2010年高考湖南卷——理科数学试题答案及解析

合集下载

高考真题湖南2010数学

高考真题湖南2010数学

高考真题湖南2010数学2010年湖南高考数学试卷是考生备战高考的重要资源,其题目设置紧密贴合考纲要求,涵盖了各类数学知识点,题型也多样丰富。

本文将通过逐题解析的方式,帮助考生更好地理解2010年湖南高考数学试卷,掌握解题技巧,为备考高考提供帮助。

第一部分:选择题1.已知奇函数f(x)与偶函数g(x)的图像关于y轴对称,则f(x)g(x)的奇偶性分类是()。

A. 奇函数B.偶函数C.既是奇函数也是偶函数D.不定解析:奇函数与偶函数的性质很重要,奇函数关于原点对称,偶函数关于y轴对称。

题目中已知f(x)是奇函数,g(x)是偶函数,所以f(x)g(x)的奇偶性分类应是偶函数,故选B。

2. 函数y=lnx的图象关于直线y=x对称看过《夏洛特烦恼》的人都知道张小斐所饰演的角色比较精彩解析:对数函数y=lnx的图象关于直线y=x对称,因为lnx与e^x 是互逆函数,是一对反函数,而反函数的图象关于y=x对称,故原函数lnx的图象也关于直线y=x对称。

3.记n是一个正整数,满足,得n的值为()。

A. 72B.91C.100D.101解析:分解质因数3^3×4的质因数分解式为2^2×3^3,由分解质因数的唯一性可得n=2^2×3^2=36,所以n=36×4=144,故选D。

4.反比例函数y=k/x的图象经过点(1,3),则k等于()。

A. 3B.1C. 1/3D. 3/2解析:将点(1,3)带入反比例函数y=k/x中可得3=k/1,所以k=3,故选A。

5.在矩形ABCD中,对角线AC的中点为R,若AR=RC,则矩形ABCD的特征是()。

A. 正方形B.平行四边形C.矩形D.长方形解析:若AR=RC,则四边形ABCD为平行四边形,故选B。

第二部分:非选择题6.已知图中所示,正方形ABCD的边长为2,点M、N、P分别在边AB、AD、BC上,AM=2,BN=NP=1.连接MN、MP,交于点k,求线段MK的长。

2010年高考湖南卷理科数学试题及答案

2010年高考湖南卷理科数学试题及答案

2010年高考湖南卷理科数学试题及答案本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分. 参考公式:锥体的体积公式为13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 1.已知集合M={1,2,3},N={2,3,4},则 A .M N ⊆ B.N M ⊆C .{2,3}M N ⋂= D.{1,4}M N ⋃= 2.下列命题中的假命题是 A .∀x R ∈,120x ->2x-1>0 B. ∀*x N ∈,2(1)0x ->C .∃ x R ∈,lg 1x < D. ∃x R ∈,tan 2x = 3、极坐标方程cos ρθ=和参数方程123x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A 、圆、直线B 、直线、圆C 、圆、圆D 、直线、直线 4、在Rt ABC ∆中,C ∠=90°AC=4,则AB AC ⋅等于A 、-16B 、-8C 、8D 、165、421dx x ⎰等于A 、2ln2-B 、2ln 2C 、ln 2-D 、ln 26、在△ABC 中,角A ,B ,C 所对的边长分别为a,b,c ,若∠C=120°,2c a =,则A 、a>bB 、a<bC 、a=bD 、a 与b 的大小关系不能确定7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.158.用min{,}a b 表示,a b 两数中的最小值.若函数()min{||,||}f x x x t =+的图像关于 直线12x =-对称,则t 的值为( ) A .-2 B .2 C .-1 D .1 二、填空题:本大题共7小题,每小题5分,共35分。

把答案填在答题卡...中对应题号后的横线上9.已知一种材料的最佳入量在110g 到210g 之间。

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)
【专题】11:计算题;12:应用题. 【分析】首先分析题目已知某种种子每粒发芽的概率都为 0.9,现播种了 1000 粒,即不发芽率为
0.1,故没有发芽的种子数 ξ 服从二项分布,即 ξ~B(1000,0.1).又没发芽的补种 2 个,故补 种的种子数记为 X=2ξ,根据二项分布的期望公式即可求出结果. 【解答】解:由题意可知播种了 1000 粒,没有发芽的种子数 ξ 服从二项分布,即 ξ~B(1000, 0.1). 而每粒需再补种 2 粒,补种的种子数记为 X 故 X=2ξ,则 EX=2Eξ=2×1000×0.1=200. 故选:B. 【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础 性题目. 7.(5 分)如果执行如图的框图,输入 N=5,则输出的数等于( )
A.q1,q3
B.q2,q3
C.q1,q4
D.q2,q4
【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系. 菁优网版权所有
【专题】5L:简易逻辑. 【分析】先判断命题 p1 是真命题,P2 是假命题,故 p1∨p2 为真命题,(﹣p2)为真命题,p1∧
【考点】CH:离散型随机变量的期望与方差;CN:二项分布与 n 次独立重复试验的模型. 菁优网版权所有
2,…,N)的点数 N1,那么由随机模拟方案可得积分
的近似值为 .
14.(5 分)正视图为一个三角形的几何体可以是 (写出三种) 15.(5 分)过点 A(4,1)的圆 C 与直线 x﹣y=1 相切于点 B(2,1),则圆 C 的方程为 . 16.(5 分)在△ABC 中,D 为边 BC 上一点,BD= DC,∠ADB=120°,AD=2,若△ADC 的面积为



第 4 页(共 14 页)

