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n)=3000,然后解方程即可.【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7; 故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元; (3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度, 则4000×3×360n +4000×0.5(1﹣360n)=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度. 故答案为36.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.23.如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x >0)交于点1)(,Aa .(1)求a ,k 的值;(2)已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P (m ,n )(m >3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x >0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.【答案】(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤. 【解析】 【分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】解:(1)将1)(,A a 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+ ∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点 ∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.24.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=45,AN=210,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.【解析】【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45,AN=210,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O 直径的长度.【详解】解:(1)连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME ∥AC ,∴∠M=∠C=2∠OAF .∵CD ⊥AB ,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF ,∠BAC=90°﹣∠C=90°﹣2∠OAF ,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC ,∴CA=CN . (2)连接OC ,如图2所示. ∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45.设CH=4a ,则AC=5a ,AH=3a ,∵CA=CN ,∴NH=a ,∴AN=2222=(3)=10210AH NH a a a ++=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点睛】本题考查切线的性质;勾股定理;圆周角定理;解直角三角形.25.如图,在Rt ABC 中ACB 90∠=,BC 4=,AC 3.=点P 从点B 出发,沿折线B C A --运动,当它到达点A 时停止,设点P 运动的路程为x.点Q 是射线CA 上一点,6CQ x=,连接BQ.设1CBQ y S =,2ABP y S=.()1求出1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2补全表格中1y 的值;x1 2 3 4 6 1y______________________________以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在x 的取值范围内画出1y 的函数图象:()3在直角坐标系内直接画出2y 函数图象,结合1y 和2y 的函数图象,求出当12y y <时,x 的取值范围.【答案】(1)112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;(2)12,6,4,3,2,(3)22x 6<<,见解析. 【解析】 【分析】()1根据题意可以分别求得1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2根据()1中的函数解析式,可以将表格补充完整,并画出相应的函数图象;()3根据()1中2y 的函数解析式,可以画出2y 的函数图象,然后结合图象可以得到当12y y <时,x 的取值范围,注意可以先求出12y y =时x 的值. 【详解】()1由题意可得,164BC CQ 12x y 22x⨯⋅===, 当0x 4<≤时,2x 33xy 22⋅==, 当4x 7<≤时,()27x 4y 2x 142-⨯==-+,即112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;()1122y (0x 7)x=<≤,∴当x 1=时,y 12=;当x 2=时,y 6=;当x 3=时,y 4=;当x 4=时,y 3=;当x 6=时,y 2=; 故答案为12,6,4,3,2;在x 的取值范围内画出1y 的函数图象如图所示;()23x (0x 4)3y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩, 则2y 函数图象如图所示, 当123x x 2=时,得x 22=122x 14x=-+时,x 6=; 则由图象可得,当12y y <时,x 的取值范围是22x 6<<.【点睛】本题考查一次函数的图象、反比例函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.26.平面直角坐标系xOy 中,直线44y x =+与轴,y 轴分别交于点A ,B .抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标和抛物线的对称轴;(2)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【答案】(1)C (5,4);对称轴x=1;(2)a≥13或a <43-或a=-1. 【解析】【分析】(1)根据坐标轴上点的坐标特征可求点B 的坐标,根据平移的性质可求点C 的坐标;根据坐标轴上点的坐标特征可求点A 的坐标,进一步求得抛物线的对称轴;(2)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解【详解】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);又∵与x轴交点:令y=0代入直线y=4x+4得x=-1,∴A(-1,0),∵点B向右平移5个单位长度,得到点C,将点A(-1,0)代入抛物线y=ax2+bx-3a中得0=a-b-3a,即b=-2a,∴抛物线的对称轴x=21 22b aa a--=-=;(2)∵抛物线y=ax2+bx-3a经过点A(-1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a<4,a>43 -,将x=5代入抛物线得y=12a,∴12a≥4,a≥13,∴a≥13;②a<0时,如图2,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a>4,a<43 -,将x=5代入抛物线得y=12a,∴12a<4∴a<13,∴a<43 -;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a-2a-3a,解得a=-1.综上所述::a≥13或a<43-或a=-1.【点睛】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.27.在菱形ABCD 中,60BAD ∠=︒.(1)如图1,点E 为线段AB 的中点,连接DE ,CE .若4AB =,求线段EC 的长.(2)如图2,M 为线段AC 上一点(不与A ,C 重合),以AM 为边向上构造等边三角形AMN ∆,线段AN 与AD 交于点G ,连接NC ,DM ,Q 为线段NC 的中点.连接DQ ,MQ 判断DM 与DQ 的数量关系,并证明你的结论.(3)在(2)的条件下,若3AC =DM CN +的最小值.【答案】(1)EC=27(2)DM=2DQ ;(3)DM+CN 的最小值为2.【解析】【分析】(1)如图1,连接对角线BD ,先证明△ABD 是等边三角形,根据E 是AB 的中点,由等腰三角形三线合一得:DE ⊥AB ,利用勾股定理依次求DE 和EC 的长;(2)如图2,作辅助线,构建全等三角形,先证明△ADH 是等边三角形,再由△AMN 是等边三角形,得条件证明△ANH ≌△AMD (SAS ),则HN=DM ,根据DQ 是△CHN 的中位线,得HN=2DQ ,由等量代换可得结论.(3)先判断出点N 在CD 的延长线上时,CN+DM 最小,最小为CH ,再判断出∠ACD=30°,即可用三角函数求出结论.【详解】解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD 是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=12∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE=224223-=,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC=22224(23)27DC DE+=+=;(2)如图2,延长CD至H,使DH=CD,连接NH、AH,∵AD=CD ,∴AD=DH ,∵CD ∥AB ,∴∠HDA=∠BAD=60°,∴△ADH 是等边三角形,∴AH=AD ,∠HAD=60°,∵△AMN 是等边三角形,∴AM=AN ,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM ,∴∠HAN=∠DAM ,在△ANH 和△AMD 中,AH AD HAN DAM AN AM =⎧⎪∠=∠⎨⎪=⎩∴△ANH ≌△AMD (SAS ),∴HN=DM ,∵D 是CH 的中点,Q 是NC 的中点,∴DQ 是△CHN 的中位线,∴HN=2DQ ,∴DM=2DQ .(3)如图2,由(2)知,HN=DM ,∴要CN+DM 最小,便是CN+HN 最小,即:点C ,H ,N 在同一条线上时,CN+DM 最小,此时,点D 和点Q 重合,即:CN+DM 的最小值为CH ,如图3,由(2)知,△ADH 是等边三角形,∴∠H=60°.∵AC 是菱形ABCD 的对角线,∴∠ACD=12∠BCD=12∠BAD=30°, ∴∠CAH=180°-30°-60°=90°,在Rt △ACH 中,CH=cos30AC =2, ∴DM+CN 的最小值为2.【点睛】此题是四边形综合题,主要考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH ≌△AMD 是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.28.定义:点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如,如图1,正方形ABCD 满足1,0A ,()2,0B ,()2,1C ,()1,1D ,那么点()0,0O 到正方形ABCD 的距离为1.(1)如果点()0,G b ()0b <到抛物线2yx 的距离为3,请直接写出b 的值________. (2)求点()3,0M 到直线3y x 的距离.(3)如果点N 在直线2x =上运动,并且到直线4y x =+的距离为4,求N 的坐标.【答案】(1)b=-3;(2)()3,0M 到直线3y x 的距离为32;(3)(2, 6-42)或(2, 6+42)【解析】【分析】 (1)作草图可知,当G 在原点下方时,b=-3;(2)过点M 作直线y=x+3的垂线,与直线y=x+3相交于点H ,则线段MH 的长即为点M 到直线y=x+3的距离.由等腰直角三角形MH=22ME 求解即可;(3)分N 在直线y=x+4的上方和下方求解即可.【详解】解:(1)由图可知线段GO 长即为点G 到抛物线2y x 的距离,故GO=3,所以b=-3(2)如图,直线y=x+3与x ,y 轴分别交于点E(-3,0),F(0,3),直线y=x+3与x 轴所成的角为45°,过点M 作MH ⊥EF ,交EF 与H ,线段MH 的长度即为点M 到直线y=x+3的距离,且易知H 点与F 点重合.∵FEM ∆为等腰直角三角形,∴EM=2FM , 又∵EF=3-(-3)=6,∴MF=22EM=22×6=32 ∴MH=32即点()3,0M 到直线3yx 的距离为32;(3)如图K 为直线x=2与x 轴的交点,故K(2,0),F 为直线x=2和直线y=x+4的交点,故F(2,6)①当点N 在直线y=x+4的下方N 1处时,过点N 1作N 1S 垂直直线y=x+4,∵点N 到直线4y x =+距离为4,∴SN 1=4,点E 是直线y=x+4与x 轴的交点,∴E(-4,0),且∠FEK=45°,∴1,EFK SFN ∆∆为等腰直角三角形∴EK=FK=2-(-4)=6,F N 1=21S=42∴KN 1=FK- F N 1=6-42∴N 1(2, 6-42②当点N 在直线y=x+4的上方N 2处时,过点N 2作N 2T 垂直直线y=x+4,同理可得:N 2T=4,N 2F=2T=∴N 2K=KF+FN 2=6+∴N 2(2, 6+故点N 在直线2x =上运动,并且到直线4y x =+的距离为4,N 的坐标为(2, 6-或(2, 6+【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2020年北京市朝阳区中考二模数学试题(有答案)
……
请参考上面的想法,帮助小聪求出CD的长(一种方法即可).
