人教版北京市延庆区七年级上期末数学考试题(有答案)-名校版

合集下载

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b3.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .5.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 6.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)7.点()5,3M 在第( )象限. A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )29.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( )A .513B .﹣511C .﹣1023D .102510.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查11.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.16.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 17.当a=_____时,分式13a a --的值为0. 18.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).19.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).21.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.22.若2a +1与212a +互为相反数,则a =_____. 23.当12点20分时,钟表上时针和分针所成的角度是___________.24.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.26.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?27.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.28.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.29.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.30.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值31.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.32.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,∴这四个数中绝对值最小的数对应的点是点N . 故选B .2.A解析:A 【解析】 【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和. 【详解】∵线段AB 长度为a , ∴AB=AC+CD+DB=a , 又∵CD 长度为b , ∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b , 故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.3.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.4.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.5.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.6.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案. 【详解】∵(1,2)表示教室里第1列第2排的位置, ∴教室里第2列第3排的位置表示为(2,3), 故选C. 【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.7.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.8.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.9.D解析:D 【解析】 【分析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可. 【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.10.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.11.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.12.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.二、填空题13.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.14.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.15.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32x xy=x(x+2y)(x-2y).4当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入19.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.20.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.21.40°【解析】解:由角的和差,得:∠AOC=∠AOD -∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC =∠AOD -∠COD =140°-90°=50°.由余角的性质,得:∠COB =90°-∠AOC =90°-50°=40°.故答案为:40°.22.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得: a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a =﹣3,解得:a =﹣1,故答案为:﹣1本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.23.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.24.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、压轴题25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21,解得:48t=7或527;故答案为t=1或3或487或527.【点睛】本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健26.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.27.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB∠∠=,12AOE AOD∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】 (1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.28.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-.【详解】 解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线, ∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.29.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.30.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P 在点B 的右侧时,a >2,PA =a ﹣(﹣3)=a +3,PB =a ﹣2.,所以PA +PB =a +3+a ﹣2=2a +1=8,解得:a =,>2,所以,存在满足条件的点P ,对应的数为﹣和.(2)设P 点所表示的数为n ,∴PA =n +3,PB =n ﹣2.∵PA 的中点为M ,∴PM =12PA =.N 为PB 的三等分点且靠近于P 点,∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.31.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下: 当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解 综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.32.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×1062.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x = 3.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .139 4.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .3 5.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒7.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠8.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2 B.22C.2D.329.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是()A.13或﹣1 B.1或﹣1 C.13或73D.5或7310.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×211.化简(2x-3y)-3(4x-2y)的结果为( )A.-10x-3y B.-10x+3y C.10x-9y D.10x+9y12.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查13.若a<b,则下列式子一定成立的是( )A.a+c>b+c B.a-c<b-c C.ac<bc D.a b c c <14.已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°15.下列各数中,比73-小的数是()A.3-B.2-C.0D.1-二、填空题16.=38A ∠︒,则A ∠的补角的度数为______.17.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________18.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.19.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 20.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.21.15030'的补角是______.22.如果一个数的平方根等于这个数本身,那么这个数是_____.23.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.24.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.25.当x= 时,多项式3(2-x )和2(3+x )的值相等.26.方程x +5=12(x +3)的解是________. 27.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 28.3.6=_____________________′29.用度、分、秒表示24.29°=_____. 30.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数33.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.34.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示);(2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.35.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.36.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.37.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.3.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.4.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.5.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.6.D解析:D【解析】【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项.【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D.【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.7.A解析:A【解析】【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,故选:A.【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.8.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.9.A解析:A【解析】【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可.【详解】解:(x+3)2=4,x ﹣3=±2,解得:x =5或1,把x =5代入方程mx+3=2(m ﹣x )得:5m+3=2(m ﹣5),解得:m =13, 把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ),解得:m =﹣1,故选:A .【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.11.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.12.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查13.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.14.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.15.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.二、填空题16.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:A∠=,38∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.17.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b 的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261x bx ax x -++-+=(a-1)x 2+(b-6)x+1,由结果与x 取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x 的取值无关”的意义是解本题的关键.18.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.19.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=== 故答案为:. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.20.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30﹣. 考点:列代数式 21.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.22.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵0=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.23.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.24.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.25.【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.26.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.27.﹣1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22-)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.28.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:3.630.63(0.660)'=︒+︒=︒+⨯=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.29.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.30.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3c m.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C 点到A 点距离是B 点到A 点距离的4倍,∴AC=4AB =4×30=120;(2)①当P 点在AB 之间运动时,∵AP=3t ,∴BP=AB ﹣AP =30﹣3t .故答案为30﹣3t ;②当P 点是A 、B 两个点的中点时,AP =12AB =15, ∴3t=15,解得t =5;当B 点是A 、P 两个点的中点时,AP =2AB =60,∴3t=60,解得t =20. 故所求时间t 的值为5或20;③相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.第一次相遇是点Q 从A 点出发,向C 点运动的途中.∵AQ﹣BP =AB ,∴5x﹣3x =30,解得x =15,此时P 点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q 到达C 点后返回到A 点的途中.∵CQ+BP=BC ,∴5(x ﹣24)+3x =90,解得x =1054, 此时P 点在数轴上对应的数是:30﹣3×1054=﹣4834. 综上,相遇时P 点在数轴上对应的数为﹣15或﹣4834. 【点睛】 本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.33.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】 解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.34.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)103或4(4)线段MN 的长度不发生变化,都等于11【解析】【分析】(1)根据AB 长度即可求得BO 长度,根据t 即可求得AP 长度,即可解题;(2)点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,根据AC-BC=AB ,列出方程求解即可;(3)分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=22,∴点B 表示的数是8-22=-14,∵动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8-4t .故答案为-14,8-4t ;(2)设点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,∵AC-BC=AB ,∴4x-2x=22,解得:x=11,∴点P 运动11秒时追上点Q ;(3) ①点P 、Q 相遇之前,4t+2+2t =22,t=103, ②点P 、Q 相遇之后,4t+2t -2=22,t=4, 故答案为103或4 (4)线段MN 的长度不发生变化,都等于11;理由如下:。

最新北京市延庆区七年级上期末数学考试题 有答案-名师版

最新北京市延庆区七年级上期末数学考试题 有答案-名师版

第一学期期末测试卷初一数学1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米, 是当今世界上最大的城市广场. 将440 000用科学记数法表示应为 A .4.4×105B .4.4×104C .44×104D .0.44×1062. 如果向右走5步记为+5,那么向左走3步记为 A .+3 B .﹣3 C .31+D .31- 3. 如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是 A .点A 与点B B .点B 与点C C .点B 与点DD .点A 与点D4. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 A .45° B .55° C .125° D .135°5. 下列各式中运算正确的是A .189=-a aB .4222a a a =+C .b a b a b a 444253-=-D .532623a a a =+6. 下列几何体中,主视图相同的是 A .①② B .①④ C .①③ D .②④7. 下列图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是8. 如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条 墨线,能解释这一实际应用的数学知识是 A.两点确定一条直线 B.两点之间线段最短 C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9. 在解方程133221=+--x x 时,去分母正确的是 A .()()132213=+--x x B .()()332213=+--x xC .()()632312=+--x xD .()()632213=+--x x10.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售. 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四二、填空题(每小题3分,本题共30分)B11.57.32︒ = _______︒ _______' ______ "12.若x =5是关于x 的方程2x +3k -5=0的解,则k = .13.单项式243ab c -的系数是 ,次数是 ,多项式222389x y x y --的最高次项为 . 14.比较大小:31-52-15.利用等式的性质解方程:2x +13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 , 解得:x=16.如图,C ,D 是线段AB 上两点,CB =3cm ,DB =5cm ,D 是AC 的中点, 则线段AB 的长为 cm .17.教材中《一元一次方程》一章的知识结构如图所示, 则A 和B 分别代表的是A 代表 ,B 代表 .18. ,,,a b c d 为有理数,现规定一种运算:a cb d=ad bc -,那么当2(1)x -45=18时x 的值是 .19.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣. 《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知ABD C BA客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为 __________ __.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、计算:(共4个小题,每小题5分,共20分) 21. -14 -5+30-2 22. (-125)⨯158÷(-23)23. )36()1276521(-⨯-+ 24. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦四、化简求值(共2个小题,每小题5分,共10分) 25. 化简:.74562222b a ab ab b a --+26. 先化简,再求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值,其中x =2,y =-21五、解方程(共2个小题,每小题5分,共10分) 27. )43(2)2(5x x --=- 28. 318146x x -+=-六、请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹)29. (每小题1分,共4分)如图,已知平面上的三个点A、B、C.(1)连接AB;(2)画射线AC;(3)画直线BC;(4)过点A作BC的垂线,垂足为D.七、列方程解应用题(本题8分)30. 八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成。

北京市延庆区2023-2024学年七年级上学期期末数学试题(含解析)

北京市延庆区2023-2024学年七年级上学期期末数学试题(含解析)