2010年高考理科数学答案详解

2010年高考理科数学答案详解

2010年普通高等学校招生全国统一考试 理科数学(新课标全国卷) 答案详解一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(集合)已知集合{||2}A x R x =∈≤},{|4}B x Z =∈≤,则A B =I(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2}【解析】∵{||2,}{22}A x R x x R x =∈≤=∈-≤≤,{4}{016}B x Z x Z x =∈=∈≤≤,故{0,1,2}A B =I .【答案】A2.(复数)已知复数z =z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 【解析】解法一:11)(1))84z i i =====,∴111))444z z i i ⋅=-⋅=.解法二:由221221z ====-可得214z z z ⋅==. 【答案】A 3.(函数)曲线2xy x =+在点(1,1)--处的切线方程为 (A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- 【解析】由2122x y x x ==-++可得122,2,12(1),21(2)x y k y y x y x x =-''===+=+=++【答案】A4.(三角函数)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为A B C D【解析】通过分析可知当0t =时,点P 到x 轴距离d,于是可以排除答案A,D ,再根据当4t π=时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B ,应选C .【答案】C5.(简单逻辑)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q【解析】1p :函数22x x y -=-在R 为增函数为真命题,而函数22x x y -=+为偶函数,则22x x y -=+在R 不可能为减函数,2p :函数22x xy -=+在R 为减函数为假命题,则1p ⌝为假命题,2p ⌝为真命题,然后根据复合命题的判断方法即可确定答案C . 【答案】C6.(概率统计)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400【解析】由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即~(1000,0.1)B ξ,而2X ξ=,则2210000.1200EX E ξ==⨯⨯=.应选B . 【答案】Btdπ2O7.(框图)如果执行下面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56【解析】根据框图所体现的算法可知此算法为求和:1111101223344556S =+++++⨯⨯⨯⨯⨯ 111111111151122334455666=-+-+-+-+-=-=,应选D .【答案】D8.(函数)设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或【解析】解法一:当0x <时,则0x ->,由偶函数满()f x 足3()8(0)f x x x =-≥可得,()()f x f x =-=38x --,则()f x =338(0)8(0)x x x x ⎧-≥⎨--<⎩,(2)f x -33(2)8(2)(2)8(2)x x x x ⎧--≥⎨---<⎩ 令(2)0f x ->,可解得4,0x x ><或.应选B .解法二:由偶函数满()f x 足3()8(0)f x x x =-≥可得3()()8f x f x x ==-, 则3(2)(2)28f x f x x -=-=--,要使(2)0f x ->, 只需3280,22x x -->->,解得4,0x x ><或.应选B .【答案】B9.(三角函数)若4cos5α=-,α是第三象限的角,则1tan21tan2αα+=-(A)12-(B)12(C) 2 (D) 2-【解析】解法一:由4 cos5α=-,α是第三象限的角可得3sin5α=-.311tan cos sin1sin152224cos21tan cos sin2225αααααααα-+++====----,应选A.解法二:由4cos5α=-,α是第三象限的角可得3sin5α=-.3sin sin52tan3421coscos125ααααα-====-+-,1tan13121321tan2αα+-==-+-.【答案】A10.(立体几何)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为(A) 2aπ(B) 273aπ(C) 2113aπ(D) 25aπ【解析】根据题意条件可知三棱柱是棱长都为a的正三棱柱,则其外接球的半径为2227()()22sin6012a aR a=+=o,球的表面积为222774123aR aππ=⋅=,应选B.【答案】B11.(函数)已知函数|lg|,010,()16,10.2x xf xx x<≤⎧⎪=⎨-+>⎪⎩若,,a b c互不相等,且()()(),f a f b f c==则abc的取值范围是(A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)【解析】作出函数()f x的图象如图A11,图A112不妨设a b c <<,则1lg lg 10(0,1)2a b c -==-+∈ 则(10,12)abc c =∈.应选C .【答案】C12.(解析几何)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -= 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 【答案】B二、填空题:本大题共4小题,每小题5分.13.(函数)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点(,)(1,2,)i i x y i N =…,,再数出其中满足()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ⎰的近似值为 .【解析】由题意可知11()1f x dx N N≈⎰得110()N f x dx N ≈⎰,故积分10()f x dx ⎰的近似值为1NN.【答案】1NN14.(立体几何)正视图为一个三角形的几何体可以是______(写出三种).【解析】正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥、四棱锥等等. 【答案】三棱锥、三棱柱、圆锥、四棱锥(其中任选3个即可)15.(解析几何)过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,则圆C 的方程为____. 【解析】设圆的方程为222()()x a y b r -+-=,则2222221(4)(1),(2)(1),1,2b a b r a b r a --+-=-+-==-- 解得3,0,2a b r ===,故所求圆的方程为22(3)2x y -+=.【答案】22(3)2x y -+=16.(三角函数)在△ABC 中,D 为边BC 上一点,12BD DC =,∠ADB =120°,AD =2,若△ADC 的面积为33-,则∠BAC =_______. 【解析】由△ADC 的面积为33-可得,13sin 603322ADC S AD DC DC ∆=⋅⋅⋅==-o ,13sin (33)22ABC S AB AC BAC ∆=⋅⋅∠=- 解得232DC =-,则31,333BD BC =-=-.∴2222cos120AB AD BD AD BD =+-⋅⋅o24(31)2(31)6=+-+-=,即6AB =. 2222cos 6024123AC AD CD AD CD =+-⋅⋅=-o ,即6(31)AC =-.∴222cos 2AB AC BC BAC AB AC +-∠=⋅6241239(423)63612266(31)12(31)+----===⋅--,故60BAC ∠=o.图A17【答案】60o三、解答题:解答应写出文字说明,证明过程和演算步骤. 17. (本小题满分12分)(数列)设数列{}n a 满足21112,32n n n a a a -+=-=⋅(1)求数列{}n a 的通项公式; (2)令n n b na =,求数列的前n 项和n S【解析】(I )由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+L21233(222)2n n --=++++L 2(1)12n +-= .而 12a =,所以数列{n a }的通项公式为212n n a -= .(II )由212n n n b na n -==⋅知35211222322n n S n -=⋅+⋅+⋅++⋅L △从而22n S ⋅=357211222322n n +⋅+⋅+⋅+⋅⋅⋅+⋅ △△-△得(212-)n S ⋅=35212122222n n n -+++++-⋅L .即n S =211[(31)22]9n n +-+.18. (本小题满分12分)(立体几何)如图,已知四棱锥P ABCD -的底面为等腰梯形,AB CD ∥,AC BD ⊥,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点. (1)证明:PE BC ⊥.(2)若60APB ADB ∠=∠=o ,求直线PA 与平面PEH 所成角的正弦值.【解析】以H 为原点,,,HA HB HP 分别为,,x y z 轴,线段HA 的长为单位长, 建立空间直角坐标系如图, 则(1,0,0),(0,1,0)A B .(I )设 (,0,0),(0,0,)(0,0)C m P n m n <>,则(0,,0)D m ,1(,,0)22mE . 可得 PE uuu r =1(,,)22mn -,BC uuu r =(,1,0)m -.∵0022m mPE BC ⋅=-+=u u u r u u u r ,∴PE ⊥BC .图A18(II )由已知条件可得,1,33m n C =-=-故 (,1(0,,0),(,(0,0,1)326D E P -- 设 (,,)x y x =n 为平面PEH 的法向量则00HE HP ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n,即10260x y z ⎧-=⎪⎨⎪=⎩.因此可以取=n ,由(1,0,1)PA =-u u u r,可得|cos <,PA uu u r n>|=4,所以直线PA 与平面PEH所成角的正弦值为4.19. (本小题12分)(概率统计)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由.附:22()()()()()n ad bc K a b c d a c b d -=++++【解析】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为7014%500=. (2)22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯. 由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20. (本小题满分12分)(解析几何)设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B两点,且22,,AF AB BF 成等差数列. (I )求E 的离心率;(II ) 设点(0,1)P -满足PA PB =,求E 的方程【解析】(I )由椭圆定义知224AF BF AB a ++=,又222AB AF BF =+,得43AB a =l 的方程为y x c =+,其中c =设()11,A x y ,()22,B x y ,则A 、B 两点坐标满足方程组22221y x c x y a b=+⎧⎪⎨+=⎪⎩,化简的()()222222220a b x a cx a c b +++-=.则()2222121222222,a c b a cx x x x a b a b --+==++. 因为直线AB 斜率为1,所以AB=21x -=,得22244,3ab a a b =+故222a b =, 所以E的离心率2c e a===. (II )设AB 的中点为()00,N x y ,由(I )知212022223x x a c x c a b +-===-+,003cy x c =+=. 由PA PB =,得1PN k =-,即0011y x +=-, 得3c =,从而3a b ==,故椭圆E 的方程为221189x y +=. 21. (本小题满分12分)(函数)设函数2()1xf x e x ax =---. (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围【解析】(1)0a =时,()1xf x e x =--,'()1xf x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加. (II )'()12xf x e ax =--由(I )知1xe x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-, 从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)xe x x >+≠可得1(0)xex x ->-≠.从而当12a >时, '()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <. 综合得a 的取值范围为1(,]2-∞.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4—1:几何证明选讲如图:已知圆上的弧»»AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明: (I )ACE ∠=BCD ∠; (II )2BC =BE ×CD .【解析】(I )因为»»AC BC =,所以BCD ABC ∠=∠. 又因为EC 与圆相切于点C ,故ACE ABC ∠=∠,所以ACE BCD ∠=∠.(II )因为,ECB CDB EBC BCD ∠=∠∠=∠, 所以BDC ∆△ECB ∆,故BC CDBE BC=,即2BC BE CD =⨯.23. (本小题满分10分)选修4—4:坐标系与参数方程已知直线1C : 1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),圆2C cos sin x y θθ=⎧⎨=⎩(θ为参数). (I )当α=3π时,求1C 与2C 的交点坐标: (II )过坐标原点O 做1C 的垂线,垂足为A 、P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线. 【解析】(I )当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩ ,解得1C 与2C 的交点为(1,0)12⎛ ⎝⎭,. (II )1C 的普通方程为sin cos sin 0x y ααα--=. A 点坐标为()2sin cos sin ααα-, 故当α变化时,P 点轨迹的参数方程为:()21sin 21sin cos 2x y αααα⎧=⎪⎪⎨⎪=-⎪⎩为参数,P 点轨迹的普通方程为2211()416x y -+=. 故P 点轨迹是圆心为104⎛⎫ ⎪⎝⎭,,半径为14的圆. 24. (本小题满分10分)选修4—5:不等式选讲 设函数()f x =241x -+. (I )画出函数()y f x =的图像;(II )若不等式()f x ax ≤的解集非空,求a 的取值范围.【解析】(I )由于25,2()23,2x x f x x x -+<⎧=⎨-≥⎩,则函数()y f x =的图像如图A24所示.(II )由函数()y f x =与函数y ax =的图像可知,当且仅当12a ≥或2a <-时,函数()y f x =与函数y ax =的图像有交点. 故不等式()f x ax ≤的解集非空时,a 的取值范围为()122⎡⎫-∞-+∞⎪⎢⎣⎭U ,,.图A242010年普通高等学校招生全国统一考试理科数学(新课标全国卷)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为A B C Dtdπ2O(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -= 第II 卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点(,)(1,2,)i i x y i N =…,,再数出其中满足()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ⎰的近似值为 .(14)正视图为一个三角形的几何体可以是______(写出三种)(15)过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,则圆C 的方程为____ (16)在△ABC 中,D 为边BC 上一点,12BD DC =,∠ADB =120°,AD =2,若△ADC的面积为3,则∠BAC =_______三,解答题:解答应写出文字说明,证明过程和演算步骤. (17)(本小题满分12分)设数列{}n a 满足21112,32n n n a a a -+=-=⋅(1)求数列{}n a 的通项公式;(2)令n n b na =,求数列的前n 项和n S (18)(本小题满分12分)如图,已知四棱锥P ABCD -的底面为等腰梯形,AB CD ∥,AC BD ⊥,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点(1)证明:PE BC ⊥(2)若60APB ADB ∠=∠=o,求直线PA 与平面PEH 所成角的正弦值 (19)(本小题12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿男女需要 40 30 不需要160270 (1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:22()()()()()n ad bc K a b c d a c b d -=++++2()P K k …0.050 0.010 0.001 k3.8416.63510.828(20)(本小题满分12分)设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l与E 相交于,A B 两点,且22,,AF AB BF 成等差数列. (1)求E 的离心率;(2) 设点(0,1)P -满足PA PB =,求E 的方程(21)(本小题满分12分)设函数2()1xf x e x ax =---. (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4—1:几何证明选讲如图:已知圆上的弧»»AC BD =,过C 点的圆的切线与BA的延长线交于E 点,证明: (I )ACE ∠=BCD ∠; (II )2BC =BE ×CD .(23)(本小题满分10分)选修4—4:坐标系与参数方程已知直线1C : 1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),圆2C cos sin x y θθ=⎧⎨=⎩(θ为参数). (I )当α=3π时,求1C 与2C 的交点坐标; (II )过坐标原点O 做1C 的垂线,垂足为A 、P 为OA 的中点,当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.(24)(本小题满分10分)选修4—5:不等式选讲 设函数()f x =241x -+. (I )画出函数()y f x =的图像:(II )若不等式()f x ax ≤的解集非空,求a 的取值范围.。