(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).
29.在平面直角坐标系xOy中,对于半径为r(r>0)的⊙O和点P,给出如下定义:
2011年,朝阳区生产总值3272.2亿元.2012年,朝阳区生产总值3632.1亿元,比上年增长359.9亿元.2013年,朝阳区生产总值4030.6亿元,比上年增长398.5亿元.2014年,朝阳区生产总值4337.3亿元,比上年增长7.6%.2015年,朝阳区生产总值4640.2亿元,比上年增长7.0%,其中,第一产业1.2亿元,第二产业358.0亿元,第三产业4281.0亿元.2016年,朝阳区生产总值4942.0亿元,比上年增长6.5%,居民人均可支配收入达到59886元,比上年增长8%.
(2)预估理由须包含折线图中提供的信息,且支撑预估的数据.
25.(1)证明:连接OB.
∵∠A=45°,
∴∠DOB=90°.
∵OD∥BC,
∴∠DOB+∠CBO =180°.
∴∠CBO=90°.
∴直线BC是⊙的切线.
(2)求解思路如下:
如图,延长BO交⊙于点F,连接AF.
①由AB=AC,∠BAC=45°,可得∠ABC=67.5°,∠ABF=22.5°;
27.解:(1)由题意,当x=0时,y=2.
∴A(0,2).
∵,
∴对称轴为直线x=1.
∴B(1,0).
(2)由题意,C(-1,0),D(3,0).
①当m>0时,
结合函数图象可知,满足题意的抛物线的顶点须在x轴下方,
九年级数学下册《30°,45°,60°角的三角函数值》综合练习2(含答案)
30°,45°,60°角的三角函数值一、请准确填空(每小题3分,共24分)1.如图1,在平面直角坐标系中,P 是∠α的边OA 上一点,且P 点坐标为(4,3)则sin α=______,cos α=______.2.已知α是锐角,且2cos α=1,则α=______;若tan(α+15°)=1,则tan α=______.3.如图2,B 、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60 m ,则点A 到对岸BC 的距离是_____m.ABC30ABC o图1图2 图34.要把5米长的梯子上端放在距地面3米高的阳台边沿上,猜想一下梯子摆放坡度最小为______.5.已知tan α·tan30°=1,且α为锐角,则α=______.6.设β为锐角,且x 2+2x+sin β=0的两根之差为2,则β=______.7.在△ABC 中,∠C=90°.若3AC=3BC ,则∠A 的度数是______,cosB 的值是______.8.如图3,某建筑物BC 直立于水平地面,AC=9米,要建造阶梯AB ,使每阶高不超过20 cm ,则此阶梯最少要建_____阶.(最后一阶的高度不足20 cm 时,按一阶算,3取1.732)二、相信你的选择(每小题3分,共24分)9.在△ABC 中,AB=AC=4,BC=2,则4cosB 等于( ) A.1B.2C.15D.41510.△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定11.令a=sin60°,b=cos45°,c=tan30°,则它们之间的大小关系是( ) A.c<b<a B.b<c<a C.b<a<cD.a<c<b12.在Rt △ABC 中,∠C=90°,下列式子中不一定成立的是( ) A.tanA=AAcos sin B.sin 2A+sin 2B=1 C.sin 2A+cos 2A=1D.sinA=sinB13.在△ABC 中,若|sinA -23|+(1-tanB)2=0,则∠C 的度数是( ) A.45°B.60°C.75°D.105°14.已知△ABC 中,∠C=90°,∠A=60°,BC+AC=3+3,则BC 等于( ) A.3B.3C.23D. 3+115.若等腰三角形腰长为4,面积是4,则这个等腰三角形顶角的度数为( ) A.30° B.30°或150° C.60° D.60°或120°16.某人沿着坡度为1∶3的山坡前进了1000 m ,则这个人所在的位置升高了( )A.1000 mB.500 mC.5003 mD.331000 m 三、考查你的基本功(共24分) 17.(16分)计算或化简: (1)sin45°·cos60°-cos45°·sin30°; (2)5tan30°-2(cos60°-sin60°). (3)(23tan30°)2005·(22sin45°)2004; (4)2(2cos45°-tan45°)-(tan60°+sin30°)0-(2sin45°-1)-1.18.(8分)已知△ABC 中,∠C=90°,AC=m ,∠BAC=α(如图4),求△ABC 的面积.(用α的三角函数及m 表示)ABCm图4图5四、生活中的数学(共18分)19.(9分)“郑集中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC= 40 m ,BC=25 m ,请求出这块花圃的面积.20.(9分)如图5,某货船以20海里/小时的速度将一批重要的物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后便接到气象部门通知,一台风中心正由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.在B 处的货船是否会受到台风的侵袭?说明理由.五、探究拓展与应用(共10分)21.(10分)(1)如图6中①、②,锐角的正弦值和余弦值都是随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值及余弦值的变化规律.123(注:AB 1 =AB 2=AB 3 )① B 1B 2B 3 AC②图6(2)根据你探索到的规律,试分别比较18°、34°、50°、62°、88°这些锐角的正弦值的大小和余弦值的大小.参考答案一、1.53 54 2.60° 33 3.30 4.435.60°6.30°7.60° 238.26二、9.A 10.B 11.A 12.D 13.C 14.B 15.B 16.B 三、17.(1)0;(2)3338-;(3)21;(4)-22. 18.解:∵tan α=ACBC , ∴BC=AC·tan α=m·tan α.S △ABC =21AC·BC=21m 2tan α.四、19.解:作CD ⊥AB. ∵∠A=30°,∴CD=21AC=21×40=20(m),AD=22CD AC -=203(m), BD=22CD BC -=15(m).(1)当∠ACB 为钝角时,AB=AD+BD=203+15,∴S △ABC =21AB·CD=21(203+15)×20=(2003+150)(m 2).(2)当∠ACB 为锐角时,AB=AD -BD=203-15.∴S △ABC =21AB·CD=21(203-15)×20=(2003-150)(m 2).20.解:AB=16×20=320(海里), 作BD ⊥AC 垂足为D. ∵∠BAC=30°,∴sin30°=ABBD,BD=AB·sin30°=160. ∵160<200,∴B 处的货船会受到影响. 五、21.(1)由图①知 sinB 1AC 1=111AB C B ,sinB 2AC 2=222AB CB ,sinB 3AC 3=333AB C B . ∵AB 1=AB 2=AB 3且B 1C 1>B 2C 2>B 3C 3, ∴111AB C B >222AB C B >333AB C B . ∴sinB 1AC 1>sinB 2AC 2>sinB 3AC 3. 而∠B 1AC 1>∠B 2AC 2>∠B 3AC 3, 而对于cosB 1AC 1=11AB AC , cosB 2AC 2=22AB AC , cosB 3AC 3=33AB AC . ∵AC 1<AC 2<AC 3,∴cosB 1AC 1<cosB 2AC 2<cosB 3AC 3. 而∠B 1AC 1>∠B 2AC 2>∠B 3AC 3. 由图②知sinB 3AC=33AB CB , ∴sin 2B 3AC=2323AB C B . ∴1-sin 2B 3AC=1-2323AB C B =232323AB C B AB =232AB AC . 同理,sinB 2AC=22AB C B ,1-sin 2B 2AC=222AB AC , sinB 1AC=21AB C B ,1-sin 2B 1AC=212AB AC . ∵AB 3>AB 2>AB 1,∴232AB AC <222AB AC <212AB AC .∴1-sin 2B 3AC<1-sin 2B 2AC<1-sin 2B 1AC. ∴sin 2B 3AC>sin 2B 2AC>sin 2B 1AC. ∵∠B 3AC ,∠B 2AC ,∠B 1AC 均为锐角, ∴sinB 3AC>sinB 2AC>sinB 1AC. 而∠B 3AC>∠B 2AC>∠B 1AC. 而对于cosB 3AC=3AB AC, cosB 2AC=2AB AC, cosB 1AC=1AB AC. ∵AB 3>AB 2>AB 1,∴3AB AC <2AB AC <1AB AC. ∴cosB 3AC<cosB 2AC<cosB 1AC. 而∠B 3AC>∠B 2AC>∠B 1AC.结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)知sin18°<sin34°<sin50°<sin62°<sin88°, cos18°>cos34°>cos50°>cos62°>cos88°.。
10九年级数学二模
