双闭环调速仿真

合集下载

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验魏小景张晓娇刘姣(自动化0602班)摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。

关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真1.引言双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。

由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。

调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。

本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。

2.基本原理和系统建模为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、图1 直流电机双闭环调速系统的动态结构图3.系统设计调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统, 系统参数:直流电动机:220,13.6,1480/m in,0.131/(/m in)e V A r C V r =,允许过载倍数1.5λ=;晶闸管装置:76s K =;电枢回路总电阻: 6.58R =Ω;时间常数:0.018l T s =,0.25m T s =;反馈系数:0.00337/(/min)V r α=,0.4/V A β=;反馈滤波时间常数:0.005oi T s =,0.005on T s =。

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。

这种理想的起动过程如图1所示。

nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。

根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。

因此很自然地想到要采用电流负反馈控制过程。

这里实际提到了两个控制阶段。

起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。

如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。

如图2所示。

图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。

如图3所示。

图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。

因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。

滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。

所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。

由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。

二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。

双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。

由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。

直流电机双闭环调速系统MATLAB仿真

直流电机双闭环调速系统MATLAB仿真

题目:直流电机双闭环调速系统姓名:学号:专业班级:电气工程及其自动化指导教师:一、直流电机双闭环调速系统模块功能图1直流电机双闭环调速系统框图图2直流电机双闭环提速系统原理图如图1为直流电机速度、电流双闭环调速系统框图,图2为直流电机速度、电流双闭环调速系统原理图。

该调速系统包括两个反馈控制闭环,内环为电流控制环,外环为速度控制环。

速度调节器与电流调节器均为PI调节器,可以实现直流电机转速的静态无差调节与快速动态响应。

以图2所示由硬件构成的双闭环调速系统为例,介绍该系统的工作原理。

直流电机给定速度信号ug与反馈速度信号ufn进行比较,形成速度输入信号Δun=ug-ufn,进入速度PI调节器ST,其输出信号为电流给定信号un,与电流反馈信号ufi进行比较,得到电流PI调节器LT的输入信号Δui=un-ufi,输出信号uk 作为触发器CF的移相电压,从而控制整流桥的移相角a,进而控制直流电机的电枢电压U d、电枢电流I d以及输出转矩T。

如图3为MATLAB中直流电机速度、电流双闭环调速系统的Simulink仿真模型。

接下来对该模型各个模块的功能进行描述。

图3双闭环调速系统Simulink仿真模型1、速度给定模块图1如图4所示为速度给定模块,为一阶跃信号,由表1的模块参数表可知速度给定信号的阶跃时间Step time为0.8s,阶跃信号初始值Initial value为120rad/s,稳定值Final value为160rad/s。

该模块的功能为产生一个阶跃的速度给定信号wef输入到速度调节器中。

表12、速度调节器图5图5为速度调节器模块,是一个PI调节器,输入信号为速度给定信号wef 与速度反馈信号wm,输出信号Iref作为电流调节器的电流给定信号。

通表2的模块参数表可知该PI调节器的比例系数kp=1.6,积分系数ki=16,最大输出限幅值Current limit为30A。

该模块的功能为通过对电机速度的闭环控制输出电流调节器的给定信号Iref。

双闭环直流调速系统的课程设计(MATLAB仿真)

双闭环直流调速系统的课程设计(MATLAB仿真)
该双闭环调速系统的两个调节器ASR和ACR一般都采用PI调节器。因为PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。一般的调速系统要求以稳和准为主,采用PI调节器便能保证系统获得良好的静态和动态性能。
(a)带电流截止负反馈的单闭环调速系统起动过程(b)理想快速起动过程
图1 调速系统起动过程的电流和转速波形
在实际工作中,我们希望在电机最大电流(转矩)受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形如图1-(b)所示,这时,启动电流成方波形,而转速是线性增长的。这是在最大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。
第三阶段是转速调节阶段。转速调节器在这个阶段中起作用。开始时转速已经上升到给定值,ASR的给定电压 与转速负反馈电压 相平衡,输入偏差 等于零。但其输出却由于积分作用还维持在限幅值 ,所以电动机仍在以最大电流 下加速,使转速超调。超调后, ,使ASR退出饱和,其输出电压(也就是ACR的给定电压) 才从限幅值降下来, 也随之降了下来,但是,由于 仍大于负载电流 ,在开始一段时间内转速仍继续上升。到 时,电动机才开始在负载的阻力下减速,知道稳定(如果系统的动态品质不够好,可能振荡几次以后才稳定)。在这个阶段中ASR与ACR同时发挥作用,由于转速调节器在外环,ASR处于主导地位,而ACR的作用则力图使 尽快地跟随ASR输出 的变化。
(3)准时间最优控制:在设备允许条件下实现最短时间的控制称作“时间最优控制”,对于电力拖动系统,在电动机允许过载能力限制下的恒流起动,就是时间最优控制。但由于在起动过程Ⅰ、Ⅱ两个阶段中电流不能突变,实际起动过程与理想启动过程相比还有一些差距,不过这两段时间只占全部起动时间中很小的成分,无伤大局,可称作“准时间最优控制”。采用饱和非线性控制的方法实现准时间最优控制是一种很有实用价值的控制策略,在各种多环控制中得到普遍应用。

