最新人教版初中数学下册第五章《相交线》自我小测

合集下载

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。

初中数学 人教版七年级下第5章《相交线与平行线》综合检测(附答案)

初中数学 人教版七年级下第5章《相交线与平行线》综合检测(附答案)

2020年春季七年级第5章《相交线与平行线》综合检测试卷满分:100分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共12小题,满分36分,每小题3分)1.(3分)在同一平面内,两直线的位置关系必是()A.相交B.平行C.垂直或平行D.相交或平行2.(3分)下列说法不正确的是()A.对顶角相等B.两点确定一条直线C.一个角的补角一定大于这个角D.两点之间线段最短3.(3分)如图,下列结论中错误的是()A.∠1与∠2是同旁内角B.∠1与∠6是内错角C.∠2与∠5是内错角D.∠3与∠5是同位角4.(3分)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.15.(3分)已知在同一平面内,有三条直线a,b,c,若a∥b,b∥c,则直线a与直线c之间的位置关系是()A.相交B.平行C.垂直D.平行或相交6.(3分)如投影屏上出示的抢答题,需要回答横线上符号代表的内容.则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB7.(3分)下列说法:(1)两直线平行,同旁内角互补;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)垂直于同一条直线的两条直线平行,其中平行线的性质是()A.(1)B.(2)(3)C.(4)D.(1)(4)8.(3分)如图,有下列说法:①若∠1=∠3,AD∥BC,则BD是∠ABC的平分线;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,则AD∥BC;④若AB∥CD,则∠C与∠ABC互补.其中正确的有()A.1个B.2个C.3个D.4个9.(3分)如图是6级台阶侧面示意图,如果要在台阶上铺红地毯,那么地毯长度至少需要()A.8米B.5米C.4米D.3米10.(3分)如图,小明用两块同样的三角板,按下面的方法作出了平行线,则AB∥CD的理由是()A.∠2=∠4B.∠3=∠4C.∠5=∠6D.∠2+∠3+∠6=180°11.(3分)如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°12.(3分)如图,点D在直线AE上,量得∠CDE=∠A=∠C,有以下结论:①AB∥DC;②AD∥BC;③∠C=∠ADF;④∠A+∠EDF=180°,则上述结论正确的是()A.①②③④B.①②③C.①②D.①②④二.填空题(共8小题,满分24分,每小题3分)13.(3分)如图,P是直线l外一点,从点P向直线l引P A,PB,PC,PD几条线段,其中只有P A与l垂直.这几条线段中,最短的是,依据是.14.(3分)如图,将周长为18cm的△ABC沿BC平移1cm得到△DEF.则AD=cm.15.(3分)如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,AB=5,则点B到直线AC的距离等于.16.(3分)如图,直线AB、CD相交于O,∠COE是直角,∠1=48°,则∠2=.17.(3分)如图,不添加辅助线,请添加一个能判定DE∥BC的条件:.18.(3分)如图,∠B的同旁内角是.19.(3分)一张长方形纸片沿直线AB折成如图所示图案,已知图中∠2=50°,则∠1=.20.(3分)如图,若∠1=∠D=39°,∠C=51°,则∠B=°.三.解答题(共6小题,满分40分)21.(5分)如图,直线AB,CD相交于点O.写出∠1,∠2,∠3,∠4中每两个角之间的位置关系.22.(6分)如图,直线EF分别与直线AB、CD交于M,N两点,∠1=55°,∠2=125°,求证:AB∥CD【要求写出每一步的理论依据】.23.(6分)如图,已知∠DAB=65°,∠1=∠C.(1)在图中画出∠DAB的对顶角;(2)写出∠1的同位角;(3)写出∠C的同旁内角;(4)求∠B的度数.24.(7分)已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM∥AB交AC于点M.∵AB∥CD,()∴∠BAC+∠ACD=180°.()∵PM∥AB,∴∠1=∠,()且PM∥.(平行于同一直线的两直线也互相平行)∴∠3=∠.()∵AP平分∠BAC,CP平分∠ACD,()∴∠1=∠BAC,∠4=ACD.∴∠1+∠4=∠BAC+∠ACD=90°.∴∠APC=∠2+∠3=∠1+∠4=90°.总结:两直线平行时,同旁内角的角平分线.25.(8分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGC=∠ACB=90°()∴∠DGC+∠ACB=180°()∴∥()∴∠2=()∵∠1=∠2(已知)∴∠1=()∴EF∥CD()∴∠AEF=()∵EF⊥AB()∴∠AEF=90°∴∠ADC=90°∴CD⊥AB.26.(8分)阅读下面的材料图1,在△ABC中,试说明∠A+∠B+∠C=180°分析:通过画平行线,将∠A、∠B、∠C作等量代换,使各角之和恰为一个平角,依辅助线不同而得多种方法:解:如图2,延长BC到点D,过点C作CE∥BA因为BA∥CE(作图所知)所以∠B=∠2,∠A=∠1(两直线平行,同位角、内错角相等)又因为∠BCD=∠BCA+∠2+∠1=180°(平角的定义)所以∠A+∠B+∠ACB=180°(等量代换)(1)如图3,过BC上任一点F,作FH∥AC,FG∥AB,这种添加辅助线的方法能说∠A+∠B+∠C=180°吗?并说明理由.(2)还可以过点A作直线MN∥BC,或在三角形内取点P过P作三边的平行线,请选择一种方法,画出相应图形,并说明∠A+∠B+∠C=180°.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交.故选:D.2.【解答】解:A.对顶角相等,说法正确;B.两点确定一条直线,说法正确;C.一个角的补角不一定大于这个角,比如∠A=150°,∠A的补角为30°,但是30°<150°,故原说法错误;D.两点之间线段最短,说法正确.故选:C.3.【解答】解:A、∠1与∠2是同旁内角,正确,不合题意;B、∠1与∠6是内错角,正确,不合题意;C、∠2与∠5是内错角,错误,符合题意;D、∠3与∠5是同位角,正确,不合题意;故选:C.4.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.5.【解答】解:∵在同一平面内,直线a∥b,直线b∥c,∴直线c与直线a的位置关系是:a∥c.故选:B.6.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.7.【解答】解:(1)是性质;(2)是平行线的判定;(3)是平行线的判定;(4)这是判断两直线平行的,不是平行线的性质;所以只有(1)是性质;故选A.8.【解答】解:①∵AD∥BC,∴∠2=∠3,又∠1=∠3,∴∠1=∠2,即BD是∠ABC的平分线,故①正确;②AD∥BC,∴∠2=∠3,故②错误;③由∠1=∠3,可得AB=AD,不能得到AD∥BC;故③错误;④若AB∥CD,则∠C与∠ABC互补.故④正确;故选:B.9.【解答】解:∵六级台阶的高等于3米,六级台阶的长等于5米,∴要买地毯的长:3+5=8(米).故选:A.10.【解答】解:A、根据∠2=∠4不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4能推出AB∥CD,故本选项符合题意;C、根据∠5=∠6不能推出AB∥CD,故本选项不符合题意;D、根据∠2+∠3+∠6=180°不能推出AB∥CD,故本选项不符合题意;故选:B.11.【解答】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.12.【解答】解:∵∠CDE=∠A=∠C,∴AB∥DC,且AD∥BC,故①、②正确;∵AD∥BC,∴∠C=∠ADF,故③正确;∵AB∥DC,∴∠A+∠ADC=180°,又∵∠ADC=∠EDF,∴∠A+∠EDF=180°,故④正确.故选:A.二.填空题(共8小题,满分24分,每小题3分)13.【解答】解:直线外一点与直线上各点连接的所有线段中,最短的是P A,依据是垂线段最短,故答案为:P A,垂线段最短.14.【解答】解:∵△ABC沿BC平移1cm得到△DEF.∴AD=1cm.故答案为1.15.【解答】解:根据垂线段、点到直线距离的定义可知,点B到直线AC的距离等于BC 的长度,即为4.故答案为:4.16.【解答】解:∵∠COE是直角,∠1=48°,∴∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣48°=42°.故答案为:42°.17.【解答】解:能判定DE∥BC的条件:∠ADE=∠B(答案不唯一).故答案为:∠ADE=∠B(答案不唯一).18.【解答】解:如图,∠B的同旁内角是∠A或∠C.故答案是:∠A或∠C.19.【解答】解:由折叠可得出2∠1+∠2=180°,∵∠2=50°,∴∠1=65°,故答案为65°.20.【解答】解:∵∠1=∠D,∴AB∥CD,∴∠B+∠C=180°,∴∠B=180°﹣∠C=180°﹣51°=129°,故答案为:129.三.解答题(共6小题,满分40分)21.【解答】解:∠1和∠3是对顶角;∠1和∠2是邻补角,∠2与∠3是邻补角;∠1和∠4是同位角,∠2与∠4是同旁内角,∠3与∠4是内错角.22.【解答】证明:∵∠1=55°(已知),∴∠CNM=55°(对顶角相等),∵∠2=125°(已知),∴∠CNM+∠2=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行).23.【解答】解:(1)如图,∠GAH即为所求;(2)∠1的同位角是∠DAB;(3)∠C的同旁内角是∠B和∠ADC;(4)因为∠1=∠C,所以AE∥BC.所以∠DAB+∠B=180°,又因为∠DAB=65°,所以∠B=115°.24.【解答】解:过P点作PM∥AB交AC于点M.∵AB∥CD,(已知)∴∠BAC+∠ACD=180°.(两直线平行,同旁内角互补)∵PM∥AB,∴∠1=∠2,(两直线平行,内错角相等)且PM∥DC.(平行于同一直线的两直线也互相平行)∴∠3=∠4.(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,(已知)∴∠1=∠BAC,∠4=ACD.∴∠1+∠4=∠BAC+∠ACD=90°.∴∠APC=∠2+∠3=∠1+∠4=90°.总结:两直线平行时,同旁内角的角平分线互相垂直.故答案为:已知;两直线平行,同旁内角互补;2;两直线平行,内错角相等,DC;4;两直线平行,内错角相等;已知;互相垂直.25.【解答】证明:∵DG⊥BC,AC⊥BC∴∠DGC=∠ACB=90°(垂直的定义)∴∠DGC+∠ACB=180°(补角定义)∴DG∥AC(同旁内角互补,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2,∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°∴∠ADC=90°∴CD⊥AB.故答案为:垂直的定义;补角定义;DG,AC;同旁内角互补,两直线平行;∠ACD;两直线平行,内错角相等;∠ACD;等量代换;同位角相等,两直线平行;∠ADC;两直线平行,同位角相等;已知.26.【解答】解:(1)可以,因为FH∥AC所以∠1=∠C,∠2=∠FGC,因为FG∥AB所以∠3=∠B,∠FGC=∠A所以∠2=∠A…(4分)因为∠1+∠2+∠3=180°所以∠A+∠B+∠C=180°.(2)过点A作直线MN∥BC.则∠MAB=∠B,∠NAC=∠C,因为∠MAB+∠BAC+∠NAC=180°,所以∠BAC+∠B+∠C=180°.。

人教版七年级数学下册第5章《相交线与平行线》单元测试卷(解析版)

人教版七年级数学下册第5章《相交线与平行线》单元测试卷(解析版)