北京市朝阳区九年级综合练习(二)数学试卷2022.5学校班级姓名考号考生须知1.本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、班级、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有..一个.1.汉字是迄今为止持续使用时间最长的文字,是传承中华文化的重要载体.汉字在发展过程中演变出多种字体,给人以美的享受.下面是“北京之美”四个字的篆书,不能看作轴对称图形的是(A)(B)(C)(D)2.2021年《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》发布,明确了我国实现碳达峰碳中和的时间表、路线图.文件提出到2030年森林蓄积量达到190亿立方米.将19 000 000 000用科学记数法表示应为(A)19×109(B)1.9×1010(C)0.19×1011(D)1.9×1093.实数a在数轴上的对应点的位置如图所示,若实数b满足a+b>0,则b的值可以是(A)-2(B)-1(C)1(D)24.如图,点C,D在直线AB上,OC⊥OD,若∠ACO=120°,则∠BDO的大小为(A)120°(B)140°(C)150°(D)160°5.从1,2,3这3个数中随机抽取两个数相加,和为偶数的概率是(A)14(B)13(C)12(D)236.在太阳光的照射下,一个矩形框在水平地面上形成的投影不可能是(A ) (B )(C )(D )7.9个互不相等的数组成了一组数据,其平均数a 与这9个数都不相等.把a 和这9个数组成一组新的数据,下列结论正确的是 (A )这两组数据的平均数一定相同 (B )这两组数据的方差一定相同 (C )这两组数据的中位数可能相同(D )以上结论都不正确8.用绳子围成周长为10 m 的正x 边形.记正x 边形的边长为y m ,内角和为S °.当x 在一定范围内变化时,y 和S 都随着x 的变化而变化,则y 与x ,S 与x 满足的函数关系分别是 (A )一次函数关系,二次函数关系 (B )一次函数关系,反比例函数关系(C )反比例函数关系,二次函数关系(D )反比例函数关系,一次函数关系二、填空题(共16分,每题2分)9.若3x +在实数范围内有意义,则实数x 的取值范围是_____. 10.分解因式:2222m n -=_____.11.若关于x 的一元二次方程x 2-4x +m -1=0有两个不相等的实数根,则m 的取值范围是_____.12.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC =70°,P A ,PC 是⊙O 的切线,∠P =_____°.13.如图,OP 平分∠MON ,过点P 的直线与OM ,ON 分别相交于点A ,B ,只需添加一个条件即可证明△AOP ≌△BOP ,这个条件可以是_____(写出一个即可).14.如图所示的网格是正方形网格,网格中三条线段的端点均是格点,以这三条线段为边的三角形是_____三角形(填“锐角”、“直角”或“钝角”).第14题图第13题图第12题图15.在平面直角坐标系xOy 中,若反比例函数(0)ky k x=≠的图象与直线x =1的交点的纵坐标为2,则该图象与直线y =-2的交点的横坐标为_____.16.围棋是一种起源于中国的棋类游戏,在春秋战国时期即有记载,围棋棋盘由横纵各19条等距线段构成,围棋的棋子分黑白两色,下在横纵线段的交叉点上.若一个白子周围所有相邻(有线段连接)的位置都有黑子,白子就被黑子围住了.如图1,围住1个白子需要4个黑子,围住2个白子需要6个黑子,如图2,围住3个白子需要8个或7个黑子.像这样,不借助棋盘边界,只用15个黑子最多可以围住_____个白子.三、解答题(共68分,第17-21题,每题5分,第22-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分)17.计算:11182sin 45222-⎛⎫+︒-+- ⎪⎝⎭.18.解分式方程:312242x x x -=--.19.解不等式1253x x --<,并写出它的所有非负整数解......20.在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =2x 的图象平移得到,且经过点(2,2).(1)求这个一次函数的表达式;(2)当x <2时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =k x+b 的值,直接写出m 的取值范围.图1图221.已知:线段AB.求作:△ABC,使得∠A=90°,∠C=30°.作法:①分别以点A,B为圆心,AB长为半径画弧,在直线AB的一侧相交于点D;②连接BD并延长,在BD的延长线上取一点C,使CD=BD;③连接AC.△ABC就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AD.∵AB=BD=AD,∴△ABD是等边三角形(①)(填推理的依据).∴∠B=∠ADB=60°.∵CD=BD,∴CD=AD.∴∠DAC=∠ACB.∴∠ADB=∠DAC+∠ACB(②)(填推理的依据)=2∠ACB.∴∠ACB=30°.∴∠BAC=90°.22.如图,在菱形ABCD中,O为AC,BD的交点,P,M,N分别为CD,OD,OC的中点.(1)求证:四边形OMPN是矩形;(2)连接AP,若AB=4,∠BAD=60°,求AP的长.23.如图,AB为⊙O的直径,C为⊙O上的一点,OD⊥AB交AC于点E,DE=DC.(1)求证:DC是⊙O的切线;(2)若OA=4,OE=2,求cos D.24.某公园在在垂直于湖面的立柱上安装了一个多孔喷头,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉.安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d米的地点,水柱距离湖面的高度为h米.d(米)0 1.0 3.0 5.07.0h(米) 3.2 4.2 5.0 4.2 1.8请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这组喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请通过计算说明公园至少需要准备多少米的护栏(不考虑接头等其他因素).25.某年级共有300名学生,为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取30名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析,相关信息如下: a .30名学生A ,B 两门课程成绩统计图:b .30名学生A ,B 两门课程成绩的平均数如下:根据以上信息,回答下列问题:(1)在这30名学生中,甲同学A 课程成绩接近满分,B 课程成绩没有达到平均分.请在图中用“○”圈出代表甲同学的点;(2)这30名学生A 课程成绩的方差为21s ,B 课程成绩的方差为22s ,直接写出21s ,22s 的大小关系;(3)若该年级学生都参加此次测试,估计A ,B 两门课程成绩都超过平均分的人数.26.在平面直角坐标系xOy 中,已知抛物线2(2)2y x a x a =+++. (1)求抛物线的对称轴(用含a 的式子表示);(2)若点(-1,y 1),(a ,y 2),(1,y 3)在抛物线上,且y 1<y 2<y 3,求a 的取值范围.A 课程B 课程 平均数85.180.627.在正方形ABCD 中,E 为BC 上一点,点M 在AB 上,点N 在DC 上,且MN ⊥DE ,垂足为点F .(1)如图1,当点N 与点C 重合时,求证:MN =DE ;(2)将图1中的MN 向上平移,使得F 为DE 的中点,此时MN 与AC 相交于点H ,①依题意补全图2;②用等式表示线段MH ,HF ,FN 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O外.给出如下定义:平移线段AB ,得到线段A’B’(A’,B’分别为点A ,B 的对应点),若线段A’B’上所有的点都在⊙O 的内部或⊙O 上,则线段AA’长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为 ,点A 2,B 2的坐标分别为(12-,3),(12,3),线段A 2B 2到⊙O 的“平移距离”为 ;(2)若点A ,B 都在直线323y x =+上,记线段AB 到⊙O 的“平移距离”为d ,求d 的最小值;(3)如图2,若点A 坐标为(1,3),线段AB 到⊙O 的“平移距离”为1,画图并说明所有满足条件的点B 形成的图形(不需证明).图1图2图1图2。
北京铁路第二中学2022_2023学年九年级下学期数学综合练习
人,比上年末减少 4.3万人.将 2184.3万用科学计数法表示为( )
A. 2184.3104
B. 2.1843104
C. 2.1843108
D. 2.1843107
2.如图图形中,既是轴对称图形,又是中心对称图形的是( )
A.
B.
C.
D.
3.如图,数轴上三点 A,B,C 所表示的有理数分别为 a,b,c,则化简 b c a c a 的值为( )
x 0 0.5 1
1.5 2 3
45
6
y1 1.5 1.72 1.88 1.97 2 1.88 1.5 0.88 0
y2 1.5 1.22 0.88 0.47 0
(1)在平面直角坐标系 xOy 中,描出表中各组数值所对应的点 x, y1 ,并画出上边缘函数
的图像;
(2)结合表中数据或所画图象,直接写出喷出水的最大射程 OM 为______m,并求上边缘 抛物线的函数解析式; (3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,结合函数图像,估计灌溉车到绿化 带的距离 OA 的取值范围为______. 24.如图,AB 是 e O 的直径,CD 是 e O 的弦,CD 与 AB 交于点 E,CE ED ,延长 AB 至 F,连接 DF ,使得 CDF 2CAE .
分组 频数
0≤x<60 2
60≤x<70 5
70≤x<80 15
80≤x<90 a
90≤x≤100 8
合计
50
b.八年级课后延时服务家长评分在 80≤x<90 这一组的数据按从小到大的顺序排列,前 5 个数据如下: 81,81,82,83,83. c.七,八年级课后延时服务家长评分的平均数,中位数,众数如下表:
北师大版九年级上册数学第二章综合练习
A. 1B.﹣1C. D.
9.在一个不透明的袋子里装有 个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸 次,其中 次摸到黑球.根据上述数据,小明估计口袋中白球大约有()
5.B解析:由每半年发放的资助金额的平均增长率为x,
得去年下半年发放给每个经济困难学生389(1+x)元,
今年上半年发放给每个经济困难学生389(1+x)(1+x)389 (元),
根据关键语句“今年上半年发放了438元”,可得方程389 438.
点拨:关于增长率问题一般列方程a(1+x)nb,其中a为基础数据,b为增长后的数据,n为增长次数,x为增长率.
20.解:(1) ,
配方,得
解得 , .
(2) ,
分解因式,得 解得
(3)因为 ,所以
即 , .
(4)移项得 ,
分解因式得 ,
解得 .
21.解:设小正方形的边长为 .
由题意得,
解得
答:截去的小正方形的边长为 .
22.分析:根据等量关系“每个旅游纪念品的利润×销售量总利润”表示出第二周的利润,再根据“第一周的利润+第二周的利润清仓处理损失的金额总获利”列出方程.