2010年湖南省高考数学试卷(理科)及答案

2010年湖南省高考数学试卷(理科)及答案

2010年湖南省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知集合M={1,2,3},N={2,3,4},则()A.M⊆N B.N⊆M C.M∩N={2,3}D.M∪N={1,4}2.(5分)下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=23.(5分)极坐标p=cosθ和参数方程(t为参数)所表示的图形分别是()A.直线、直线B.直线、圆C.圆、圆D.圆、直线4.(5分)在Rt△ABC中,∠C=90°,AC=4,则等于()A.﹣16 B.﹣8 C.8 D.165.(5分)dx等于()A.﹣2ln2 B.2ln2 C.﹣ln2 D.ln26.(5分)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=a,则()A.a>b B.a<bC.a=b D.a与b的大小关系不能确定7.(5分)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11 C.12 D.158.(5分)用min{a,b}表示a,b两数中的最小值.若函数f(x)=min{|x|,|x+t|}的图象关于直线x=﹣对称,则t的值为()A.﹣2 B.2 C.﹣1 D.1二、填空题(共7小题,每小题5分,满分35分)9.(5分)已知一种材料的最佳加入量在110g到210g之间,若用0.618法安排试验,则第一次试点的加入量可以是g.10.(5分)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为.11.(5分)在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为.12.(5分)如图是求12+22+32+…+1002的值的程序框图,则正整数n=..13.(5分)图中的三个直角三角形是一个体积为20cm3的几何体的三视图,则h=cm.14.(5分)过抛物线x2=2py(p>0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD的面积为,则P=.15.(5分)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n 成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=,((a n)+)+=.三、解答题(共6小题,满分75分)16.(12分)已知函数f(x)=sin2x﹣2sin2x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)求函数f(x)的零点的集合.17.(12分)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(Ⅰ)求直方图中x的值.(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.18.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.19.(13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图).在直线x=2的右侧,考察范围为到点B的距离不超过km的区域;在直线x=2的左侧,考察范围为到A,B两点的距离之和不超过4km的区域.(Ⅰ)求考察区域边界曲线的方程;(Ⅱ)如图所示,设线段P1P2,P2P3是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.20.(13分)已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).(Ⅰ)证明:当x≥0时,f(x)≤(x+c)2;(Ⅱ)若对满足题设条件的任意b,c,不等式f(c)﹣f(b)≤M(c2﹣b2)恒成立,求M的最小值.21.(13分)数列{a n}(n∈N*)中,a1=a,a n+1是函数的极小值点.(Ⅰ)当a=0时,求通项a n;(Ⅱ)是否存在a,使数列{a n}是等比数列?若存在,求a的取值范围;若不存在,请说明理由.2010年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•湖南)已知集合M={1,2,3},N={2,3,4},则()A.M⊆N B.N⊆M C.M∩N={2,3}D.M∪N={1,4}【分析】利用直接法求解,分别求出两个集合的交集与并集,观察两个集合的包含关系即可.【解答】解:M∩N={1,2,3}∩{2,3,4}={2,3}故选C.2.(5分)(2010•湖南)下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=2【分析】本题考查全称命题和特称命题真假的判断,逐一判断即可.【解答】解:B中,x=1时不成立,故选B.答案:B.3.(5分)(2010•湖南)极坐标p=cosθ和参数方程(t为参数)所表示的图形分别是()A.直线、直线B.直线、圆C.圆、圆D.圆、直线【分析】将极坐标方程和参数方程化为一般方程,然后进行选择.【解答】解:∵极坐标p=cosθ,x=pco sθ,y=psinθ,消去θ和p,∴x2+y2=x,x2+y2=x为圆的方程;参数方程(t为参数)消去t得,x+y﹣1=0,为直线的方程,故选D.4.(5分)(2010•湖南)在Rt△ABC中,∠C=90°,AC=4,则等于()A.﹣16 B.﹣8 C.8 D.16【分析】本题是一个求向量的数量积的问题,解题的主要依据是直角三角形中的垂直关系和一条边的长度,解题过程中有一个技巧性很强的地方,就是把变化为两个向量的和,再进行数量积的运算.【解答】解:∵∠C=90°,∴=0,∴=()==42=16故选D.5.(5分)(2010•湖南)dx等于()A.﹣2ln2 B.2ln2 C.﹣ln2 D.ln2【分析】根据题意,直接找出被积函数的原函数,直接计算在区间(2,4)上的定积分即可.【解答】解:∵(lnx)′=∴=lnx|24=ln4﹣ln2=ln2故选D6.(5分)(2010•湖南)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=a,则()A.a>b B.a<bC.a=b D.a与b的大小关系不能确定【分析】由余弦定理可知c2=a2+b2﹣2abcosC,进而求得a﹣b=,根据>0判断出a>b.【解答】解:∵∠C=120°,c=a,∴由余弦定理可知c2=a2+b2﹣2abcosC,∴a2﹣b2=ab,a﹣b=,∵a>0,b>0,∴a﹣b=,∴a>b故选A7.(5分)(2010•湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11 C.12 D.15【分析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:一是与信息0110有两个对应位置上的数字相同,二是与信息0110有一个对应位置上的数字相同,三是与信息0110没有一个对应位置上的数字相同的,分别写出结果相加.【解答】解:由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C42=6(个)第二类:与信息0110有一个对应位置上的数字相同的有C41=4个,第三类:与信息0110没有一个对应位置上的数字相同的有C40=1,由分类计数原理知与信息0110至多有两个对应位置数字相同的共有6+4+1=11个,故选B.8.(5分)(2010•湖南)用min{a,b}表示a,b两数中的最小值.若函数f(x)=min{|x|,|x+t|}的图象关于直线x=﹣对称,则t的值为()A.﹣2 B.2 C.﹣1 D.1【分析】由题设,函数是一个非常规的函数,在同一个坐标系中作出两个函数的图象,及直线x=,观察图象得出结论【解答】解:如图,在同一个坐标系中做出两个函数y=|x|与y=|x+t|的图象,函数f(x)=min{|x|,|x+t|}的图象为两个图象中较低的一个,分析可得其图象关于直线x=﹣对称,要使函数f(x)=min{|x|,|x+t|}的图象关于直线x=对称,则t的值为t=1故应选D.二、填空题(共7小题,每小题5分,满分35分)9.(5分)(2010•湖南)已知一种材料的最佳加入量在110g到210g之间,若用0.618法安排试验,则第一次试点的加入量可以是171.8或148.2g.【分析】由题知试验范围为[100,200],区间长度为100,故可利用0.618法:110+(210﹣110)×0.618或210﹣(210﹣110)×0.618选取试点进行计算.【解答】解:根据0.618法,第一次试点加入量为110+(210﹣110)×0.618=171.8或210﹣(210﹣110)×0.618=148.2故答案为:171.8或148.2.10.(5分)(2010•湖南)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为6.【分析】首先根据题中圆的切线条件再依据切割线定理求得一个线段的等式,再根据线段的关系可求得AB的长度即可.【解答】解:根据切割线定理PT2=PA•PB,PB===8,∴AB=PB﹣PA=8﹣2=6.故填:6.11.(5分)(2010•湖南)在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为.【分析】本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[﹣1,2]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.∵|x|≤1得﹣1≤x≤1,∴|x|≤1的概率为:P(|x|≤1)=.故答案为:.12.(5分)(2010•湖南)如图是求12+22+32+…+1002的值的程序框图,则正整数n=100..【分析】由已知可知:该程序的作用是求12+22+32+…+1002的值,共需要循环100次,由于循环变量的初值已知,故不难确定循环变量的终值.【解答】解:由已知可知:该程序的作用是求12+22+32+…+1002的值,共需要循环100次,最后一次执行循环体的作用是累加1002故循环变量的终值应为100故答案为:10013.(5分)(2010•湖南)图中的三个直角三角形是一个体积为20cm3的几何体的三视图,则h=4cm.【分析】由三视图可知,几何体的底面为直角三角形,且一边垂直于底面,再根据公式求解即可.【解答】解:根据三视图可知,几何体的体积为:V=又因为V=20,所以h=4故答案为:414.(5分)(2010•湖南)过抛物线x2=2py(p>0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD 的面积为,则P=2.【分析】先根据抛物线方程得出其焦点坐标和过焦点斜率为1的直线方程,设出A,B两点的坐标,把直线与抛物线方程联立消去y,根据韦达定理表示出x1+x2和x1x2,进而用A,B坐标表示出梯形的面积建立等式求得p.【解答】解:抛物线的焦点坐标为F(0,),则过焦点斜率为1的直线方程为y=x+,设A(x1,y1),B(x2,y2)(x2>x1),由题意可知y1>0,y2>0由,消去y得x2﹣2px﹣p2=0,由韦达定理得,x1+x2=2p,x1x2=﹣p2所以梯形ABCD的面积为:S=(y1+y2)(x2﹣x1)=(x1+x2+p)(x2﹣x1)=•3p=3p2所以3p2=12,又p>0,所以p=2故答案为2.15.(5分)(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=2,((a n)+)+=n2.【分析】根据题意,若a m<5,而a n=n2,知m=1,2,∴(a5)+=2,由题设条件可知((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,于是猜想:((a n)+)+=n2.【解答】解:∵a m<5,而a n=n2,∴m=1,2,∴(a5)+=2.∵(a1)+=0,(a2)+=1,(a3)+=1,(a4)+=1,(a5)+=2,(a6)+=2,(a7)+=2,(a8)+=2,(a9)+=2,(a10)+=3,(a11)+=3,(a12)+=3,(a13)+=3,(a14)+=3,(a15)+=3,(a16)+=3,∴((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,猜想:((a n)+)+=n2.答案:2,n2.三、解答题(共6小题,满分75分)16.(12分)(2010•湖南)已知函数f(x)=sin2x﹣2sin2x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)求函数f(x)的零点的集合.【分析】(Ⅰ)先根据二倍角公式和两角和与差的公式进行化简,再由正弦函数的最值可得到答案.(Ⅱ)令f(x)=0可得到2sin xcos x=2sin2x,进而可得到sin x=0或tan x=,即可求出对应的x的取值集合,得到答案.【解答】解:(Ⅰ)∵f(x)=sin2x﹣2sin2x=sin2x+cos2x﹣1=2sin(2x+)﹣1故函数f(x)的最大值等于2﹣1=1(Ⅱ)由f(x)=0得2sin xcos x=2sin2x,于是sin x=0,或cos x=sin x即tan x=由sin x=0可知x=kπ;由tan x=可知x=kπ+.故函数f(x)的零点的集合为{x|x=kπ或x=k,k∈Z}17.(12分)(2010•湖南)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(Ⅰ)求直方图中x的值.(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.【分析】本题考查的知识点是频率分布直方图、离散型随机变量及其分布列和数学期望.(1)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(2)由频率分布直方图中月均用水量各组的频率,我们易得X~B(3,0.1).然后将数据代入后,可分别算出P(X=0),P(X=1),P(X=2),P(X=3)的值,代入即可得到随机变量X的分布列,然后代入数学期望公式,可进而求出数学期望.【解答】解:(Ⅰ)依题意及频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12.(Ⅱ)由题意知,X~B(3,0.1).因此P(X=0)=C30×0.93=0.729,P(X=1)=C31×0.1×0.92=0.243,P(X=2)=C32×0.12×0.9=0.027,P(X=3)=C33×0.13=0.001.故随机变量X的分布列为:X0 1 2 3P 0.7290.2430.0270.001X的数学期望为EX=3×0.1=0.3.18.(12分)(2010•湖南)如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.【分析】(Ⅰ)先取AA1的中点M,连接EM,BM,根据中位线定理可知EM∥AD,而AD⊥平面ABB1A1,则EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,则∠EBM直线BE与平面ABB1A1所成的角,设正方体的棱长为2,则EM=AD=2,BE=3,于是在Rt△BEM中,求出此角的正弦值即可.(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,根据中位线定理可知EG∥A1B,从而说明A1,B,G,E共面,则BG⊂面A1BE,根据FG∥C1C∥B1G,且FG=C1C=B1B,从而得到四边形B1BGF为平行四边形,则B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,根据线面平行的判定定理可知B1F∥平面A1BE.【解答】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,∠EBM直线BE与平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE=,于是在Rt△BEM中,即直线BE与平面ABB1A1所成的角的正弦值为.(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E共面,所以BG⊂平面A1BE因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG ∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.19.(13分)(2010•湖南)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图).在直线x=2的右侧,考察范围为到点B的距离不超过km的区域;在直线x=2的左侧,考察范围为到A,B两点的距离之和不超过4km的区域.(Ⅰ)求考察区域边界曲线的方程;(Ⅱ)如图所示,设线段P1P2,P2P3是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.【分析】(Ⅰ)设边界曲线上点P的坐标为(x,y),当x≥2时,.当x<2时,.由此能得到考查区域边界曲线的方程;(Ⅱ)设过点P1,P2的直线为l1,过点P2,P3的直线为l2,则直线l1,l2的方程分别为.设直线l平行于直线l1,其方程为,代入椭圆方程,消去y,得,然后由根的判别式和点到直线的距离公式结合题设条件进行求解.【解答】解:(Ⅰ)设边界曲线上点P的坐标为(x,y),当x≥2时,由题意知.当x<2时,由知,点P在以A,B为焦点,长轴长为的椭圆上.此时短半轴长.因而其方程为.故考察区域边界曲线(如图)的方程为和.(Ⅱ)设过点P1,P2的直线为l1,过点P2,P3的直线为l2,则直线l1,l2的方程分别为.设直线l平行于直线l1,其方程为,代入椭圆方程,消去y,得,由△100×3m2﹣4×16×5(m2﹣4)=0,解得m=8或m=﹣8.从图中可以看出,当m=8时,直线l与C2的公共点到直线l的距离最近,此时直线l的方程为,l与l1之间的距离为.又直线l2到C1和C2的最短距离,而d'>3,所以考察区域边界到冰川边界线的最短距离为3.设冰川边界线移动到考察区域所需的时间为n年,则由题设及等比数列求和公式,得,所以n≥4.故冰川边界线移动到考察区域所需的最短时间为4年.20.(13分)(2010•湖南)已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).(Ⅰ)证明:当x≥0时,f(x)≤(x+c)2;(Ⅱ)若对满足题设条件的任意b,c,不等式f(c)﹣f(b)≤M(c2﹣b2)恒成立,求M的最小值.【分析】(Ⅰ)f′(x)≤f(x)转化为x2+(b﹣2)x+c﹣b≥0恒成立,找到b和c之间的关系,再对f(x)和(x+c)2作差整理成关于b和c的表达式即可.(Ⅱ)对c≥|b|分c>|b|和c=|b|两种情况分别求出对应的M的取值范围,再综合求M的最小值即可.【解答】解:(Ⅰ)易知f′(x)=2x+b.由题设,对任意的x∈R,2x+b≤x2+bx+c,即x2+(b﹣2)x+c﹣b≥0恒成立,所以(b﹣2)2﹣4(c﹣b)≤0,从而.于是c≥1,且,因此2c﹣b=c+(c﹣b)>0.故当x≥0时,有(x+c)2﹣f(x)=(2c﹣b)x+c(c﹣1)≥0.即当x≥0时,f(x)≤(x+c)2.(Ⅱ)由(Ⅰ)得,c≥|b|当c>|b|时,有M≥==,令t=则﹣1<t<1,=2﹣,而函数g(t)=2﹣(﹣1<t<1)的值域(﹣∞,)因此,当c>|b|时M的取值集合为[,+∞).当c=|b|时,由(Ⅰ)知,b=±2,c=2.此时f(c)﹣f(b)=﹣8或0,c2﹣b2=0,从而恒成立.综上所述,M的最小值为21.(13分)(2010•湖南)数列{a n}(n∈N*)中,a1=a,a n+1是函数的极小值点.(Ⅰ)当a=0时,求通项a n;(Ⅱ)是否存在a,使数列{a n}是等比数列?若存在,求a的取值范围;若不存在,请说明理由.【分析】(I)当a=0时,a1=0,则3a1<12.由f'n(x)=x2﹣(3a n+n2)x+3n2a n=(x﹣3a n)(x﹣n2)=0,得x1=3a n,x2=n2.由函数的单调性知f n(x)在x=n2取得极小值.所以a2=12=1.因为3a2=3<22,则,a3=22=4,因为3a3=12>33,则a4=3a3=3×4,又因为3a4=36>42,则a5=3a4=32×4,由此猜测:当n≥3时,a n=4×3n﹣3.然后用数学归纳法证明:当n≥3时,3a n>n2.(Ⅱ)存在a,使数列{a n}是等比数列.事实上,若对任意的n,都有3a n>n2,=3a n.要使3a n>n2,只需对一切n∈N*都成立.当x≥2时,y'<0,则a n+1从而函数在这[2,+∞)上单调递减,故当n≥2时,数列{b n}单调递减,即数列{b n}中最大项为.于是当a>时,必有.由此能导出存在a,使数列{a n}是等比数列,且a的取值范围为.【解答】解:(I)当a=0时,a1=0,则3a1<12.由题设知f'n(x)=x2﹣(3a n+n2)x+3n2a n=(x﹣3a n)(x﹣n2).令f'n(x)=0,得x1=3a n,x2=n2.若3a n<n2,则当x<3a n时,f'n(x)>0,f n(x)单调递增;当3a n<x<n2时,f'n(x)<0,f n(x)单调递减;当x>n2时,f'n(x)>0,f n(x)单调递增.故f n(x)在x=n2取得极小值.所以a2=12=1因为3a2=3<22,则,a3=22=4因为3a3=12>32,则a4=3a3=3×4,又因为3a4=36>42,则a5=3a4=32×4,由此猜测:当n≥3时,a n=4×3n﹣3.下面先用数学归纳法证明:当n≥3时,3a n>n2.事实上,当n=3时,由前面的讨论知结论成立.假设当n=k(k≥3)时,3a k>k2成立,则由(2)知,a k+1=3a k>k2,﹣(k+1)2>3k2﹣(k+1)2=2k(k﹣2)+2k﹣1>0,从而3a k+1所以3a k>(k+1)2.+1故当n≥3时,3a n>n2成立.=3a n,而a3=4,因此a n=4×3n﹣3.于是,当n≥3时,a n+1综上所述,当a=0时,a1=0,a2=1,a n=4×3n﹣3(n≥3).(Ⅱ)存在a,使数列{a n}是等比数列.事实上,若对任意的n,都有3a n>n2,则a n+1=3a n.即数列{a n}是首项为a,公比为3的等比数列,且a n=a•3n﹣3.而要使3a n>n2,即a•3n>n2对一切n∈N*都成立,只需对一切n∈N*都成立.记,则,.令,则.因此,当x≥2时,y'<0,从而函数在这[2,+∞)上单调递减,故当n≥2时,数列{b n}单调递减,即数列{b n}中最大项为.于是当a>时,必有.这说明,当时,数列a n是等比数列.当a=时,可得,而3a2=4=22,由(3)知,f2(x)无极值,不合题意,当时,可得a1=a,a2=3a,a3=4,a4=12,…,数列{a n}不是等比数列.当时,3a=1=12,由(3)知,f1(x)无极值,不合题意.当时,可得a1=a,a2=1,a3=4,a4=12,数列{a n}不是等比数列.综上所述,存在a,使数列{a n}是等比数列,且a的取值范围为.。