人教版七年级数学下册第5章《相交线与平行线》单元测试卷一.选择题1.下列说法,正确的是( )A. 若ac=bc,则a=bB. 两点之间的所有连线中,线段最短C. 相等的角是对顶角D. 若AC=BC,则C是线段AB的中点【答案】B【解析】【分析】根据等式的性质可判断A的正误;根据线段的性质判断B的正误;根据对顶角的性质判断C的正误;根据中点的性质判断D的正误.【详解】解:A、若ac=bc(c≠0),则a=b,故此选项错误,B、两点之间的所有连线中,线段最短,说法正确,故此选项正确,C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误,D、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误,故选:B.【点睛】此题主要考查了等式的性质、对顶角的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.2.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )A. 50°B. 55°C. 60°D. 70°【答案】D【解析】【分析】先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.【详解】∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故答案选D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A. 55°B. 60°C. 65°D. 70°【答案】D【解析】【分析】根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.4.图中的∠1、∠2可以是对顶角的是( )A. B.C. D.【答案】C【解析】【分析】根据对顶角的定义,具有公共顶点且角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:A、∠1与∠2不是对顶角,B、∠1与∠2不是对顶角,C、∠1与∠2是对顶角,D、∠1与∠2不是对顶角,故选:C.【点睛】本题主要考查了对顶角的定义,熟练掌握定义是解题关键.5.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是( )A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角【答案】C【解析】【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【详解】解:∵∠AOE=90°,∴∠BOE=90°,∵∠AOD=∠BOC,∴∠EOC+∠BOC=90°,∠EOC+∠AOD=90°,∠AOE+∠EOB=180°,故A、B、D选项正确,C错误.故选:C.【点睛】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.6.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )A. 22°B. 46°C. 68°D. 78°【答案】C【解析】【分析】由垂直的定义可知∠AOB=90°,由角平分线的定义可知∠BOC=∠BOD=22°,从而求得∠AOC的度数. 【详解】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.故选C.【点睛】本题考查了垂直的定义,角平分线的定义.7.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为( )A. 78°B. 132°C. 118°D. 112°【答案】D【解析】【分析】根据补角的性质、对角的性质,再进行代换可以求出∠2-∠3的度数.【详解】延长直线c与b相交,令∠2的补角是∠4,则∠4=180º-∠2,令∠3的对顶角是∠5,则∠3=∠5,∵a∥b,∴∠6=∠1=68°.又∠4+∠5=∠6.∴(180º-∠2)+∠3=68°即:∠2-∠3= 112°【点睛】本题考查了补角的性质、对角的性质等知识点,熟练掌握是本题的解题关键.8.如图,下列条件中,能判断AB∥CD的是( )A. ∠FEC=∠EFBB. ∠BFC+∠C=180°C. ∠BEF=∠EFCD. ∠C=∠BFD【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A.由∠FEC=∠EFB,可得CE∥BF,故本选项错误;B.由∠BFC+∠C=180°,可得CE∥BF,故本选项错误;C.由∠BEF=∠EFC,可得AB∥CD,故本选项正确;D.由∠C=∠BFD,可得CE∥BF,故本选项错误.故选C.【点睛】本题考查了平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.9.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB 最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A. ②③B. ①②③C. ③④D. ①②③④【答案】A【解析】【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】①线段AP是点A到直线PC的距离,错误;②线段BP的长是点P到直线l的距离,正确;③P A,PB,PC三条线段中,PB最短,正确;④线段PC的长是点P到直线l的距离,错误.故选A.【点睛】本题考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.10.将长方形ABCD纸片沿AE折叠,得到如图所示的图形,已知∠CED′=70°,则∠AED的大小是( )A. 60°B. 50°C. 75°D. 55°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠AED′,由平角的定义得到∠AED+∠AED′+∠CED′=180°,而∠CED′=60°,则2∠DEA=180°-70°=110°,即可得到∠AED的度数.【详解】解:∵长方形ABCD沿AE折叠得到△AED′,∴∠AED=∠AED′,而∠AED+∠AED′+∠CED′=180°,∠CED′=70°,∴2∠DEA=180°-70°=110°,∴∠AED=55°.故选:D.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.二.填空题11.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=_____°.【答案】105【解析】【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°.∵∠3=∠4,∴∠4+∠CAD=∠2,∴∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.【点睛】本题考查了平移的性质、三角形外角的性质以及平行线的性质,正确转化角的关系是解题的关键.12.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有_____.【答案】①④【解析】【分析】根据垂直定义可得∠BCA=90°,∠ADC=∠BDC=∠ACF=90°,然后再根据余角定义和补角定义进行分析即可.【详解】∵AC⊥BF,∴∠BCA=90°,∴∠ACD+∠1=90°,∴∠1是∠ACD的余角,故①正确;∵CD⊥BE,∴∠ADC=∠CDB=90°,∴∠B+∠BCD=90°,∠ACD+∠DAC=90°.∵∠BCA=90°,∴∠B+∠BAC=90°,∠1+∠ACD=90°,∴图中互余的角共有4对,故②错误;∵∠1+∠DCF=180°,∴∠1的补角是∠DCF.∵∠1+∠DCA=90°,∠DAC+∠DCA=90°,∴∠1=∠DAC.∵∠DAC+∠CAE=180°,∴∠1+∠CAE=180°,∴∠1的补角有∠CAE,故③说法错误;∵∠ACB=90°,∠ACF=90°,∠ADC=∠BDC=90°,∴∠BDC,∠ACB,∠ACF和∠ADC互补,故④说法正确.正确的是①④.故答案为:①④.【点睛】本题考查了余角和补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.13.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD=____°.【答案】40【解析】【分析】根据OA⊥OC,OB⊥OD,可得∠AOC=90°,∠BOD=90°,然后得到∠AOB与∠BOC互余,∠COD与∠BOC互余,根据同角的余角相等,继而可求解即可.【详解】解:∵OA⊥OC,OB⊥OD,∴∠AOC=90°,∠BOD=90°,∴∠AOB与∠BOC互余,∠COD与∠BOC互余,∴∠AOB=∠COD =40°,故答案为:40°.【点睛】本题考查了余角的知识,关键发现∠AOB、∠COD都是∠BOC余角,根据同角的余角相等解答.14.点P是直线l外一点,点A,B,C,D是直线l上的点,连接PA,PB,PC,PD.其中只有PA与l垂直,若PA=7,PB=8,PC=10,PD=14,则点P到直线l的距离是_____.【答案】7【解析】【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短.∵P A与l垂直, P A=7,∴点P到直线l的距离=PA,即点P到直线l的距离=7故答案为:7.【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为______.【答案】55°【解析】【分析】过点E作EF∥AB,则EF∥CD,可得∠ABE=∠BEF, ∠DEF=∠CDE.先根据角平分线的定义,得出∠ABE =∠CBE=20°,∠ADE=∠CDE=35°,进而求得∠E的度数.【详解】过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF, ∠DEF=∠CDE.∵AB∥CD,∴∠BCD=∠ABC=40°,∠BAD=∠ADC=70°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC=20°,∠ADE=∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=20°+35°=55°.故答案为:55°.【点睛】此题考查了平行线的性质,角平分线的定义,正确做出辅助线是解题的关键.本题也考查了数形结合的数学思想.16.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.【答案】40°【解析】【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为:40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.三.解答题17.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.【答案】(1)见解析(2)35°【解析】【分析】(1)由知∠1=∠DCF,则∠2=∠DCF,即可证明;(2)由得∠B=90°-∠2=35°,再根据(1)可知的度数.【详解】∵∴∠1=∠DCF,∵∴∠2=∠DCF,∴;(2)∵,∴∠BEF=90°,∴∠B=90°-∠2=35°,又∵∴=∠B=35°.【点睛】此题主要考察平行线的性质与判定.18.如图,直线AB,CD相交于点O.OF平分∠AOE,OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角:______.(2)若∠AOD=150°,求∠AOE的度数.【答案】(1)∠BOD,∠DOE;(2)∠AOE=120°.【解析】【分析】(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;(2)根据垂直的定义得到∠DOF,根据角平分线的定义求出即可得到结论.【详解】解:(1)∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC,∴与∠AOD相等的角有∠BOD,∠DOE,故答案为:∠BOD,∠DOE.(2)∵OF⊥CD,∴∠DOF=90°,∵∠AOD=150°,∴∠AOF=60°,∵OF平分∠AOE,∴∠AOE=2∠AOF=120°.【点睛】本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.19.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴_______∥______,(_______)∴∠2=______.(______)又∵∠2+∠3=180°,(已知)∴∠3+_____=180°.(等量代换)∴______∥______,(______)∴∠ADC=∠EFC.(______)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴______⊥_____.【答案】略【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.故答案为:GD,AC,同位角相等,两直线平行;∠DAC,两直线平行,内错角相等;∠DAC;AD,EF,同旁内角互补,两直线平行;两直线平行,同位角相等;AD,BC.【点睛】本题考查平行线的判定和性质,已经垂线的定义,解题关键是注意平行线的性质和判定定理的综合运用.20.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.【答案】(1)证明见解析;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依据AB⊥BC于点B,DC⊥BC于点C,即可得到AB∥CF,进而得出∠BAF+∠F=180°,再根据∠BAF =∠EDF,即可得出ED∥AF,依据三角形外角性质以及角平分线的定义,即可得到∠DAF=∠F;(2)结合图形,根据余角的概念,即可得到所有与∠CED互余的角.【详解】解:(1)∵AB⊥BC于点B,DC⊥BC于点C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED与∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【点睛】本题主要考查了平行线的判定与性质、余角的概念,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)【答案】【探究】(1)30,125;(2)∠FOH=130°;【拓展】∠FOH=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(拓展)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。

2022年人教版七年级数学下册第五章相交线与平行线综合测评试卷(精选)

2022年人教版七年级数学下册第五章相交线与平行线综合测评试卷(精选)

七年级数学下册第五章相交线与平行线综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,直线AB 和CD 相交于点O ,若∠AOC =125°,则∠BOD 等于( )A .55°B .125°C .115°D .65°2、如图,直线AB ∥CD ,直线AB 、CD 被直线EF 所截,交点分别为点M 、点N ,若∠AME =130°,则∠DNM 的度数为( )A .30°B .40°C .50°D .60° 3、可以用来说明“若22a b =,则a b =.”是假命题的反例是( )A .1,2a b =-=B .2,2a b ==C .2,2a b =-=D .4,3a b ==4、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为()A.80°B.90°C.100°D.110°5、命题“如果a<0,b<0,那么ab>0”的逆命题是()A.如果a<0,b<o,那么ab<0 B.如果ab>0,那么a<0,b<0 C.如果a>0,b>0,那么a<0 D.如果ab<0,那么a>0,b>06、下列说法正确的是()A.命题是定理,但定理未必是命题B.公理和定理都是真命题C.定理和命题一样,有真有假D.“取线段AB的中点C”是一个真命题∠构成同位角的有()7、如图,能与αA.4个B.3个C.2个D.1个8、命题“等角的余角相等”中的余角是()A.结论的一部分B.题设的一部分C.既不属于结论也不属于题设D .同属于题设和结论部分9、如图,直线被所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③B 与4∠是同位角;④1∠与3∠是内错角.A .①③④B .③④C .①②④D .①②③④10、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )A .B .C .D .二、填空题(5小题,每小题4分,共计20分)1、举例说明命题“如果22a b ≠,那么a b ”的逆命题为假命题__.2、如图,BD 平分ABC ∠,()430A x ∠=+︒,()15DBC x ∠=+︒,要使AD BC ∥,则x =______°.3、把命题“同角的余角相等”改写成:如果_____________________,那么_____________.4、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a//b,a⊥c,那么b⊥c;②如果b//a,c//a,那么b//c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b//c.其中正确的是__.(填写序号)5、命题“垂直于同一直线的两条直线互相垂直”是______命题.(填“真”或“假”)三、解答题(5小题,每小题10分,共计50分)1、写出下列各命题的逆命题,并判断原命题和逆命题的真假.(1)同位角相等;(2)如果|a|=|b|,那么a=b;(3)等边三角形的三个角都是60°.2、阅读并完成下列推理过程,在括号内填写理由.已知:如图,点D ,E 分别在线段AB 、BC 上,AC DE ∥,AE 平分BAC ∠,DF 平分BDE ∠交BC 于点E 、F .求证:DF AE ∥.证明:AE ∵平分BAC ∠(已知),112(2BAC ∴∠=∠=∠ ). DF 平分BDE ∠(已知), 1342∴∠=∠= (角平分线的定义),AC DE ∥(已知),(BDE BAC ∴∠=∠ ).23(∴∠=∠ ).(DF AE ∴∥ ).3、在如图所示55⨯的网格中,每个正方形的边长都是1,横纵线段的交点叫做格点,线段AB 的两个端点都在格点上,点P 也在格点上;(1)在图①中过点P 作AB 的平行线;(2)在图②中过点P 作PQ ⊥AB ,垂足为Q ;连接AP 和BP ,则三角形ABP 的面积是 .4、如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒4°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t (0≤t ≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.5、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵ ∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴ AB∥CD∥EF(,)∴ ∠A= ,∠C= ,(,)∵ ∠AFE =∠EFC+∠AFC,∴ = .---------参考答案-----------一、单选题1、B【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.2、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN =130°.3、C【分析】若22a b =,则包括a b =或a b =-,由此分析即可.【详解】解:∵22a b =,∴a b =或a b =-,∴反例可为2,2a b =-=,故选:C .【点睛】本题考查命题的判断,以及等式的性质,掌握举例证明命题真假的方法以及等式的性质是解题关键.4、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,∵AB //DC ,∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.5、B【分析】根据互逆命题概念解答即可.【详解】解:命题“如果a<0,b<0,那么ab>0”的逆命题是“如果ab>0,那么a<0,b<0”,故选:B.【点睛】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6、B【分析】命题是判断一件事情的句子,可分为真命题和假命题;公认的真命题称之为公理,经过证明的真命题称之为定理;命题的结构必须有条件和结论,由此进行分析判断即可得到答案.【详解】解:A、说法错误,定理是经过证明的真命题,但是命题不一定是定理;B、说法正确,公理和定理都是真命题;C、说法错误,定理是经过证明的真命题,命题有真假之分;D、说法错误,取线段AB的中点C是描述性语言,不是命题,更不是真命题.故选:B【点睛】本题考查命题的定义、公理和定理的概念等相关知识点,牢记定义内容是解此类题的关键.7、B【分析】根据同位角的定义判断即可;【详解】∠能构成同位角的有:∠1,∠2,∠3.如图,与α故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.8、B【分析】根据命题题设与结论的定义:题设是已知事项,结论是已知事项推出的事项,进行逐一判断即可.【详解】解:“等角的余角相等”中题设是:两个等角的余角,结论是:相等,故选B.【点睛】本题主要考查了命题的题设与结论,熟知定义是解题的关键.9、D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;②1∠是内错角,说法正确;∠与ACE③B与4∠是同位角,说法正确;④1∠是内错角,说法正确,∠与3故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.10、D【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.则有:AF =FD ,BE =EC ,AB =EF =CD ,∴四边形ABEF 向右平移可以与四边形EFCD 重合,∴平行四边形ABCD 是平移重合图形.同理可证,正方形,长方形,也是平移重合图形,故选项A 、B 、C 不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D 符合题意;故选D .【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题1、如果55-≠,而22(5)5-=(举例不唯一)【解析】【分析】首先要写出原命题的逆命题,然后通过实例说明逆命题不成立即可.【详解】解:如果22a b ≠,那么a b 的逆命题是:如果a b ,那么22a b ≠.如果55-≠,而22(5)5-=.故如果a b ,那么22a b ≠为假命题.故答案为:如果55-≠,而22(5)5-=(举例不唯一).【点睛】本题考查逆命题的相关知识,关键是能够写出原命题的逆命题.2、20【解析】【分析】利用角平分线的定义求解230,ABC x 再由AD BC ∥可得180,A ABC 再列方程求解即可.【详解】 解: BD 平分ABC ∠,()15DBC x ∠=+︒,2230,ABC DBC x由AD BC ∥,180,A ABC 而()430A x ∠=+︒,230430180,x x解得:20,x =所以当20x 时,AD BC ∥,故答案为:20【点睛】本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.3、两个角是同一个角的余角 这两个角相等【解析】【分析】根据命题的概念把原命题改写成“如果…,那么…”的形式,根据余角的概念判断即可.【详解】解:命题“同角的余角相等”,改写成“如果…,那么…”的形式为:如果两个角是同一个角的余角,那么这两个角相等.故答案为:两个角是同一个角的余角,这两个角相等.【点睛】本题考查的是命题的概念,命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.4、①②④【解析】【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果a//b,a⊥c,那么b⊥c,正确;②如果b//a,c//a,那么b//c,正确;③如果b⊥a,c⊥a,那么b//c,错误;④如果b⊥a,c⊥a,那么b//c,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.5、假【解析】【分析】由平行线公理进行判断,即可得到答案.【详解】解:垂直于同一直线的两条直线互相平行;∴原命题是假命题;故答案为:假;【点睛】本题考查了判断命题的真假,解题的关键是熟记平行线公理进行判断.三、解答题1、(1)相等的角是同位角,是假命题;(2)如果a=b,那么|a|=|b|,是真命题;(3)三个角都是60°的三角形是等边三角形,是真命题.【分析】根据逆命题的概念分别写出各个命题的逆命题,判断真假即可.【详解】解:(1)同位角相等的逆命题是相等的角是同位角,是假命题;(2)如果|a|=|b|,那么a=b的逆命题是如果a=b,那么|a|=|b|,是真命题;(3)等边三角形的三个角都是60°的逆命题是三个角都是60°的三角形是等边三角形,是真命题.【点睛】h本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.2、角平分线的定义;BDE;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【分析】根据角平分线的定义和平行线的性质与判定即可证明.【详解】证明:AE∵平分BAC∠(已知),1 122BAC∴∠=∠=∠(角平分线的定义).DF平分BDE∠(已知),1 342BDE∴∠=∠=∠(角平分线的定义),//AC DE(已知),BDE BAC∴∠=∠(两直线平行,同位角相等).23∴∠=∠(等量代换).//DF AE∴(同位角相等,两直线平行).故答案为:角平分线的定义;BDE∠;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)见解析;(2)见解析,5.【分析】(1)根据平行线的画法即可得;(2)根据垂线的画法即可得,再利用1个长方形的面积减去3个直角三角形的面积即可得.【详解】解:(1)如图①,PC即为所求.(2)如图②,PQ 即为所求.三角形ABP 的面积为111343131425222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:5.【点睛】本题考查了平行线和垂线的画法等知识点,熟练掌握平行线和垂线的画法是解题关键.4、(1)150°;(2)12或24;(3)存在,9秒、27秒【分析】(1)根据∠AOB =180°−∠AOM −∠BON 计算即可.(2)先求解,OA OB 重合时,=18,t 再分两种情况讨论:当0≤t ≤18时;当18≤t ≤30时;再构建方程求解即可.(3)分两种情形,当0≤t ≤18时;当18≤t ≤30时;分别构建方程求解即可.【详解】解:(1)当t =3时,∠AOB =180°−4°×3−6°×3=150°.(2)当,OA OB 重合时,46180,t t解得:18,t当0≤t ≤18时:60,AOB ∠=︒18060120,AOM BON∴ 4t +6t =120解得:12,t =当18≤t ≤30时:则18060,AOM BON∴ 4t +6t =180+60,解得 t =24,答:当∠AOB 达到60°时,t 的值为6或24秒.(3) 当0≤t ≤18时,由,OA OB ⊥90,AOB ∴∠=︒∴ 180−4t −6t =90,解得t =9,当18≤t ≤30时,同理可得:18090,AOM BON∴ 4t +6t =180+90解得t =27.030,t 所以大于30的答案不予讨论,答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.5、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【分析】根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE,∠C=∠EFC,根据角的和可得∠AFE =∠EFC+∠AFC即可.【详解】证明:∵ ∠1+∠AFE=180°∴ CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2 ,∴(AB∥CD)(同位角相等,两直线平行),∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A= ∠AFE,∠C= ∠EFC,(两直线平行,内错角相等)∵ ∠AFE =∠EFC+∠AFC,∴∠A = ∠C+∠AFC.故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.。