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
2022年北京市朝阳区中考二模数学试题(含答案)
F EC BA北京市朝阳区九年级综合练习〔二〕数学试卷2022.6一、选择题〔此题共32分,每题4分〕1.2022北京车展约850 000的客流量再度刷新历史纪录,将850 000用科学记数法表示应为A .85×106B .8.5×106C .85×104D .8.5×105 2.23-的倒数是〔〕A .32-B .23-C .32 D .233.一个多边形的内角和是外角和的3倍,那么这个多边形的边数为A .6B .7C .8D .9 4.数据1,3,3,1,7,3的平均数和方差分别为 A .2和4 B .2和16C .3和4D .3和245.假设关于x 的一元二次方程mx 2+3x +m 2-2m =0有一个根为0,那么m 的值等于 A .1 B .2 C .0或2 D .06.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连结AC 、BC ,在AC 上取点E ,使AE =3EC ,作EF ∥AB 交BC 于点F ,量得EF =6 m ,那么AB 的长为 A .30 mB .24m C .18m D .12m7.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,假设摸出的球上的数字为2的概率记为P 1,摸出的球上的数字小于4的概率记为P 2;摸出的球上的数字为5的概率记为P 3.那么P 1、P 2、P 3的大小关系是A .P 1<P 2<P 3B .P 3<P 2<P 1C .P 2<P 1 <P 3D .P 3<P 1<P 28.如图,在三角形纸片ABC 中,∠ABC =90°,AB =5,BC =13,过点A 作直线l ∥BC ,折叠三角形纸片ABC ,使点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随着移动,并限定M 、N 分别在AB 、BC 边上〔包括端点〕移动,假设设AP 的长为x ,MN 的长为y ,那么以下选项,能表示y 与x 之间的函数关系的大致图象是二、填空题〔此题共16分,每题4分〕 9.假设分式41-+x x 值为0,那么x 的值为________. 10.请写出一个多边形,使它满足“绕着某一个点旋转180°,旋转后的图形与原来的图形重合〞这一条件,这个多边形可以是.11.如图,菱形ABCD 的周长为16,∠C =120°,E 、F 分别为AB 、AD 的中点.那么EF 的长为.lN M CA BPA B C D12.把长与宽之比为2的矩形纸片称为标准纸.如果将一张标准纸ABCD 进行如下操作:即将纸片对折并沿折痕剪开,那么每一次所得到的两个矩形纸片都是标准纸〔每一次的折痕如以下列图中的虚线所示〕.假设宽AB =1,那么第2次操作后所得到的其中一个矩形纸片的周长是_________;第3次操作后所得到的其中一个矩形纸片的周长是_________;第30次操作后所得到的其中一个矩形纸片的周长是_________.三、解答题〔此题共30分,每题5分〕 13.:如图,点E 、F 在AC 上,且AE =CF ,AD ∥BC ,AD =CB .求证:DF =BE . 14.计算:︒+-+--30tan 220145310.15.解分式方程:xx x -=+--23123. 16.50x y -=,求222232x y x yx xy y x y-+⋅-++的值. 17.列方程或方程组解应用题:母亲节来临之际,小红去花店为自己的母亲选购鲜花,在花店中同一种鲜花每支的价格相同.小红如果选择由三支康乃馨和两支百合组成的一束花,那么需要花34元;如果选择由两支康乃馨和三支百合组成的一束花,那么需要花36元.一支康乃馨和一支百合花的价格分别是多少?18.关于x 的一元二次方程3x 2-6x +1-k =0有实数根,k 为负整数. 〔1〕求k 的值;〔2〕假设此方程有两个整数根,求此方程的根. 四、解答题〔此题共20分,每题5分〕19.如图,在四边形ABCD 中,AB =34,∠DAB =90°,∠B =60°,AC ⊥BC . 〔1〕求AC 的长.〔2〕假设AD=2,求CD 的长.20.某校对局部初三学生的体育训练成绩进行了随机抽测,并绘制了如下的统计图:女生篮球障碍运球成绩折线统计图男生引体向上成绩条形统计图根据以上统计图解答以下问题:〔1〕所抽测的女生篮球障碍运球成绩的众数是多少?极差是多少?〔2〕该校所在城市规定“初中毕业升学体育现场考试〞中,男生做引体向上满13次,可以获得总分值10分;满12次,可以获9.5分;满11次,可以获得9分;满10次,可以获得8.5分;满9次,可以获得8分. ①所抽测的男生引体向上得分..的平均数是多少?第一次 第二次 第三次…②如果该校今年有120名男生在初中毕业升学体育现场考试中报名做引体向上,请你根据本次抽测的数据估计在报名的这些学生中得分不少于9分的学生有多少人? 21.如图,AB 是⊙O 的直径, BC 交⊙O 于点D , E 是BD 的中点,连接AE 交BC 于点F ,∠ACB =2∠EAB〔1〕求证:AC 是⊙O 的切线; 〔2〕假设2cos 3C =,AC =6,求BF 的长.22.类似于平面直角坐标系,如图1们称这样的坐标系为斜坐标系.假设P 是斜坐标系xOy 中的任意一点,过点P 分别作两坐标轴的平行线,与x 轴、y 轴交于点M 、N ,如果M 、N 在x 轴、y 轴上分别对应的实数是a 、b ,这时点P 的坐标为〔a ,b 〕.〔1〕如图2,在斜坐标系xOy 中,画出点A (-2,3);〔2〕如图3,在斜坐标系xOy 中,点B 〔5,0〕、C 〔0,4〕,且P 〔x ,y 〕是线段CB 上的任意一点,那么y 与x 之间的等量关系式为;〔3〕假设〔2〕中的点P 在线段CB 的延长线上,其它条件都不变,试判断〔2〕中的结论是否仍然成立,并说明理由.23〔1〔224. 〔〔2于点25求t 的取值范围〔直接写出结果〕.北京市朝阳区九年级综合练习〔二〕图2图1数学试卷参考答案及评分标准2022.6一、选择题〔此题共32分,每题4分〕1.D 2.A 3.C 4.C 5.B 6.B 7.D 8.C 二、填空题〔此题共16分,每题4分〕9.-1 10.答案不唯一,如平行四边形 11.2312.1+2,222+,14122+〔第1、2每个空各1分,第3个空2分〕 三、解答题〔此题共30分,每题5分〕 13. 证明:∵AE =CF ,∴AE +EF =CF +EF .即AF =CE .…………………… 1分 ∵AD ∥BC ,∴∠A =∠C .…………………… 2分 又∵AD =BC ,…………………… 3分 ∴△ADF ≌△CBE .……………4分 ∴DF =BE .……………………… 5分14. 解:原式13531323………………………………………… 4分 =112. …………………………………………………………………… 5分 15. 解:将方程整理,得331022x x x -++=--. 去分母,得x -3+3+x -2 = 0. ……………………………………………2分解得x = 1. ……………………………………………3分经检验x = 1是原分式方程的解. ………………………………………………4分∴原分式方程的解为x = 1.…………………………………………………………5分16. 解:原式=2()()3()x y x y x yx y x y +-+⋅-+……………………………………………2分 =3x yx y+-.…………………………………………………………3分 ∵x -5y =0,∴x =5y .…………………………………………………………………4分∴原式=5325y yy y+=-.…………………………………………………………5分17. 解:设一支康乃馨的价格是x 元,一支百合的价格是y 元.…………………1分根据题意,得3234,2336.x y x y ……………………………………………3分解得6,8.x y ……………………………………………………4分答:一支康乃馨的价格是6元,一支百合的价格是8元.……………………5分 18.解:〔1〕根据题意,得Δ≥0.………………………………………………………………………1分即26-)(-4×3〔1-k 〕≥0.解得k ≥-2.………………………………………………………………2分 ∵k 为负整数,∴k =-1,-2.………………………………………………………………3分〔2〕当k =-1时,不符合题意,舍去;…………………………………………4分当k =-2时,符合题意,此时方程的根为x 1=x 2=1.……………………5分四、解答题〔此题共20分,题每题5分〕 19.解:〔1〕在Rt △ABC 中,∵AB =34,∠B =60°,∴AC =AB ·sin60°=6. …………………………2分〔2〕作DE ⊥AC 于点E ,∵∠DAB =90°,∠BAC =30°, ∴∠DAE =60°, ∵AD =2,∴DE =3.…………………………3分 AE=1. ∵AC =6,∴CE =5. ……………………………4分 ∴在Rt △DEC 中,22CE DE CD +=.∴72=CD .………………………5分20.解:〔1〕14.5, 3.4;………………………………………………………………2分 〔2〕①818.52949.5610712467⨯+⨯+⨯+⨯+⨯++++=9.4〔分〕;………………………4分②120×46710220++=〔人〕…………….…………………………………5分估计在报名的学生中有102人得分不少于9分.21.〔1〕证明:如图①,连接AD .∵E 是BD 的中点,∴DE BE =. ∴∠DAE =∠EAB . ∵∠C =2∠EAB ,F OAD B图①∴∠C =∠BAD . ∵AB 是⊙O 的直径, ∴∠ADB =∠ADC =90°. ∴∠C +∠CAD=90°. ∴∠BAD +∠CAD =90°. 即BA ⊥AC .∴AC 是⊙O 的切线.………………………2分〔2〕解:如图②,过点F 做FH ⊥AB 于点H .∵AD ⊥BD ,∠DAE =∠EAB , ∴FH =FD ,且FH ∥AC . 在Rt △ADC 中,∵2cos 3C =,AC =6,∴CD =4.…………………………………………………3分 同理,在Rt △BAC 中,可求得BC =9. ∴BD =5.设DF =x ,那么FH =x ,BF =5-x . ∵ FH ∥AC ,∴∠BFH =∠C .∴2cos 3FH BFH BF ∠==.即 253x x =-.………………………………………………4分解得x =2.∴BF =3.…………………………………………………5分 22. 解:〔1〕如图……………………………………………………1分〔2〕445y x =-+;……………………………………………………………………………………………………3分 〔3〕当点P 在线段CB 的延长线上时,〔2〕中结论仍然成立.理由如下:过点P 分别作两坐标轴的平行线,与x 轴、y 轴分别交于点M 、N , 那么四边形ONPM 为平行四边形,且PN=x ,PM =-∴ OM =x ,BM =5-x .∵PM ∥OC ,∴△PMB ∽△COB .…………4分∴PM BMOC OB=,图②即5 45y x--=.∴445y x=-+.……………………………………………………………………5分五、解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕23.解:〔1〕1;………………………………………………………………………………1分〔2〕∵OP=m,MN=(-m2+3m)-(-m2+2m) =m,∴OP=MN.…………………………………………………………………………2分①当0<m <2时,∵PM=-m2+2m , PN=-m2+3m.∴假设PM= OP=MN,有-m2+2m=m,解得m=0,m=1〔舍〕.……………3分假设PN= OP=MN,有-m2+3m=m,解得m=0〔舍〕,m=2〔舍〕.……………4分②当2<m <3时,不存在符合条件的m值.……………………………………5分③当m>3时,∵PM=m2-2m , PN=m2-3m.∴假设PM= OP=MN,有m2-2m=m,解得m=0〔舍〕,m=3〔舍〕.……………6分假设PN= OP=MN,有m2-3m=m,解得m=0〔舍〕,m=4.…………………7分综上,当m=1或m=4,这四条线段中恰有三条线段相等.24.解:〔1〕△CDF是等腰直角三角形.………………1分证明:∵∠ABC=90°,AF⊥AB,∴∠FAD=∠DBC.∵AD=BC,AF=BD,∴△FAD≌△DBC.