2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.23.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q:p1∨p2,q2:p1∧p2,q3:(¬p1)∨1p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}9.(5分)若,α是第三象限的角,则=()A.B.C.2 D.﹣210.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa211.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N 1,那么由随机模拟方案可得积分的近似值为.14.(5分)正视图为一个三角形的几何体可以是(写出三种)15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•宁夏)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.2.(5分)(2010•宁夏)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.3.(5分)(2010•宁夏)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.5.(5分)(2010•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.6.(5分)(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.7.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.8.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f (|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x ﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.9.(5分)(2010•宁夏)若,α是第三象限的角,则=()A.B.C.2 D.﹣2【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.10.(5分)(2010•宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.11.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.12.(5分)(2010•宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B 点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a 和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.14.(5分)(2010•宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.15.(5分)(2010•宁夏)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.16.(5分)(2010•宁夏)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.三、解答题(共8小题,满分90分)17.(12分)(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n)+…+(a2﹣a1)]+a1﹣1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.18.(12分)(2010•宁夏)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.19.(12分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.21.(12分)(2010•宁夏)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。

2010年全国高等学校招生全国卷1——理科数学试题答案及解析

2010年全国高等学校招生全国卷1——理科数学试题答案及解析

一.选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=A.21k k -B. -21k k- C.21k k- D. -21k k-2.B 【解析】222sin 801cos 801cos (80)1k =-=--=- ,所以tan100tan80︒=- 2sin801.cos80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1 3.B 【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456aaa = (A) 52 (B) 7 (C) 6 (D) 424.A 【解析】由等比数列的性质知31231322()5a a a a a a a === ,0x y += 1O y x = y20x y --=xA0:20l x y -=2-2AABC DA 1B 1C 1D 1O37897988()a a a a a a a === 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a ===== (5)353(12)(1)x x +-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 45.B 【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++- 故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23 B 33 C 23 D 637.D 【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a, 则12211133sin 60(2)2222ACD S AC AD a a ∆==⨯⨯= ,21122ACD S AD CD a ∆== .所以1312333A C D A C D S D D a D O a S a∆∆=== ,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos 3θ=. (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a 8.C 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32 (B)62(C) 3 (D) 69.B 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-, 解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y = (10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞ 10.A 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 42-+ (B)32-+ (C)422-+ (D)322-+11.D 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos2PA PB PA PB α∙=⋅ =22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C) 23 (D) 83312.B 【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =. 二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效)(13)不等式2211x x +-≤的解集是 . 13.[0,2]解析:原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . PABO12x =y=1 xyaO12x =-414a y -=2y x x a=-+14.17-【解析】因为α为第三象限的角,所以2(2(21),2(21))()k k k Z απππ∈+++∈,又3cos 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4sin 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【解析】如图,在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解得514a <<. (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uu r,则C 的离心率为 .16.23【解析】如图,22||BF b c a =+=,作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =.。

2010年全国高考数学(理)试题及答案(新课标卷) 详解版

2010年全国高考数学(理)试题及答案(新课标卷)  详解版

绝密★启用前2010年普通高等学校招生全国统一考试(课标版) 理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2,RA x x x =≤∈,{}4,ZB x =≤∈,则A B =(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2(2)已知复数1z=,z 是z 的共轭复数,则z z ⋅=(A )14(B )12(C )1 (D )2(3)曲线2xy x =+在点()1,1--处的切线方程为 (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A )100 (B )200 (C )300 (D )400 (7)如果执行右面的框图,输入5N=,则输出的数等于 (A )54(B )45(C )65 (D )56(8)设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>(A ){}2x x x <-或>4 (B ){}0x x x <或>4 (C ){}0x x x <或>6 (D ){}2x x x <-或>2(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A )12-(B )12(C )2 (D )2-(10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为 (A )2a π (B )273a π (C )2113a π (D )25a π (11)已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是 (A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 第Ⅱ卷二、填空题:本大题共4小题,每小题5分。

2010年全国统一高考数学试卷(理科)(新课标版)答案与解析

2010年全国统一高考数学试卷(理科)(新课标版)答案与解析

2010年全国统一高考数学试卷(理科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2]D.{0,1,2}【考点】交集及其运算.【专题】计算题.【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【考点】复数代数形式的混合运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【考点】利用导数研究曲线上某点切线方程.【专题】常规题型;计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】函数的图象.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4【考点】复合命题的真假;指数函数与对数函数的关系.【专题】简易逻辑.【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.【点评】只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与p2中至少有一个真命题,p1∨p2就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.【专题】计算题;应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】设计程序框图解决实际问题.【专题】操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}【考点】偶函数;其他不等式的解法.【专题】计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5分)若,α是第三象限的角,则=()A. B.C.2 D.﹣2【考点】半角的三角函数;弦切互化.【专题】计算题.【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C. D.5πa2【考点】球内接多面体.【专题】计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质.【专题】作图题;压轴题;数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB 的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【考点】双曲线的标准方程;直线与圆锥曲线的综合问题.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【考点】模拟方法估计概率;定积分在求面积中的应用;几何概型.【专题】计算题.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5分)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】简单空间图形的三视图.【专题】阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2 .【考点】圆的标准方程;直线与圆的位置关系.【专题】压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【考点】余弦定理的应用.【专题】计算题;压轴题.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【考点】数列递推式;数列的求和.【专题】计算题.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+...+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+ (2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【考点】用向量证明垂直;直线与平面所成的角.【专题】计算题;作图题;证明题;转化思想.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【考点】简单随机抽样;独立性检验.【专题】计算题.【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【点评】本题主要考查统计学知识,考查独立性检验的思想,考查利用数学知识研究实际问题的能力以及相应的运算能力.20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【考点】椭圆的简单性质;等差数列的性质;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【考点】利用导数研究函数的单调性.【专题】分类讨论.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】圆的切线的判定定理的证明;弦切角.【专题】证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【考点】简单曲线的极坐标方程;轨迹方程;直线和圆的方程的应用;直线的参数方程;圆的参数方程.【专题】综合题;压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】绝对值不等式的解法;函数的图象;其他不等式的解法.【专题】计算题;作图题;压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或x≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年普通高等学校招生全国统一考试(湖南卷)数学试题 ( 理科).解析版

2010年普通高等学校招生全国统一考试(湖南卷)数学试题 ( 理科).解析版

2010年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分. 参考公式:锥体的体积公式为13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的]1. 已知集合M={1,2,3},N={2,3,4},则A .M N ⊆ B.N M ⊆ C .{2,3}M N ⋂= D.{1,4}M N ⋃【答案】C 【解析】{}{}{}1,2,32,3,42,3MN ==故选C.【命题意图】本题考查集合的交集与子集的运算,属容易题.[来源学#科#网]2.下列命题中的假命题...是( ) A .R x ∀∈,120x -> B .N x *∀∈,()10x -2> C .R x ∃∈,lg x <1 D .R x ∃∈,tan 2x =【答案】B【解析】对于B 选项x =1时,()10x -2=,故选B.3、极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是( )A 、圆、直线B 、直线、圆C 、圆、圆D 、直线、直线4、在Rt ABC ∆中,C ∠=90°AC=4,则AC AB •等于( )A 、-16B 、-8C 、8D 、165、421dx x ⎰等于( )A 、2ln2-B 、2ln 2C 、ln 2-D 、ln 26、在△ABC 中,角A ,B ,C 所对的边长分别为a,b,c ,若∠C=120°,2c a =,则( ) A 、a>b B 、a<b C 、a=b D 、a 与b 的大小关系不能确定【命题意图】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题。

7.在某种信息传输过程中,用4个数字的一个排列(数字也许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A .10 B.11 C.12 D.15 【答案】B【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有24C 6=(个)8.用表示a ,b 两数中的最小值。

0.20 0年高考试题——(湖南卷)数学理(全解析) 1

 0.20 0年高考试题——(湖南卷)数学理(全解析) 1

2010年高考湖南卷理科数学全解全析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的]1.已知集合,,则A.B.C.D.【答案】C【解析】故选C.【命题意图】本题考查集合的交集与子集的运算,属容易题.2.下列命题中的假命题...是A.,B.,[C.,D.,【答案】B【解析】对于B选项x=1时,,故选B.【命题意图】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题。

7.在某种信息传输过程中,用4个数字的一个排列(数字也许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10 B.11 C.12 D.15【答案】B【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有【命题意图】本题通过新定义考察学生的创新能力,考察函数的图象,考察考生数形结合的能力,属中档题。

二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡...对应题号后的横线上。

9.已知一种材料的最佳加入量在110g到210 g之间,若用0.618法安排试验,则第一次试点的加入量可以是_____________g.【答案】171.8或148.2【解析】根据0.618法,第一次试点加入量为110+(210-110)0.618=171.8或210-(210-110)0.618=148.2【命题意图】本题考察优选法的0.618法,属容易题。

10.如图1所示,过外一点P作一条直线与交于A,B两点,已知PA=2,点P到的切线长PT =4,则弦AB的长为________.【答案】6【解析】根据切线长定理所以【命题意图】本题考察平面几何的切线长定理,属容易题。