人教版七年级下册 第5章《相交线与平行线》章末质量检测(含答案解析)

人教版七年级下册 第5章《相交线与平行线》章末质量检测(含答案解析)

人教版版七年级下册第5章《相交线与平行线》章末质量检测满分120分,时间90分钟姓名______班级______学号_____成绩_____一.选择题(共10小题,满分30分)1.点P是直线l外一点,A、B、C为直线l上的三点,P A=4cm,PB=5cm,PC=2cm,则点P到直线l的距离()A.小于2cm B.等于2cm C.不大于2cm D.等于4cm2.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.3.如图所示,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC的度数为()A.40°B.60°C.80°D.100°4.下列命题是真命题的是()A.如果a2=b2,那么a=b B.如果两个角是同位角,那么这两个角相等C.相等的两个角是对项角D.平面内,垂直于同一条直线的两条直线平行5.如图,△ABC沿着BC方向平移到△DEF,已知BC=6、EC=2,那么平移的距离为()A.2B.4C.6D.86.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A.35°B.25°C.65°D.50°7.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°8.如图,直线a、b被直线c、d所截,若∠1=100°,∠2=80°,∠3=95°,则∠4的度数是()A.80°B.85°C.95°D.100°9.如图,不一定能推出a∥b的条件是()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.∠2+∠3=180°10.如图,直线l1∥l2,以直线l1上的点A为圆心,适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC,若∠ABC=70°,则∠1=()A.40°B.20°C.60°D.70°二.填空题(共7小题,满分28分)11.已知∠1与∠2是对顶角,∠1=20°,则∠2=°.12.命题“正数的绝对值是它本身”的逆命题是.13.如图,AH⊥BC,若AB=3cm、AC=4.5cm、AH=2cm,则点A到直线BC的距离为.14.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为.15.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=度.16.如图,BD平分∠ABC,DE∥BC,∠2=35°,则∠1=.17.将一直角三角形与两边平行的纸条如图所示放置,下列结论①∠1=∠2,②∠3=∠4,③∠2+∠4=90°,④∠4+∠5=180°,其中正确的有(填序号).三.解答题(共8小题,满分62分)18.(6分)先将方格纸中的图形向右平移3格,然后再向下平移2格.19.(6分)如图,已知直线AB、CD交于点O,OE⊥AB,OF平分∠DOB,∠EOF=70°.求∠AOC的度数.20.(6分)如图,直线AB,CD相交于点O,OE⊥CD于点O,∠EOB=115°,求∠AOC 的度数.请补全下面的解题过程(括号中填写推理的依据).解:∵OE⊥CD于点O(已知),∴().∵∠EOB=115°(已知),∴∠DCB==115°﹣90°=25°.∵直线AB,CD相交于点O(已知),∴∠AOC==25°().21.(7分)如图,已知∠1=∠3,∠2=∠E,求证:BE∥CD.22.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°().∴∠A+∠C=180°,∴AF∥CD().又∵BE∥CD.∴AF∥BE().∴∠F=∠BED().23.(8分)如图,∠DAC+∠ACB=180°,CE平分∠BCF,∠FEC=∠FCE,∠DAC=3∠BCF,∠ACF=20°.(1)求证:AD∥EF;(2)求∠DAC、∠FEC的度数.24.(9分)如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE 的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?25.(12分)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN 上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ 平分∠EPK,求∠HPQ的度数.参考答案与试题解析一.选择题(共10小题)1.点P是直线l外一点,A、B、C为直线l上的三点,P A=4cm,PB=5cm,PC=2cm,则点P到直线l的距离()A.小于2cm B.等于2cm C.不大于2cm D.等于4cm【分析】点P到直线l的距离为点P到直线l的垂线段,结合已知,因此点P到直线l 的距离小于等于2.【解答】解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短),2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选:C.2.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.【分析】根据平移与旋转的性质得出.【解答】解:A、能通过其中一个四边形平移得到,故本选项不符合题意;B、能通过其中一个四边形平移得到,故本选项不符合题意;C、能通过其中一个四边形平移得到,故本选项不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,故本选项符合题意.故选:D.3.如图所示,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC的度数为()A.40°B.60°C.80°D.100°【分析】由于∠AOE+∠BOE=180°,∠AOE=140°,易求∠2=40°,而∠1=∠2,那么∠BOD=80°,再利用对顶角性质可求∠AOC.【解答】解:∵∠AOE+∠BOE=180°,∠AOE=140°,∴∠2=40°,∵∠1=∠2,∴∠BOD=2∠2=80°,∴∠AOC=∠BOD=80°.故选:C.4.下列命题是真命题的是()A.如果a2=b2,那么a=bB.如果两个角是同位角,那么这两个角相等C.相等的两个角是对项角D.平面内,垂直于同一条直线的两条直线平行【分析】利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项.【解答】解:A、如果a2=b2,那么a=±b,故错误,是假命题;B、两直线平行,同位角才想到,故错误,是假命题;C、相等的两个角不一定是对项角,故错误,是假命题;D、平面内,垂直于同一条直线的两条直线平行,正确,是真命题,故选:D.5.如图,△ABC沿着BC方向平移到△DEF,已知BC=6、EC=2,那么平移的距离为()A.2B.4C.6D.8【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=6﹣2=4,进而可得答案.【解答】解:由题意平移的距离为BE=BC﹣EC=6﹣2=4,故选:B.6.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A.35°B.25°C.65°D.50°【分析】根据平行线的性质求出∠3,再求出∠BAC=90°,即可求出答案.【解答】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°﹣∠BAC﹣∠3=35°,故选:A.7.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.8.如图,直线a、b被直线c、d所截,若∠1=100°,∠2=80°,∠3=95°,则∠4的度数是()A.80°B.85°C.95°D.100°【分析】先根据题意得出a∥b,再由平行线的性质即可得出结论.【解答】解:∵∠2=100°,∠5+∠2=180°∵∠1=100°,∴∠1=∠5,∴a∥b.∵∠3=95°,∴∠6=∠3=95°,∴∠4=∠6=95°.故选:C.9.如图,不一定能推出a∥b的条件是()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.∠2+∠3=180°【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∵∠1和∠3为同位角,∠1=∠3,∴a∥b,故A选项正确;B、∵∠2和∠4为内错角,∠2=∠4,∴a∥b,故B选项正确;C、∵∠1=∠4,∠3+∠4=180°,∴∠3+∠1=180°,不符合同位角相等,两直线平行的条件,故C选项错误;D、∵∠2和∠3为同位角,∠2+∠3=180°,∴a∥b,故D选项正确.故选:C.10.如图,直线l1∥l2,以直线l1上的点A为圆心,适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC,若∠ABC=70°,则∠1=()A.40°B.20°C.60°D.70°【分析】先由题意可得:AB=AC,根据等边对等角的性质,可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,同旁内角互补即可求得∠1的度数.【解答】解:根据题意得:AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:A.二.填空题(共7小题)11.已知∠1与∠2是对顶角,∠1=20°,则∠2=20°.【分析】直接利用对顶角的性质分析得出答案.【解答】解:∵∠1与∠2是对顶角,∠1=20°,∴∠2=20°.故答案为:20.12.命题“正数的绝对值是它本身”的逆命题是绝对值等于它本身的数是正数.【分析】直接利用逆命题的写法就是将原命题的结论与题设交换进而得出答案.【解答】解:“正数的绝对值是它本身”的逆命题是:绝对值等于它本身的数是正数.故答案为:绝对值等于它本身的数是正数.13.如图,AH⊥BC,若AB=3cm、AC=4.5cm、AH=2cm,则点A到直线BC的距离为2cm.【分析】根据点到直线的距离的定义解答即可.【解答】解:点A到直线BC的距离是线段AH的长度,AH=2,∴点A到直线BC的距离为2cm.故答案为:2cm14.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为25°.【分析】首先过A作AE∥NM,然后判定AE∥GH,根据平行线的性质可得∠3=∠1=35°,再计算出∠4的度数,再根据平行线的性质可得答案.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=35°,∵∠BAC=60°,∴∠4=60°﹣35°=25°,∵NM∥AE,∴∠2=∠4=25°,故答案为:25°.15.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=25度.【分析】根据对顶角相等的性质可得∠AOC=∠BOD=40°,根据垂直的定义可得∠COE =90°,根据角的和差关系得出∠AOE的度数,再根据角平分线的定义求出∠AOF的度数,再根据角的和差关系计算即可.【解答】解:∠AOC=∠BOD=40°,∵OE⊥OC,∴∠COE=90°,∴∠AOE=∠AOC+∠COE=130°,∵OF平分∠AOE,∴∠AOF=,∴∠COF=∠AOF﹣∠AOC=65°﹣40°=25°.故答案为:2516.如图,BD平分∠ABC,DE∥BC,∠2=35°,则∠1=70°.【分析】先由角平分线的定义即可得出∠ABC的度数,再根据平行线的性质求出∠1的度数.【解答】解:∵BD平分∠ABC,∴∠ABC=2∠2=70°.∵DE∥BC,∴∠ABC=∠1=70°.故答案为:70°.17.将一直角三角形与两边平行的纸条如图所示放置,下列结论①∠1=∠2,②∠3=∠4,③∠2+∠4=90°,④∠4+∠5=180°,其中正确的有①②③④(填序号).【分析】根据平行线的性质及直角三角形的性质进行逐一分析即可.【解答】解:∵AB∥CD,∴∠1=∠2(两直线平行,同位角相等),①正确;同理,∠3=∠4(两直线平行,内错角相等),∠4+∠5=180°(两直线平行,同旁内角互补),②④正确;∵∠EFG=90°,∴∠2+∠4=90°(平角的性质),③正确.∴其中正确的有①②③④.三.解答题(共8小题)18.先将方格纸中的图形向右平移3格,然后再向下平移2格.【分析】利用网格特点和平移的性质画图.【解答】解:如图•,19.如图,已知直线AB、CD交于点O,OE⊥AB,OF平分∠DOB,∠EOF=70°.求∠AOC的度数.【分析】根据垂直的定义以及角平分线的定义可求出∠DOB的度数,根据对顶角相等,即可求出∠AOC的度数.【解答】解:∵OE⊥AB,∠EOF=70°,∴∠BOF=20°,∵OF平分∠DOB,∴∠DOB=40°,∴∠AOC=∠DOB=40°.20.如图,直线AB,CD相交于点O,OE⊥CD于点O,∠EOB=115°,求∠AOC的度数.请补全下面的解题过程(括号中填写推理的依据).解:∵OE⊥CD于点O(已知),∴∠EOD=90°(垂直的定义).∵∠EOB=115°(已知),∴∠DCB=∠EOB﹣∠EOD=115°﹣90°=25°.∵直线AB,CD相交于点O(已知),∴∠AOC=∠DOB=25°(对顶角相等).【分析】根据垂直的定义可得∠EOD=90°,根据角的和差关系可得∠DOB=∠EOB﹣∠EOD=115°﹣90°=25°,再根据对顶角的性质解答即可.【解答】解:∵OE⊥CD于点O(已知),∴∠EOD=90°(垂直的定义),∵∠EOB=115°(已知),∴∠DOB=∠EOB﹣∠EOD=115°﹣90°=25°.∵直线AB,CD相交于点O(已知),∴∠AOC=∠DOB=25°(对顶角相等).故答案为:∠EOD=90°;垂直的定义;∠EOB﹣∠EOD;∠DOB;对顶角相等.21.如图,已知∠1=∠3,∠2=∠E,求证:BE∥CD.【分析】根据内错角相等,两直线平行可得AE∥DB,根据平行线的性质可得∠E=∠4,再由条件∠2=∠E可得∠4=∠2,再根据内错角相等,两直线平行可得EB∥CD.【解答】证明:∵∠1=∠3,∴AE∥DB,∴∠E=∠4,∵∠2=∠E,∴∠4=∠2,∴EB∥CD.22.在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).【分析】由AF⊥AC,CD⊥AC可得出∠A=90°,∠C=90°,进而可得出∠A+∠C=180°,利用“同旁内角互补,两直线平行”可证出AF∥CD,结合BE∥CD可得出AF ∥BE,再利用“两直线平行,同位角相等”可证出∠F=∠BED.【解答】证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).故答案为:垂线的定义;同旁内角互补,两直线平行;平行于同一条直线的两直线平行;两直线平行,同位角相等.23.如图,∠DAC+∠ACB=180°,CE平分∠BCF,∠FEC=∠FCE,∠DAC=3∠BCF,∠ACF=20°.(1)求证:AD∥EF;(2)求∠DAC、∠FEC的度数.【分析】(1)根据同旁内角互补,两直线平行,可证BC∥AD,根据角平分线的性质和已知条件可知∠FEC=∠BCE,根据内错角相等,两直线平行可证BC∥EF,根据两条直线都和第三条直线平行,那么这两条直线平行,可证AD∥EF;(2)先根据CE平分∠BCF,设∠BCE=∠ECF=∠BCF=x.由∠DAC=3∠BCF可得出∠DAC=6x,由平行线的性质即可得出x的值,进而得出结论.【解答】(1)证明:∵∠DAC+∠ACB=180°,∴BC∥AD,∵CE平分∠BCF,∴∠ECB=∠FCE,∵∠FEC=∠FCE,∴∠FEC=∠BCE,∴BC∥EF,∴AD∥EF;(2)设∠BCE=∠ECF=∠BCF=x.由∠DAC=3∠BCF可得出∠DAC=6x,则6x+x+x+20°=180°,解得x=20°,则∠DAC的度数为120°,∠FEC的度数为20°.24.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?【分析】(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分∠AOD的两部分角的度数即可说明.【解答】解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)平分理由:∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.25.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN 上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ 平分∠EPK,求∠HPQ的度数.【分析】(1)根据同旁内角互补,两条直线平行即可判断直线AB与直线CD平行;(2)先根据两条直线平行,同旁内角互补,再根据∠BEF与∠EFD的角平分线交于点P,可得∠EPF=90°,进而证明PF∥GH;(3)根据角平分线定义,及角的和差计算即可求得∠HPQ的度数.【解答】解:(1)AB∥CD,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK.∴∠EPK=180°﹣∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴.∴∠HPQ=∠QPK﹣∠HPK=45°.答:∠HPQ的度数为45°.。