∴FD=DC.…………………………………………2分∠1=∠2.∵∠1+∠3=90°,∴∠2+∠3=90°.即∠CDF=90°.……………………………………3分∴△CDF是等腰直角三角形.〔2〕过点A作AF⊥AB,并截取AF=BD,连接DF、CF.…………………………4分∵∠ABC=90°,AF⊥AB,∴∠FAD=∠DBC.∵AD =BC ,AF =BD ,∴△FAD ≌△DBC . ∴FD =DC ,∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF =90°.∴△CDF 是等腰直角三角形.………………………………………………………5分 ∴∠FCD =∠APD =45°. ∴FC ∥AE .∵∠ABC =90°,AF ⊥AB , ∴AF ∥CE .∴四边形AFCE 是平行四边形.…………………………………………………6分 ∴AF =CE .∴BD =CE .……………………………………………………………………………7分25.解:〔1〕由y =ax 2-2ax +3可得抛物线的对称轴为x =1.…………………1分∵AB =4,∴A 〔-1,0〕,B 〔3,0〕. ∴a =-1.∴y =-x 2+2x +3.………………………………………………………2分 〔2〕由题意可知,BP =t ,∵B 〔3,0〕,C 〔0,3〕, ∴OB =OC .∴∠PBQ =45°. ∵PQ ⊥BC ,∴PQ =QB=2. ①当0<t ≤4时,S =PBQ S ∆=14t 2.……………………………………………3分 ②当4<t <6时,设PQ 与AC 交于点D ,作DE ⊥AB 于点E ,那么DE =PE .∵tan ∠DAE =DE OCAE OA==3. ∴DE =PE =3AE =32PA .∵PA =t -4, ∴DE =34)2t -(.∴23612.4PAD S t t =-+△ ………………4分 ∵PBQ PAD S S S =-△△,∴216122S t t =-+-.…………………………………………………5分 ③当t ≥6时,S =ABC S ∆=6. ……………………………………………6分综上所述,2?2? 1(0441612(4626(6t t S t t t t ⎧⎪⎪⎪=-+-⎨⎪⎪≥⎪⎩<≤)<<) )〔3〕229≤t ≤4.…………………………………………………………………8分 说明:各解答题其它正确解法请参照给分.。
苏科版数学综合练习二(九上)
数学综合练习2一、填空选择题1、用配方法解方程x 2-23x -1=0,正确的配方为( )A.⎝ ⎛⎭⎪⎫x -132=89B.⎝ ⎛⎭⎪⎫x -232=59C.⎝ ⎛⎭⎪⎫x -132+109=0D.⎝ ⎛⎭⎪⎫x -132=1092、方程4(x -3)2+x (x -3)=0的根为( )A .x =3B .x =125C .x 1=-3,x 2=125D .x 1=3,x 2=1253、某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173(1+x %)2=127B .173(1-2x %)=127C .173(1-x %)2=127D .127(1+x %)2=1734、已知是三角形的三边长,则方程的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 5、关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠56、如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.14k >-B.14k >-且0k ≠C.14k <-D.14k ≥-且0k ≠ 7、已知函数y =kx +b 的图象如图21-1,则一元二次方程x 2+b x +k -1=0根的存在情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定8、方程(m +2)x |m |+3mx +1=0是关于x 的一元二次方程,则m =_______________.9、把一元二次方程(x -3)2=5化为一般形式为_______________,二次项为______,一次项系数为__________,常数项为________.10、已知y=x 2-2x-3,当x= 时,y 的值是-3。
九年级(上)数学综合练习题(二)
九年级(上)数学综合练习题(二)数学选择题(本题共32分,每小题4分)1、如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 A .2:1B.C . 1:4D .1:22、若将抛物线y=12x 2先向左平移2个单位,再向下平移1个单位得到新的抛物线,则新抛物线的解析式是A .21(2)12y x =+- B .21(2)12y x =-- C .2(2)1y x =+- D . 21(2)12y x =--3、在a 2□4a □4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是A .14 B . 13 C .12 D . 1 4、如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是A .点AB .点BC .点CD .点D5、如图,⊙B 的半径为4cm , 60=∠MBN ,点A ,C 分别是射线BM ,BN 上的动点,且直线BN AC ⊥.当AC 平移到与⊙B 相切时,AB 的长度是A .8cmB .6cmC .4cmD .2cm6、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是7、两圆的圆心距为3,两圆半径分别是方程2430x x -+=的两根,则两圆的位置关系是 A .内切 B . 相交 C .外切 D . 外离A .B .C .D .ABC8、如图,,,,A B C D O 为的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动.设运动时间为(),()t s APB y ∠=︒,则下列图象中表示y 与t 之间函数关系最恰当的是二、填空题(本题共16分,每小题4分)9、边长为a 的正三角形的外接圆的半径为 .10、如图,,A C B D C D E A B E⊥⊥于点于点,且68AB DB ==,,则:ABC DBE S S =△△ .11、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为 .12、已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为 . 三、解答题(本题共25分,每小题5分) 13、解方程:2326x x -=14、如图,在ABC △中,90C =∠,在AB 边上取一点D ,使BD BC =,过D 作DE AB ⊥交AC 于E ,86AC BC ==,.求DE 的长.15、如图,已知⊙O 是△ABC 的外接圆,AB 为直径,若PA ⊥AB ,PO 过AC 的中点M ,求证:PC 是⊙O 的切线.ED C B A16、如图,从一个半径为1m 的圆形铁皮中剪出一个圆心角为90︒的扇形,并将剪下来的扇形围成一个圆锥,求此圆锥的底面圆的半径.17、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆A 、B ,恰好被南岸的两棵树C 、D 遮住,并且在这两棵树之间还有三棵树,求河的宽度.四、解答题(本题共10分,每小题5分)18、关x 的一元二次方程(x -2)( x -3)= m 有两个实数根x 1、x 2, (1)求m 的取值范围;(2)若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、如图,AB 为O 的直径,CD 是弦,且AB ⊥CD于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD .(2)若EB =8cm ,CD =24cm ,求O 的直径.五、解答题(本题共10分,每小题5分)20、某校有A 、B 两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐. (1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率; (2)求甲、乙、丙三名学生中至少有一人在B 餐厅用餐的概率.21、如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.COEDCB A六、解答题(本题共6分)22、阅读材料:为解方程()()22215140x x ---+=,我们可以将21x -视为一个整体,设21x y -=,则原方程可化为2540y y -+=,① 解得11y =,24y =.当1y =时,211x -=,22x ∴=即x = 当4y =时,214x -=,25x ∴=即x =.∴原方程的解为1x =2x =3x =4x =根据以上材料,解答下列问题.⑴填空:在原方程得到方程①的过程中,利用换元法达到降次的目的,体现了_____的数学思想.⑵解方程4260x x --=七、解答题(本题共21分,每小题7分) 23、如图,P 为正方形ABCD 内一点,若P A =a ,PB =2a ,PC =3a (a >0).(1) 求∠APB 的度数;(2) 求正方形ABCD 的面积.24、一开口向上的抛物线与x 轴交于A ,B 两点,C (m ,2-)为抛物线顶点,且AC ⊥BC . (1)若m 是常数,求抛物线的解析式; (2)设抛物线交y 轴正半轴于D 点,抛物线的对称轴交x 轴于E 点。
2022年北京市丰台区九年级中考二模数学卷(含答案)
丰台区2022年初三综合练习(二)数学试卷第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个。
1.如图,下列水平放置的几何体中,侧面展开图是扇形的是A. B. C. D.2.2021年我国原油产量约1.99亿吨,连续3年回升.将199 000 000用科学记数法表示应为A.619910⨯ B.81.9910⨯ C.91.9910⨯ D.90.19910⨯3.如图.AB ∥CD ,∠ACD=80°,∠ACB=30°,∠B 的度数为A.50°B.45°C.30°D.25°4.下列多边形中,内角和最大的是A. B. C. D.5.实数a ,b 在数轴上的对应点的位置如图所示,若实数c 满足b c a <<,则c 的值可以是A.-3B.-2C.2D.36.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是A.23B.12C.13D.147.若n为整数,且771n n<<+,则n的值是A.7B.8C.9D.108.如图,某容器的底面水平放置,匀速地向此容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系的图象大致是A. B. C. D.第二部分非选择题二、填空题(共16分,每题2分)9.若3x-在实数范围内有意义,则实数x的取值范围是_________.10.方程132x x=+的解为___________.11.已知关于x的方程220x x m-+=有两个不相等的实数根,则m的取值范围是________.12.如图,PA,PB是⊙O的切线,A,B为切点,点C在⊙O上,若60APB∠=,则∠ACB=________°.13.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,连接EF,只需添加一个条件即可证明四边形EFCB是菱形,这个条件可以是____________(写出一个即可).14.在平面直角坐标系x Oy 中,若直线y x =与双曲线m y x=的交点为A ,B ,且点A ,B 的横坐标分别为1x ,2x ,则12x x +的值是__________.15.甲、乙两台包装机同时包装糖果,分别从中随机抽取5袋,测得它们的实际质量(单位:g)如下表所示:那么_________包装机包装的5袋糖果的质量比较稳定(填“甲”或“乙”).16.某超市现有n 个人在收银台排队等候结账.设结账人数按固定的速度增加,收银员结账的速度也是固定的.若同时开放2个收银台,需要20分钟可使排队等候人数为0;若同时开放3个收银台,需要12分钟可使排队等候人数为0.为减少顾客等待结账的时间,需要6分钟内使排队等候人数为0,则需要至少同时开放_______个收银台.