....《九章算术》中注有今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走米记为+5米,则向西走米记为( ).+5米.﹣5米+3米.﹣3米超级计算机的运算速度位居全球第一,其运算速度达到了A.点B.点A B在上述五个步骤中,依据是“等式的基本性质三、解答题(17-18题,每小题6分)17.计算:(1);(2).18.计算:(1);(2).19.解方程:20.解方程:.21.先化简,再求值:(5)9(6)20-+---10(2)(7)(3)(4)÷-+-⨯---251()(18)362-+⨯-22115(3)4⎡⎤--⨯--⎣⎦231x x -=+12323x x +-=(222x x --(1)画线段和直线(2)在线段的反向延长线上取一点(3)过点D 作(1)依题意补全图形;(2)①________②补全证明过程.AB AC AB DF AB ⊥DAB EBA ∠+∠=合并同类项,得…………第五步系数化1,得…………第六步所以是原方程的解.上述小明的解题过程从第________步开始出现错误,错误的原因是____________.请你写出正确的解题过程.26.列方程解应用题:延庆区张山营镇是著名的“苹果之乡”,出产的苹果色泽鲜艳、品种优良,红富士苹果获得“中华名果”的称号,秋收季节,某公司打算到张山营果园基地购买一批苹果.果园基地对购买量在1000千克(含1000千克)以上的有两种销售方案,方案一:每千克10元,由基地送货上门;方案二:每千克8元,由顾客自己运回,已知该公司租车从基地到公司的运输费为5000元.(1)公司购买多少千克苹果时,选择两种购买方案所需的费用相同?(2)如果公司打算购买3000千克苹果,选择哪种方案省钱?为什么?27.阅读材料:对于任意有理数a ,b ,规定一种特别的运算“”:a b .例如,25.(1)求3的值;(2)若,求x 的值;(3)试探究这种特别的运算“”是否具有交换律?28.对于数轴上三个不同的点A ,B ,C ,给出如下定义:在线段中,若其中有两条线段相等,则称A ,B ,C 三点是“均衡点”.(1)点A 表示的数是,点B 表示的数是1,点C 表示的数是3,①A ,B ,C 三点______(填“是”或“不是”)“均衡点”;②点M 表示的数是m ,且B ,C ,M 三点是“均衡点”,则________;(2)点D 表示的数是x ,点E 表示的数是n ,线段(a 为正整数),线段,若D ,E ,F 三点是“均衡点”,且关于x 的一元一次方程的解为整数,求n 的最小值.104x =0.4x =0.4x =⊕⊕a b ab =-+⊕25257=-+⨯=⊕(1)-()4-⊕6x =⊕AB BC CA ,,2-m =EF a =DE b =4ax x b +=参考答案与解析1.C【分析】根据圆锥的特征进行判断即可.【详解】解:圆锥是由一个圆形的底面,和一个弯曲的侧面围成的,因此选项C中的几何体符合题意,故选:C.【点睛】本题考查认识立体图形,掌握几种常见几何体的形体特征是正确判断的前提.2.D【分析】根据题意,向西走则记为“-”.【详解】∵向东走5米记为+5米,∴向西走3米可记为﹣3米,故选D.【点睛】考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.3.A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108故选∶A【点睛】本题考查科学记数法—表示较大的数,解题的关键是正确的找到a,n的值.4.B【分析】本题主要考查整式的加减运算,熟练掌握整式的加减运算法则是解题的关键;因此此题可根据整式的加减运算进行求解即可.3a2b【详解】解:A、与不是同类项,不能合并,故不符合题意;.23.(1)见解析(2)见解析(3)见解析(4)见解析【分析】本题考查线段,直线,垂线的画法,掌握定义是解题的关键.(1)连接即可画出线段AB ,连接使得两端延长出去即为直线;(2)延长,以点为圆心,长为半径画圆,与延长线上交于一点即为点E ;(3)根据垂线的定义即可画出;(4)根据两点间线段最短,可知点P 应在与交点处时.【详解】(1)解;根据连接两点的间的距离为线段,所以如下图所示连接,两端无端点即为直线,如下图所示连接两端无限延长:;(2)解:延长,以点为圆心,长为半径画圆,与延长线上交于一点即为点E ,即可,如下图所示:;(3)解:以点D 为圆心,长为半径作圆,再以点D 为圆心, 长为半径作圆,两圆交于两点,连接即为,如下图所示:;(4)解:∵两点间线段最短,可知点P 应在与交点处时,即当三点共线时13AD AC CD AC BC BD AB BD =+=++=+=AB AC AC BA A AB BA ED AC AB AC AC BA A AB BA EA AB =DB DA ,D F DF DF AB ⊥ED AC ,,E P D.24.(1)见解析(2)①45°;②;角平分线定义;【分析】本题主要考查了几何图形中角的计算,角平分线的定义,解题的关键是数形结合,(2)①②补全证明过程.证明:∵平分ABC ∠DAB EBA ∠+∠=AD CAB ∠【分析】本题考查定义新运算题型,解一元一次方程.(1)根据题意利用题干列式求解即可得到本题答案;(2)根据题意列出含x 的式子解出即为本题答案;(3)可以代数求,计算3,看结果是否等于(1)中求得的结果,进而可作判断.【详解】(1)解:∵a b ,∴3;(2)解:∵,∴,解得:;(3)解:∵3,∵由(1)知,3,∴33,∴这种特别的运算“”不具有交换律.28.(1)①不是;②(2)【分析】本题考查解一元一次方程,数轴上两点之间距离关系.(1)根据题意分别表示出,即可得到本题答案;(2)根据题意针对三点的位置分情况讨论,列关于的一元一次方程并解出即可得到本题答案;(3)根据题意针对三点分情况讨论,可分为6种情况,再分别列出方程正确解答后比较的数值,即可得到本题答案.【详解】(1)①解:∵点A 表示的数是,点B 表示的数是1,点C 表示的数是3,∴,∵,∴A ,B ,C 三点不是“均衡点”;②解:∵点M 表示的数是m ,且B ,C ,M 三点是“均衡点”,又∵点B 表示的数是1,点C 表示的数是3,∴分情况讨论:①当点顺次时,(1)-⊕⊕a b ab =-+⊕(1)-3(1)3(1)3131=--+⨯-=+-=()4-⊕6x =44456x x x ---=--=2x =-(1)-⊕13(1)3437=--+-⨯=--=-⊕(1)-1=⊕(1)-≠(1)-⊕⊕5,2,1-7-3,2,5AB BC AC ===m n 2-3,2,5AB BC AC ===AB BC AC ≠≠,,B C M。