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案

人教版七年级数学下册《第五章 相交线与平行线》单元测试卷-附参考答案(测试时间:90分钟 卷面满分:100分)班级 姓名 学号 分数一 选择题(本大题共10个小题 每小题3分 共30分 在每小题给出的四个选项中 只有一项是符合题目要求的)1.(2022春·全国·七年级单元测试)下图中 1∠和2∠是对顶角的是( )A .B .C .D . 【答案】B 【分析】根据对顶角的定义解答即可.【详解】解:A 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意B 1∠和2∠是对顶角 则此项符合题意C 1∠和2∠没有公共顶点 则不是对顶角 此项不符合题意D 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意故选:B .【点睛】本题考查了对顶角 解题的关键是熟记对顶角的定义:有一个公共顶点 并且一个角的两边分别是另一个角的两边的反向延长线 具有这种位置关系的两个角 互为对顶角. 2.(2022·全国·七年级单元测试)如图 直线AD BE 、 被直线BF 和AC 所截 则2∠的同位角有( )个.A .2B .3C .4D .1【答案】B【分析】根据同位角的定义求解即可:同位角:两条直线被第三条直线所截形成的角中 若两个角都在两直线的同侧 并且在第三条直线(截线)的同旁 则这样一对角叫做同位角.【详解】解:∠2的同位角有:∠1 ∠F AC ∠4 共三个.故选:B .【点睛】本题考查了同位角熟记同位角定义是解题的关键.3.(2022春·七年级单元测试)如图所示的图案可以看作由“基本图案”经过平移得到的是()A.B.C.D.【答案】B【分析】根据平移的概念:在平面内把一个图形整体沿某一的方向移动这种图形的平行移动叫做平移变换简称平移即可选出答案.【详解】解:A 不是由“基本图案”经过平移得到故此选项不符合题意B 是由“基本图案”经过平移得到故此选项符合题意C 不是由“基本图案”经过平移得到故此选项不符合题意D 不是由“基本图案”经过平移得到故此选项不符合题意故选B.【点睛】本题考查生活中的平移现象仔细观察各选项图形是解题的关键.4.(2022秋·江苏连云港·七年级校考单元测试)下列语句中属于命题的是()A.等角的余角相等B.两点之间线段最短吗C.连接P Q两点D.花儿会不会在春天开放【答案】A【分析】根据命题的定义对选项一一进行分析即可.【详解】解:选项A:是用语言可以判断真假的陈述句是命题故符合题意选项B C D:都不是可以判断真假的陈述句都不是命题故不符合题意.故选:A【点睛】本题考查了命题的定义解本题的关键在判断给出的语句是否用语言符号或式子表达是否为可以判断真假的陈述句.一般地对某件事情作出正确或不正确的判断的句子叫做命题命题可看做由题设和结论两部分组成.5.(2022·全国·七年级单元测试)如图若图形A经过平移与下方图形(阴影部分)拼成一个长方形则平移方式可以是()A .向右平移4个格 再向下平移4个格B .向右平移6个格 再向下平移5个格C .向右平移4个格 再向下平移3个格D .向右平移5个格 再向下平移4个格 【答案】A【分析】根据平移的性质 结合图形解答即可.【详解】解:图形A 向右平移4个格 再向下平移4个格可以与下方图形(阴影部分)拼成一个长方形 故选:A .【点睛】本题考查的是平移的性质 把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.6.(2022春·黑龙江哈尔滨·七年级校考单元测试)如图 已知直线AB CD ∥ 130GEF ∠=︒ 135EFH ∠=︒ 则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒ 【答案】D【分析】由130GEF ∠=︒ 135EFH ∠=︒可得1324265︒∠+∠+∠+∠= 由ABCD 得34180∠+∠=︒ 进而可求出12∠+∠的度数.【详解】解:如下图所示∠130GEF ∠=︒∠13130︒∠+∠=∠135EFH ∠=︒∠24135︒∠+∠=∠1324265︒∠+∠+∠+∠=∠AB CD∠34180∠+∠=︒∠121324(34)26518085︒∠∠︒+∠=∠+∠+∠+∠-+∠=︒=-故选:D .【点睛】本题考查了平行线的性质 解题的关键是根据平行线的性质找出图中角度之间的关系.7.(2022春·江苏·七年级单元测试)下列说法中 错误的有( )①若a b ∥ b c ∥ 则a c ∥②若a 与c 相交 b 与c 相交 则a 与b 相交③相等的角是对顶角④过一点有且只有一条直线与已知直线平行.A .3个B .2个C .1个D .0个【答案】A【分析】根据平行公理及推论可判断① 若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 可判断② 对顶角相等 但相等的角不一定是对顶角 可判断③ 根据平行公理及推论可判断④.【详解】解:根据平行线公理及推论可知 ①正确若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 ②错误对顶角相等 但相等的角不一定是对顶角 ③错误过直线外一点有且只有一条直线与已知直线平行④错误.故错误的有3个故选:A.【点睛】本题考查平行公理及推论平行线的判定与性质熟练掌握平行线的判定与性质是解答本题的关键.8.(2022·全国·七年级单元测试)如图P为直线l外一点A B C在l上且PB∠l下列说法中正确的个数是()①P A PB PC三条线段中PB最短②线段PB叫做点P到直线l的距离③线段AB的长是点A到PB 的距离④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度叫做点到直线的距离从直线外一点到这条直线上各点所连的线段中垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段根据垂线段最短可知P A PB PC三条线段中PB 最短故原说法正确②线段BP是点P到直线l的垂线段故线段BP的长度叫做点P到直线l的距离故原说法错误③线段AB是点A到直线PB的垂线段故线段AB的长度叫做点P到直线l的距离故故原说法正确④由题意及图形无法判断线段AC的长是点A到PC的距离故原说法错误综上所述正确的说法有①③故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中垂线段最短.∥的是()9.(2022春·天津·七年级校考单元测试)如图下列条件中能判断AB CDA .12∠=∠B .34∠∠=C .180DAB ABC ∠+∠=︒D .B D ∠=∠ 【答案】A 【分析】结合图形分析两角的位置关系 根据平行线的判定方法逐项进行判断即可得到结论.【详解】解:∠12∠=∠∠AB CD ∥故①选项符合题意∠34∠∠=∠AD BC ∥故②选项不符合题意∠180DAB ABC ∠+∠=︒∠AD BC ∥故③选项不符合题意∠B D ∠=∠ 不能判定AB CD ∥故④选项不符合题意故选:A .【点睛】本题主要考查了平行线的判定 能根据图形准确找出同位角 内错角和同旁内角是解决问题的关键.10.(2022秋·江苏盐城·七年级校联考单元测试)如图 在宽为20m 长为30m 的矩形地面上修建两条同样宽的道路 余下部分作为耕地.根据图中数据 计算耕地的面积为( )A .600m 2B .551m 2C .550m 2D .500m 2【答案】B【详解】由图可以看出两条路的宽度为:1m 长度分别为:20m 30m所以 可以得出路的总面积为:20×1+30×1-1×1=49m 2又知该矩形的面积为:20×30=600m 2所以 耕地的面积为:600-49=551m 2.故选B.二 填空题(本大题共8个小题 每题2分 共16分)11.(2022春·黑龙江哈尔滨·七年级哈尔滨工业大学附属中学校校考单元测试)如图 要把池水引到C 处 可作CD AB ⊥于点D 然后沿CD 开渠 可使所开渠道最短 依据是______.【答案】垂线段最短【分析】根据直线外一点到直线的距离解答.【详解】解:因为直线外一点到直线上各点的连线中 垂线段最短所以沿CD 开渠故答案为:垂线段最短.【点睛】本题考查垂线段的性质 熟练掌握垂线段最短是解决本题的关键.12.(2022秋·重庆铜梁·七年级校考单元测试)如图 O 是直线AB 上一点 32COB ∠=︒ 则1∠=___.【答案】148︒##148度 【分析】依据邻补角进行计算 即可得到∠1的度数.【详解】解:∠O 是直线AB 上一点 32COB ∠=︒∠118032148∠=︒-︒=︒故答案为:148︒.【点睛】本题主要考查了邻补角的概念 只有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 互为邻补角.邻补角互补 即和为180︒.13.(2022秋·河南安阳·七年级统考单元测试)如图 给出下列条件:①∠1=∠2 ②∠3=∠4 ③∠A =∠CDE ④∠A +∠ADC =180°.其中 能推出AB //DC 的条件为_______.【答案】①③④【分析】根据平行线的判定定理逐个分析判断即可求解.【详解】解:①∠∠1=∠2∥符合题意∠AB DC②∠∠3=∠4∥不符合题意∠BC AD③∠∠A=∠CDE∥符合题意∠AB DC④∠∠A+∠ADC=180°∥符合题意∠AB DC故答案为:①③④.【点睛】本题考查了平行线的判定定理掌握平行线的判定定理是解题的关键.14.(2022秋·云南昭通·七年级校考单元测试)如图把三角尺的直角顶点放在直线b上.若∠1= 50° 则当∠2=____时a∥b.【答案】40°##40度【分析】根据三角尺的直角顶点在直线b上∠1=50° 即可得到∠3=180°−90°−∠1=40° 再根据a//b即可得到∠2=∠3=40°.【详解】解:如图∠三角尺的直角顶点在直线b上∠1=20°∠∠3=180°−90°−∠1=40°又∠要使得a b∠只需要∠2=∠3=40°故答案为:40.【点睛】本题主要考查了平行线的性质熟记两直线平行线同位角相等是解题的关键.15.(2022秋·河北石家庄·七年级统考单元测试)在同一平面内直线a b相交于P 若a∠c 则b与c的位置关系是______.【答案】相交【详解】解:因为a∠c 直线b相交所以直线b与c也有交点故答案为:相交.【点睛】本题考查了平行线和相交线.同一平面内一条直线与两条平行线中的一条相交则必与另一条直线也相交.16.(2022秋·北京·七年级校考单元测试)如图快艇从P处向正北航行到A处时向右转60︒航行到B处再向左转90︒继续航行此时的航行方向为北偏西______°.【答案】30【分析】根据平行线的性质与方位角的定义即可求解.【详解】解:如图∠//PC BE 60CAB ∠=︒∠60EBF ∠=︒∠906030DBE此时的航行方向为:北偏西30︒故答案为:30.【点睛】此题主要考查方位角 解题的关键是熟知方位角的定义及平行线的性质.17.(2022·全国·七年级单元测试)如图 在三角形ABC 中 90BAC ∠=︒ 4cm AB = 5cm =BC 3cm AC = 将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF 且AC 与DE 相交于点G 连接AD .(1)阴影部分的周长为______cm(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm 则a 的值为______.【答案】 12 4.5##92##142 【分析】(1)由平移的性质可得出cm AD BE a == 5cm DE AB ==.再根据()5cm CE BC BE a =-=- 即ADG S ABC CEG ABEG S S S =+四边形 即可得出1342ADG CEG S S =⨯⨯- 再根据24.8cm ADG CEG S S -= 列出关于a 的等式 解出a 即可.【详解】(1)∠三角形ABC 沿BC cm(5)a <得到三角形DEFCE BC =∴阴影部分的周长为故答案为:(2)过AABC S =3AH =ADG ABED S四边形 ADG S . ABC CEG ABEG S S S =+四边形1342CEG ABEG S S =⨯⨯-四边形121342ADG CEG BE S S ⨯-=⨯⨯- 即125ADG CEG S S -=ADG 的面积比三角形EGC 的面积大24.8cm 4.8cm ADG CEG SS -=4 4.8⨯= 18.(2022春·黑龙江哈尔滨·七年级单元测试)如图 直线AB CD ∥ 点E F 分别为直线AB 和CD 上的点 点P 为两条平行线间的一点 连接PE 和PF 过点P 作EPF ∠的平分线交直线CD 于点G 过点F 作FH PG ⊥ 垂足为H 若120DGP PFH ∠-∠=︒ 则AEP ∠=________︒.【答案】30︒【分析】设FPG x GPM y ∠∠=︒=︒, 过P 作PM CD ∥ 则AB CD PM ∥∥ 用x y ︒︒,表示PGD ∠ PFH ∠ 代入求出x y ︒-︒ 即AEP ∠的值可以解出.【详解】解:设FPG x GPM y ∠∠=︒=︒,PG 平分EPF ∠EPG FPG x ∠∠∴==︒过P 作PM CD ∥∥AB CDAB CD PM ∴∥∥AEP EPM EPG MPG x y ∠∠∠∠∴==-=︒-︒ 180180PGD MPG y ∠∠=︒-=︒-︒FH PG ⊥90PHF ∠∴=︒909090PFH FPG FPG x ∠∠∠∴=︒-=︒-=︒-︒120DGP PFH ∠-∠=︒()()18090120y x ∴︒-︒-︒-︒=︒ 即30x y ︒-︒=︒30AEP x y ∠∴=︒-︒=︒.故答案为:30︒.【点睛】本题考查平行线的性质 角平分线的性质 垂线的性质 熟练运用性质计算是解题的关键.三 解答题(本大题共8个小题 共54分 第19-22每小题6分 23-24每小题7分 25-26每小题8分)19.(2022·全国·七年级单元测试)如图 在边长为1个单位的正方形网格中 ABC 经过平移后得到A B C ''' 点B 的对应点为B ' 根据下列条件 利用网格点和无刻度的直尺画图并解答 保留痕迹:(1)画出A B C ''' 线段AC 扫过的图形的面积为______(2)在A B ''的右侧确定格点Q 使A B Q ''△的面积和ABC 的面积相等 请问这样的Q 点有______个? 根据平移的性质得出'''ABC线段)根据平行线之间的距离处处相等可得答案.A B C '''即为所求111022612411022A B ∥ 则点1234,,,Q Q Q Q 即为所求本题主要考查了作图——平移变换20.(2022秋·北京海淀·七年级校考单元测试)如图 点C 在MON ∠的一边OM 上 过点C 的直线AB ON ∥CD 平分ACM ∠.当60DCM ∠=︒时 求O ∠的度数.解:∠CD 平分ACM ∠∠ACM ∠= .∠60DCM ∠=︒∠ACM ∠= °.∠直线AB 与OM 交于点C∠OCB ∠=ACM ∠= °( )∠AB ON ∥∠+=180O OCB ∠∠︒( )∠O ∠= °.【答案】2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60【分析】根据角平分线的定义 即可得到∠ACM 的度数 进而得出∠OCB 的度数 再依据平行线的性质 即可得到∠O 的度数.【详解】解:∠CD 平分ACM ∠∠=2ACM DCM ∠∠.∠∠60DCM ∠=︒∠=120ACM ∠︒.∠直线AB 与OM 交于点C∠==120OCB ACM ∠∠︒(对顶角相等)∠AB ON ∥∠+=180O OCB ∠∠︒(两直线平行 同旁内角互补)∠=60O ∠︒.故答案为:2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60.【点晴】本题主要考查了角的计算 平行线的性质以及角平分线的定义 解题的关键是熟练掌握平行线的性质:两直线平行 同旁内角互补.21.(2022秋·重庆铜梁·七年级校考单元测试)如图 在四边形ABCD 中 130A ∠=︒ 50ADC ∠=︒ 试说明12∠=∠.【答案】AB CD 同旁内角互补 两直线平行 两直线平行 内错角相等【分析】由180A ADC ∠+∠=︒ 利用同旁内角互补 两直线平行可得AB CD ∥ 再利用平行线的性质可得答案.【详解】证明:∠130A ∠=︒ 50ADC ∠=︒(已知)∠180A ADC ∠+∠=︒(等式的性质)∠AB CD ∥ (同旁内角互补 两直线平行)∠12∠=∠(两直线平行 内错角相等).【点睛】本题考查的是平行线的判定与性质 熟记平行线的性质与判定方法是解本题的关键.22.(2022·全国·七年级单元测试)如图 己知点P Q 分别在AOB ∠的边OA OB 、上 按下列要求画图:(1)画射线PQ(2)过点P 画垂直于射线OB 的线段PC 垂足为点C(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图分别P画垂直于射线OB的射线PC垂足为点C过点Q画直线QM平行于射线OA.【详解】(1)如图射线PQ为所求(2)如图线段PC为所求(3)如图直线QM为所求【点睛】此题主要考查了基本作图正确把握相关定义是解题关键.23.(2022春·七年级单元测试)如图汽车站码头分别位于A B,两点直线b和波浪线分别表示公路与河流.(1)从汽车站A到码头B怎样走最近?画出最近路线并说明理由(2)从码头B到公路b怎样走最近?画出最近路线BC并说明理由.【答案】(1)作图见解析 理由见解析(2)作图见解析 理由见解析【分析】(1)根据两点之间线段最短解决问题.(2)根据垂线段最短解决问题.【详解】(1)解:如图 连接,A B 线段AB 即为所求作.(2)如图 过点B 作BC b ⊥于点C 线段BC 即为所求作.【点睛】本题考查作图﹣应用与设计作图 垂线段最短 两点之间线段最短等知识 解题的关键是理解题意 灵活运用所学知识解决问题.24.(2022春·七年级单元测试)如图 AB CD ⊥ 垂足为O .(1)比较AOD EOB AOE ∠∠∠,,的大小 并用“<”号连接.(2)若28EOC ∠=︒ 求EOB ∠和EOD ∠的度数.【答案】(1)AOE AOD EOB ∠<∠<∠(2)118152EOB EOD ∠=︒∠=︒,【分析】(1)根据图形可判断各角的大小.(2)根据图形可得90118EOB EOC ∠=∠+︒=︒,根据平角的定义求得EOD ∠. 【详解】(1)解:∠AB CD ⊥∠909090AOD EOB EOC AOE EOC ∠=︒∠=︒+∠∠=︒-∠,,∠AOE AOD EOB ∠<∠<∠(2)∠AB CD ⊥∠90118EOB EOC ∠=∠+︒=︒∠180********EOD EOC ∠=︒-∠=︒-︒=︒.【点睛】本题考查了角的关系 垂直的定义 通过已知角求得未知角 数形结合是解题的关键. 25.(2022春·广东·七年级单元测试)如图 直线CD EF 交于点O OA OB 分别平分COE ∠和DOE ∠ 已知1290∠+∠=︒ 且2:32:5∠∠=.(1)求BOF ∠的度数(2)试说明AB CD 的理由.∠+∠)解:12AOCAB CD.【点睛】本题主要考查了平行线的判定与性质是解题的关键.26.(2022秋·上海宝山·七年级校考单元测试)已知AB∠CD点M为平面内的一点∠AMD=90°.(1)当点M在如图1的位置时求∠MAB与∠D的数量关系(写出说理过程)(2)当点M在如图2的位置时则∠MAB与∠D的数量关系是(直接写出答案)(3)在(2)条件下如图3 过点M作ME∠AB垂足为E∠EMA与∠EMD的角平分线分别交射线EB于点F G回答下列问题(直接写出答案):图中与∠MAB相等的角是∠FMG=度.【答案】(1)∠MAB+∠D=90°见解析(2)∠MAB﹣∠D=90°(3)∠MAB=∠EMD45【分析】(1)在题干的基础上通过平行线的性质可得结论(2)仿照(1)的解题思路过点M作MN∠AB由平行线的性质可得结论(3)利用(2)中的结论结合角平分线的性质可得结论.【详解】(1)解:如图①过点M作MN∥AB∵AB∥CD∴MN∥AB∥CD(如果一条直线和两条平行线中的一条平行那么它和另一条也平行).∴∠D=∠NMD.∵MN∥AB∴∠MAB+∠NMA=180°.∴∠MAB+∠AMD+∠DMN=180°.∵∠AMD=90°∴∠MAB+∠DMN=90°.∴∠MAB+∠D=90°(2)解:如图②过点M作MN∥AB∵MN∥AB∴∠MAB+∠AMN=180°.∵AB∥CD∴MN∥AB∥CD.∴∠D=∠NMD.∵∠AMD=90°∴∠AMN=90°﹣∠NMD.∴∠AMN=90°﹣∠D.第21页共22页第22页共22页。