11.在区间上随机取一个数x,则≤1的概率为________.【答案】【解析】P(≤1)=【命题意图】本题考察几何概率,属容易题。

2010年湖南省高考数学试卷(理科)答案与解析

2010年湖南省高考数学试卷(理科)答案与解析

2010年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•湖南)已知集合M={1,2,3},N={2,3,4},则()A.M⊆N B.N⊆M C.M∩N={2,3} D.M∪N={1,4}【考点】交集及其运算.【专题】计算题.【分析】利用直接法求解,分别求出两个集合的交集与并集,观察两个集合的包含关系即可.【解答】解:M∩N={1,2,3}∩{2,3,4}={2,3}故选C.【点评】本题主要考查了集合的交集与子集的运算,属于容易题.2.(5分)(2010•湖南)下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=2【考点】四种命题的真假关系.【专题】简易逻辑.【分析】本题考查全称命题和特称命题真假的判断,逐一判断即可.【解答】解:B中,x=1时不成立,故选B.答案:B.【点评】本题考查逻辑语言与指数函数、二次函数、对数函数、正切函数的值域,属容易题.3.(5分)(2010•湖南)极坐标p=cosθ和参数方程(t为参数)所表示的图形分别是()A.直线、直线B.直线、圆 C.圆、圆D.圆、直线【考点】参数方程化成普通方程.【专题】计算题.【分析】将极坐标方程和参数方程化为一般方程,然后进行选择.【解答】解:∵极坐标p=cosθ,x=pcosθ,y=psinθ,消去θ和p,∴x2+y2=x,x2+y2=x为圆的方程;参数方程(t为参数)消去t得,x+y﹣1=0,为直线的方程,故选D.【点评】此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.4.(5分)(2010•湖南)在Rt△ABC中,∠C=90°,AC=4,则等于()A.﹣16 B.﹣8 C.8 D.16【考点】平面向量数量积的运算;向量的加法及其几何意义.【专题】计算题.【分析】本题是一个求向量的数量积的问题,解题的主要依据是直角三角形中的垂直关系和一条边的长度,解题过程中有一个技巧性很强的地方,就是把变化为两个向量的和,再进行数量积的运算.【解答】解:∵∠C=90°,∴=0,∴=()==42=16故选D.【点评】启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.5.(5分)(2010•湖南)dx等于()A.﹣2ln2 B.2ln2 C.﹣ln2 D.ln2【考点】定积分.【专题】计算题.【分析】根据题意,直接找出被积函数的原函数,直接计算在区间(2,4)上的定积分即可.【解答】解:∵(lnx)′=∴=lnx|24=ln4﹣ln2=ln2故选D【点评】本题考查定积分的基本运算,关键是找出被积函数的原函数,本题属于基础题.6.(5分)(2010•湖南)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=a,则()A.a>b B.a<bC.a=b D.a与b的大小关系不能确定【考点】余弦定理;不等式的基本性质.【专题】计算题;压轴题.【分析】由余弦定理可知c2=a2+b2﹣2abcosC,进而求得a﹣b=,根据>0判断出a>b.【解答】解:∵∠C=120°,c=a,∴由余弦定理可知c2=a2+b2﹣2abcosC,∴a2﹣b2=ab,a﹣b=,∵a>0,b>0,∴a﹣b=,∴a>b故选A【点评】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.7.(5分)(2010•湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11 C.12 D.15【考点】排列、组合及简单计数问题.【专题】计算题;压轴题.【分析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:一是与信息0110有两个对应位置上的数字相同,二是与信息0110有一个对应位置上的数字相同,三是与信息0110没有一个对应位置上的数字相同的,分别写出结果相加.【解答】解:由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C42=6(个)第二类:与信息0110有一个对应位置上的数字相同的有C41=4个,第三类:与信息0110没有一个对应位置上的数字相同的有C40=1,由分类计数原理知与信息0110至多有两个对应位置数字相同的共有6+4+1=11个,故选B.【点评】本题是一个分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果.8.(5分)(2010•湖南)用min{a,b}表示a,b两数中的最小值.若函数f(x)=min{|x|,|x+t|}的图象关于直线x=对称,则t的值为()A.﹣2 B.2 C.﹣1 D.1【考点】函数的图象与图象变化.【专题】作图题;压轴题;新定义;数形结合法.【分析】由题设,函数是一个非常规的函数,在同一个坐标系中作出两个函数的图象,及直线x=,观察图象得出结论【解答】解:如图,在同一个坐标系中做出两个函数y=|x|与y=|x+t|的图象,函数f(x)=min{|x|,|x+t|}的图象为两个图象中较低的一个,分析可得其图象关于直线x=﹣对称,要使函数f(x)=min{|x|,|x+t|}的图象关于直线x=对称,则t的值为t=1故应选D.【点评】本题的考点是函数的图象与图象的变化,通过新定义考查学生的创新能力,考查函数的图象,考查考生数形结合的能力,属中档题.二、填空题(共7小题,每小题5分,满分35分)9.(5分)(2010•湖南)已知一种材料的最佳加入量在110g到210g之间,若用0。

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)(附详细答案)

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)(附详细答案)

13.( 5 分)设 y=f(x)为区间 [ 0,1] 上的连续函数,且恒有 0≤f (x)≤ 1,可
以用随机模拟方法近似计算积分
,先产生两组(每组 N 个)区间

[ 0, 1] 上的均匀随机数 x1,x2,…xN 和 y1, y2,…yN,由此得到 N 个点( xi,
yi)( i=1,2,…,N),再数出其中满足 yi≤f( xi)(i=1,2,…,N)的点数 N1,
斜率为 1 的直线 ? 与 E 相交于 A,B 两点,且| AF2| ,| AB| ,| BF2| 成等差数列. ( 1)求 E 的离心率; ( 2)设点 P( 0,﹣ 1)满足 | PA| =| PB| ,求 E 的方程.
21.( 12 分)设函数 f (x) =ex﹣ 1﹣ x﹣ ax2. ( 1)若 a=0,求 f(x)的单调区间; ( 2)若当 x≥0 时 f( x)≥ 0,求 a 的取值范围.
19.(12 分)为调查某地区老年人是否需要志愿者提供帮助, 用简单随机抽样方
法从该地区调查了 500 位老年人,结果如表:
性别


是否需要志愿者
需要
40
30
不需要
160
270
( 1)估计该地区老年人中,需要志愿者提供帮助的比例;
( 2)能否有 99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有
关?
( 3)根据( 2)的结论,能否提出更好的调查方法来估计该地区的老年人中需
要志愿者提供帮助的老年人比例?说明理由.
P( K2≥k)
0.050
0.010
0.001
3.841
6.635
10.828
附: K2=

2010年高考数学(理)试题(新课标)参考答案

2010年高考数学(理)试题(新课标)参考答案

1 2
3 。 2
(Ⅱ) C1 的普通方程为 x sin α − y cos α − sin α = 0。 A 点坐标为 sin
(
2
α − cos α sin α ) ,
故当 α 变化时,P 点轨迹的参数方程为:
1 2 sin α x = 2 (α为参数 ) 1 y = − sin α cos α 2
1 1 2 x− + y = 4 16 。 P 点轨迹的普通方程为
2
0 ,半径为 故 P 点轨迹是圆心为 ,
(24) 解:
1 4

1 的圆。 4
−2 x + 5,x < 2 f ( x) = 2 x − 3,x ≥ 2 则 函 数 (Ⅰ)由于
y = f ( x) 的图像如图所示。
3 3
3 ,0,0) 3
D(0, −
3 1 3 , 0), E ( , − , 0), P(0, 0,1) 3 2 6
设 n = ( x, y, x) 为平面 PEH 的法向量

n ⋅ HE = o, o, n ⋅ HP =
1 x− 3 y= 2 6 0 即 z=0
因此可以取 n = (1, 3, 0) , 由= PA (1, 0, −1) ,
(Ⅱ)由函数 y = f ( x) 与函数 y = ax 的图像可知,当且仅当
a≥
1 2 或 a < −2 时,函数
-5-
天骄文化培训学校
y = f ( x) 与函数 y = ax 的图像有交点。故不等式 f ( x) ≤ ax 的解集非空时,a 的取值范围