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:(032sin 458π--+++ 18.解不等式组:2323212x x x x ->-⎧⎪⎨-<+⎪⎩. 19.已知22320a b +-=,求代数式()()22a b a a b ++-的值.20.已知:如图,射线AM.求作:∠ABC ,使得90ABC ∠=,30BAC ∠=.作法:∠在射线AM 上任取一点O(不与点A 重合);∠以点O 为圆心,OA 长为半径画弧,交射线AM 于A ,C 两点;∠以点C 为圆心,CO 长为半径画弧,交AC 于点B ;∠连接AB ,BC.∠ABC 就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接OB.在⊙O 中,OB=OC在⊙C 中,OC==BC∠OB=OC=BC∠∠OCB 是等边三角形∠60ACB ∠=∠AC 是⊙O 的直径,∠∠ABC=_________°(_________)(填推理的依据).∠90ACB BAC ∠+∠=∠30RAC ∠=.21.如图,在∠ABC 中,90BAC ∠=,AD ⊥BC,垂足为D ,AE ∥BC ,CE ∥DA.(1)求证:四边形AECD 是矩形;(2)若AB=5,3cos 5B =,求AE 的长.22.在平面直角坐标系x Oy 中,一次函数()0y kx bk =+≠的图象由函数y x =的图象向下平移4个单位长度得到.(1)求这个一次函数的解析式;(2)一次函数y kx b =+的图象与x 轴的交点为A ,函数(0)y mx m =<的图象与一次函数y kx b =+的图象的交点为B ,记线段OA ,AB ,BO 围成的区域(不含边界)为W ,横、纵坐标都是整数的点叫做整点,若区域W 内恰有2个整点,直接写出m 的取值范围.23.如图,AB 是⊙O 的直径,C 为BA 延长线上一点,过点C 作⊙O 的切线,切点为D ,过点B 作BE ⊥CD 于点E ,连接AD ,BD.(1)求证:ABD DBE ∠=∠;(2)如果CA=AB ,BD=4,求BE 的长.24.跳台滑雪是冬季奥运会比赛项目之一。
北京市朝阳区九年级综合练习(二)
北京市朝阳区九年级综合练习(二)历史试卷2020. 6第一部分选择题(共45分)本部分共30小题,每小题1.5分,共45分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
1.以下能证明我国远古居民脱离了原始穴居生活,过着比较稳定的“筑木构木”的定居生活的是①云南元谋县元谋人遗址②北京周口店北京人遗址③浙江余姚河姆渡遗址④陕西西安半坡遗址A.①②B.②③C.①④D.③④2.以下史实排序正确的是①“百家争鸣”②商汤灭夏③武王伐封④齐桓公称霸A.①②③④B.②③④①C.③④①②D.④③②①3.我国古代文字在发展过程中形成了多种书体,以下书体曾由秦朝强力推行的是4.古丝绸之路见证了陆上“使者相望于道,商旅不绝于途”的盛况,也见证了海上“舶交海中,不知其数”的繁华。
在这条大动脉上,资金、技术、人员等生产要素白由流动,商品、资源、成果等实现共享。
材料表明古代丝绸之路A.促进了各地经济文化的交流B.加强了中央对西域地区管理C.推动了秦汉大一统局面出现D.恢复了西汉初期的社会经济5. 《晋书・食货志》记载:“天下无事,时和年丰,百姓乐业,谷帛殷阜,几乎家给人足矣。
”材料反映出东晋后期南方地区A.成为全国经济重心B.农业超过北方C.出现民族交融趋势D.经济得到开发6.唐代的中书省、门下省和尚书省同为中央机构,军政大事先由中书省起草诏令,通过门下省审核,经皇帝御批,然后交尚书省执行。
这样的做法A.明确了中央决策程序B.增加了科举考试科目C.有利于考核地方官吏D.打击了贵族官僚势力7.右侧是反映我国古代某一历史时期的地图。
与这一时期相符的史实是A.耶律阿保机统一契丹各部B.宋太祖解除禁军将领兵权C.宋辽订立“澶渊之盟”D.岳飞取得郾城大捷8.法国学者谢和耐认为,宋代的现代化程度令人吃惊,货币经济、纸钞、流通票据……非常独特。
能说明此观点的文物是9.以下我国古代著作中,有助于解决农业生产问题的是①《伤寒杂病论》②《齐民要术》③《本草纲目》④《农政全书》A.①②B.①③C.②④D.③④10.一位同学讲解《平定准噶尔图卷》和《清军平定大、小和卓叛乱》两幅绘画作品。
初中数学一元一次不等式的应用综合练习2(附答案)
初中数学一元一次不等式的应用综合练习2(附答案)1.把一些书分给几名同学,若______;若每人分11本,则有剩余.依题意,设有x 名同学,可列不等式()7811x x +>,则横线的信息可以是( )A .每人分7本,则剩余8本B .每人分7本,则可多分8个人C .每人分8本,则剩余7本D .其中一个人分7本,则其他同学每人可分8本2.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A .6折B .7折C .8折D .9折 3.“x 的2倍与3的差不大于8”列出的不等式是( )A .2x 38-≤B .2x 38-≥C .2x 38-<D .2x 38-> 4.某中学的高中部在A 校区,初中部在B 校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知A 校区的每位高中学生往返车费是6元,B 校区的每位初中学生往返的车费是10元,要求初、高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不超过210元,求初、高中最多各有多少学生参加.5. 某超市分别以每盏150元,190元的进价购进A ,B 两种品牌的护眼灯,下表是近两天的销售情况.(1)求A ,B 两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B 品牌的护眼灯最多采购多少盏?6.京东商城A 品牌电脑的定价是a 元/台,最近,该商城对A 品牌电脑举行团购促销活动,设有两种优惠方案,方案一:不论团购数量,每台均按定价的九折销售;方案二:若团购数量不超过5台,每台按定价销售,若团购数量超过5台,超过的部分每台按定价的八折销售,某校为了创建义务教育管理标准化的需要,决定从京东商城团购A 品牌电脑x 台(x >5).(1)当x=12时,应选择哪种方案,该校购买费用最少?最少费用是多少元?(结果用含a的代数式表示)(2)若该校采用方案一购买比方案二购买更合算,求x的最大值.7.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.8.风筝又称“纸鸢”、“鸢儿”,放风筝是民间传统游戏之一,也是清明时节人们所喜爱的活动.小李打算抓住这一机遇,以每个20元的成本制作了30个风筝,再以每个40元的价格售出,很快就被一抢而空,于是小李计划加紧制作第二批风筝.(1)预计第二批风筝的成本是每个15元,仍以原价出售,若两批风筝的总利润不低于2850元,则第二批至少应该制作多少个风筝?(2)在实际制作过程中,小李按照(1)中风筝的最低数量进行制作,但制作风筝的成本比预期的15元多了a%(a>10),于是小李决定将售价也提高a%,附近的商户受到小李的启发,也纷纷卖起了风筝,在市场冲击下,小李实际还剩下12a%的风筝没卖出去,但仍然比第一次获利多1668元,求a的值.9.某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B 型智能扫地机器人多少个?10.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?11.某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.12.问题提出:我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形,并利用差的符号来确定它们的大小,要比较代数式M 、N 的大小,只要作出它们的差M N -,若0M N ->,则M N >.若0M N -=,则M N =.若0M N -<,则M N <.问题解决:如图,试比较图①、图②两个矩形的周长1C 、2C 的大小()b c >;主图形得:12()242C a b c b a b c =+++=++;22(3)224C a c b c a b c =-++=++,122422242()C C a b c a b c b c -=++---=-,∵b c >,∴2()0b c ->,则12C C >;类比应用:(1)用材料介绍的“作差法”比较2631x x ++与2532x x +-的大小;联系拓展:(2)小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图3所示(其中0b a c >>>),售货员分别可按图4、图5、图6三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.13.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) 销售时段销售数量销售收入A 种型号种型号 第一周3台 4台 1200元 第二周 5台 6台 1900元 (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.14.某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.(1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于1240元,则每千克这种水果的标价至少是多少元?15.4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.(1)求甲、乙两种图书的单价各是多少元?(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?16.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.17.“六一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元,我想买一盒饼干和一袋牛奶.阿姨:小朋友,本来你用10元钱买一盒饼干是有剩的,但是要再买一袋牛奶钱就不够了,不过今天是儿童节,饼干打九折,两样东西请你拿好,还要找你8角钱.如果每盒饼干和每袋牛奶的标价分别是x元,y元,请你根据以上信息,回答下列问题:(1)找出x与y之间的关系式;(2)求出每盒饼干和每袋牛奶的标价.18.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元.问第一次降价后至少要售出该种商品多少件?19.某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.(1)求第一次购书每本多少元?(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?20.某公司分两次采购甲、乙两种商品,具体情况如下:(1)求甲、乙商品每件各多少元?(2)公司计划第三次采购甲、乙两种商品共31件,要求花费资金不超过475元,问最多可购买甲商品多少件?21.某文具店用1200元购进了A、B两种羽毛球拍.已知A种羽毛球拍进价为每副12元,B种羽毛球拍进价为每副10元.文教店在销售时A种羽毛球拍售价为每副15元,B种羽毛球拍售价为每副12元,全部售完后共获利270元.(1)求这个文教店购进A、B两种羽毛球拍各多少副?(2)若该文教店以原进价再次购进A、B两种羽毛球拍,且购进A种羽毛球拍的数量不变,而购进B种羽毛球拍的数量是第一次的2倍,B种羽毛球拍按原售价销售,而A 种羽毛球拍降价销售.当两种羽毛球拍销售完毕时,要使再次购进的羽毛球拍获利不少于340元,A种羽毛球拍最低售价每副应为多少元?22.列不等式解应用题:某车间有20名工人.每人每天可加工甲种零件5个或乙种零件4个,在这20名工人中,派一部分人加工甲种零件,其余人加工乙种零件.已知每加工一个甲种零件获利16元,每加工一个乙种零件可获利24元.若要使车间每天获利不低于1800元,问至少要派多少人加工乙种零件?三、填空题23.根据数量关系:x的5倍加上1是正数,可列出不等式:__________.24.一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果张明需要100本笔记本,则张明购买______本会出现多买比少买反而付钱少的情况.(写出所有的情况)25.若三角形三边长为3,2x+1,10,则x的取值范围是______.26.