人教版七年级数学下册第五章第一节相交线自测题(含答案)

人教版七年级数学下册第五章第一节相交线自测题(含答案)

第五章第一节相交线自测题(含答案)一、选择题1.下列图形中,∠1和∠2是同位角的是()A. B. C. D.2.下列图形中,∠1与∠2是对顶角的有()A. B.C. D.3.体育课上,老师测量跳远成绩的依据是()A. 垂直的定义B. 两点之间线段最短C. 垂线段最短D. 两点确定一条直线4.点P为直线MN外一点,点A、B、C为直线MN上三点,PA=4厘米,PB=5厘米,PC=2厘米,则P到直线MN的距离为()A. 4厘米B. 2厘米C. 小于2厘米D. 不大于2厘米5.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90∘,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是()A. ②③B. ①②③C. ③④D. ①②③④6.如图所示,图中∠1与∠2是同位角的个数为()A. 1个B. 2个C. 3个D. 4个7.如图所示,点P到直线l的距离是()A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度第1页,共3页8.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 对顶角9.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A. 2条B. 3条C. 4条D. 5条10.如图中,∠1与∠2是内错角的是()A. B.C. D.11.如图所示,∠1和∠2是对顶角的是()A. B. C. D.12.如图,下列说法一定正确的是()A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C是同位角二、计算题13.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.2三、解答题14.已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.参考答案一、选择题1.【答案】D.2.【答案】A3.【答案】C4.【答案】D5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】D二、计算题13.【答案】解:(1)∵OE平分∠BOC,∠BOE=70°,∴∠BOC=2∠BOE=140°,∴∠AOC=180°−140°=40°,又∠COF=90°,∴∠AOF=90°−40°=50°;(2)∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=90°,∴∠AOF=90°−36°=54°.三、解答题14.【答案】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°−∠AOC−∠COE=54°;(2)∵∠BOD:∠BOC=1:5,=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;∴∠BOD=180°×11+5(3)如图1,∠EOF=120°−90°=30°,或如图2,∠EOF=360°−120°−90°=150°.故∠EOF的度数是30°或150°.第3页,共3页。

最新新版人教版七年级数学下册-第五章-相交线与平行线测试题(含答案)

最新新版人教版七年级数学下册-第五章-相交线与平行线测试题(含答案)

精品文档 参考答案:
1.C 2.C
3.A
4.C 5.( 1)∠ 1,同位角相等,两直线平行; ( 2)∠ 2,内错角相等,两直线平行
6.( 1)如果两条直线被第三条直线所截,内错角相等,那么这两条直线互相平行; 个角的补角,那么这两个角相等 .
7.△ OAB 2
8.52 128
9.∠ CAB ,∠ CAB , DC 10.1080, 720
精品文档
新版人教版七年级数学下册 第五章 相交线与平行线测试题
(时间: 45 分钟,满分: 100 分) 一、选择题(每小题 4 分,共 16 分)
1.下面四个图形中,∠ 1 与∠ 2 是对顶角的是(

12 A
1
2
B
2 1
C
2 1
D
2.如图, AB ∥ CD,∠ A=70 0,则∠ 1 的度数是( )
证明:∵ BE 平分∠ ABD (已知)
∴∠ ABD=2 ∠α(

∵ DE 平分∠ BDC (已知)
∴∠ BDC=_________ (

∴∠ ABD+ ∠ BDC=2 ∠α +2∠β =2(∠α +∠β)(

∵∠α +∠β =90 0(已知)
∴∠ ABD+ ∠ BDC=___________ (

∵ AD 是∠ EAC 的平分线,
∴∠ DAC= ∠ EAD=30 0
B
( 2)如果两个角是同一 A
D
E C
F 第 11 题
E
A
D
C
∵ AD ∥ BC ∴∠ C=∠ DAC=30 0 14.解:∠ AFC= ∠ A- ∠ C.理由如下: ∵ AB ∥ EF ∴∠ A= ∠ AEF

(易错题)人教版初中七年级数学下册第五章《相交线与平行线》模拟测试(包含答案解析)(1)

(易错题)人教版初中七年级数学下册第五章《相交线与平行线》模拟测试(包含答案解析)(1)