北京市延庆区2021-2022学年第一学期初一期末数学试卷及答案

北京市延庆区2021-2022学年第一学期初一期末数学试卷及答案

2022北京延庆初一(上)期末数 学2022.01一、选择题:(共10个小题,每小题2分,共20分) 下面各题均有四个选项,其中只有一个是符合题意的. 1.2-的倒数是 A .2B .2-C .21-D .21 2.据北京市金融监管局消息,将在2022年2月举办的北京冬奥会试点数字人民币.市场预期有关部门会以其作为起始点,在全国普及数字人民币.2021年12月10日,小明的妈妈在北京建行数字人民币钱包中存入100元,记作100+,那么40-表示A .支出40元B .收入40元C .支出60元D .收入60元3.右图中,哪一个角的度数最接近45° A .1∠ B .2∠ C .3∠D .4∠4.截止到2021年12月5日,成功报名北京冬奥会赛会志愿者的人数已超过1120000人.将1120000用科学记数法表示应为 A .41012.1⨯B .61012.1⨯C .410112⨯D .710112.0⨯5.右图是某立体图形的展开图,则这个立体图形是 A .三棱柱 B .三棱锥 C .长方体D .圆柱6.方程221-=x 的解是 A .4-=xB .1-=xC .1=xD .4=x7.有理数2.345精确到十分位的近似数是 A .2.34B .2.35C .2.3D . 2.48.下列运算正确的是 A .ab b a 532=+B .04125.0=+-ab ab C .022=-xy y xD .33=-a a9.有理数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是 A .a b c >> B .b c =C .0>⋅c aD .0<+b a-2a b c123410.幻方最早起源于中国,在《自然科学大事年表》中,对幻方做了特别的述说:“公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图、洛书、纵横图,即为九宫算,被认为是现代组合数学最古老的发现”.请将4-,3-,2-,1-,0,1,2,3,4分别填入如图所示的幻方中,要求同一横行、同一竖行以及同一条斜对角线上的3个数相加都得0.则x +y 的值为 A .5 B .5- C .3- D .0二、填空题 (共8个小题,每题2分,共16分)11.写出单项式y x 25的一个同类项:.12.右图中给出了某城市连续5天中,每一天的最高气温 和最低气温(单位:C ︒),那么最大温差是 C ︒.13.对单项式“x 7”可以解释为:长方形的长为x ,宽为7,则此长方形的面积为x 7.请你对“x 7”再.赋予一个含义:.14.如右图所示,点A ,B ,C ,D 在同一条直线上.在线段PA ,PB ,PC ,PD 中,最短的线段是,理由是.15.如果4=x 是关于x 的方程232=-a x 的解,那么a =.16.已知:∠A =25.15°,5125'=∠ B ,那么∠A ∠B (填“>”或“=”或“<”) 17.点A ,B ,C 在同一条直线上,如果6=BC ,BC AB 21=,那么AC = .18.如下表是某面包店的价目表.小明原本拿了4个面包去结账,结账时收银员告诉小明,店内有优惠活动,优惠方式为每买5个面包,其中1个价格最低的面包就免费.因此,小明又去拿了一个,他挑选了香蒜面包.如果小明原本的结账金额为a 元,则小明后来的结账金额为元.(用含a 的式子表示)三、解答题(共10个小题,共64分) 19.(7分)计算: (1)12)6()8(19--+--(2)3)2()8(⨯-+-20.(10分)计算: (1))654321()12(-+⨯- (2)])1()2()3[()8(244-+-⨯---÷-21.(5分)已知:2=8+3y x ,求代数式7)2(3)13(2+---+y x y x 的值. 22.(11分)解方程:AB CDP日期7101065-5-4-5-4-512.112.212.312.412.5最高气温最低气温(1)4316+=-x x (2)6751423-=--x x 23.(5分)如图,已知四点A ,B ,C ,D . (1)画射线DA ; (2)画直线AC ;(3)连接CD ,并在线段CD 的延长线 上取一点E ,使得DE=CD ;(4)画直线BE ,与直线AC 交于点F .24.(5分)某校七年级组织去北京世园公园开展综合实践活动.已知参加活动的教师和学生共70人;其中学生人数比教师人数的3倍还多6人,问参加活动的教师和学生各有多少人? 25.(4分)根据题意,补全解题过程.如图,点C 为线段AB 上一点,D 为线段AC 的中点,若AD =3,BC =2,求BD 的长. 解:∵D 为线段AC 的中点,AD =3, ∴CD= = .()∵BD= + ,BC =2, ∴BD=.26.(4分)阅读材料:数学活动课上,小明经过观察、思考,发现并提出猜想:把一个两位数的十位上的数字a 与个位上的数字b 交换位置,得到的新数与原数的和是11的整数倍. 解决问题:(1)用含a ,b 的式子表示原来的两位数是;(2)小明的猜想是否正确?先判断,再说明理由.27.(7分)已知:∠AOB ,过点O 引两条射线OC ,OM ,且OM 平分AOC ∠. (1)如图,若∠AOB =120°,∠BOC =30°,且点C 在∠AOB 的内部. ①请补全图形; ②求出∠MOB 的度数;以下是求∠MOB 的度数的解题过程,请你补充完整. 解:∵∠AOC=∠AOB -∠BOC ,∠AOB =120°,∠BOC =30°, ∴∠AOC= 90°. ∵OM 平分AOC ∠, ∴∠MOC= = °. ∵∠MOB=∠MOC + , ∴∠MOB= °.(2)若∠AOB =α,∠BOC =β(其中α<β<90°),画出图形并直接写出∠MOB 的度 数.(用含α,β的式子表示)28.(6分)已知点P 是图形M 上的任意点,点Q 是图形N 上的任意点. 给出规定:ABOC如果P ,Q 两点的距离有最小值,那么我们称这个最小值为图形M —N 的亲和距离;记作:d (图形M ,图形N ).特别地,当P ,Q 两点重合时,d (图形M ,图形N )=0. 举例说明:如图,数轴上的点A 表示的数是1,点B ,C 表示的数分别是2与3,那么d (点A ,线段BC )=1. 根据以上定义完成下列问题:数轴上的点D ,点E 表示的数分别是x ,x +1,点O 为原点, (1)当x =1时,d (原点O ,线段DE )=; (2)如果d (原点O ,线段DE )= 3,那么=x;(3)数轴上的点F ,点G 表示的数分别是y ,y +4,如果d (线段DE ,线段FG )= 2, 直接写出y x -的值.123-1-2A B C 42022北京延庆初一(上)期末数学参考答案一、选择题:(共10个小题,每小题2分,共20分) CADBA ACBDB二、填空题 (共8个小题,每空2分,共16分)11.y x 2(答案不唯一); 12.15; 13.答案不唯一; 14.PC ,垂线段最短; 15.2;16.<;17.3或9; 18.a 或)5.1(+a 或)5.2(+a .三、解答题(共64分) 19.解:(1)12)6()8(19--+--126819--+=1827-= 9=(2)3)2()8(⨯-+-68--= 14-=20.解:(1))654321()12(-+⨯-)65()12(43)12(21)12(-⨯-+⨯-+⨯-=1096+--= 5-=方法二:)654321()12(-+⨯-)1210129126()12(-+⨯-=)125()12(⨯-=5-=(2)])1()2()3[()8(244-+-⨯---÷-)16()8(16+--÷-=72-= 5-=解:7)2(3)13(2+---+y x y x………………………………2分 ………………………………3分 ………………………………4分………………………………4分 ………………………………5分………………………………5分………………………………5分………………………………2分 ………………………………3分………………………………4分763226++--+=y x y x 583++=y x∵2=8+3y x∴原式583++=y x 7=5+2= 22.解方程: (1)4316+=-x x解:移项,得1436+=-x x . 合并同类项,得53=x . 系数化为1,得35=x . ∴原方程的解为35=x . (2)6751423-=--x x 解:去分母,得)75(212)23(3-=--x x . 去括号,得14101269-=--x x . 移项,得12614109++-=-x x . 合并同类项,得4=-x . 系数化为1,得4-=x . ∴原方程的解为4-=x . 23.24.方法一:解:设教师有x 人,学生有(3x +6)人. 根据题意列方程,得70)63(=++x x . 解这个方程,得16=x .54616363=+⨯=+x .答:教师有16人,学生有54人. 方法二:根据题意,可得:64670=- 所以教师人数为:16464=÷ 学生人数为:541670=- 答:教师有16人,学生有54人. 25.解:∵D 为线段AC 的中点,AD =3 ∴CD=AD=3.(线段中点定义)…………5分………………………………3分………………………………5分 ………………………………5分………………………………6分………………………………5分 ………………………………4分 ………………………………3分 ………………………………2分 ………………………………5分………………………………4分 ………………………………3分 ………………………………1分………7分…………………1分……………………………6分…………3分∵BD=CD+BC ,BC =2, ∴BD=5.26.(1)用含a ,b 的式子表示原来的两位数是b a +10; (2)小明的猜想正确.理由:由题意可知,新的两位数是a b +10, 所以新数与原数的和是:)10()10(a b b a +++,)(1111111010)10()10(b a b a a b b a a b b a +=+=+++=+++,所以新数与原数的和是11的整数倍.27.(1)①②解:∵∠AOC=∠AOB -∠BOC ,∠AOB =120°,∠BOC =30°, ∴∠AOC=90°. ∵OM 平分AOC ∠,∴∠MOC=AOC ∠21=45°.∵∠MOB=∠MOC +∠COB . ∴∠MOB=75°.(2)分两种情况:2αβ+=∠MOB 2αβ-=∠MOB28.(1)当x =1时,d (原点O ,线段DE )=1; (2)当d (原点O ,线段DE )=3时,则43-=或x ;(3)y x -的值是3-或6.DCBA………………………………4分………………………………4分分………………………2分………1分…………………………1分……………………………2分 ……………………………3分 ……………………………4分……3分。

人教版北京市延庆区七年级上期末数学考试题(有答案)[精选]

人教版北京市延庆区七年级上期末数学考试题(有答案)[精选]

第一学期期末测试卷初一数学1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米, 是当今世界上最大的城市广场. 将440 000用科学记数法表示应为 A .4.4×105B .4.4×104C .44×104D .0.44×1062. 如果向右走5步记为+5,那么向左走3步记为 A .+3 B .﹣3 C .31+D .31- 3. 如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是 A .点A 与点B B .点B 与点C C .点B 与点DD .点A 与点D4. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 A .45° B .55° C .125° D .135°5. 下列各式中运算正确的是A .189=-a aB .4222a a a =+C .b a b a b a 444253-=-D .532623a a a =+6. 下列几何体中,主视图相同的是 A .①② B .①④ C .①③ D .②④7. 下列图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是8. 如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条 墨线,能解释这一实际应用的数学知识是 A.两点确定一条直线 B.两点之间线段最短 C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9. 在解方程133221=+--x x 时,去分母正确的是 A .()()132213=+--x x B .()()332213=+--x xC .()()632312=+--x xD .()()632213=+--x x10.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售. 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四二、填空题(每小题3分,本题共30分) 11.57.32︒ = _______︒ _______' ______ "B12.若x =5是关于x 的方程2x +3k -5=0的解,则k = .13.单项式243ab c -的系数是 ,次数是 ,多项式222389x y x y --的最高次项为 . 14.比较大小:31-52- 15.利用等式的性质解方程:2x +13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 , 解得:x =16.如图,C ,D 是线段AB 上两点,CB =3cm ,DB =5cm ,D 是AC 的中点, 则线段AB 的长为 cm .17.教材中《一元一次方程》一章的知识结构如图所示, 则A 和B 分别代表的是A 代表 ,B 代表 .18. ,,,a b c d 为有理数,现规定一种运算:a cb d=ad bc -,那么当2(1)x -45=18时x 的值是 .19.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣. 《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客ABD C BA人?”设共有客人x 人,可列方程为 __________ __.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、计算:(共4个小题,每小题5分,共20分) 21. -14 -5+30-2 22. (-125)⨯158÷(-23)23. )36()1276521(-⨯-+ 24. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦四、化简求值(共2个小题,每小题5分,共10分) 25. 化简:.74562222b a ab ab b a --+26. 先化简,再求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值,其中x =2,y =-21五、解方程(共2个小题,每小题5分,共10分) 27. )43(2)2(5x x --=- 28. 318146x x -+=-六、请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹) 29. (每小题1分,共4分)如图,已知平面上的三个点A 、B 、C . (1)连接AB ; (2)画射线AC ;(3)画直线BC ; (4)过点A 作BC 的垂线,垂足为D .CA B七、列方程解应用题(本题8分)30.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成。