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.27.“九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为A(小蟹)、B(中蟹)、C(大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若2只A类蟹、1只B类蟹和3只C 类蟹的价格之和正好是第一批蟹8只的价格,而6只A类蟹、3只B类蟹和2只C类蟹的价格之和正好是第一批蟹12只的价格,且A类蟹与B类蟹每只的单价之比为3:4,根据市场有关部门的要求A、B、C三类蟹的单价之和不低于40元、不高于60元,则第一批大闸蟹每只价格为________元.28.用不等式表示“2x与3的差不小于x的一半” __________________.29.某种笔记本原售价是每本5元,凡一次购买两本或以上可享受优惠价格,第1种:两本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本________________本.30.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.参考答案1.B【解析】【分析】根据不等式的意义即可求解.【详解】由7(x+8)>11x可知条件为:每人分7本,则可多分8个人.故本题选B .【点睛】本题主要考察了不等式的意义,学生们熟练掌握即可求解.2.B【解析】【分析】设打了x折,用售价×折扣-进价得出利润,根据利润率不低于5%,列不等式求解.【详解】解:设打了x折,由题意得900×0.1x-600≥600×5%,解得:x≥7.答:最低可打7折.故选B.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.3.A【解析】【分析】x的2倍即2x,不大于8即≤8,据此列不等式.【详解】解:根据题意,得2x-3≤8.故选:A.【点睛】本题考查列一元一次不等式,解题的关键是读懂题意,注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.4.初中最多有14名学生参加,高中最多有10名学生参加.【解析】试题分析:设参加活动的高中生x人,初中生(x+4)人,根据限制关系“初中生的往返车费+高中生的往返车费≤210”列不等式进行求解即可得.试题解析:设高中有x名学生参加,初中有(x+4)名学生参加,依题意,得6x+10(x+4)≤210,解得x≤1058,∵x为整数,∴x最多为10,∴x+4=14,答:初中最多有14名学生参加,高中最多有10名学生参加.【点睛】本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到题中的不等关系列不等式进行解答.5.(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【解析】【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,根据总价=单价×数量结合总费用不超过4900元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,依题意,得:2680 341670x yx y+=⎧⎨+=⎩,解得:210260 xy=⎧⎨=⎩.答:A品牌护眼灯的销售价为210元/盏,B品牌护眼灯的销售价为260元/盏.(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B品牌的护眼灯最多采购10盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.6.(1)应选方案二,该校购买费用最少,最少费用是10.6a元;(2)x的最大值为9【解析】【分析】(1)根据两个方案的优惠政策,分别求出购买12台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.【详解】解:(1)当x=12时:方案一:12×90%a=10.8a(元),方案二:5a+7×80%a=10.6a(元),∵10.6a<10.8a,∴应选方案二,该校购买费用最少,最少费用是10.6a元.(2)依题意得:90%ax<5a+(x-5)×80%a,解得x <10,∵x 为整数,∴x 的最大值为9.【点睛】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.7.(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.【解析】【分析】(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件,根据表中的数量关系列出关于x 和y 的二元一次方程组,解之即可,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元,根据(1)的结果结合图表列出W 关于m 的一次函数,再根据“总件数中B 产品的件数不得超过A 产品件数的2倍”,列出关于m 的一元一次不等式,求出m 的取值范围,再根据一次函数的增减性即可得到答案.【详解】解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件, 根据题意得:4525120030201200300x y x y +⎧⎨+-⎩==, 解得:1030x y ⎧⎨⎩==, 答:每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元, 增加供货量后A 产品的数量为(10+m )件,B 产品的数量为30+(8-m )=(38-m )件, 根据题意得:W=30(10+m )+20(38-m )=10m+1060,由题意得:38-m≤2(10+m ),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大∴当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.8.(1)第二批至少应该制作90个风筝;(2)a的值是20.【解析】【分析】(1)根据题意可以列出相应的不等式,从而可以解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题.【详解】解:(1)设第二批制作x个风筝,(40﹣15)x+(40﹣20)×30≥2850,解得,x≥90,答:第二批至少应该制作90个风筝;(2)[40(1+a%)﹣15(1+a%)]×90(1﹣12a%)﹣15(1+a%)×90×12a%﹣(40﹣20)×30=1668,解得,a=20或a=5(舍去),答:a的值是20.【点睛】本题考查一元二次方程的应用和一元一次不等式的应用,解答关键是明确题意,找出所求问题需要的条件,利用方程和不等式的思想解答.9.(1)购进A型智能扫地机器人20个,购进B型智能扫地机器人40个;(2)至少需购进B型智能扫地机器人17个.【解析】【分析】(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据总价=单价×数量结合购进A、B两种型号的智能扫地机器人60个共花费14.4万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据总利润=单台利润×购进数量结合总利润不少于53000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中最小的整数即可得出结论.【详解】解:(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据题意得:60 20002600144000x yx y+=⎧⎨+=⎩,解得:2040 xy=⎧⎨=⎩.答:购进A型智能扫地机器人20个,购进B型智能扫地机器人40个.(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据题意得:(3700-2600)m+(2800-2000)(60-m)≥53000,解得:m≥503.∵m为整数,∴m≥17.答:至少需购进B型智能扫地机器人17个.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.10.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x元,则:16006000 32x x⨯=+解得:8x=经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则:()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.11.(1) A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A 种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1800元,4台A 型号10台B 型号的电扇收入3100元,列方程组求解; (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A ,B 两种型号电风扇的销售单价分别为x 元/台、y 元/台.依题意,得3518004103100x y x y +=⎧⎨+=⎩解得250210x y =⎧⎨=⎩答:A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a )台.依题意,得200a +170(30-a )≤5400,解得a ≤10.答:A 种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a +(210-170)(30-a )=1400,解得a =20.∵a ≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.12.(1)22 631532x x x x ++>+-;(2) 图5的方法用绳最短,图6的方法用绳最长【解析】【分析】(1)根据两个代数式之差大于0,即可做出判断;(2)分别表示出图4的捆绑绳长为L 1,图5的捆绑绳长为L 2,图6的捆绑绳长为L 3,进而表示出它们之间的差,即可得出大小关系.【详解】(1)2631x x ++-(2532x x +-)22631532x x x x =++--+23x =+,因为20x ≥,所以230x +>,所以22631532x x x x ++>+-;(2)设图4的捆绑绳长为L 1,则L 1222242448a b c a b c =⨯+⨯+⨯=++,设图5的捆绑绳长为L 2,则L 2222222444a b c a b c =⨯+⨯+⨯=++,设图6的捆绑绳长为L 3,则L 3322232646a b c a b c =⨯+⨯+⨯=++,∵L 1-L 2()44844440a b c a b c c =++-++=>,∴L 1>L 2,∵L 3-L 2()646444220a b c a b c a c =++-++=+>,∴L 3-L 1=()()6464482a b c a b c a c ++-++=-,∵a c >,∴()20a c ->,∴L 3>L 1.∴第二种方法用绳最短,第三种方法用绳最长.【点睛】本题主要考查了整式的混合运算以及不等式的性质,根据已知表示出绳长再利用绳长之差比较是解决问题的关键.13.(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)能,方案有两种:当a=36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a=37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得得到方程,求解即可得到答案.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.由题意得160a+120(30﹣a )≤7500,求解即可得到答案.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a )>1850,解得:a >35,由于a≤3712,且a 应为整数,所以在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种.【详解】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:341200561900x y x y +=⎧⎨+=⎩,解得:200{150x y ==, 答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.依题意得:160a+120(30﹣a )≤7500,解得:a≤3712. 答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a )>1850,解得:a >35,∵a≤3712,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,解题的关键是读懂题意,设未知数,找出合适的等量关系和不等式.14.(1)该商店第一次购进水果100千克;(2)每千克这种水果的标价至少是16元.【解析】【分析】(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于1240元列出不等式,然后求解即可得出答案.【详解】解:(1)设该商店第一次购进这种水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得100x=.经检验,100x=是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则()100100220200.5100024001240y y+⨯-⋅+⨯≥++,解得16y≥.答:每千克这种水果的标价至少是16元.【点睛】此题考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键15.(1)甲种图书的单价为30元/本,乙种图书的单价为45元/本;(2)乙种图书最多能买。