一、选择题1.(0分)[ID :68954]在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行 2.(0分)[ID :68941]如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 3.(0分)[ID :68938]下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角 4.(0分)[ID :68927]下列语句中,是命题的是( ) A .两个相等的角是对顶角B .在直线AB 上任取一点C C .用量角器量角的度数D .直角都相等吗? 5.(0分)[ID :68925]对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40° 6.(0分)[ID :68906]已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .67.(0分)[ID :68904]如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A.4B.5C.2D.5.58.(0分)[ID:68902]交换下列命题的题设和结论,得到的新命题是假命题的是() A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣39.(0分)[ID:68896]如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④10.(0分)[ID:68890]下列说法中不正确的个数为().①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个11.(0分)[ID:68886]下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0 B.1 C.2 D.312.(0分)[ID:68884]下列命题是假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60°13.(0分)[ID:68877](2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A .40°B .50°C .60°D .70°14.(0分)[ID :68864]如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .26 15.(0分)[ID :68862]在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .二、填空题16.(0分)[ID :69052]如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.17.(0分)[ID :69041]两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒. 18.(0分)[ID :69016]过直线AB 上一点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =50°时,则∠BOD 的度数__.19.(0分)[ID :69011]“等腰三角形的两条边相等”的逆命题是________________.(填真命题或假命题)20.(0分)[ID :69009]若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.21.(0分)[ID :69008]如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.22.(0分)[ID :69000]一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔23.(0分)[ID :68998]如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__24.(0分)[ID :68991]如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.25.(0分)[ID :68974]如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.26.(0分)[ID :68971]如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =27.(0分)[ID :68966]假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.三、解答题28.(0分)[ID :69125]如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)29.(0分)[ID :69092]如图,∠1=∠2,∠3=∠D ,∠4=∠5,运用平行线性质和判定证明:AE ∥BF ,要求写出具体的性质或判定定理.30.(0分)[ID :69067]如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-5, 1),B(4,0),C(2,5),将△ABC 向右平移2个单位长度,再向下平移1个单位长度得到(1)画出平移后的图形,并写出△EFG的三个顶点坐标.(2)求△EFG的面积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.C4.A5.C6.B7.C8.C9.D10.C11.B12.A13.B14.D15.D二、填空题16.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的17.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=10818.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB 的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=18019.真命题【分析】交换命题的题设和结论即可得到该命题的逆命题根据等腰三角形的定义判断即可【详解】等腰三角形的两条边相等的逆命题是:两条边相等的三角形是等腰三角形;它是真命题故答案为:真命题【点睛】本题考20.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B =180°①∠A=∠B②∵∠21.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角22.;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC;图中当时CE//AB图中当时DE//BC故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题23.【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S四边形ODFC=S梯形ABEO根据梯形的面积公式即可求解【详解】解:由平移的性质知BE=6DE=AB=10∴OE=DE﹣24.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°25.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°26.60°【分析】设∠OCA=a∠AOC=x利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a∠AOC=x已知CB∥OA∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠27.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A、相等的角不一定是对顶角,此项是假命题;B、平行于同一条直线的两条直线互相平行,此项是真命题;C、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.2.B解析:B【分析】根据平行线的性质求出∠ABE,求出∠CBA,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.3.C解析:C【分析】利用反例对A进行判断;根据平行线的性质对B进行判断;根据三角形内角和定理对C进行判断;根据对顶角定义对D进行判断.【详解】解:A、当a=-2,b=-1时,则a+b<0,ab>0,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误,是假命题;C、三角形的内角和等于180°,所以C选项为真命题;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.A解析:A【分析】根据命题的定义逐一判断即可.【详解】解:A.“两个相等的角是对顶角”做出了判断,是命题;B.“在直线AB上任取一点C”没有做出判断,不是命题;C.“用量角器量角的度数”没有做出判断,不是命题;D.“直角都相等吗?”没有做出判断,不是命题;故选:A.【点睛】此题主要考查了命题的含义和应用,解答此题的关键是要明确:判断一件事情的语句叫命题,许多命题都是由题设和结论两部分组成.5.C解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.6.B解析:B【分析】△的高相等,底边之比等于面积之比,设利用平行线间的距离相等可知ABC与ACD△的面积为x,建立方程即可求解.ACE【详解】∵//AB CD∴ABC 与ACD △的高相等 ∵2CD AB = ∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.7.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.8.C解析:C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.11.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A.【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.13.B解析:B【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选B.考点:平行线的性质14.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=1 2(AB+EH)×BE=12(8+5)×4=26.故选D.15.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.二、填空题16.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒34︒【分析】根据平角的性质及对顶角的性质求解即可.【详解】解:∵134∠=︒∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质.17.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得 11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 18.40º或140º【分析】根据题意可知射线OCOD 可能在直线AB 的同侧也可能在直线AB 的异侧分两种情况进行讨论即可【详解】解:由OC ⊥OD 可得∠DOC=90°如图1当∠AOC=50°时∠BOD=180解析:40º或140º【分析】根据题意可知,射线OC 、OD 可能在直线AB 的同侧,也可能在直线AB 的异侧,分两种情况进行讨论即可.【详解】解:由OC ⊥OD ,可得∠DOC=90°,如图1,当∠AOC =50°时,∠BOD =180°-50°-90°=40°;如图2,当∠AOC =50°时,∠AOD=90°-50°=40°,此时,∠BOD =180°-∠AOD=140°.故答案为40º或140º.【点睛】本题考查了垂线的定义及角的计算.解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.19.真命题【分析】交换命题的题设和结论即可得到该命题的逆命题根据等腰三角形的定义判断即可【详解】等腰三角形的两条边相等的逆命题是:两条边相等的三角形是等腰三角形;它是真命题故答案为:真命题【点睛】本题考 解析:真命题【分析】交换命题的题设和结论即可得到该命题的逆命题,根据等腰三角形的定义判断即可.【详解】“等腰三角形的两条边相等”的逆命题是:两条边相等的三角形是等腰三角形;它是真命题,故答案为:真命题.【点睛】本题考查了命题的真假判断、逆命题的概念,掌握等腰三角形的定义是解题的关键.20.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B=180°①∠A=∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.21.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).22.;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC ;图中当时CE//AB 图中当时DE//BC 故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.23.【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S 四边形ODFC=S 梯形ABEO 根据梯形的面积公式即可求解【详解】解:由平移的性质知BE =6DE =AB =10∴OE =DE ﹣解析:【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S 四边形ODFC =S 梯形ABEO ,根据梯形的面积公式即可求解.【详解】解:由平移的性质知,BE =6,DE =AB =10,∴OE =DE ﹣DO =10﹣4=6,∴S 四边形ODFC =S 梯形ABEO 12=(AB+OE )•BE 12=×(10+6)×6=48. 故答案为48.【点睛】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键. 24.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC 是直角即可得出结果【详解】解:如图所示∵a ∥b ∴∠1+∠3=180°则∠3=180°-∠1∵b ∥c ∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a ∥b ,∴∠1+∠3=180°,则∠3=180°-∠1,∵b ∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC 是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.25.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E 作EG ∥AB 则EG ∥CD 由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.26.60°【分析】设∠OCA=a∠AOC=x利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a∠AOC=x已知CB∥OA∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.27.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.三、解答题28.(1)见解析(2)90°+1 2α【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°−α又∵DH平分∠BDE∴∠1=12∠BDE=12(180°−α)∴∠3=180°− 12(180°−α)=90°+12α.【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.29.证明见解析【分析】由∠1=∠2,根据平行线的判定得出AB∥DF,再根据平行线的性质得出∠3=∠BCE,结合已知条件∠3=∠D,得出∠D=∠BCE,进而根据平行线的判定得出AD∥BC,再根据平行线的性质得出∠6=∠5,然后根据等量代换得出∠4=∠6,最后根据平行线的判定得出结论.【详解】证明:∵∠1=∠2,∴AB ∥DF (内错角相等,两直线平行),∴∠3=∠BCE ,(两直线平行,内错角相等),又∵∠3=∠D ,∴∠D =∠BCE ,∴AD ∥BC ,(同位角相等,两直线平行),∴∠6=∠5,(两直线平行,内错角相等),又∵∠4=∠5,∴∠4=∠6,∴AE ∥BF (内错角相等,两直线平行).【点睛】本题考查了平行线的判定,关键是根据平行线的判定和性质解答.30.(1)画图见解析;()3,0E -,()6,1F -,()4,4G ;(2)21.5【分析】(1)分别作出A ,B ,C 的对应点E ,F ,G 即可解决问题.(2)利用分割法求三角形面积即可.【详解】解:(1)如图,△EFG 即为所求,E (-3,0),F (6,-1),G (4,4).(2)S△EFG=5×9-12×1×9-12×5×2-12×4×7=21.5.【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。

新人教版七年级数学下册第五章相交线与平行线能力自测题(含答案)

新人教版七年级数学下册第五章相交线与平行线能力自测题(含答案)

七年级数学(下)第五章相交线与平行线测试题一、选择题(每小题3分,共计30分): 1、下列图中,属于对顶角的是( )2、下列说法不正确的是( )(A )同位角相等,两直线平行 (B )两直线平行,内错角相等 (C )内错角相等,两直线平行 (D )同旁内角互余,两直线平行 3、如果两条平行线被第三条直线所截,那么内错角的平分线( ) (A )互相平行 (B )互相垂直 (C )相交成锐角 (D )相交成钝角 4、如图,a ∥b ,∠1=3∠2,那么,∠2=( ) (A )45︒ (B )90︒ (C )135︒ (D )150︒(A )(B )(C )(D )12 1 212 12 【4】1 2ab5、经过直线外一点,有几条直线和已知直线平行( ) (A )0条 (B )1条 (C )2条 (D )3条 6.如图,∠ADE 和∠CED 是( )A .同位角B .内错角C .同旁内角D .互为补角 7.若a ⊥b ,c ⊥d 则a 与c 的关系是( ) A . 平行 B .垂直 C . 相交 D .以上都不对8.下面的每组图形中,右面的平移后可以得到左面的是( )A B C D 9、下列数据不能确定物体位置的是( )A 5楼4号B 北偏东30度C 友谊路2号D 东经110度北纬30度 10.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那么以下线段大小的比较必定成立的是( ) A. AD CD > B. BC AC <第(11)题EDCBA 第6题 DCBAC. BD BC >D. BD CD <二、填空题(前5道题每题3分,第6题5分共19分): 1、如图,如果AB ∥CD ,那么∠A 与∠C_______________2、如图,∠1+∠2=240°,b ∥c ,则∠3=________________。

3、如图,已知∠1=70°,∠2=110°,∠3=80°,则∠4=_______________。

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。

人教版数学七年级下册第五章《相交线与平行线》综合水平测试题【含答案】

人教版数学七年级下册第五章《相交线与平行线》综合水平测试题【含答案】

人教版数学七年级下册第五章《相交线与平行线》综合水平测试题(满分120分时间100分钟)一、选择题(每题3分,共30分)1.如图1,以下说法错误的是()A.1∠,2∠是内错角B.2∠,3∠是同位角C.1∠,3∠是内错角D.2∠,4∠是同旁内角2.给出下列说法:①两条直线被第三条直线所截,则内错角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③平面内的三条直线任意两条都不平行,则它们一定有三个交点;④若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补.其中正确的个数是()A.1B.2C.3D.43.如图2,点O 为正六边形ABCDEF 的中心,下列图形中可由△OBC 平移得到的是()A.△OCD B.△OAB C.△OAF D.△OEF4.欣赏并说出下列各商标图案,是利用平移来设计的有()A、2个B、3个C、5个D、6个5.如图4,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB 、AC 、AE 、ED 、EC 、DB 中,相互平行的线段有().(A )4组(B )3组(C )2组(D )1组6.两条平行线被第三条直线所截,则()A 、一对内错角的平分线互相平行B 、一对同旁内角的平分线互相平行C 、一对对顶角的平分线互相平行D、一对邻补角的平分线互相平行7.如图5,AB∥CD,AD∥BC,则下列各式中正确的是()A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3无关8.小明从家出来骑自行车上学,是先沿着一笔直的街道向正北方向骑2000米后,第一次向右拐45゜,大约骑500米后,又再向右拐45゜,此时小明是沿着()方向骑车。

A.正北B.北偏东45゜C.正东D.北偏西45゜9.如图6,直线a 、b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°。

(易错题)人教版初中七年级数学下册第五章《相交线与平行线》模拟检测卷(答案解析)

(易错题)人教版初中七年级数学下册第五章《相交线与平行线》模拟检测卷(答案解析)

一、选择题1.(0分)[ID :68957]下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等2.(0分)[ID :68954]在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行 3.(0分)[ID :68949]下列说法不正确的是( )A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行4.(0分)[ID :68947]如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论①C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③ 5.(0分)[ID :68934]如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 6.(0分)[ID :68924]如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 7.(0分)[ID :68915]如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm8.(0分)[ID :68913]下列命题:①同位角相等;②过一点有且只有一条直线与已知直线平行; ③过一点有且只有一条直线与已知直线垂直; ④如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行.其中假命题的个数是( ) A .1个B .2个C .3个D .4个 9.(0分)[ID :68907]下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC =∠B+∠C ,求证:AB ∥CD证明:延长BE 交__※__于点F ,则∠BEC =__⊙__+∠C又∵∠BEC =∠B+∠C ,∴∠B =▲∴AB ∥CD (__□__相等,两直线平行)A .⊙代表∠FECB .□代表同位角C .▲代表∠EFCD .※代表AB 10.(0分)[ID :68904]如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5 11.(0分)[ID :68897]下面命题中是真命题的有( )①相等的角是对顶角 ②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个12.(0分)[ID :68894]如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .1213.(0分)[ID :68875]如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠4 14.(0分)[ID :68871]如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒15.(0分)[ID :68864]如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .26二、填空题16.(0分)[ID :69045]如图,直线a ,b 被直线c 所截(即直线c 与直线a ,b 都相交),且a //b ,若1∠=α,则2∠的度数=______度.(用含有α代数式表示)17.(0分)[ID :69038]如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥18.(0分)[ID :69032]两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______.19.(0分)[ID :69021]如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.20.(0分)[ID :69016]过直线AB 上一点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =50°时,则∠BOD 的度数__.21.(0分)[ID :69013]命题“相等的角是对顶角”是______(填“真命题”或“假命题”). 22.(0分)[ID :69012]直线//,a b Rt ABC ∆的直角顶C 点在直线a 上,若135∠=︒,则2∠等于_______.23.(0分)[ID :68991]如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.24.(0分)[ID :68990]如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.25.(0分)[ID :68970]如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)26.(0分)[ID :68966]假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.27.(0分)[ID :68958]某商场重新装修后,准备在门前台阶上铺设地毯,已知这种地毯的批发价为每平方米40元,其台阶的尺寸如图所示,则购买地毯至少需要________元.三、解答题A B C三地,但地图被墨迹污染,C地具体位置28.(0分)[ID:69143]在一张地图上有、、看不清楚,但知道C地在A地的北偏东30°方向,在B地南偏东45°方向.(1)根据以上条件,在地图上画出C地的位置;的度数.(2)直接写出ACB29.(0分)[ID:69126]补全解答过程:如图,EF∥AD,∠1=∠2,若∠BAC=70°,求∠AGD.解:∵EF∥AD,(已知)∴∠2=,(两直线平行,同位角相等).又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥,()∴∠AGD+∠BAC=180°.()∵∠BAC=70°,(已知)∴∠AGD=.30.(0分)[ID:69098]如图,直线AB、CD相交于点O,∠AOD=105°,OE把∠AOC分成两个角,∠AOE∶∠EOC=2∶3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.D4.B5.C6.D7.A8.A9.C10.C11.C12.C13.C14.B15.D二、填空题16.【分析】根据对顶角性质得;根据平行线性质得结合推导得即可得到答案【详解】如图∵//∴∴∴∵∴即的度数=度故答案为:【点睛】本题考查了平行线的知识;解题的关键是熟练掌握对顶角相等平行线的性质从而完成求解17.对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对18.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB⊥CD;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补19.【分析】过作过作根据平行线的性质可知然后根据平行线的性质即可求解;【详解】如图过作过作∴∴∵∴∴∴∴∴故答案为:【点睛】本题考查了平行线的性质两直线平行同位角相等两直线平行内错角相等正确理解平行线的20.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB 的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=18021.假命题【分析】对顶角相等但相等的角不一定是对顶角从而可得出答案【详解】解:对顶角相等但相等的角不一定是对顶角从而可得命题相等的角是对顶角是假命题故答案为:假命题【点睛】此题考查了命题与定理的知识属于22.【分析】先根据直角为90°即可得到∠3的度数再根据平行线的性质即可得出∠2的度数【详解】解:∵Rt△ABC的直角顶点C在直线a上∠1=35°∴∠3=90°-35°=55°又∵a∥b∴∠2=∠3=5523.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°24.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°25.①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B∴AB∥CD故本小题正确;②∵∠2=∠5∴AB∥CD故本小题正确;③∵∠3=∠4∴AD∥BC故本小题错误;④∵∠126.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有27.192【分析】根据平移可知地毯的长度等于横向与纵向的长度之和求出地毯的长度再根据矩形的面积列式求出地毯的面积然后乘以单价计算即可得解【详解】解:地毯的长度至少为:08+16=24(米);24×2×4三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A、相等的角不一定是对顶角,此项是假命题;B、平行于同一条直线的两条直线互相平行,此项是真命题;C、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.D解析:D【分析】根据平行线的概念对选项A进行判断;根据平行线的性质对选项B进行判断;根据平行线的公理和判定定理对选项C和D进行判断.【详解】A. 同一平面上的两条直线不平行就相交,所以选项A正确;B. 同位角相等,两直线平行,这是平行线的判定定理,所以B选项正确;C.过直线外一点有且只有一条直线与已知直线平行,所以选项C正确;D. 同旁内角互补,两直线平行,所以选项D错误.故选D.【点睛】本题是一道关于平行线的题目,掌握平行线的性质和定理是解决此题的关键.4.B解析:B【分析】由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC ⊥FD ,故③正确;∵AB ∥CD ,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.5.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.6.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.7.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.8.A解析:A【分析】根据平行线的性质、八个基本事实、平行线的判定等知识分别判断即可.【详解】解:同位角不一定相等,①是假命题;过直线外一点有且只有一条直线与已知直线平行,②是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,③是假命题;如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行,④是真命题,故选:A .【点睛】本题考查了命题与定理、平行线的判定与性质、八个基本事实,熟记八个基本事实,会判断命题的真假是解答的关键.9.C解析:C【分析】延长BE 交CD 于点F ,利用三角形外角的性质可得出∠BEC =∠EFC+∠C ,结合∠BEC =∠B+∠C 可得出∠B =∠EFC ,利用“内错角相等,两直线平行”可证出AB ∥CD ,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE 交CD 于点F ,则∠BEC =∠EFC+∠C .又∵∠BEC =∠B+∠C ,∴∠B =∠EFC ,∴AB ∥CD (内错角相等,两直线平行).∴※代表CD ,⊙代表∠EFC ,▲代表∠EFC ,□代表内错角.故选:C .【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B =∠EFC 是解题的关键.10.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.11.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C .【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.12.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2, 122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF SS +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.13.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB ∥CD ,∴∠1=∠4,故选 C .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.14.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