北京市延庆区七年级数学上学期期末考试试题 新人教版

北京市延庆区七年级数学上学期期末考试试题 新人教版

北京市延庆区2015-2016学年七年级数学上学期期末考试试题一、选择题:(共10个小题,每小题3分,共30分) 每小题给出的四个选项中,只有一个是符合题目要求的............,请在答题纸上将所选项涂黑........... 1.12-的相反数是 A .12 B .12- C .2 D . 2- 2.第30届延庆冰雪欢乐节于2015年12月20日开幕.本届冰雪欢乐节以“冰雪延庆, 激情冬奥”为主题,将持续至2016年2月底.在70余天的时间里,延庆将举办冰雪 赛事、冰雪培训、冰雪旅游、文化宣传4大类20项活动,据不完全统计,截止2016 年1月4日,冰雪节期间,延庆乡村旅游收入超过2350000元.将2350000用科学记 数法表示应为A .72.3510⨯B .62.3510⨯C .623.510⨯D .523.510⨯ 3.下面的说法正确的是A .a -表示负数B .2-是单项式C .35ab 的系数是3D .11x x++是多项式 4.下列计算正确的是A .277a a a +=B .532y y -=C .22232x y x y x y -=D .325a b ab +=5.在下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是①用两颗钉子就可以把木条固定在墙上; ②植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上;③在 A 、B 两地之间架设电线时,总是尽可能沿线段AB 架设;④把弯曲的公路改直,就能缩短路程.A .①②B .①③C .②④D .③④ 6.若代数式742x a b +- 与代数式 423y a b 是同类项,则yx 的值是A .9B .9-C .4D .4-7.某商人在一次买卖中均以120元卖出两件商品,其中一件赚了20%,一件赔了20%, 在这次交易中,该商人A .不赔不赚B .赚了10元C .赔了10元D .赔了30元 8.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是 A .0a b +> B .0a b ->C .0a b ⋅>D .0a b ⋅<9.将一副直角三角尺按如图所示的不同方式摆放,则图中锐角..α∠与β∠相等的是 0a A B CDβααβαβαβ输出结果输入x10.按下面的程序计算,当输入100x =时,输出结果为501;当输入20x =时,输出结果为506;如果开始输入的值x 为正.数.,最后输出的结果为656,那么满足条件的x 的值最多有 A .5个 B .4个 C .3个 D .2个 二、填空题 (共6个小题,每题3分,共18分)11.如果3415A '∠=︒,那么∠A 的余角等于 . 12.如图是某几何体的展开图,那么这个几何体是__________. 13.写出一个只含有字母x ,y 的二次三项式 .14.小明在解一元一次方程329x x -=++时,不小心把墨汁滴在作业本上,其中未知数x 前的系数看不清了,他便问邻桌,但是邻桌只告诉他,方程的解是2x =-(邻桌的答案是正确的),小明由此知道了被墨水遮住的x 的系数,请你帮小明算一算,被墨水遮住的系数是 .15.刘谦的魔术表演风靡全世界,很多同学非常感兴趣,也学起了魔术.小华把任意有 理数对(x ,y )放进装有计算装置的魔术盒,会得到一个新的有理数21x y ++.例如:把(-1,2)放入其中,就会得到21214-++=.现将有理数对(3,-2)放 入其中,得到的有理数是 .若将正整数...对放入其中,得到的值是6,则满足 条件的所有的正整数对(x ,y )为 .16(1)六边形第5层的几何点数是 ;第n 层的几何点数是 . (2)在第 层时,六边形的几何点数是三角形的几何点数的3.5倍.三、解答题 (共4个小题,共41分,17题16分,19题15分,18题、20题各5分) 17.计算:12题图(1)8(2)(3)(1)---++- (2)()()()()12423-÷+--⨯- (3)231()(24)3412-+⨯- (4)3323(9)(3)()(2)3⎡⎤-÷--⨯-+-⎢⎥⎣⎦-18.先化简,再求值:233(2)x y x y ---,其中 2x =-,1y =. 19.解方程:(1)3723x x+=-(2)()32(21)x x x -=-- (3)12123x x-=+20.解不等式组: 43421x xx x ->⎧⎨+<+⎩.四、解答题(本题5分)21.自2010年延庆区举办骑游大会以来,到延庆骑游的人越来越多,延庆区人民政府决定投放公租自行车供市民使用.到2015年底,投放在东湖、西湖自行车租赁点的公租自行车共有550辆,西湖自行车租赁点的公租自行车数量是东湖自行车租赁点的公租自行车数量的2倍少20辆.这两个公租自行车租赁点各有多少辆自行车? 五、画图题(本题4分)22.如图:A ,B ,C ,D 是平面上四个点,按下列要求画出图形. (1)连接BD ;(2)作射线CB ,与DA 的延长线交于点E ; (3)过C 作BD 的垂线,垂足为F .六、解答题 (共4个小题,共22分) 23.(5分)如图,已知点C 是线段AB 的中点, AB =9,若E 是直线AB 上一点,且BE =2, (1)请依题意补全图形;(2)求CE 的长.24.(6分)延庆区某中学七年级(1)(2)两个班共104人,要去延庆地质博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如下:其中(1)班不足 50人,经估算,如果两个班都以班为单位购票,一共应付1240元. 两个班各有多少学生?如果两个班联合起来,作为一个团体购票,可以省多少钱?如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?22题图DC 23题图25.(5分)已知60AOB ∠=︒,从点O 引射线OC ,使40AOC ∠=︒,作AOC ∠的 角平分线OD ,(1)依题意画出图形; (2)求BOD ∠的度数.26.(6分)已知数轴上三点M ,O ,N 对应的数分别为-2,0,4,点P 为数轴上任意一 点,其对应的数为x .(1)如果点P 到点M 、点N 的距离相等,那么x 的值是______________; (2)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是7;如果存在,求出 x 的值;如果不存在,请说明理由;如果点P 以每秒钟6个单位长度的速度从点O 向右运动时,点M 和点N 分别以每秒钟1个单位长度和每秒钟3个单位长度的速度也向右运动,且三点同时出发,那么经过几秒钟,点P 到点M 、点N 的距离相等.延庆区2015-2016学年第一学期期末试卷 初一数学参考答案及评分标准三、解答题17.(1)解:原式=8+2-3-1 ……………………3分 =6 ……………………4分 (2)解:原式=-3-6 ……………………3分 =-9 ……………………4分(3)解:原式=(-891()(24)121212-+⨯- ……………………3分=0 ……………………4分 (4)解:原式=-27÷(-9)-[2+(-8) ] ……………………3分 =3-(-6)=9 ……………………4分 18..解:原式=2x-3y-(3x-6y)……………………1分 = 2x-3y-3x+6y ……………………2分 =-x+3y ……………………3分 当x=-2,y=1时F EC -x+3y =-(-2) +3×1 ……………………4分 =2+3=5 ……………………5分 19.(1)解:3723x x +=-3237x x +=- ……………………3分 416x = ……………………4分 4x = ……………………5分(2)解:()32(21)x x x -=--3621x x x -=-+ ……………………2分 361x x +=+ ……………………3分 47x =……………………4分74x =……………………5分 (3) 解:3(1)46x x -=+ ……………………2分3346x x -=+ ……………………3分 3643x x --=- ……………………4分 9x =- ……………………5分20.解:由①得4x-x >3…………………1分 x >1 …………………2分 由②得3<x …………………4分 ∴x >1 …………………5分21. 解:设东湖自行车租赁点的公租自行车数量为x 辆,则西湖自行车租赁点的公租自行车数量为(2x-20)辆.……………………1分依题意得:2x-20+x=550…………………3分 解得:x=190 ……………………4分那么2x-20=360答:东湖自行车租赁点的公租自行车数量为190辆,则西湖自行车租赁点的公租自行车数量为360辆.…………5分 22. 画对一个給一分23.解:(1)当E 是线段AB 上……………………1分 ∵C 是AB 的中点 ∴BC=21AB ∵AC=9A D BCA OO BACD∴BC=21×9=4.5……………………2分 ∴BE=BC –BE=4.5-2=2.5……………………3分(2)当E 是线段AB 的延长线上……………………4分 由(1)可知BC=21×9=4.5 ∴BE=BC +BE=4.5+2=6.5……………………3分24. (1)设(1)班x 人,(2)班(104-x )人……………………1分 由题意可得:13x+11(104-x)=1240……………………2分 2x=96 x=48 ∴104-x=56答:(1)班48人,(2)班56人 …………………3分 (2)1240-104*9=304(元) …………………4分(3)只要(1)班多买3张票最省钱,因为此时票价为51*11=561,而原票价48*13=624…………5分25.分两种情况讨论(1)如图1…………………1分∵射线OD 平分AOC ∠ ∴AOD ∠=21AOC ∠=20° …………………2分 ∴BOD ∠=AOB AOD ∠+∠=80°…………………3分 (2)如图2…………………4分∵射线OD 平分AOC ∠ ∴COD ∠=21AOC ∠=20°…………………5分 ∴BOD ∠=AOB AOC COD ∠-∠+∠=40°…………………6分26.(1)x=1 …………………1分 (2)P 1:x=-2.5,P 2:x=4.5 …………………3分 (3)设经过t 秒点P 到点M 、点N 的距离相等∴P 点表示的数是6t ,M 点表示的数是-2+t ,N 点表示的数是4+3t ,……4分 ∴由题意,得 PM=PN∴6t -(-2+t )=4+3t -6t …………………5分∴14t = …………………6分答:经过14秒钟,点P 到点M 、点N 的距离相等.。