− 2) ( −∞,,
1 + ∞ 2 。

2010年湖南高考数学理科试卷带详解

2010年湖南高考数学理科试卷带详解

2010年高考理科数学试题 湖南卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,2,3,4M N ==,则( )A .M N ⊆ B.N M ⊆ C.{2,3}M N = D.{1,4}M N =【测量目标】集合的基本运算.【考查方式】直接给出两个集合先通过交、并、补集运算得出两个集合之间的关系,得出正 确结论.【难易程度】容易 【参考答案】C【试题解析】∵{1,2,3}M =, {2,3,4}N =,∴{2,3}M N =,故选C .2.下列命题中的假命题是( )A .∀x ∈R ,120x -> B. ∀*x ∈N ,2(1)0x ->C .∃ x ∈R ,lg 1x < D. ∃x ∈R ,tan 2x = 【测量目标】全称量词与存在量词.【考查方式】给出含有全称量词与存在量词的命题,判断真假得出结论. 【难易程度】容易 【参考答案】B【试题解析】易知A 、C 、D 都对,而对于B ,当1x =时,有2(1)0x -=,不对,故选B .3.极坐标方程cos ρθ=和参数方程123x t y t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 【测量目标】极坐标方程和参数方程与普通方程的互化.【考查方式】给出极坐标方程与参数方程先转化为普通方程再判断其表示的图形. 【难易程度】容易 【参考答案】A【试题解析】由极坐标方程cos ρθ=可得222cos ,0x y x ρρθ=∴+-=表示的是圆;由参数方程1,23x t y t =--⎧⎨=+⎩推得直线310x y ++=,故选A .4.在Rt ABC △中,=904C AC ︒∠=,,则AB AC 等于( )A .16-B .8-C .8D .16【测量目标】平面向量在平面几何中的应用.【考查方式】在三角形中通过向量数量积的定义运算求解三角形两条边的数量积. 【难易程度】容易 【参考答案】D【试题解析】2||||cos ||16AB AC AB AC BAC AC =∠==,故选D .5.421dx x ⎰等于 ( ) A.2ln2- B.2ln 2 C.ln 2- D.ln 2【测量目标】定积分的运算.【考查方式】直接给出定积分的式子求值. 【难易程度】容易 【参考答案】D【试题解析】由微积分易知,1(ln )x x'=,421ln 4ln 2ln 2dx x ∴=-=⎰,故选D .6.在ABC △中,角,,A B C 所对的边长分别为,,a b c ,若120C ︒∠=,c =,则( )A. a b >B. a b <C. a b =D. a 与b 的大小关系不能确定【测量目标】余弦定理.【考查方式】给出三角形中一个角和两条边的关系运用余弦定理判断选项的正误. 【难易程度】容易 【参考答案】A【试题解析】由余弦定理得2222222cos 2c a b ab C a a b ab =+-⇒=++,则有22a b ab =+,而ABC △的边长,a b 均大于零,因而有a b >,故选A .7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( ) A.10 B.11 C.12 D.15 【测量目标】排列组合.【考查方式】给出一个实际问题运用排列组合的相关知识求解. 【难易程度】中等 【参考答案】B【试题解析】易知数字0和1无限制排列时有4216=种;与信息0110四个对应位置上的数字都相同的只有1个:0110;三个相同的有4个,分别为:0111,0100,0010,1110,由间接法可得符合条件的有4342C 1=11--个,故选B .8.用min{,}a b 表示,a b 两数中的最小值.若函数()min{||,||}f x x x t =+的图像关于直线12x =-对称,则t 的值为 ( )A .2-B .2C .1-D .1【测量目标】函数图像的性质.【考查方式】给出函数,画出其图像,通过对其图像的判断求解未知参数. 【难易程度】中等 【参考答案】D【试题解析】本题考查了数形结合思想的运用.画出图形,知对称轴为122t x =-=-,因此1t =,选D.第8题图二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上.9.已知一种材料的最佳入量在110g 到210g 之间.若用0.618法安排实验,则第一次试点的加入量可以是 g 【测量目标】黄金分割点.【考查方式】运用黄金分割点的相关性质解决实际问题. 【难易程度】容易【参考答案】171.8g 或148.2g【试题解析】由0.618法求得第一次试点的加入量为1101000.618171.8+⨯=g 或2101000.618148.2-⨯=g 10.如图所示,过O 外一点P 作一条直线与O 交于,A B 两点.已知P A =2,点P 到O的切线长PT =4,则弦AB 的长为 .第10题图【测量目标】切割线定理.【考查方式】运用切割线定理求解圆中的弦的长度. 【难易程度】中等 【参考答案】6【试题解析】由切割线定理知2PT PA PB =,得PB =8,因此,AB =6. 11.在区间[1,2]-上随机取一个数x ,则||1x 的概率为 . 【测量目标】几何概型.【考查方式】运用几何概型的相关知识求解区间内长度取值范围概率. 【难易程度】容易 【参考答案】23【试题解析】因为12x-,所以||1x 即为11x-的概率为23.12.如图是求222123+++2…+100的值的程序框图,则正整数n = .第12题图【测量目标】循环结构的程序框图【考查方式】给出程序框图,阅读并运行程序再得出结果. 【难易程度】容易 【参考答案】100【试题解析】因为第一次循环21s =,第二次循环2212s =++…,输出结果为2222123100s =++++…,所以循环了100次,则正整数100n =.13.图中的三个直角三角形是一个体积为203cm 的几何体的三视图,则h = cm .第13题图【测量目标】三视图.【考查方式】直接给出一个几何体的三视图已知其体积求其高. 【难易程度】容易 【参考答案】4【试题解析】本题考查了三视图,考查了锥体体积的计算公式.由三视图得几何体为底面为直角边长为5和6的锥体,由正视图得锥体的高为h ,所以11562032h ⨯⨯⨯⨯=,解得4h =.14.过抛物线22(0)x py p =>的焦点作斜率为1的直线与该抛物线交于,A B 两点,,A B 在x 轴上的正射影分别为,D C .若梯形ABCD 的面积为122,则p = .【测量目标】抛物线的一般方程,抛物线的简单几何性质.【考查方式】先求抛物线的解析式在运用其简单几何性质求解未知参数. 【难易程度】中等 【参考答案】2【试题解析】设直线方程为2py x =+,设A 点纵坐标为1y 、B 点纵坐标为2y (12y y >),(步骤1)又得2AB CD =即12212()2y y p y y ++⨯=-(1),(步骤2)又因为梯形面积为122,则得1221()()242y y y y +-=(2),(步骤3)由(1)、(2)联立得1212()()48y y y y p +++=(*),由222x pyp y x ⎧=⎪⎨=+⎪⎩得22304p y py -+=,(步骤4)由韦达定理得123y y p +=代入(*)解得2p =.(步骤5)15.若数列{}n a 满足:对任意的n *∈N ,只有有限个正整数m 使得m a n <成立,记这样的m 的个数为()n a *,则得到一个新数列{}()n a *.例如,若数列{}n a 是1,2,3,n …,…,则数列{}()n a *是0,1,2,1,n -…,….已知对任意的n *∈N ,2n a n =,则5()a *= ,(())n a **= .【测量目标】数列的创新运用.【考查方式】给出一个数列赋予其新性质求解数列中的未知项. 【难易程度】中等 【参考答案】2 2n 【试题解析】222222123451,2,3,4,5,,n a a a a a a n ======…,易知其中小于5的只有两个121,4a a ==,故5()a *=2;(步骤1)类推得:1()0,a *=234()()()1,a a a ***===569()()()2,a a a ***====10()3,a *=,(步骤2)故1(())1,a **=22(())42,a **==223(())93,,(()).n a a n ****===(步骤3)故填5()a *=2,(())n a **=2n .(步骤4)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数2()3sin 22sin f x x x =-.(Ⅰ)求函数()f x 的最大值; (II )求函数()f x 的零点的集合.【测量目标】诱导公式,三角函数的最值,函数的零点.【考查方式】给出一个三角函数先运用诱导公式化简再求解其最大值和零点所在的集合. 【难易程度】中等【试题解析】(Ⅰ)因为π()3sin 2(1cos 2)2sin(2)1,6f x x x x =--=+-(步骤1)所以,当ππ22π,62x k +=+即ππ()6x k k =+∈Z 时, 函数()f x 取得最大值1.(步骤2) (II )解法1 由(Ⅰ)及()0f x =得π1sin(2)62x +=(步骤3),所以 ππ22π,66x k +=+或π5π22π,66x k +=+ 即π,x k =或ππ.3x k =+(步骤4)故函数()f x 的零点的集合为π|π,π.3x x k x k k ⎧⎫==+∈⎨⎬⎩⎭Z 或,(步骤5) 解法2 由()0f x =得223sin cos 2sin ,x x x =,(步骤3)于是sin 0,x =或3cos sin ,x x =即tan 3.x =(步骤4)由sin 0x =可知πx k =; 由tan 3x =可知ππ.3x k =+(步骤5)故函数()f x 的零点的集合为π|π,π.3x x k x k k ⎧⎫==+∈⎨⎬⎩⎭Z 或,(步骤6) 17.(本小题满分12分)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图(Ⅰ)求直方图中x 的值(II )若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列和数学期望.第17题图【测量目标】频率分布直方图,分布列与数学期望. 【考查方式】给出一个与实际问题有关的频率分布直方图先观察图求出未知参数,再运用分布列与数学期望的相关知识求解答案.【难易程度】中等【试题解析】(Ⅰ)依题意及频率分布直方图知,0.020.10.370.391,x ++++=解得0.12x =.(II )由题意知,(3,0.1)XB .(步骤1)因此 033(0)C 0.90.729P X ==⨯=,123(1)C 0.10.90.243P X ==⨯⨯=, 223(2)C 0.10.90.027P X ==⨯⨯=,333(3)C 0.10.001P X ==⨯=,(步骤2)故随机变量X 的分布列为X123P 0.729 0.243 0.027 0.001 X 的数学期望为30.10.3EX =⨯=.或10.24320.02730.0010.3EX =⨯+⨯+⨯=.(步骤3)18.(本小题满分12分)如图所示,在正方体1111ABCD A B C D -中,E 是棱DD 1的中点. (Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值; (II )在棱C 1D 1上是否存在一点F ,使B 1F //平面A 1BE ? 证明你的结论.