人教版七年级下册《第五章相交线》单元检测试卷含答案

人教版七年级下册《第五章相交线》单元检测试卷含答案

第五章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列图形中,可以由其中一个图形通过平移得到的是( )2.如图①~④,其中∠1与∠2是同位角的有( ) A .①②③④ B .①②③ C .①③ D .①第2题图 第3题图3.如图,能判断直线AB ∥CD 的条件是( ) A .∠1=∠2 B .∠3=∠4 C .∠1+∠3=180° D .∠3+∠4=180°4.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )A .①②B .①③C .②④D .③④5.若∠1与∠2是对顶角且互补,则它们两边所在的直线( ) A .互相垂直 B .互相平行C .既不垂直也不平行D .不能确定6.如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E .若∠A =50°,则∠1的度数为( ) A .65° B .60° C .55° D .50°第6题图 第7题图7.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC =30°),其中A ,B 两点分别落在直线m ,n 上.若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°8.点P 为直线l 外一点,点A ,B ,C 为直线l 上三点,P A =4cm ,PB =5cm ,PC =3cm ,则点P 到直线l 的距离为( )A .4cmB .5cmC .小于3cmD .不大于3cm9.如图,点E ,F 分别是AB ,CD 上的点,点G 是BC 的延长线上一点,且∠B =∠DCG =∠D ,则下列判断中,错误的是( )A .∠AEF =∠EFCB .∠A =∠BCFC .∠AEF =∠EBCD .∠BEF +∠EFC =180°第9题图 第10题图10.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°36′,在OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,反射光线DC 恰好与OB 平行,入射角∠ODE 与反射角∠ADC 相等,则∠DEB 的度数是( )A .75°36′B .75°12′C .74°36′D .74°12′ 二、填空题(每小题3分,共24分) 11.如图,当剪刀口∠AOB 增大21°时,∠COD 增大________°.第11题图 第12题图12.如图,平行线AB ,CD 被直线AE 所截,∠1=50°,则∠A =________°.13.如图,在线段AC ,BC ,CD 中,线段________最短,理由是____________________.第13题图 第14题图14.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =68°,则∠BOD 的度数为________. 15.如图,直线l 1∥l 2,∠1=20°,则∠2+∠3=________°.第15题图 16.平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”“朋”“森”等,请你再写两个具有平移变换现象的汉字________.17.如图是超市里购物车的侧面示意图,扶手AB 与车底CD 平行,∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________.第17题图18.以下三种沿AB 折叠纸带的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠4且∠3=∠2;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a ,b 互相平行的是________(填序号).三、解答题(共66分)19.(6分)如图,直线AB,CD相交于O,OE是∠AOD的平分线,∠AOC=28°,求∠AOE的度数.20.(6分)如图,在方格纸中,每个小方格的边长均为1个长度单位,三角形ABC的三个顶点和点P都在小方格的顶点上.要求:①将三角形ABC平移,使点P落在平移后的三角形内部;②平移后的三角形的顶点在方格的顶点上.请你在图甲和图乙中分别画出符合要求的一个示意图,并写出平移的方法.21.(8分)如图,已知AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.22.(10分)如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.(12分)如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请选择其中一个真命题加以证明.25.(14分)如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3…… 第n 次操作,分别作∠ABE n -1和∠DCE n -1的平分线,交点为E n .(1)如图①,求证:∠BEC =∠B +∠C ; (2)如图②,求证:∠BE 2C =14∠BEC ;(3)猜想:若∠E n =b °,求∠BEC 的度数.答案与解析1.B 2.C 3.D 4.D 5.A 6.A 7.D 8.D 9.C 10.B11.21 12.50 13.CD 垂线段最短 14.22° 15.200 16.羽、圭(答案不唯一) 17.55° 18.(1)(2)19.解:∵∠AOC +∠AOD =180°,∠AOC =28°,∴∠AOD =152°.(3分)∵OE 平分∠AOD ,∴∠AOE =12∠AOD =76°.(6分)20.解:如图甲,将三角形ABC 先向右平移4个单位长度,再向上平移1个单位长度.(3分)如图乙,将三角形ABC 先向右平移3个单位长度,再向上平移1个单位长度(答案不唯一).(6分)21.证明:∵AE ⊥BC ,FG ⊥BC ,∴AE ∥FG ,(3分)∴∠2=∠CFG .(4分)∵∠1=∠2,∴∠CFG =∠1,∴AB ∥CD .(8分)22.解:(1)∠BOD ∠AOE (4分) (2)设∠BOE =2x °,则∠EOD =3x °,∴∠BOD =∠BOE +∠EOD =5x °.(6分)∵∠BOD =∠AOC =70°,(7分)即5x =70,∴x =14,∴∠BOE =2x °=28°,(8分)∴∠AOE =180°-∠BOE =152°.(10分)23.解:∵EF ∥AD ,AD ∥BC ,∴EF ∥AD ∥BC ,(2分)∴∠DAC +∠ACB =180°.(4分)∵∠DAC =120°,∠ACF =20°,∴∠BCF =180°-∠DAC -∠ACF =180°-120°-20°=40°.(6分)∵CE 平分∠BCF ,∴∠FCE =∠BCE =20°.(8分)∵EF ∥BC ,∴∠FEC =∠BCE =20°.(10分)24.解:(1)命题1:由①②得到③;命题2:由①③得到②;命题3:由②③得到①.(6分) (2)命题1、命题2、命题3均为真命题.(8分)选择命题1加以证明.证明如下:∵AB ∥CD ,∴∠B =∠CDF .(9分)∵∠B =∠C ,∴∠C =∠CDF ,(10分)∴CE ∥BF ,(11分)∴∠E =∠F ,故由①②得到③为真命题.(12分)或选择命题2加以证明.证明如下:∵AB ∥CD ,∴∠B =∠CDF .(9分)∵∠E =∠F ,∴CE ∥BF ,(10分)∴∠C =∠CDF ,(11分)∴∠B =∠C ,故由①③得到②为真命题.(12分)或选择命题3加以证明.证明如下:∵∠E =∠F ,∴CE ∥BF ,(9分)∴∠C =∠CDF .(10分)∵∠B =∠C ,∴∠B =∠CDF ,(11分)∴AB ∥CD ,故由②③得到①为真命题.(12分)25.(1)证明:如图,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠B +∠C .(4分)(2)证明:∵∠ABE 和∠DCE 的平分线交点为E 1,∴由(1)可得∠BE 1C =∠ABE 1+∠DCE 1=12∠ABE +12∠DCE =12∠BEC .(6分)∵∠ABE 1和∠DCE 1的平分线交点为E 2,∴由(1)可得∠BE 2C =∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=12∠BE 1C =14∠BEC .(9分)(3)解:∵∠ABE 2和∠DCE 2的平分线,交点为E 3,∴∠BE 3C =∠ABE 3+∠DCE 3=12∠ABE 2+12∠DCE 2=12∠CE 2B =18∠BEC ……以此类推,∠E n =12n ∠BEC ,∴当∠E n =b °时,∠BEC =2n b °.(14分)。

最新人教版七年级数学下册第五章相交线与平行线月度测评试题(含答案解析)

最新人教版七年级数学下册第五章相交线与平行线月度测评试题(含答案解析)