【名师精选】北京市延庆区七年级上期末数学考试题有答案

【名师精选】北京市延庆区七年级上期末数学考试题有答案

第一学期期末测试卷初一数学注意事项1.本试卷共6页,共八道大题,31道小题,满分为120分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题选择题答案填涂在答题卡上,非选择题书写在答题纸上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(每小题3分,本题共30分)1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米,是当今世界上最大的城市广场. 将440 000用科学记数法表示应为A .4.4×105B .4.4×104C .44×104D .0.44×1062. 如果向右走5步记为+5,那么向左走3步记为A .+3 B .﹣3C .31D .313. 如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 与点B B .点B 与点C C .点B 与点DD .点A 与点D4. 如图所示,用量角器度量∠AOB ,可以读出∠AOB的度数为A .45°B .55°C .125°D .135°5.下列各式中运算正确的是A .189a aB .4222aaaC .ba ba ba 444253D .532623aaa6.下列几何体中,主视图相同的是C D B A -2-121A .B .C .D .A .①②B .①④C .①③ D.②④7. 下列图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是8. 如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9. 在解方程133221x x 时,去分母正确的是A .132213x x B .332213x x C .632312xxD .632213xx10.商场为了促销,推出两种促销方式:方式①:所有商品打8折销售.方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案:方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买;方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买;方案四:120元和280元的商品均按促销方式②购买.你给杨奶奶提出的最省钱的购买方案是 A.方案一 B.方案二 C.方案三 D.方案四AB二、填空题(每小题3分,本题共30分)11.57.32 = _______ _______' ______ " 12.若=5是关于的方程2+3-5=0的解,则= .13.单项式243ab c 的系数是,次数是,多项式222389x yx y的最高次项为.14.比较大小:315215.利用等式的性质解方程:2+13=12第一步:在等式的两边同时,第二步:在等式的两边同时,解得:=16.如图,C ,D 是线段AB 上两点,CB =3cm ,DB =5cm ,D 是AC 的中点,则线段AB 的长为cm .17.教材中《一元一次方程》一章的知识结构如图所示,则A 和B 分别代表的是A 代表,B 代表.18.,,,a b c d 为有理数,现规定一种运算:a cb d=ad bc ,那么当2(1)x 45=18时x 的值是.19.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津ABDC BA吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人人,可列方程为____________.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、计算:(共4个小题,每小题5分,共20分)21. -14 -5+30-222. (-125)158(-23)23. )36()1276521(24.411(10.5)23四、化简求值(共2个小题,每小题5分,共10分)25. 化简:.74562222b a ab ab ba 26. 先化简,再求42y -[6y -3(4y -2)-2y ]+1的值,其中=2,y =-21五、解方程(共2个小题,每小题5分,共10分)27. )43(2)2(5x x28.318146x x 六、请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹)29. (每小题1分,共4分)如图,已知平面上的三个点A 、B 、C .(1)连接AB ;(2)画射线AC ;(3)画直线BC ;(4)过点A 作BC 的垂线,垂足为D .七、列方程解应用题(本题8分)30.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成。

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2063.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 4.-2的倒数是( )A .-2B .12-C .12D .25.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或57.将图中的叶子平移后,可以得到的图案是()A .B .C .D .8.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°9.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =10.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511C .﹣1023D .102511.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题13.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 16.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.17.如图,若12l l //,1x ∠=︒,则2∠=______.18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 19.15030'的补角是______.20.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.21.若∠1=35°21′,则∠1的余角是__. 22.3.6=_____________________′ 23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③16的平方根.(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.26.计算:(1)(﹣0.5)+(﹣32)﹣(+1)(2)2+(﹣3)2×(﹣1 12)(3)3825+|﹣2|﹣(﹣1)201827.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按,,,A B C D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了________名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是_________;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?28.一位同学做一道题:“已知两个多项式A,B,计算.”他误将“”看成“”,求得的结果为.已知,请求出正确答案.29.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种58乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元? 30.如图,已知点C 为AB 上的一点,12AC =,23CB AC =,点D 是AC 的中点,点E 是AB 的中点,求DE 的长四、压轴题31.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.32.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.33.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.D解析:D【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.C解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.4.B解析:B【解析】 【分析】根据倒数的定义求解. 【详解】 -2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握5.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.6.D解析:D 【解析】 【分析】如图,根据点A 、B 表示的数互为相反数可确定原点,即可得出点B 表示的数,根据两点间的距离公式即可得答案. 【详解】如图,设点C 表示的数为m , ∵点A 、B 表示的数互为相反数, ∴AB 的中点O 为原点, ∴点B 表示的数为3,∵点C 到点B 的距离为2个单位, ∴3m -=2, ∴3-m=±2, 解得:m=1或m=5, ∴m 的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.7.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.8.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC ⊥OD , ∴∠COD=90°, ∵∠AOC=40°, ∴∠AOD=50°,∴∠BOD=180°﹣50°=130°, 故选D . 【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.9.A解析:A 【解析】 【分析】根据等式的基本性质对各项进行判断后即可解答. 【详解】选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A. 【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.10.D解析:D 【解析】 【分析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可. 【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.11.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m 时水位变化记作0.6m +,∴水位下降0.8m 时水位变化记作0.8m -,故选:C .【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 二、填空题13.5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.14.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;16.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键. 17.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.18.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键19.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】 【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.20.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】 解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】 本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可. 【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 21.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.22.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:3 36【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:3.630.63(0.660)'=︒+︒=︒+⨯=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.(1)①2;②-3;③±2;(2)图见解析,﹣3<﹣2<2<2.【解析】【分析】(1)利用算术平方根、平方根、立方根定义计算即可求出;(2)将各数表示在数轴上,按照从小到大顺序排列即可.【详解】解(1)①2的算术平方根是2;②﹣27的立方根是﹣3;③16=4,4的平方根是±2.(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣22<2.【点睛】此题考查了实数大小比较,以及实数与数轴,熟练掌握运算法则是解本题的关键.26.(1)﹣3;(2)54;(3)﹣6. 【解析】【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数混合运算法则计算得出答案;(3)直接利用立方根以及绝对值的性质化简各数进而得出答案.【详解】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣112) =2﹣34 =54; (3)原式=﹣2﹣5+2﹣1=﹣6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.27.(1)50;(2)36°;(3)作图见解析;(4)100名.【解析】【分析】(1)根据条形统计图和扇形统计图的对应关系,用条形统计图中某一类的频数除以扇形统计图中该类所占百分比即可解决.(2)用单位1减掉A 、B 、C 所占的百分比,得出D 项所占的百分比,然后与360°相乘即可解决.(3)用总数减去A 、B 、C 的频数,得出D 项的频数,然后画出条形统计图即可.(4)用七年级所有学生乘A 项所占的百分比,即可解决.【详解】(1)10÷20%=50;(2)()360146%24%20%36010%36︒⨯---=︒⨯=︒;(3)D 项的人数:50-10-23-12=5.补全条形统计图如图所示.(4)因为500×20%=100(名).所以估计全校七年级体育测试中A级学生人数约为100名.【点睛】本题考查了条形图和扇形统计图结合题型,解决本题的关键是正确理解题意,熟练掌握扇形统计图和条形图的各类量的对应关系.28.【解析】【分析】根据题意列出式子,先求出A表示的多项式,然后再求2A+B.【详解】解:由,,得.所以.【点睛】本题考查整式的加减运算,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.根据题中的关系可先求出A,进一步求得2A+B.29.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.30.4【解析】【分析】 根据已知条件可求出28,203CB AC AB ===,再根据点D 是AC 的中点,点E 是AB 的中点,求出,DC AE ,由图可得出DE AE AD =-,计算求解即可.【详解】解:∵12AC =,23CB AC =∴28,203CB AC AB === ∵点D 是AC 的中点,点E 是AB 的中点∴10,6AE AD DC ===∴1064DE AE AD =-=-=.【点睛】本题考查的知识点是与线段中点有关的计算,能够根据图形找出相关线段间的数量关系是解此题的关键.四、压轴题31.(1)10;(2)212±;(3)288. 5±±, 【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a 的值为10.(2)分两种情况,点A 在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a 的值.同理可求出当点A 在原点的左侧时,a 的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b =-4,则a 的值为 10(2)解:当A 在原点O 的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m 2=, 所以,OA=212,点A 在原点O 的右侧,a 的值为212. 当A 在原点的左侧时(如图),a=-212综上,a 的值为±212. (3)解:当点A 在原点的右侧,点B 在点C 的左侧时(如图), c=-285.当点A 在原点的右侧,点B 在点C 的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.32.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点, 33.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,分两种情况:如图3所示,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=12∠AOC ,∠COE=12∠BOC , ∴∠DOE=∠COD ﹣∠COE=12(∠AOC ﹣∠BOC )=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。

最新北京市延庆区七年级上期末数学考试题 有答案

最新北京市延庆区七年级上期末数学考试题 有答案

A .B .C .D .初一数学期末测试卷注 意 事 项 1.本试卷共6页,共八道大题,31道小题,满分为120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题选择题答案填涂在答题卡上,非选择题书写在答题纸上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米, 是当今世界上最大的城市广场. 将440 000用科学记数法表示应为 A .4.4×105B .4.4×104C .44×104D .0.44×1062. 如果向右走5步记为+5,那么向左走3步记为 A .+3 B .﹣3 C .31+D .31- 3. 如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是 A .点A 与点B B .点B 与点C C .点B 与点DD .点A 与点D4. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 A .45° B .55° C .125° D .135°5. 下列各式中运算正确的是A .189=-a aB .4222a a a =+C .b a b a b a 444253-=-D .532623a a a =+6. 下列几何体中,主视图相同的是 A .①② B .①④ C .①③ D .②④7. 下列图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是C D B A -2-12108. 如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条 墨线,能解释这一实际应用的数学知识是 A.两点确定一条直线 B.两点之间线段最短 C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9. 在解方程133221=+--x x 时,去分母正确的是 A .()()132213=+--x x B .()()332213=+--x xC .()()632312=+--x xD .()()632213=+--x x10.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售. 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四二、填空题(每小题3分,本题共30分) 11.57.32︒ = _______︒ _______' ______ "12.若x =5是关于x 的方程2x +3k -5=0的解,则k = .B13.单项式243ab c -的系数是 ,次数是 ,多项式222389x y x y --的最高次项为 . 14.比较大小:31-52-15.利用等式的性质解方程:2x +13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 , 解得:x =16.如图,C ,D 是线段AB 上两点,CB =3cm ,DB =5cm ,D 是AC 的中点, 则线段AB 的长为 cm .17.教材中《一元一次方程》一章的知识结构如图所示, 则A 和B 分别代表的是A 代表 ,B 代表 .18. ,,,a b c d 为有理数,现规定一种运算:a cb d=ad bc -,那么当2(1)x -45=18时x 的值是 .19.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣. 《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为 __________ __.ABD C BA20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、计算:(共4个小题,每小题5分,共20分) 21. -14 -5+30-2 22. (-125)⨯158÷(-23)23. )36()1276521(-⨯-+ 24. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦四、化简求值(共2个小题,每小题5分,共10分) 25. 化简:.74562222b a ab ab b a --+26. 先化简,再求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值,其中x =2,y =-21五、解方程(共2个小题,每小题5分,共10分) 27. )43(2)2(5x x --=- 28. 318146x x -+=-六、请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹) 29. (每小题1分,共4分)如图,已知平面上的三个点A 、B 、C . (1)连接AB ; (2)画射线AC ;(3)画直线BC ; (4)过点A 作BC 的垂线,垂足为D .CA B七、列方程解应用题(本题8分)30.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成。