第18题图【测量目标】线面角,线面平行的判定.【考查方式】给出空间几何体运用线面角及线面平行的性质求解. 【难易程度】中等【试题解析】(Ⅰ)解法1 设正方体的棱长为1.如图所示,以1,,AB AD AA 为单位正交基底建立空间直角坐标系.(步骤1)依题意,得1(1,0,0),(0,1,),(0,0,0),(0,1,0).2B E A D 所以1(1,1,),(0,1,0).2BE AD =-=(步骤2)在正方体1111ABCD A B C D -中,因为AD ⊥平面11ABB A ,所以AD 是平面11ABB A 的一个法向量.(步骤3)设直线BE 和平面11ABB A 所成的角为θ,则||12sin 3312BE AD BE ADθ===⨯.即直线BE 和平面11ABB A 所成的角的正弦值为23.(步骤4)第18题(1)图(II )依题意,得1(0,0,1),A 11(1,0,1),(1,1,).2BA BE =-=-设(),,x y z =n 是平面1A BE 的一个法向量,(步骤5)则由10,0BA BE ==n n ,得0,10.2x z x y z -+=⎧⎪⎨-++=⎪⎩所以x z =, 12y z =.取2z =,得()2,1,2=n .(步骤6)设F 是棱11C D 上的点,则(,1,1)(01).F t t又1(1,0,1),B 所以1(1,1,0).B F t =-(步骤7)而1B F ⊄平面1A BE ,于是1//B F 平面1A BE()110(1,1,0)2,1,202(1)102B F t t t ⇔=⇔-=⇔-+=⇔=⇔n F 为11C D 的中点.(步骤8)这说明在棱11C D 上存在点F (11C D 的中点),使1//B F 平面1A BE .(步骤9)解法2 (Ⅰ)如图(a )所示,取1AA 的中点M ,连结EM ,BM .因为E 是1DD 的中点,四边形11ADD A 为正方形,所以//EM AD .(步骤5)又在正方体1111ABCD A B C D -中,AD ⊥平面11ABB A ,所以EM ⊥平面11ABB A ,从而BM 为直线BE 在平面11ABB A 上的射影,(步骤6)EBM ∠为BE 和平面11ABB A 所成的角.设正方体的棱长为2,则2EM AD ==,(步骤7) 2222213BE =++=.于是,在Rt BEM △中,2sin .3EM EBM BE ∠== 即直线BE 和平面11ABB A 所成的角的正弦值为23.(步骤8)第18题图(a ) 第18题图(b ) (II )在棱11C D 上存在点F ,使1//B F 平面1A BE .事实上,如图(b )所示,分别取11C D 和CD 的中点,F G ,连结1,,,EG BG CD FG . 因1111////A D B C BC ,且11A D BC =,所以四边形11A BCD 为平行四边形,(步骤10) 因此11//D C A B .又,E G 分别为1D D ,CD 的中点,所以1//EG D C ,从而1//.EG A B 这说明1,,,A B G E 共面.(步骤11) 所以BG ⊂平面1A BE .因四边形11C CDD 与11B BCC 皆为正方形,,F G 分别为11C D 和CD 的中点,所以11////FG C C B B ,且11FG C C B B ==,(步骤12) 因此四边形1B BGF 为平行四边形,所以1//B F BG .而1B F ⊄平面1A BE ,BG ⊂平面1A BE ,故1//B F 平面1A BE .(步骤13)19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A,B 两点各建一个考察基地.视冰川面为平面形,以过A,B 两点的直线为x 轴,线段AB 的的垂直平分线为y 轴建立平面直角坐标系,在直线2x =的右侧,考察范围为到点B 的距离不超过53km 区域;在直线2x =的左侧,考察范围为到A,B 两点的距离之和不超过5区域.(Ⅰ)求考察区域边界曲线的方程;(Ⅱ)如图所示,设线段P 1P 2,P 2P 3是冰川的部分边界线(不考虑其他边界线),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.第19题图【测量目标】函数与圆锥曲线的实际运用.【考查方式】给出一个实际问题运用函数模型和圆锥曲线的相关性质求解问题. 【难易程度】中等【试题解析】(Ⅰ)设边界曲线上点P 的坐标为(,)x y .当2x时,由题意知2236(4)5x y -+=.(步骤1)当2x <时,由||||45PA PB +=知,点P 在以,A B 为焦点,长轴长为245a =的椭圆上.(步骤2)此时短半轴长22(25)42b =-=.因而其方程为221204x y +=.(步骤3)故考察区域边界曲线(如图)的方程为22136:(4)(2)5C x y x-+=和222:1(2)204x y C x +=<.(步骤4)第19题(Ⅰ)图(Ⅱ)设过点12,P P 的直线为1l ,过点23,P P 的直线为2l ,则直线1l ,2l 的方程分别为 314, 6.y x y =+=(步骤5)设直线l 平行于直线1l ,其方程为3,y x m =+代入椭圆方程221204x y +=,(步骤6)消去y ,得22161035(4)0x mx m ++-=. 由2210034165(4)0m m ∆=⨯-⨯⨯-=,解得8m =,或8m =-.(步骤7) 从图中可以看出,当8m =时,直线l 与2C 的公共点到1l 的距离最近,此时直线l的方程为38,y x =+l 与1l 之间的距离为313d ==+.(步骤8) 又直线2l 到1C 和2C 的最短距离565d '=-而3d '>,所以考察区域边界到冰川边界线的最短距离为3.设冰川边界线移动到考察区域所需的时间为n 年,则由题设及等比数列求和公式,得0.2(21)321n --,所以4n .故冰川边界线移动到考察区域所需的时间为4年. (步骤9)20.(本小题满分13分)已知函数2()(,),f x x bx c b c =++∈R 对任意的x ∈R ,恒有()f x '()f x.(Ⅰ)证明:当0x 时,2()()f x x c +;(Ⅱ)若对满足题设条件的任意b ,c ,不等式22()()()f c f b M c b --恒成立,求M 的最小值.【测量目标】函数的最值与不等式证明.【考查方式】给出函数解析式证明函数的最值范围与不等式成立的条件. 【难易程度】较难【试题解析】(Ⅰ)易知()2f x x b '=+.由题设,对任意的x ∈R ,22,x b x bx c +++即2(2)0x b x c b+-+-恒成立,(步骤1)所以2(2)4()0b c b ---,从而214b c+.(步骤2) 于是1c,且221||4b cb ⨯=,因此2()0c b c c b -=+->.(步骤3)故当0x时,有2()()(2)(1)0x c f x c b x c c +-=-+-.即当0x时,2()()f x x c +.(步骤4)(Ⅱ)由(Ⅰ)知,||c b .当||c b >时,有2222222()()2.f c f b c b bc b c bMc b c b b c--+-+==--+(步骤5)令b t c =,则11t -<<,2121c b b c t +=-++.而函数1()2(11)1g t t t=--<<+ 的值域是3(,)2-∞.因此,当||c b >时,M 的取值集合为3(,).2+∞(步骤6)当||c b =时,由(Ⅰ)知,2, 2.b c =±=此时()()8f c f b -=-或0,220c b -=, 从而223()()()2f c f b c b --恒成立.综上所述,M 的最小值为32.(步骤7) 21.(本小题满分13分)数列{}*()n a n ∈N 中,11,n a a a +=是函数322211()(3)332n n n f x x a n x n a x =-++的极小值点.(Ⅰ)当0a =时,求通项n a ;(Ⅱ)是否存在a ,使数列{}n a 是等比数列?若存在,求a 的取值范围;若不存在,请说明理由.【测量目标】数列的通项与等比数列的性质.【考查方式】给出数列的函数形式运用数列的通项与等比数列的性质求解未知数 【难易程度】较难【试题解析】(Ⅰ)易知2222()(3)3(3)()n n n n f x x a n x n a x a x n '=-++=--.令()0n f x '=,得2123,.n x a x n ==(步骤1)(1)若23,n a n <则当3n x a <时,()0,n f x '>()n f x 单调递增;当23n a x n <<时,()0,n f x '<()n f x 单调递减;当2x n >时,()0,n f x '>()n f x 单调递增.(步骤2)故()n f x 在2x n =取得极小值.(步骤3)(2)若23,n a n >仿(1)可得,()n f x 在3n x a =取得极小值.(步骤4) (3)若23,n a n =则()0,n f x '()n f x 无极值.(步骤5) 当0a =时,10,a =则213 1.a <由(1)知,221 1.a == 因22332,a =<则由(1)知,232 4.a ==因为233123,a =>则由(2)知,4333 4.a a ==⨯又因为243364,a =>则由(2)知,25433 4.a a ==⨯(步骤6)由此猜测:当3n时,343.n n a -=⨯下面先用数学归纳法证明:当3n时,23.n a n >(步骤7)事实上,当3n =时,由前面的讨论知结论成立. 假设当(3)n k k=时,23k a k >成立,则由(2)知,213k k a a k +=>,从而22213(1)3(1)2(2)210,k a k k k k k k +-+>-+=-+->(步骤8)所以213(1).k a k +>+故当3n 时,23n a n >成立.于是由(2)知,当3n时,13,n n a a +=而34,a =因此343.n n a -=⨯综上所述,当0a =时,10,a =21,a =343(3).n n a n-=⨯(步骤9)(Ⅱ)存在a ,使数列{}n a 是等比数列. 事实上,由(2)知,若对任意的n ,都有23,n a n >则13n n a a +=.(步骤10)即数列{}n a 是首项为a ,公比为3的等比数列,且13n n a a -=.而要使23,n a n >即23n a n >对一切n *∈N 都成立,(步骤11)只需23n n a >对一切n *∈N 都成立.记23n n n b =,则123141,,,.393b b b ===…令23x x y =,(步骤12)则2211(2ln 3)(2).33x x y x x x x '=-<-因此,当2x 时,0y '<,(步骤13)从而函数 23x x y =在[2,)+∞上单调递减.故当2n时,数列{}n b 单调递减,(步骤14)即数列{}n b 中最大项为249b =.于是当49a >时,必有23n n a >.(步骤15)这说明,当4,9a ⎡⎫∈+∞⎪⎢⎣⎭时,数列{}n a 是等比数列.(步骤16)当49a =时,可得1244,.93a a ==而22342,a == 由(3)知,2()f x 无极值,不合题意.当1439a <<时,可得1234,3,4,12,,a a a a a a ====…数列{}n a 不是等比数列.(步骤17)当13a =时,2311,a ==由(3)知,1()f x 无极值,不合题意. 当13a <时,可得1234,1,4,12,,a a a a a ====…数列{}n a 不是等比数列.综上所述,存在a ,使数列{}n a 是等比数列,且a 的取值范围为4(,)9+∞.(步骤18)。