09年大兴区初三数学综合练习及答案(2)
图 1图 209年大兴区初三数学综合练习(二)一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1.3-的倒数是A .13B .3C .13- D . 3- 2 .下列计算正确的是A .325a b ab +=B .3253(2)6x x x -=-C .325()a a =D .32()()a a a -÷-=-3.下图中所示的几何体的主视图是4.为了解2008年6月1日“限塑令”实施情况,当天某环保小组对3600户购物家庭随机抽取600户进行调查,发现其中有156户使用了环保购物袋购物,据此可估计该3600户购物家庭当日使用环保购物袋约有 A.388户 B. 936户 C.1111户 D.1661户 5.对任意实数x ,点2(2)P x x x -,一定不在..A .第一象限B .第二象限C .第三象限D .第四象限 6.如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘 停止后,指针指向红色区域的概率是A .61 B .31 C .32 D . 21 7.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC的面积是 A .10 B .16C .18D .208.、把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是 A.(10+cmB .(10cmC .22cmD .18cm二、填空题(本题共16分,每小题4分)9.将一元二次方程式x 2-6x -5=0化成(x +a )2=b 的形式,则b = 。
10.已知在平面直角坐标系中,A 、B 、C 、D 四点坐标分别为(00)A ,,(100)B ,,(106)C ,,(06)D ,,直线32y mx m =-+将四边形ABCD 分成面积相等的两部分,则m 的值为.11.在如图所示的四边形中,若去掉一个50的角得到一个五边形,则12+=∠∠ 度. 12.如图,ABCD 为矩形,H 、F 分别为AD、BC 边的中点,EFGH 为矩形,E 、G分别在AB 、CD 边上,则图中四个直角三角形面积之和与矩形EFGH 的面积之比为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学综合练习
班级_________ 学号_______ 姓名________
一、选择题:
1.-2的绝对值是 ( )
A .2 B.
21 C.-2
1
D.2 2. 下列运算正确的是 ( )
A .xy y x 532=+
B .a a a =-2
3
C .b b a a -=--)(
D .2)2(12-+=+-a a a a )(
3. 根据2010年全国第六次人口普查统计,池州市登记户籍人口约为159.68万人,近似数
159.68万人用科学记数法可表示为 ( )
A .1.5968×104
B .1.5968×105
C .1.5968×106
D .0.15968×107 4.如左图是由几个相同的小正方体搭成的一个几何体,它的俯视图是 ( )
5.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..
的是( ) A .众数是80 B .中位数是75 C .平均数是80 D .极差是15
6.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)
与时间x (分钟)之间满足某种函数关系,其函数图象大致为 ( ) 7.在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,若把Rt △ABC 绕直线AC 旋转一周,则
所得圆锥的侧面积等于 ( )
A .6π
B .9π
C .12π
D .15π 8.二次函数2
y ax bx c =++的图象如图所示,则一次函数ac bx y -=与反比例函数
x
c
b a y +-=
在同一坐标系内的图象大致为( )
A .
B .
C .
D .
A .
B .
C .
D . 1
-
二、填空题:
9.因式分解:2
24a a -= .
10.不等式组⎩
⎨⎧≤-+>+1)1(2,
13x x x 的解集是
11.梯形的中位线长为3,高为2,则该梯形的面积为 .
12.甲乙两个女舞蹈队的平均身高都是1.65米,甲队身高的方差是2
甲S =1.5,乙队身高的方差是2
乙S =2.4,那么两队中身高更整齐的是 队(填“甲”或“乙”)
13.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于_________cm.
(第13题图) (第14题图) (第16题图)
14.如图,△ABC 内接圆于⊙O ,∠B =30°,AC =2cm ,⊙O 半径的长为 ㎝. 15.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价
为 .
16.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。
若EF =2,BC =5,CD =3,
则tan C 等于 .
17.如图,已知直线l :
y=
x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作
直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4
的坐标为
.
B
(第17题图) (第18题图)
18.如图,将△ABC的顶点A放在⊙O上,现从AC与⊙O相切于点A(如图1)的位置开始,将△ABC绕着点A顺时针旋转,设旋转角为α(0°<α<120°),旋转后AC,AB分别与⊙O交于点E,F,连接EF(如图2). 已知∠BAC=60°,∠C=90°,AC=8,⊙O的直径为8.在旋转过程中,有以下几个量:①弦EF的长②EF的弧长③∠AFE的度数④点O到EF 的距离.其中不变的量是(只填正确答案序号);
三、解答题:
19.计算:|-1|-1
28-(5-π)
0+4cos45°
20.先化简,再求值:
22
2
12
212
a a a
a a a
--
+
-+-
,其中a+1.
21.某市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随即抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整),请你根据图中所给的信息解答下列问题:
(1)将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生有___达标;
(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
22.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:△ABE≌△DFA;
(2)如果AD=10,AB=6,求sin∠EDF的值.
23.小英和小明姐弟二人准备一起去观看端午节龙舟赛,但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去看龙舟赛。
游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同。
游戏时先由小英从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色。
如果姐弟二人摸到的乒乓球颜色相同,则小英赢,否则小明赢。
(1)请用树状图或列表的方法表示游戏中所有可能出现的结果。
(2)这个游戏规则对游戏双方公平吗?请说明理由。
24.小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形。
已知吊车吊臂的支点O 距离地面的高度OO′=2米。
当吊臂顶端由A 点抬升至A′ 点(吊臂长度不变)时,地面B 处的重物(大小忽略不计)被吊到B′ 处,紧绷着的吊绳A′B′=AB 。
AB 垂直地面O′B 于点B ,A′B′垂直地面O′B 于点C ,吊臂长度OA′=OA=10米,且3cos A
,sinA′=1。
(1)求此重物在水平方向移动的距离BC
(2)求此重物在竖直方向移动的距离B′C (结果保留根号)
25.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),若每份售价不超过10元,每天可销售400份;若每份超过10元,每提高1元,每天的销售量就减少40份,为了便于结算,每份套餐的售价X (元)取整数,用Y (元)表示该店日净收入,(日净收入=每天的销售额—套餐成本—每天固定支出)
(1)求Y 与X 之间的函数关系式;
(2)若每分套餐的售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入。
按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?
A′ B
O ′ 第24题图
26.如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若A E C O D B ∠=∠.
(1)判断直线BD 和O ⊙的位置关系,并给出证明;
(2)当108AB BC ==,时,求BD 的长.
27.在四边形ABCD 中,AC=AB ,DC=DB ,∠CAB=60°,∠CDB=120°,E 是AC 上一点,F 是AB 延长线上一点,且CE=BF . 思考验证:
(1)求证:DE=DF ;
(2)在图1中,若G 在AB 上且∠EDG=60°,试猜想CE 、EG 、BG 之间的数量关系并证明;
归纳结论:
(3)若题中条件“∠CAB=60°且∠CDB=120°”改为∠CAB=α,∠CDB=180°-α,G 在AB 上,∠EDG 满足什么条件时,(2)中结论仍然成立?(只写结果不要证明) 探究应用: (4)运用(1)(2)(3)解答中所积累的经验和知识,完成下题:如图2,在四边形ABCD 中,
∠ABC=90°,∠CAB=∠CAD=30°,E 在AB 上,DE ⊥AB ,且∠DCE=60°,若AE=3,求BE 的长.
28.如图,抛物线y=ax 2+bx (a 0)与双曲线y =
x
k
相交于点A ,B .已知点B 的坐标为 (-2,-2),点A 在第一象限内,且tan ∠AOx =4. 过点A 作直线AC ∥x 轴,交抛物线于另一点C .
(1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;
(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.。