七年级上册北京延庆县中学数学期末试卷试卷(word版含答案)

七年级上册北京延庆县中学数学期末试卷试卷(word版含答案)

七年级上册北京延庆县中学数学期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.【答案】(1)解:因为,,所以,又因为,所以(2)解:因为,,,,所以(3)解:由(1)知,由(2)知,故由(1),(2)可猜想:【解析】【分析】(1)由题意可得∠BOC+∠AOC=,则∠AOC=-∠BOC,由角的构成可得∠AOD=+∠AOC即可求解;(2)由图知,∠COD+∠BOC+∠AOB+∠AOD=,把∠COD、∠BOC、∠AOB代入计算即可求解;(3)由(1)和(2)中求得的∠AOD和∠BOC的值即可计算求解。

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库

北京延庆县中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( )A .3秒B .4秒C .5秒D .6秒2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×107 3.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( )A .1B .2C .3D .44.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短5.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒6.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠7.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120208.计算:2.5°=( )A.15′B.25′C.150′D.250′9.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y10.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米11.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A.1个B.2个C.3个D.4个12.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()A.15°B.25°C.35°D.45°二、填空题13.若|x|=3,|y|=2,则|x+y|=_____.14.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.15.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.16.36.35︒=__________.(用度、分、秒表示)17.已知线段AB=8 cm,在直线AB上画线段BC,使得BC=6 cm,则线段AC=________cm.18.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.禽流感病毒的直径约为0.00000205cm,用科学记数法表示为_____cm;21.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC2BC=,若OC6=,则线段AB的长为______.22.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费_____元(用含a,b的代数式表示).23.如图,将△ABE向右平移3cm得到△DCF,若BE=8cm,则CE=______cm.24.若代数式x2+3x﹣5的值为2,则代数式2x2+6x﹣3的值为_____.三、解答题25.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.26.小明同学有一本零钱记账本,上面记载着某一周初始零钱为100元,周一到周五的收支情况如下(记收入为+,单位:元):+25,-15.5,-23,-17,+26(1)这周末他可以支配的零钱为几元?(2)若他周六用了a元购得2本书,周日他爸爸给了他10元买早饭,但他实际用了15元,恰好用完了所有的零钱,求a的值。

北京市延庆区七年级上学期数学期末试卷解析版

北京市延庆区七年级上学期数学期末试卷解析版

七年级上学期数学期末试卷一、单项选择题1.的相反数是〔〕A. B. C. D.2.2021年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为〔〕A. B. C. D.3.一实验室检测A、B、C、D四个元件的质量〔单位:克〕,超过标准质量的克数记为正数,缺乏标准质量的克数记为负数,结果如下图,其中最接近标准质量的元件是〔〕A. B. C. D.4.如下图的圆柱体从正面看得到的图形可能是〔〕A. B. C. D.5.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是〔〕A. 点AB. 点BC. 点CD. 点D6.以下方程中,解为x=4的方程是〔〕.A. x-1=4B. 4x=1C. 4x-1=3x+3D. 2〔x-1〕=17.以下运算结果正确的选项是〔〕A. 5x﹣x=5B. 2x2+2x3=4x5C. ﹣4b+b=﹣3bD. a2b﹣ab2=08.我国古代数学著作?增删算法统宗?记载“绳索量竿〞问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.〞其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.那么正确的方程是〔〕A. B. C. D.二、填空题9.用四舍五入法将533.625精确到个位,所得到的近似数为________.10.写出单项式-a3b的一个同类项:________.11.如图1,在直线MN的异侧有A,B两点,要在直线MN上取一点C,使AC+BC最短.小明的作法是连接线段AB交直线MN于点C,如图2.这样作图得到的点C,就使得AC+BC最短,依据是________.12.如果|a-2|+〔b+3〕2=0,那么a+b=________.13.如图的流程图是小明解方程3x+1=x-3的过程.其中③代表的运算步骤为系数化1,该步骤对方程进行变形的依据是________.2-4x的值为7,那么6x2-8x-9的值为.15.,∠AOB=50°,∠BOC=30°,OD是∠AOC的角平分线,那么∠DOB的度数是________.16.计算〔+2〕+〔-5〕的思考过程如下:a.决定应用有理数加法法那么中“异号的两个数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值〞;b.确定和的符号:计算出加数+2和-5的绝对值,分别是2和5,通过比拟它们的绝对值发现,加数-5的绝对值较大,写出和的符号为“-〞;c.确定和的绝对值:5-2=3;d.写出计算结果-3;e.判断出是两个有理数相加的问题;f.观察两个加数的符号,发现是异号两数相加.请你仔细阅读以上思考过程,写出正确的顺序:________.三、解答题17.计算:〔1〕〔2〕〔3〕18.解方程:〔1〕〔2〕19.解不等式:,并把它的解集在数轴上表示出来.20.先化简,再求值:,其中,.21.如图〔1〕如图1,平面上有3个点A,B,C.①画直线AB;画射线BC;画线段AC;②过点C作AB的垂线,垂足为点D;③量出点C到直线AB的大约距离.〔2〕尺规作图::线段a,b,如图2.求作:一条线段MN,使它等于2a-b.〔不写作法,保存作图痕迹〕22.根据要求作答〔1〕如图,OC平分∠AOB,∠AOC=40°.求∠BOC的度数.〔2〕如图,点O是直线AB上的一点,∠1与∠2互余,求∠DOC的度数.〔3〕如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.23.列方程解应用题:晚饭后,小明的爸爸像往常一样去散步.半小时后,妈妈发现爸爸没有带,就让小明骑自行车去给爸爸送.如果爸爸的速度是4千米/时,小明骑自行车的速度是12千米/时,小明用多少时间可以追上爸爸?〔要求:先写出审题过程,在设未知数列方程〕24.,点O是数轴的原点,点A、点B是数轴上不重合的两个点,且点A在点B的左边,点M是线段AB 的中点.在上述条件下,解决问题:〔1〕如果点A表示的数是4,点B表示的数是6,那么点M表示的数是________;〔2〕如果点A表示的数是-3,点M表示的数是2,那么点B表示的数是________;〔3〕如果点A表示的数是a,点B表示的数是b,那么点M表示的数是________;〔用含a,b的代数式表示〕,所以AM=BM.因此得到关于x的方程:x-a=b-x.〔4〕解出这个方程:x-a=b-x.〔5〕如果点A表示的数是-2,点C表示的数是3,点B是线段OC上的一点,点M表示的数为m,那么m的取值范围是________;〔6〕如果点E表示的数是1,点F表示的数是x,点A从点E出发,以每分钟1个单位长度的速度向右运动,点B从点F出发,以每分钟3个单位长度的速度向右运动,设运动时间为t〔t>0〕.①当x=5时,如果EM=6,求t的值;②当t≤3时,如果EM≤9,求x的取值范围.25.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x] .例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决以下问题:〔1〕[4.8]= ________,[-6.5]= ________;〔2〕如果[x]=3,那么x的取值范围是________;〔3〕如果[5x-2]=3x+1,那么x的值是________;〔4〕如果x=[x]+a,其中0≤a<1,且4a= [x]+1,求x的值.答案解析局部一、单项选择题1.【解析】【解答】解:根据相反数的定义知,−8的相反数是8.故答案为:C.【分析】根据相反数的定义进行求解即可得出结论.2.【解析】【解答】解:.故答案为:B.【分析】用科学记数法表示绝对值较大的数,一般表示成a×10n的形式,其中1≤∣a∣<10,n等于原数的整数位数减去1.3.【解析】【解答】∵|1.2|=1.2,|−2.3|=2.3,|+0.9|=0.9,|−0.8|=0.8,又∵0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件.故答案为:A.【分析】先求出四个数的绝对值,再比拟大小,计算求解即可。