2010年湖南高考数学理科试卷带详解

2010年湖南高考数学理科试卷带详解

2010年高考理科数学试题 湖南卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,2,3,4M N ==,则( )A .M N ⊆ B.N M ⊆ C.{2,3}M N = D.{1,4}M N =【测量目标】集合的基本运算.【考查方式】直接给出两个集合先通过交、并、补集运算得出两个集合之间的关系,得出正确结论.【难易程度】容易 【参考答案】C【试题解析】∵{1,2,3}M =, {2,3,4}N =,∴{2,3}MN =,故选C .2.下列命题中的假命题是( )A .∀x ∈R ,120x -> B. ∀*x ∈N ,2(1)0x ->C .∃ x ∈R ,lg 1x < D. ∃x ∈R ,tan 2x = 【测量目标】全称量词与存在量词.【考查方式】给出含有全称量词与存在量词的命题,判断真假得出结论. 【难易程度】容易 【参考答案】B【试题解析】易知A 、C 、D 都对,而对于B ,当1x =时,有2(1)0x -=,不对,故选B . 3.极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 【测量目标】极坐标方程和参数方程与普通方程的互化.【考查方式】给出极坐标方程与参数方程先转化为普通方程再判断其表示的图形. 【难易程度】容易 【参考答案】A【试题解析】由极坐标方程cos ρθ=可得222cos ,0x y x ρρθ=∴+-=表示的是圆;由参数方程1,23x t y t=--⎧⎨=+⎩推得直线310x y ++=,故选A .4.在Rt ABC △中,=904C AC ︒∠=,,则AB AC 等于( )【测量目标】平面向量在平面几何中的应用.【考查方式】在三角形中通过向量数量积的定义运算求解三角形两条边的数量积. 【难易程度】容易 【参考答案】D【试题解析】2||||cos ||16AB AC AB AC BAC AC =∠==,故选D .5.421dx x ⎰等于 ( ) A.2ln2- B.2ln 2 C.ln 2- D.ln 2【测量目标】定积分的运算.【考查方式】直接给出定积分的式子求值. 【难易程度】容易 【参考答案】D【试题解析】由微积分易知,1(ln )x x'=,421ln 4ln 2ln 2dx x ∴=-=⎰,故选D .6.在ABC △中,角,,A B C 所对的边长分别为,,a b c ,若120C ︒∠=,c =,则( )A. a b >B. a b <C. a b =D. a 与b 的大小关系不能确定【测量目标】余弦定理.【考查方式】给出三角形中一个角和两条边的关系运用余弦定理判断选项的正误. 【难易程度】容易 【参考答案】A【试题解析】由余弦定理得2222222cos 2c a b ab C a a b ab =+-⇒=++,则有22a b ab =+,而ABC △的边长,a b 均大于零,因而有a b >,故选A .7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )A.10B.11C.12D.15 【测量目标】排列组合.【考查方式】给出一个实际问题运用排列组合的相关知识求解. 【难易程度】中等 【参考答案】B【试题解析】易知数字0和1无限制排列时有4216=种;与信息0110四个对应位置上的数字都相同的只有1个:0110;三个相同的有4个,分别为:0111,0100,0010,1110,由间接法可得符合条件的有4342C 1=11--个,故选B .8.用min{,}a b 表示,a b 两数中的最小值.若函数()min{||,||}f x x x t =+的图像关于直线12x =-对称,则t 的值为 ( )A .2-B .2C .1-D .1【测量目标】函数图像的性质.【考查方式】给出函数,画出其图像,通过对其图像的判断求解未知参数. 【难易程度】中等 【参考答案】D【试题解析】本题考查了数形结合思想的运用.画出图形,知对称轴为122t x =-=-,因此1t =,选D.第8题图二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上. 9.已知一种材料的最佳入量在110g 到210g 之间.若用0.618法安排实验,则第一次试点的加入量可以是 g【测量目标】黄金分割点.【考查方式】运用黄金分割点的相关性质解决实际问题. 【难易程度】容易【参考答案】171.8g 或148.2g【试题解析】由0.618法求得第一次试点的加入量为1101000.618171.8+⨯=g 或2101000.618148.2-⨯=g 10.如图所示,过O 外一点P 作一条直线与O 交于,A B 两点.已知PA =2,点P 到O 的切线长PT =4,则弦AB 的长为 .第10题图【测量目标】切割线定理.【考查方式】运用切割线定理求解圆中的弦的长度. 【难易程度】中等 【参考答案】6【试题解析】由切割线定理知2PT PA PB =,得PB =8,因此,AB =6. 11.在区间[1,2]-上随机取一个数x ,则||1x 的概率为 . 【测量目标】几何概型.【考查方式】运用几何概型的相关知识求解区间内长度取值范围概率. 【难易程度】容易 【参考答案】23【试题解析】因为12x-,所以||1x 即为11x-的概率为23.12.如图是求222123+++2…+100的值的程序框图,则正整数n = .第12题图【测量目标】循环结构的程序框图【考查方式】给出程序框图,阅读并运行程序再得出结果. 【难易程度】容易 【参考答案】100【试题解析】因为第一次循环21s =,第二次循环2212s =++…,输出结果为2222123100s =++++…,所以循环了100次,则正整数100n =.13.图中的三个直角三角形是一个体积为203cm 的几何体的三视图,则h = cm .第13题图【测量目标】三视图.【考查方式】直接给出一个几何体的三视图已知其体积求其高. 【难易程度】容易 【参考答案】4【试题解析】本题考查了三视图,考查了锥体体积的计算公式.由三视图得几何体为底面为直角边长为5和6的锥体,由正视图得锥体的高为h ,所以11562032h ⨯⨯⨯⨯=,解得4h =. 14.过抛物线22(0)x py p =>的焦点作斜率为1的直线与该抛物线交于,A B 两点,,A B 在x 轴上的正射影分别为,D C .若梯形ABCD 的面积为122p = . 【测量目标】抛物线的一般方程,抛物线的简单几何性质.【考查方式】先求抛物线的解析式在运用其简单几何性质求解未知参数. 【难易程度】中等 【参考答案】2【试题解析】设直线方程为2py x =+,设A 点纵坐标为1y 、B 点纵坐标为2y (12y y >),(步骤1)又得2AB CD =即12212()2y y p y y ++⨯=-(1),(步骤2)又因为梯形面积为122,则得1221()()242y y y y +-=(2),(步骤3)由(1)、(2)联立得1212()()48y y y y p +++=(*),由222x py py x ⎧=⎪⎨=+⎪⎩得22304p y py -+=,(步骤4)由韦达定理得123y y p +=代入(*)解得2p =.(步骤5) 15.若数列{}n a 满足:对任意的n *∈N ,只有有限个正整数m 使得m a n <成立,记这样的m 的个数为()n a *,则得到一个新数列{}()n a *.例如,若数列{}n a 是1,2,3,n …,…,则数列{}()n a *是0,1,2,1,n -…,….已知对任意的n *∈N ,2n a n =,则5()a *= ,(())n a **= .【测量目标】数列的创新运用.【考查方式】给出一个数列赋予其新性质求解数列中的未知项. 【难易程度】中等 【参考答案】2 2n【试题解析】222222123451,2,3,4,5,,n a a a a a a n ======…,易知其中小于5的只有两个121,4a a ==,故5()a *=2;(步骤1)类推得:1()0,a *=234()()()1,a a a ***===569()()()2,a a a ***====10()3,a *=,(步骤2)故1(())1,a **=22(())42,a **==223(())93,,(()).n a a n ****===(步骤3)故填5()a *=2,(())n a **=2n .(步骤4)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数2()322sin f x x x =-.(Ⅰ)求函数()f x 的最大值; (II )求函数()f x 的零点的集合.【测量目标】诱导公式,三角函数的最值,函数的零点.【考查方式】给出一个三角函数先运用诱导公式化简再求解其最大值和零点所在的集合. 【难易程度】中等【试题解析】(Ⅰ)因为π()3sin 2(1cos 2)2sin(2)1,6f x x x x =--=+-(步骤1)所以,当ππ22π,62x k +=+即ππ()6x k k =+∈Z 时, 函数()f x 取得最大值1.(步骤2) (II )解法1 由(Ⅰ)及()0f x =得π1sin(2)62x +=(步骤3),所以 ππ22π,66x k +=+或π5π22π,66x k +=+ 即π,x k =或ππ.3x k =+(步骤4)故函数()f x 的零点的集合为π|π,π.3x x k x k k ⎧⎫==+∈⎨⎬⎩⎭Z 或,(步骤5) 解法2 由()0f x =得223sin cos 2sin ,x x x =,(步骤3)于是sin 0,x =或3cos sin ,x x =即tan 3.x =(步骤4)由sin 0x =可知πx k =; 由tan 3x =可知ππ.3x k =+(步骤5)故函数()f x 的零点的集合为π|π,π.3x x k x k k ⎧⎫==+∈⎨⎬⎩⎭Z 或,(步骤6) 17.(本小题满分12分)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图(Ⅰ)求直方图中x 的值(II )若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列和数学期望.第17题图【测量目标】频率分布直方图,分布列与数学期望.【考查方式】给出一个与实际问题有关的频率分布直方图先观察图求出未知参数,再运用分布列与数学期望的相关知识求解答案.【难易程度】中等【试题解析】(Ⅰ)依题意及频率分布直方图知,0.020.10.370.391,x ++++=解得0.12x =. (II )由题意知,(3,0.1)XB .(步骤1)因此 033(0)C 0.90.729P X ==⨯=,123(1)C 0.10.90.243P X ==⨯⨯=,223(2)C 0.10.90.027P X ==⨯⨯=,333(3)C 0.10.001P X ==⨯=,(步骤2)故随机变量X 的分布列为X123P 0.729 0.243 0.027 0.001 X 的数学期望为30.10.3EX =⨯=.或10.24320.02730.0010.3EX =⨯+⨯+⨯=.(步骤3)18.(本小题满分12分)如图所示,在正方体1111ABCD A B C D -中,E 是棱DD 1的中点.(Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值; (II )在棱C 1D 1上是否存在一点F ,使B 1F //平面A 1BE ? 证明你的结论.第18题图【测量目标】线面角,线面平行的判定.【考查方式】给出空间几何体运用线面角及线面平行的性质求解. 【难易程度】中等【试题解析】(Ⅰ)解法1 设正方体的棱长为1.如图所示,以1,,AB AD AA 为单位正交基底建立空间直角坐标系.(步骤1)依题意,得1(1,0,0),(0,1,),(0,0,0),(0,1,0).2B E A D 所以1(1,1,),(0,1,0).2BE AD =-=(步骤2) 在正方体1111ABCD A B C D -中,因为AD ⊥平面11ABB A ,所以AD 是平面11ABB A 的一个法向量.(步骤3)设直线BE 和平面11ABB A 所成的角为θ,则||12sin 3312BE AD BE ADθ===⨯.即直线BE 和平面11ABB A 所成的角的正弦值为23.(步骤4)第18题(1)图(II )依题意,得1(0,0,1),A 11(1,0,1),(1,1,).2BA BE =-=-设(),,x y z =n 是平面1A BE 的一个法向量,(步骤5)则由10,0BA BE ==n n ,得0,10.2x z x y z -+=⎧⎪⎨-++=⎪⎩所以x z =, 12y z =.取2z =,得()2,1,2=n .(步骤6)设F 是棱11C D 上的点,则(,1,1)(01).F t t又1(1,0,1),B 所以1(1,1,0).B F t =-(步骤7)而1B F ⊄平面1A BE ,于是1//B F 平面1A BE()110(1,1,0)2,1,202(1)102B F t t t ⇔=⇔-=⇔-+=⇔=⇔n F 为11C D 的中点.(步骤8) 这说明在棱11C D 上存在点F (11C D 的中点),使1//B F 平面1A BE .(步骤9)解法2 (Ⅰ)如图(a )所示,取1AA 的中点M ,连结EM ,BM .因为E 是1DD 的中点,四边形11ADD A 为正方形,所以//EM AD .(步骤5)又在正方体1111ABCD A B C D -中,AD ⊥平面11ABB A ,所以EM ⊥平面11ABB A ,从而BM 为直线BE 在平面11ABB A 上的射影,(步骤6)EBM ∠为BE 和平面11ABB A 所成的角.设正方体的棱长为2,则2EM AD ==,(步骤7)2222213BE =++=.于是,在Rt BEM △中,2sin .3EM EBM BE ∠== 即直线BE 和平面11ABB A 所成的角的正弦值为23.(步骤8)第18题图(a ) 第18题图(b ) (II )在棱11C D 上存在点F ,使1//B F 平面1A BE .事实上,如图(b )所示,分别取11C D 和CD 的中点,F G ,连结1,,,EG BG CD FG . 因1111////A D B C BC ,且11A D BC =,所以四边形11A BCD 为平行四边形,(步骤10) 因此11//D C A B .又,E G 分别为1D D ,CD 的中点,所以1//EG D C ,从而1//.EG A B 这说明1,,,A B G E 共面.(步骤11) 所以BG ⊂平面1A BE .因四边形11C CDD 与11B BCC 皆为正方形,,F G 分别为11C D 和CD 的中点,所以11////FG C C B B ,且11FG C C B B ==,(步骤12) 因此四边形1B BGF 为平行四边形,所以1//B F BG .而1B F ⊄平面1A BE ,BG ⊂平面1A BE ,故1//B F 平面1A BE .(步骤13)19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A,B 两点各建一个考察基地.视冰川面为平面形,以过A,B 两点的直线为x 轴,线段AB 的的垂直平分线为y 轴建立平面直角坐标系,在直线2x =的右侧,考察范围为到点B 的距离不超过653km 区域;在直线2x =的左侧,考察范围为到A,B 两点的距离之和不超过45km 区域.(Ⅰ)求考察区域边界曲线的方程;(Ⅱ)如图所示,设线段P 1P 2,P 2P 3是冰川的部分边界线(不考虑其他边界线),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.第19题图【测量目标】函数与圆锥曲线的实际运用.【考查方式】给出一个实际问题运用函数模型和圆锥曲线的相关性质求解问题. 【难易程度】中等【试题解析】(Ⅰ)设边界曲线上点P 的坐标为(,)x y .当2x时,由题意知2236(4)5x y -+=.(步骤1)当2x <时,由||||45PA PB +=P 在以,A B 为焦点,长轴长为245a =(步骤2)此时短半轴长22(25)42b =-=.因而其方程为221204x y +=.(步骤3)故考察区域边界曲线(如图)的方程为22136:(4)(2)5C x y x -+=和222:1(2)204x y C x +=<.(步骤4)第19题(Ⅰ)图(Ⅱ)设过点12,P P 的直线为1l ,过点23,P P 的直线为2l ,则直线1l ,2l 的方程分别为314, 6.y x y =+=(步骤5)设直线l 平行于直线1l ,其方程为3,y x m =+代入椭圆方程221204x y +=,(步骤6)消去y ,得22161035(4)0x mx m ++-=. 由2210034165(4)0m m ∆=⨯-⨯⨯-=,解得8m =,或8m =-.(步骤7)从图中可以看出,当8m =时,直线l 与2C 的公共点到1l 的距离最近,此时直线l 的方程为38,y x =+l 与1l 之间的距离为313d ==+.(步骤8) 又直线2l 到1C 和2C 的最短距离656d '=而3d '>,所以考察区域边界到冰川边界线的最短距离为3.设冰川边界线移动到考察区域所需的时间为n 年,则由题设及等比数列求和公式,得0.2(21)321n --,所以4n .故冰川边界线移动到考察区域所需的时间为4年. (步骤9)20.(本小题满分13分)已知函数2()(,),f x x bx c b c =++∈R 对任意的x ∈R ,恒有()f x '()f x .(Ⅰ)证明:当0x时,2()()f x x c +;(Ⅱ)若对满足题设条件的任意b ,c ,不等式22()()()f c f b M c b --恒成立,求M 的最小值.【测量目标】函数的最值与不等式证明.【考查方式】给出函数解析式证明函数的最值范围与不等式成立的条件. 【难易程度】较难【试题解析】(Ⅰ)易知()2f x x b '=+.由题设,对任意的x ∈R ,22,x bx bx c +++即 2(2)0x b x c b +-+-恒成立,(步骤1)所以2(2)4()0b c b ---,从而214b c+.(步骤2)b 11于是1c ,且221||4b c b ⨯=,因此2()0c b c c b -=+->.(步骤3)故当0x 时,有2()()(2)(1)0x c f x c b x c c +-=-+-.即当0x 时,2()()f x x c +.(步骤4)(Ⅱ)由(Ⅰ)知,||c b .当||c b >时,有2222222()()2.f c f b c b bc b c b M c b c b b c --+-+==--+(步骤5) 令b t c =,则11t -<<,2121c b b c t +=-++.而函数1()2(11)1g t t t=--<<+ 的值域是3(,)2-∞.因此,当||c b >时,M 的取值集合为3(,).2+∞(步骤6) 当||c b =时,由(Ⅰ)知,2, 2.b c =±=此时()()8f c f b -=-或0,220c b -=, 从而223()()()2f c f b c b --恒成立.综上所述,M 的最小值为32.(步骤7) 21.(本小题满分13分)数列{}*()n a n ∈N 中,11,n a a a +=是函数322211()(3)332n n n f x x a n x n a x =-++的极小值点.(Ⅰ)当0a =时,求通项n a ;(Ⅱ)是否存在a ,使数列{}n a 是等比数列?若存在,求a 的取值范围;若不存在,请说明理由.【测量目标】数列的通项与等比数列的性质.【考查方式】给出数列的函数形式运用数列的通项与等比数列的性质求解未知数【难易程度】较难【试题解析】(Ⅰ)易知2222()(3)3(3)()n n n n f x x a n x n a x a x n '=-++=--. 令()0n f x '=,得2123,.n x a x n ==(步骤1)(1)若23,n a n <则当3n x a <时,()0,n f x '>()n f x 单调递增;当23n a x n <<时,()0,n f x '<()n f x 单调递减;当2x n >时,()0,n f x '>()n f x 单调递增.(步骤2)故()n f x 在2x n =取得极小值.(步骤3)(2)若23,n a n >仿(1)可得,()n f x 在3n x a =取得极小值.(步骤4)(3)若23,n a n =则()0,n f x '()n f x 无极值.(步骤5)b 12 当0a =时,10,a =则213 1.a <由(1)知,221 1.a ==因22332,a =<则由(1)知,232 4.a ==因为233123,a =>则由(2)知,4333 4.a a ==⨯又因为243364,a =>则由(2)知,25433 4.a a ==⨯(步骤6)由此猜测:当3n 时,343.n n a -=⨯下面先用数学归纳法证明:当3n时,23.n a n >(步骤7) 事实上,当3n =时,由前面的讨论知结论成立.假设当(3)n k k =时,23k a k >成立,则由(2)知,213k k a a k +=>,从而22213(1)3(1)2(2)210,k a k k k k k k +-+>-+=-+->(步骤8)所以213(1).k a k +>+故当3n 时,23n a n >成立.于是由(2)知,当3n 时,13,n n a a +=而34,a =因此343.n n a -=⨯综上所述,当0a =时,10,a =21,a =343(3).n n a n-=⨯(步骤9) (Ⅱ)存在a ,使数列{}n a 是等比数列. 事实上,由(2)知,若对任意的n ,都有23,n a n >则13n n a a +=.(步骤10)即数列{}n a 是首项为a ,公比为3的等比数列,且13n n a a -=.而要使23,n a n >即23n a n >对一切n *∈N 都成立,(步骤11)只需23n n a >对一切n *∈N 都成立.记23n n n b =,则123141,,,.393b b b ===…令23x x y =,(步骤12)则2211(2ln 3)(2).33x x y x x x x '=-<-因此,当2x 时,0y '<,(步骤13)从而函数23x x y =在[2,)+∞上单调递减.故当2n 时,数列{}n b 单调递减,(步骤14)即数列{}n b 中最大项为249b =.于是当49a >时,必有23n n a >.(步骤15)这说明,当4,9a ⎡⎫∈+∞⎪⎢⎣⎭时,数列{}n a 是等比数列.(步骤16)当49a =时,可得1244,.93a a ==而22342,a == 由(3)知,2()f x 无极值,不合题意.当1439a <<时,可得1234,3,4,12,,a a a a a a ====…数列{}n a 不是b 13 等比数列.(步骤17)当3a =时,2311,a ==由(3)知,1()f x 无极值,不合题意. 当3a <时,可得1234,1,4,12,,a a a a a ====…数列{}n a 不是等比数列.综上所述,存在a ,使数列{}n a 是等比数列,且a 的取值范围为4(,)9+∞.(步骤18) 雨滴穿石,不是靠蛮力,而是靠持之以恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档