七年级数学下册第五章相交线与平行线月度测评(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列说法错误的是()A.平移不改变图形的形状和大小B.平移中图形上每个点移动的距离可以不同C.经过平移,图形的对应线段、对应角分别相等D.经过平移,图形对应点的连线段相等2、下列图案中,是通过下图平移得到的是()A.B.C.D.3、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.125°B.115°C.105°D.95°4、下列各组图形中,能够通过平移得到的一组是()A. B. C. D.5、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是()A.30°B.45°C.60°D.75°6、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段()的长度A.CD B.AD C.BD D.BC7、下列命题不正确的是()A.直角三角形的两个锐角互补B.两点确定一条直线C.两点之间线段最短D.三角形内角和为180°8、下列说法中正确的个数是()(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.A.1 B.2 C.3 D.49、下列命题是真命题的是()A.等边对等角B.周长相等的两个等腰三角形全等C.等腰三角形的角平分线、中线和高线互相重合D.三角形一条边的两个顶点到这条边上的中线所在直线的距离相等10、下列说法中,假命题的个数为()①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线垂直,那么这两条直线互相平行③过一点有且只有一条直线与这条直线平行④在同一平面内,过一点有且只有一条直线与已知直线垂直A.1个B.2个C.3个D.4个二、填空题(5小题,每小题4分,共计20分)1、命题“a<2a”是 ___命题(填“真”或“假”).2、把“内错角相等,两直线平行”改写成“如果…那么…”的形式__________________.3、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.4、将命题“直角三角形斜边上的中线等于斜边的一半”改写成“如果…那么…”的形式_________.5、如图,三条直线两两相交,其中同旁内角共有_______对,同位角共有______对,内错角共有_______对.三、解答题(5小题,每小题10分,共计50分)1、写出下列命题的逆命题,并判断它是真命题还是假命题.(1)若22>,则a b>.ac bc(2)角平分线上的点到这个角的两边距离相等.(3)若0a=.ab=,则02、在如图所示55⨯的网格中,每个正方形的边长都是1,横纵线段的交点叫做格点,线段AB的两个端点都在格点上,点P也在格点上;(1)在图①中过点P作AB的平行线;(2)在图②中过点P作PQ⊥AB,垂足为Q;连接AP和BP,则三角形ABP的面积是.3、一般地,对某一件事情作出正确或不正确的判断的语句叫做命题.现阶段我们在数学上学习的命题可看作由题设(或条件)和结论两部分组成.现有一命题“对顶角相等”:(1)请把此命题改写成“如果……那么……”的形式;(2)写出此命题的逆命题,并判断逆命题的真假.4、补全下列推理过程:已知:如图,CE 平分∠BCD ,∠1=∠2=70°,∠3=40°,求证:AB ∥CD .证明:∵CE 平分∠BCD (______)∴∠1=_____(_______)∵∠1=∠2=70°(已知)∴∠1=∠2=∠4=70°(________)∴AD ∥BC (________)∴∠D =180°-_______=180°-∠1-∠4=40°∵∠3=40°(已知)∴______=∠3∴AB ∥CD (_______)5、如图直线a b ∥,直线EF 与,a b 分别和交于点,,A B AC AB AC 、交直线b 于点C .(1)若160∠=︒,直接写出2∠= ;(2)若3,4,5AC AB BC ===,则点B 到直线AC 的距离是 ;(3)在图中直接画出并求出点A 到直线BC 的距离.---------参考答案-----------一、单选题1、B【分析】由题意直接根据平移的性质对各选项分别进行分析判断即可.【详解】解:A. 平移不改变图形的形状和大小,所以A 选项的说法正确;B. 平移中图形上每个点移动的距离相同,所以B 选项的说法错误;C. 经过平移,图形的对应线段、对应角分别相等,所以C 选项的说法正确;D. 经过平移,图形对应点的连线段相等,所以D 选项的说法正确.故选:B .【点睛】本题考查平移的性质,注意掌握把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.2、C【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键.3、A【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.4、B【分析】根据平移的性质对各选项进行判断.【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B.【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.5、D【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.6、A【分析】⊥和点到直线的距离的定义即可得出答案.根据CD AB【详解】解:CD AB⊥,∴点C到AB的距离是线段CD的长度,故选:A.【点睛】本题考查了点到直线的距离,理解定义是解题关键.7、A【分析】根据直角三角形两锐角互余可直接进行判断.【详解】解:A、直角三角形的两个锐角互补,是假命题,符合题意;B、两点确定一条直线,是真命题,不符合题意;C、两点之间线段最短,是真命题,不符合题意;D、三角形内角和为180 ,是真命题,不符合题意;故选A.【点睛】本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.8、C【分析】根据平行线的性质分析判断即可;【详解】在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;综上所述,正确的是(1)(3)(4);故选C.【点睛】本题主要考查了平行线的性质,准确分析判断是解题的关键.9、D【分析】根据三角形的边角关系对A进行判断;根据全等三角形的判定方法对B进行判断;根据等腰三角形的性质对C进行判断;利用三角形全等可对D进行判断.【详解】解:A、在一个三角形中,等边对等角,所以A选项错误;B、周长相等的两个等腰三角形不一定全等,所以B选项错误;C、等腰三角形的顶角的平分线、底边上的中线和底边上的高线互相重合,所以C选项错误;D、三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D选项正确.故选:D.【点睛】本题主要考查了命题真假判断,结合全等三角形的判定,三角形的边角关系,等腰三角形的性质进行证明是解题的关键.10、C【分析】根据平行线的判定与性质、垂直的性质逐个判断即可得.【详解】解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;综上,假命题的个数是3个,故选:C.【点睛】本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.二、填空题1、假【解析】【分析】根据实数比较大小的原则求解即可.【详解】当a为负数时,2a a,∴命题“a<2a”是假命题.故答案为:假.【点睛】本题考查了命题的真假判定,实数的比较大小,重点是掌握实数比较大小的运算法则.2、如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行【解析】【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【详解】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;解题的关键是掌握命题由题设和结论两部分组成.3、6【解析】【分析】根据点到直线的距离的定义,可得答案.【详解】解:因为∠C=90°,所以AC⊥BC,所以A到BC的距离是AC,因为线段AC=6cm,所以点A到BC的距离为6cm.故答案为:6.【点睛】本题考查了点到直线的距离,明确定义是关键.4、如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半【解析】【分析】由题意将命题的条件改成如果的内容,将命题的结论改为那么的内容进行分析即可.【详解】解:将命题“直角三角形斜边上的中线等于斜边的一半”改写成“如果…那么…”的形式为:如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半.故答案为:如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半.【点睛】本题主要考查命题与定理,理解“如果…那么…”的意义并找到命题的条件和结论是解题的关键.5、 6 12 6【解析】【分析】根据同位角、同旁内角和内错角的定义判断即可;【详解】如图所示:同位角有:1∠与5∠;1∠与10∠;2∠与6∠,2∠与9∠;6∠与12∠;3∠与12∠;7∠与11∠;8∠与10∠;8∠与4∠;7∠与3∠;5∠与9∠;4∠和11∠,共有12对;同旁内角有:2∠与5∠;4∠与10∠;7∠与12∠;3∠与8∠;3∠与9∠;8∠与9∠,共有6对; 内错角有:4∠与9∠;3∠与5∠;7∠与9∠;3∠与10∠;8∠与12∠;2∠与8∠,共有6对;故答案是:6;12;6.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.三、解答题1、(1)逆命题为:若a b >,则22ac bc >,假命题;(2)逆命题为:到角的两边距离相等的点在这个角的平分线上,真命题;(3)逆命题为:若0a =,则0ab =,真命题.【分析】分析命题的条件与结论,然后交换条件与结论即可写出逆命题,最后进行判断真假即可.【详解】解:(1)逆命题为:若a b >,则22ac bc >;它是假命题;如0c ,22ac bc =;(2)逆命题为:到角的两边距离相等的点在这个角的平分线上;它是真命题;(3)逆命题为:若0a =,则0ab =;它是真命题.【点睛】本题考查了逆命题、真假命题,解题的关键熟练掌握命题和逆命题之间的关系.2、(1)见解析;(2)见解析,5.【分析】(1)根据平行线的画法即可得;(2)根据垂线的画法即可得,再利用1个长方形的面积减去3个直角三角形的面积即可得.【详解】解:(1)如图①,PC 即为所求.(2)如图②,PQ 即为所求.三角形ABP的面积为111 343131425 222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:5.【点睛】本题考查了平行线和垂线的画法等知识点,熟练掌握平行线和垂线的画法是解题关键.3、(1)如果两个角是对顶角,那么这两个角相等;(2)逆命题是“相等的角是对顶角”,逆命题是假命题.【分析】(1)首先判断出命题的条件和结论,然后改写成“如果……那么……”的形式即可;(2)首先根据逆命题的定义求解,然后判定逆命题是否正确即可.【详解】解:(1)∵原命题的条件是“两个角是对顶角”,结论是“这两个角相等”,∴命题“对顶角相等”写成“如果……那么……”的形式为:“如果两个角是对顶角,那么这两个角相等”.(2)“对顶角相等”的逆命题是:“相等的角是对顶角”,∵相等的角不一定是对顶角,∴它是假命题.【点睛】此题考查了逆命题的概念以及真假命题的判断,解题的关键是熟练掌握逆命题的概念以及真假命题的定义.4、见解析【分析】由已知CE平分∠BCD可得∠1=∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.【详解】证明:∵CE平分∠BCD(已知),∴∠1=∠4 (角平分线定义),∵∠1=∠2=70°已知,∴∠1=∠2=∠4=70°(等量代换),∴AD∥BC(内错角相等,两直线平行),∴∠D=180°-∠BCD=180°-∠1-∠4=40°,∵∠3=40°已知,∴∠D=∠3,∴AB∥CD(内错角相等,两直线平行).故答案为:已知;∠4 ,角平分线定义;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.【点睛】本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.5、(1)30;(2)4;(3)作图见详解;点A到直线BC的距离为125.【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段AB,由此即可得出结果;(3)过点A作AD BC⊥,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵a b∥,∴12180BAC∠+∠+∠=︒,∵AC AB⊥,160∠=︒,∴230∠=︒,故答案为:30︒;(2)∵AC AB⊥,∴点B到直线AC的距离为线段4AB=,故答案为:4;(3)如图所示:过点A作AD BC⊥,点A到直线BC的距离为线段AD的长度,∵AC AB⊥,∴ABC为直角三角形,∴1122ABCS AC AB BC AD =⨯⨯=⨯⨯,即1134522AD⨯⨯=⨯⨯,解得:125 AD=,∴点A到直线BC的距离为125.【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.。

2022年最新人教版七年级数学下册第五章相交线与平行线综合测评试题(含详解)

2022年最新人教版七年级数学下册第五章相交线与平行线综合测评试题(含详解)

七年级数学下册第五章相交线与平行线综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )A .B .C .D . 2、下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .3、如图,//AB CD ,BF 交CD 于点E ,AE BF ⊥,34CEF ∠=︒,则A ∠的度数是( )A .34°B .66°C .56°D .46°4、已知下列命题:①若0a ≤,则a a =-;②若22ma na >,则m n >;③对顶角相等;④两直线平行,内错角相等.其中原命题与逆命题都是真命题的个数是( )A .1个B .2个C .3个D .4个5、如果同一平面内有三条直线,那么它们交点个数是( )个.A .3个B .1或3个C .1或2或3个D .0或1或2或3个6、如图,下列条件能判断直线l 1//l 2的有( )①13∠=∠;②24180∠+∠=︒;③45∠=∠;④23∠∠=;⑤623∠=∠+∠A .1个B .2个C .3个D .4个7、直线m 外一点P 它到直线的上点A 、B 、C 的距离分别是6cm 、5cm 、3cm ,则点P 到直线m 的距离为( )A .3cmB .5cmC .6cmD .不大于3cm8、下列图形中,∠1与∠2不是对顶角的有( )A.1个B.2个C.3个D.0个9、以下命题是假命题的是()A 2B.有两边相等的三角形是等腰三角形C.三角形三个内角的和等于180°D.过直线外一点有且只有一条直线与已知直线平行10、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有()A.1个B.2个C.3个D.4个二、填空题(5小题,每小题4分,共计20分)1、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定AB∥CD的有___.(填序号)2、“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.”这个命题是___命题.(填“真”或“假”)3、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.4、“三角形的一个外角大于任何一个内角”是 ___命题(填“真”或“假”).5、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.2、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.3、如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.4、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.5、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:(1)延长线段AB到点D,使BD=AB;(2)过点C画CE⊥AB,垂足为E;(3)点C到直线AB的距离是个单位长度;(4)通过测量=,并由此结论可猜想直线BC与AF的位置关系是.---------参考答案-----------一、单选题1、D【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.则有:AF=FD,BE=EC,AB=EF=CD,∴四边形ABEF向右平移可以与四边形EFCD重合,∴平行四边形ABCD是平移重合图形.同理可证,正方形,长方形,也是平移重合图形,故选项A、B、C不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D符合题意;故选D.【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.2、B【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有B 选项的是对顶角,其它都不是.故选:B .【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.3、C【分析】由余角的定义得出AEC ∠的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵AE BF ⊥,34CEF ∠=︒,∴903456AEC ∠=-=,∵//AB CD ,∴56A AEC ∠=∠=,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.4、B【分析】根据真命题和假命题的定义,分析出各题设是否能推出结论,从而利用排除法得出答案.【详解】解:①若a ≤0,则|a |=−a ,是真命题,逆命题是若|a |=−a 则a ≤0,是真命题,②若ma 2>na 2,则m >n ,是真命题,逆命题是若m >n ,则ma 2>na 2,是假命题,③对顶角相等,是真命题,逆命题是相等的角是对顶角,是假命题,④两直线平行,内错角相等,是真命题,逆命题是内错角相等,两直线平行,是真命题,原命题与逆命题均为真命题的个数是2个;故选:B.【点睛】此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、D【分析】根据三条直线是否有平行线分类讨论即可.【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形.故选:D.【点睛】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.6、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴12//l l ;②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴12//l l ;③∠4,∠5互为同位角,∠4=∠5,∴12//l l ;④∠2,∠3没有位置关系,故不能证明12//l l ,⑤623∠=∠+∠,621∠=∠+∠,∴∠1=∠3,∴12//l l ,故选D .【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.7、D【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】 解:垂线段最短,∴点P 到直线m 的距离3cm ,故选:D .【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.8、C【分析】根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.【详解】解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;②中∠1和∠2是对顶角,故②不符合题意;③中∠1和∠2的两边不互为反向延长线,故③符合题意;④中∠1和∠2没有公共点,故④符合题意.∴∠1 和∠2 不是对顶角的有3个,故选C.【点睛】此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.9、A【分析】分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.【详解】解:A A是假命题,B、有两边相等的三角形是等腰三角形,B是真命题,C、三角形三个内角的和等于180°,C是真命题,D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,故选:A.【点睛】本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.10、C【分析】根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.【详解】解:①平面内,垂直于同一条直线的两直线平行,是真命题;②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;③垂线段最短,是真命题;④两直线平行,同旁内角互补,是假命题,∴真命题有3个,故选C.【点睛】本题主要考查了判断命题真假,熟知相关知识是解题的关键.二、填空题1、②③④【解析】【分析】根据平行线的判定方法分别判定得出答案.【详解】解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;④中,∠B+∠BCD=180°,∴AB//CD(同旁内角互补,两直线平行),故此选项符合题意;故答案为:②③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.2、真【解析】【分析】根据平行线的判定即可得.【详解】解:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.”这个命题是真命题.故答案为:真.【点睛】本题考查了平行线的判定、命题,熟练掌握平行线的判定是解题关键.3、70【解析】【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.【详解】解:∵AB//CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°-40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB//CD,∴∠AEC=∠EAB=70°,故答案为70.【点睛】本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.4、假【解析】【分析】利用举反例法,当三角形的一个内角为120°,则该角的外角为60°,而12060︒>︒,即可求解.【详解】解:“三角形的一个外角大于任何一个内角”是假命题,理由如下:当三角形的一个内角为120°,则该角的外角为60°,而12060︒>︒,即原命题为假命题.故答案为:假【点睛】本题主要考查了命题的真假,熟练掌握一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可是解题的关键.5、18°##18度【解析】【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【详解】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,∵OF平分∠AOE,∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.三、解答题1、60°【分析】由CD⊥AB,FE⊥AB,则CD EF∥,得∠B=∠ADG,则答案可解.∥,则∠2=∠4,从而证得BC DG【详解】解:CD⊥AB于D,FE⊥AB于E,∴CD EF∥,∴∠2=∠4,又∵∠1=∠2,∴∠1=∠4,∴BC DG∥,∴60∠=∠=︒.ADG B【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.2、(1)见解析;(2)见解析.【分析】(1)利用两点之间距离线段最短,进而得出答案;(2)利用点到直线的距离垂线段最短,即可得出答案.【详解】解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,(2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.【点睛】本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.3、见解析【分析】先连接AA′然后作AA′的平行线,利用平移性质分别确定A、B、C平移后的对应点A′、B′、C′,然后再顺次连接即可.【详解】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【点睛】本题主要考查了平移作图,根据题意确定A、B、C平移后的对应点A′、B′、C′是解答本题的关键.4、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC (已知),所以∠BOC +∠BOD=180º.所以∠BOD 是∠BOC 的补角.所以∠BOC 的补角有两个:∠BOD 和∠AOC.因为∠AOC 和∠BOC 相邻,所以∠BOC 的邻补角为:∠AOC .∠BOC 没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.5、(1)见解析;(2)见解析;(3)2;(4),FAC ACB ∠∠,平行【分析】(1)根据网格的特点和题意,延长AB 到D ,使3BD AB ==;(2)根据网格是正方形,垂线的定义,画出CE AB ⊥,垂足为E ,点E 在线段AB 的延长线上,(3)点C 到直线AB 的距离即CE 的长,网格的特点即可数出CE 的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得BC AF ∥,即可知测量的角度【详解】解:(1)(2)如图所示,(3)由网格可知CE 2=即点C 到直线AB 的距离是2个单位长度故答案为:2(4)通过测量FAC ACB ∠=∠,可知AF BC ∥故答案为:,FAC ACB ∠∠,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自我小测
1.如图所示,∠1和∠2是对顶角的是( ).
2.下列说法中正确的是( ).
A.对顶角的角平分线在一条直线上B.邻补角相等
C.一个角的邻补角只有一个D.补角即为邻补角
3.如图,两条直线a,b相交于点O,若∠1等于70°,则∠2等于( ).
A.30°B.70°C.110°D.130°
4.如图,当剪刀口∠AOB增大15°时,∠COD增大__________.
5.如图,直线AB,CD,EF相交于点O,则∠1的邻补角为__________.
6.如图,已知直线AB与CD相交于点O,且∠AOD+∠BOC=220°.求∠AOC的度数.
参考答案
答案:1.C 2.A 3.C 4.15°
5.∠AOF和∠BOE∠1的邻补角与∠1恰好组成一个平角,且与∠1有一条公共边,另一边互为反向延长线,所以∠AOF和∠BOE即为所求.
6.解:因为∠AOD与∠BOC是对顶角,
所以∠AOD=∠BOC.
又因为∠AOD+∠BOC=220°,
所以∠AOD=110°.
而∠AOC与∠AOD是邻补角,
则∠AOC+∠AOD=180°,
所以∠AOC=70°.。

相关文档
最新文档