北京市延庆区七年级(上)期末数学试卷

北京市延庆区七年级(上)期末数学试卷

七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.嫦娥四号探测器于2019年1月3日,成功着陆在月球背面,通过“鹊桥”中继星传回了世界第一张近距离拍摄的月背影像图,开启了人类月球探测新篇章.当中继星成功运行于地月拉格朗日L2点时,它距离地球约1500000km.用科学记数法表示数1500000为()A.B.C.D.2.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.3.分别从正面、左面和上面三个方向看下面哪个几何体,能得到如图所示的平面图形()A.B.C.D.4.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()5.如图,∠BDC=90°,点A在线段DC上,点B到直线AC的距离是指哪条线段长()A. 线段DAB. 线段BAC. 线段DCD. 线段BD6.下列说法正确的是()A. 的次数是2B. 1是单项式C. 系数是D. 多项式的次数是37.兴延高速是世界园艺博览会重点配套工程,2019年1月1日,兴延高速正式通车.石峡隧道是兴延高速项目中最长的隧道,也是北京市最长的公路隧道,总长约5.8公里.正因为穿越的隧道多,所以兴延高速最大的特点是“直”,明显缩短了北京市区到延庆的距离,其主要依据是()A. 两点确定一条直线B. 过一点有且只有一条直线与已知直线垂直C. 垂线段最短D. 两点之间,线段最短8.计算个=()个A. B. C. D.二、填空题(本大题共8小题,共24.0分)9.近似数2.780精确到______.10.如图所示,可以用量角器度量∠AOB的度数,那么∠AOB的度数为______.11.若代数式-5x6y3与2x2n y3是同类项,则常数n的值是______.12.请你写出一个绝对值小于3.7的负数,你写的是______.13.如图的框图表示解方程3x+3=x-5的流程,其中“移项”这一步骤的依据是______.14.如果|a+3|+(b-2)2=0,那么代数式(a+b)2019的值为______.15.已知∠A=20°18′,∠B=20.4°.请你比较它们的大小:∠A______∠B(填“>或<或=”).16.程大位,明代珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).《算法统宗》中有这样一道题,其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:这一群人共有多少人?所分的银子共有多少两?若设共有x人,则可列方程为______.三、计算题(本大题共6小题,共36.0分)17.计算:①13+(-5)-(-21)-19.②(-3)×6÷(-2)×.18.计算:①.②.19.先化简,再求值:2(a2b+ab2)-2(a2b-1)-ab2-2.其中a=1,b=-3.20.解方程:3(x-2)=x-4.21.解方程:-1=.22.阅读材料:在数学课上,老师让同学们解方程:-=1.以下是小明的解题过程:请你仔细阅读,你认为小明同学哪一步书写的好?哪一步有错误?说明理由.四、解答题(本大题共6小题,共48.0分)23.如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.24.如图,点O是直线AB上一点,∠BOC=120°,OD请你补全下列解题过程.∵点O为直线AB上一点,∴∠AOB=______°.∵∠BOC=120°,∴∠AOC=______°.∵OD平分∠AOC,∴∠COD=∠AOC.∴∠COD=______°.(2)若E是直线AB外一点,满足∠COE:∠BOE=4:1,直接写出∠BOE的度数.25.按要求画图,并回答问题:如图,在同一平面内有三点A,B,C.(1)画直线AC;(2)画射线CB;(3)过点B作直线AC的垂线BD,垂足为D;(4)画线段AB及线段AB的中点E,连接DE;(5)通过画图和测量,与线段DE长度相等的线段有______.26.小明的爷爷每天都步行到距离家3.2千米的公园去打太极拳.周日早晨,爷爷出发半小时后,小明发现爷爷忘记带家门钥匙了,小明就骑自行车去给爷爷送钥匙.如果爷爷的速度是4千米/时,小明骑自行车的速度是12千米/时,当小明追上爷爷时,爷爷到公园了吗?27.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x>300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.28.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q 表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a (a≥0),则点N表示的数是______(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.答案和解析1.【答案】B【解析】解:1500000=1.5×106,故选:B.根据科学记数法的方法可以表示出题目中的数据.本题考查科学记数法,解答本题的关键是明确科学记数法的方法.2.【答案】D【解析】解:由数轴可得,-1<m<0<2<n<3,故选项A错误,选项B错误,∴m>-n,故选项C错误,选项D正确,故选:D.根据数轴可以判断m、n的大小,从而可以解答本题.本题考查数轴,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.3.【答案】D【解析】解:由主视图和左视图发现,该几何体的侧面均为矩形.再由俯视图可知,该几何体的底面是三角形,由这些特征即可判断该几何体是三棱柱.故选:D.根据主视图和俯视图,判断该几何体侧面的性质;再由俯视图判断该几何体底面的情况,根据侧面和底面形状即可得到正确答案.本题考查了简单几何体的三视图,能从三视图中得出几何体底面和侧面的特征是解题关键.4.【答案】A【解析】解:∵黑色珠子每个a元,白色珠子每个b元,∴要串成如图所示的手链,小红购买珠子应该花费为:3a+4b.直接利用两种颜色的珠子的价格进而求出手链的价格.此题主要考查了列代数式,正确得出各种颜色珠子的数量是解题关键.5.【答案】D【解析】解:由图可得,BD⊥AD,所以,点B到直线AC的距离是线段BD的长.故选:D.根据点到直线的距离的定义解答即可.本题考查了点到直线的距离的定义,是基础题,熟记概念是解题的关键.6.【答案】B【解析】解:A、ab2的次数是3,故A错误;B、1是单项式,故B正确;C、系数是-,故C错误;D、多项式a+b2的次数是2,故D错误;故选:B.根据单项式的次数、系数以及多项式的次数进行解答即可.本题考查了单项式和多项式,掌握单项式的次数系数以及多项式的次数是解题的关键.7.【答案】D【解析】解:兴延高速最大的特点是“直”,明显缩短了北京市区到延庆的距离,其主要依据是:两点之间,线段最短.故选:D.直接利用线段的性质分析得出答案.此题主要考查了线段的性质,正确理解题意是解题关键.解:=,故选:C.根据算式计算即可.此题考查数字的变化问题,关键是根据算式计算.9.【答案】0.001【解析】解:近似数2.780精确到0.001.故答案为0.001.根据近似数的精确度求解.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.10.【答案】55°【解析】解:由图形所示,∠AOB的度数为55°,故答案为:55°由图形可直接得出.本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.11.【答案】3【解析】解:由-5x6y3与2x2n y3是同类项,得2n=6,解得n=3.故答案为:3.根据同类项是字母相同且相同字母的指数也相同,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.12.【答案】-1,答案不唯一解:绝对值小于3.7的负数可以是-1,答案不唯一,故答案为:-1,答案不唯一根据绝对值的性质求出绝对值<3.7的负数即可.本题考查了绝对值的有关内容,应牢固掌握.13.【答案】等式两边同时加(或减)同一个数(或整式),所得等式仍然成立【解析】解:如图的框图表示解方程3x+3=x-5的流程,其中“移项”这一步骤的依据是等式两边同时加(或减)同一个数(或整式),所得等式仍然成立,故答案为:等式两边同时加(或减)同一个数(或整式),所得等式仍然成立利用等式的基本性质判断即可.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.【答案】-1【解析】解:∵|a+3|+(b-2)2=0,∴a+3=0,b-2=0,解得:a=-3,b=2,则原式=(-3+2)2019=(-1)2019=-1,故答案为:-1.首先根据|a+3|+(b-2)2=0,可得a+3=0,b-2=0,据此求出a、b的值各是多少;然后把a、b的值代入代数式(a+b)2019,求出算式的值是多少即可.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简,还考查了绝对值以及偶次方的非负性质的应用.15.【答案】<解:∵∠B=20.4=20°24'.∴∠A=20°18'<∠B=20.4°=20°24',故答案为:<根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.此题考查了角的大小比较,先把∠B的度数化成度、分、秒的形式,再进行比较是本题的关键.16.【答案】7x+4=9x-8【解析】解:设共有x人,依题意,得:7x+4=9x-8.故答案为:7x+4=9x-8.设共有x人,根据“如果每人分七两,则剩余四两;如果每人分九两,则还差八两”及银子总数不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.【答案】解:①原式=13-5+21-19=34-24=10;②原式===.【解析】①减法转化为加法,再依据法则计算可得;②根据乘除混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.18.【答案】解:①原式==4-6-27=-29;②==(-8)×[-7+(3-1)]=(-8)×(-5)=40.【解析】①利用乘法分配律展开,再计算乘法,最后计算加减可得;②依据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.19.【答案】解:原式=2a2b+2ab2-2a2b+2-ab2-2=ab2,当a=1,b=-3时,原式=1×(-3)2=9.【解析】根据整式的加减混合运算法则把原式化简,代入计算即可.本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.20.【答案】解:3(x-2)=x-4去括号,得3x-6=x-4,移项,得3x-x=6-4,合并同类项,得2x=2,系数化为1,得x=1.【解析】方程去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【答案】解:去分母得:3x+3-6=4-2x,移项合并得:5x=7,解得:x=1.4.【解析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.22.【答案】解:第三步去括号有误,括号前面是负号,去括号时括号里边各项都变号.最后一步也出错了,两边应除以系数7.正确解法为:去分母得:3(3x+1)-(2x-5)=6,去括号得:9x+3-2x+5=6,移项合并得:7x=-2,解得:x=.【解析】第三步错误,去括号有误.注意分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.最后系数化为1时出错.此题考查了解一元一次方程,熟练掌握运算法则和运算步骤是解本题的关键.23.【答案】解:∵AD=6,BD=4,∴AB=AD+BD=10.∵点C是线段AB的中点,∴AC=CB=AB=5.∴CD=AD-AC=1.【解析】根据线段的和差,可得AB的长,根据线段中点的性质,可得AC的长,再根据线段的和差,可得答案.本题考查了两点间的距离,利用线段中点的性质得出AC的长是解题关键.24.【答案】180 60 30【解析】解:(1)∵点O为直线AB上一点,∴∠AOB=180°.∵∠BOC=120°,∴∠AOC=60°.∵OD平分∠AOC,∴∠COD=∠AOC.∴∠COD=30°.故答案为:180°;60°;30°;(2)分情况讨论:①当OE在∠BOC的内部时,∠COE+∠BOE=120°,∵∠COE:∠BOE=4:1,∴5∠BOE=120°,即∠BOE=24°;②OE在∠BOC的外部时,∠COE+∠BOE=360°-120°=240°,∵∠COE:∠BOE=4:1,∴∠BOE=240°÷5=48°.故∠BOE的度数为24°或48°.(1)根据邻补角的性质可得∠AOC=180°-120°=60°,再根据角平分线的性质可得答案;(2)根据补角的定义解答即可.本题考查角平分线和邻补角,能熟练地运用邻补角互补进行计算是解此题的关键.25.【答案】BE,AE【解析】解:(1)如图所示,直线AC即为所求;(2)如图所示,射线CB即为所求;(3)如图所示,线段BD即为所求;(4)如图所示,线段AB及DE即为所求;(5)通过画图和测量,与线段DE长度相等的线段有BE,AE,故答案为:BE,AE.(1)根据直线的概念求解可得;(2)根据射线的概念求解可得;(3)根据垂线的概念作图可得;(4)根据线段及线段中点的概念作图可得;(5)由作图及直角三角形的性质求解可得.本题主要考查作图-复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.26.【答案】解:设小明用x小时追上爷爷,依题意,得:4×+4x=12x,解得:x=,小明追上爷爷时,爷爷共走了4×+4×=3(千米),3千米<3.2千米.答:小明追上爷爷时,爷爷没有到公园.【解析】设小明用x小时追上爷爷,根据路程=速度×时间结合小明追上爷爷时两人的路程相等,即可得出关于x的一元一次方程,解之即可得出x的值,再利用爷爷行走的路程=速度×时间可求出小明追上爷爷时爷爷行走的路程,将其与3.2千米比较后即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.【答案】解:(1)甲超市:300+0.8×(x-300)=0.8x+60(元)乙超市:200+0.85×(x-200)=0.85x+30(元)(2)甲超市:300+0.8×(500-300)=460(元)乙超市:200+0.85×(500-200)=455(元)∵460>455∴当顾客累计购物500元时,在乙超市购物合算.【解析】(1)根据超市的销售方式可列式表示在甲超市购物所付的费用和在乙超市购物所付的费用;(2)把x=500代入(1)中的代数式求得数值,进一步比较得出答案即可.此题考查一元一次方程的应用,列代数式与代数式求值,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.【答案】1+a或1-a【解析】解:(1)根据题意可知,点M表示的数为1,且点N到点M的d追随值d[MN]=a (a≥0),∴点M到点N的距离为a,如点N在点M左侧,则N表示的数为1-a,若点N 在点M右侧,则N表示的数为1+a.故答案为1+a或1-a.(2)①根据题意,点A所表示的数为1+3t,点B所表示的数为4+t,∴AB=|4+t-(1+3t)|=|3-2t|,∵AB=2,∴|3-2t|=2,当3-2t=2时,解得t=,当3-2t=-2时,解得t=.∴t的值为或.②当点B在点A左侧或者重合时,此时b≤1,随着时间的增大,A和B之间的距离会越来越大,∵0<t≤3时,点A到点B的d追随值d[AB]≤6,∴1-b+3×(3-1)≤6,解得b≥1,∴b=1.当点B在点A右侧时,此时b>1,在A、B不重合的情况下,A和B之间的距离会越来越小,∴b≤7,∴1<b≤7,综合两种情况,b的取值范围是1≤b≤7.(1)据题干的定义,分两种情况,一种是点N在点M左侧,一种是点N在点M 右侧.(2)先用含t的式子表示点A和点B,再分两种情况,点A在点B的左侧,和点A在点B的右侧,类比行程问题列式即可.此题考查了数轴上的动点,及两点之间的距离,还有绝对值的意义.另外解决数轴上两点之间的距离要考虑分情况讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末测试卷初一数学一、选择题(每小题3分,本题共30分)1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米, 是当今世界上最大的城市广场. 将440 000用科学记数法表示应为 A .4.4×105B .4.4×104C .44×104D .0.44×1062. 如果向右走5步记为+5,那么向左走3步记为 A .+3 B .﹣3 C .31+D .31- 3. 如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是 A .点A 与点B B .点B 与点C C .点B 与点DD .点A 与点D4. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 A .45° B .55° C .125° D .135°5. 下列各式中运算正确的是A .189=-a aB .4222a a a =+C .b a b a b a 444253-=- D .532623a a a =+6. 下列几何体中,主视图相同的是 A .①② B .①④ C .①③ D .②④7. 下列图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是8. 如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条 墨线,能解释这一实际应用的数学知识是 A.两点确定一条直线 B.两点之间线段最短 C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9. 在解方程133221=+--x x 时,去分母正确的是 A .()()132213=+--x x B .()()332213=+--x xC .()()632312=+--x xD .()()632213=+--x x10.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售. 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是BA. 方案一B.方案二C.方案三D.方案四二、填空题(每小题3分,本题共30分) 11.57.32︒ = _______︒ _______' ______ "12.若x =5是关于x 的方程2x +3k -5=0的解,则k = .13.单项式243ab c -的系数是 ,次数是 ,多项式222389x y x y --的最高次项为 . 14.比较大小:31-52-15.利用等式的性质解方程:2x +13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 , 解得:x=16.如图,C ,D 是线段AB 上两点,CB =3cm ,DB =5cm ,D 是AC 的中点, 则线段AB 的长为 cm .17.教材中《一元一次方程》一章的知识结构如图所示, 则A 和B 分别代表的是A 代表 ,B 代表 .18. ,,,a b c d 为有理数,现规定一种运算:a cb d=ad bc -,ABD C BA那么当2(1)x -45=18时x 的值是 .19.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣. 《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为 __________ __.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、计算:(共4个小题,每小题5分,共20分) 21. -14 -5+30-2 22. (-125)⨯158÷(-23)23. )36()1276521(-⨯-+ 24. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦四、化简求值(共2个小题,每小题5分,共10分) 25. 化简:.74562222b a ab ab b a --+26. 先化简,再求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值,其中x =2,y =-21五、解方程(共2个小题,每小题5分,共10分) 27. )43(2)2(5x x --=- 28. 318146x x -+=-六、请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹) 29. (每小题1分,共4分)如图,已知平面上的三个点A 、B 、C . (1)连接AB ; (2)画射线AC ;(3)画直线BC ; (4)过点A 作BC 的垂线,垂足为D .七、列方程解应用题(本题8分)30. 八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成。

森林体验 馆包括"八达岭森林变迁"、"八达岭森林大家族"、"森林让生活更美好"等展厅,户外 游憩体验系统根据森林生态旅游最新理念,采取少设施、设施集中的点线布局模式, 突破传统的"看风景"旅游模式,强调全面体验森林之美。

在室内展厅内,有这样一个可以动手操作体验的仪器,如图 小明在社会大课堂活动中,记录了这样一组数字:CAB根据以上材料回答问题:A,B 两地相距300公里,小轿车以90公里/小时的速度从A 地开往B 地;公共汽车以60公里/小时的速度从B 开往A 地,两车同时出发相对而行,两车在C 地相遇,相遇后继续前行到达各自的目的地。

(1)多少小时后两车相遇?(2)小轿车和公共汽车分别到达目的地,计算小轿车的碳足迹为多少?公共汽车的碳中和树木棵数为多少?(3)根据观察或计算说明,为了减少环境污染,我们应该选择哪种交通工具出行更有利于环保呢?八、解答题(本题8分) 31. 阅读下面材料:点A 、B 在数轴上分别表示实数a 、b , A 、B 两点之间的距离表示为AB . 当A 、B 两点中有一点在原点时, 不妨设点A 在原点, 如图甲, AB =OB =∣b ∣=∣a - b ∣; 当A 、B 两点都不在原点时,① 如图乙, 点A 、B 都在原点的右边,AB = OB - OA = | b | - | a | = b - a = | a -b |;② 如图丙, 点A 、B 都在原点的左边,AB = OB - OA = | b | - | a | = - b - (-a ) = | a -b | ;O (A ) B 图甲O B A 图乙 O 0B A 图丙③ 如图丁, 点A 、B 在原点的两边AB = OA + OB = | a | + | b | = a + (-b ) = | a -b |. 综上, 数轴上A 、B 两点之间的距离AB =∣a - b ∣. (2) 回答下列问题:① 数轴上表示2和5的两点之间的距离是______ , 数轴上表示 -2和 -5的两点之间的距离是______ , 数轴上表示1和 -3的两点之间的距离是______ ;② 数轴上表示x 和 -1的两点分别是点A 和B ,则A 、B 之间的距离是______ , 如果AB =2, 那么x =________ ;③ 当代数式∣x +2∣+∣x -5∣取最小值时, 相应的x 的取值范围是____________. ④ 当代数式521-+++-x x x 取最小值时, 相应的x 的值是_________. ⑤ 当代数式25+--x x 取最大值时, 相应的x 的取值范围是_________________.下载WORD 版试卷,欢迎加入周老师数学交流学习QQ 群(收费群,群号:390367625)2016-2017学年第一学期期末考试参考答案初一数学 2016.1 阅卷说明:本试卷72分及格,102分优秀. 一、选择题:(每小题3分,本题共30分)图丁二、填空题(每小题3分,本题共30分)三、计算题:(每小题5分,共20分)21.原式= -19+30-2----------------2分 = 11—2 -----------------------4分 = 9------------------------------5分 22. (-125)⨯158÷(-23) 解:(-125)⨯158÷(-23) =125⨯158÷23-------------2分 =125⨯158⨯32-------------4分 =274---------------------5分 【评分标准】过程与结论无误,满分5分。

如果结论错误,符号正确,得1分;体现“除以分数,等于乘以分数的倒数”得1分。

23. 解:原式()157362612⎛⎫=+-⨯-⎪⎝⎭ 1573636362612=-⨯-⨯+⨯ ---------2分183021=--+ -------------- --------4分27=- ---------------------------5分24.解:原式()1112923=--⨯⨯- ------------------2分 ()1176=--⨯- -----------------------3分716=-+ ----------------------4分16= ----------------------------5分四、化简求值(每小题5分,共10分)25. 原式 = 22)45()76(ab b a -+--------------------------------3分.= 22ab b a +-------------------------------------------------5分.26.求4x 2y-[6xy-3(4xy-2)-x 2y]+1的值,其中x=2,y=-21 解:原式化简:4x 2y-[6xy-3(4xy-2)-x 2y]+1=4x 2y-(6xy-12xy+6-x 2y)+1------------1分 =4x 2y-6xy+12xy-6+x 2y+1--------------2分 =5x 2y+6xy-5-------------------------3分当x=2,y=-21时4x 2y-[6xy-3(4xy-2)-x 2y]+1 =5x 2y+6xy-5=5⨯22⨯(-21)+6⨯2⨯(-21)-5-----------4分=-10-6-5=-21--------------------------------5分【评分标准】化简式子,正确,得3分;代入值,得1分;结论正确,得1分;有先化简、后代入的过程,得1分。

相关文档
最新文档