基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。

本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。

文章将以1200字以上的篇幅进行详细阐述。

一、系统设计直流电机双闭环调速系统由速度环和电流环构成。

速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。

通过控制电机的期望电压和实际电压,达到对电机速度的调控。

二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。

包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。

这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。

三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。

在直流电机双闭环调速系统中,可以选择PID控制策略。

PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。

四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。

根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。

通过仿真可以得到系统的动态响应曲线,评估系统的性能。

五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。

通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。

总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。

通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。

双闭环直流电机调速的matlab仿真

双闭环直流电机调速的matlab仿真

双闭环直流电机调速系统的设计与MATLAB 仿真双闭环调速系统的工作原理转速控制的要求和调速指标生产工艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。

设计任务书中给出了本系统调速指标的要求。

深刻理解这些指标的含义是必要的,也有助于我们构想后面的设计思路。

在以下四项中,前两项属于稳态性能指标,后两项属于动态性能指标调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即m inm axn n D =(1-1) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率,即%1000⨯∆=n n s nom(1-2) 静差率是用来衡量调速系统在负载变化下转速的稳定度的。

跟随性能指标 在给定信号R (t )的作用下,系统输出量C (t )的变化情况可用跟随性能指标来描述。

具体的跟随性能指标有下列各项:上升时间r t ,超调量σ,调节时间s t .抗扰性能指标 此项指标表明控制系统抵抗扰动的能力,它由以下两项组成:动态降落%max C ∆,恢复时间v t .调速系统的两个基本方面在理解了本设计需满足的各项指标之后,我们会发现在权衡这些基本指标,即1) 动态稳定性与静态准确性对系统放大倍数的要求; 2) 起动快速性与防止电流的冲击对电机电流的要求。

采用转速负反馈和PI 调节器的单闭环调速系统,在保证系统稳定的条件下,实现转速无静差,解决了第一个问题。

但是,如果对系统的动态性能要求较高,例如要求快速启制动,突加负载动态速降小等等,则单闭环系统就难以满足要求。

这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流和转矩。

在电机最大电流受限的条件下,希望充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态后,又让电流立即降低下来,使转速马上与负载相平衡,从而转入稳态运行。

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。

速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。

电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。

二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。

根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。

同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。

三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。

电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。

四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。

首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。

然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。

五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。

当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。

同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。

此外,通过调整控制参数,可以改善系统的响应速度和稳定性。

六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。

本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。

仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。

“双闭环控制直流电动机调速系统”数字仿真实验

“双闭环控制直流电动机调速系统”数字仿真实验

“双闭环控制直流电动机调速系统”数字仿真实验24、SIMULINK建模我们借助SIMULINK,根据上节理论计算得到的参数,可得双闭环调速系统的动态结构图如下所示:图7 双闭环调速系统的动态结构图(1)系统动态结构的simulink建模①启动计算机,进入MATLAB系统检查计算机电源是否已经连接,插座开关是否打开,确定计算机已接通,按下计算机电压按钮,打开显示器开关,启动计算机。

打开Windows开始菜单,选择程序,选择MATAB6.5.1,选择并点击MATAB6.5.1,启动MATAB程序,如图8,点击后得到下图9:图8选择MATAB程序图9 MATAB6.5.1界面点击smulink 中的continuous,选择transfor Fc n(传递函数)就可以编辑系统的传递函数模型了,如图10。

图10 smulink界面②系统设置选择smulink界面左上角的白色图标既建立了一个新的simulink模型,系统地仿真与验证将在这个新模型中完成,可以看到在simulink目录下还有很多的子目录,里面有许多我们这个仿真实验中要用的模块,这里不再一一介绍,自介绍最重要的传递函数模块的设置,其他所需模块参数的摄制过程与之类似。

将transfor Fc n(传递函数)模块用鼠标左键拖入新模型后双击transfor Fc n(传递函数)模块得到图11,开始编辑此模块的属性。

图11参数表与模型建立参数对话栏第一和第二项就是我们需要设置的传递函数的分子与分母,如我们需要设置电流环的控制器的传递函数:0.01810.0181()0.2920.0180.062ACR s s W s s s++=⋅=,这在对话栏的第一栏写如:[0.018 1],第二栏为:[0.062 0]。

点击OK ,参数设置完成。

如图12。

图12传递函数参数设置设置完所有模块的参数后将模块连接起来既得到图7所示的系统仿真模型。

在这里需要注意的是,当我们按照理论设计的仿真模型得到的实验波形与理想的波形有很大的出入。

直流电动机双闭环调速系统MATLAB仿真实验报告

直流电动机双闭环调速系统MATLAB仿真实验报告

本科上机大作业报告课程名称:电机控制姓名:学号:学院:电气工程学院专业:电气工程及其自动化指导教师:提交日期:20年月日一、作业目的1.熟悉电机的控制与仿真;2.熟悉matlab和simulink等相关仿真软件的操作;3.熟悉在仿真中各参数变化和不同控制器对电机运行的影响。

二、作业要求对直流电动机双闭环调速进行仿真1.描述每个模块的功能2.仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象3.转速PI调节器参数对电机运行性能的影响4.电流调节器改用PI调节器三、实验设备MATLAB、simulink四、实验原理1.双闭环系统结构如图:该系统通过电流负反馈和速度负反馈两个反馈闭环实现对电机的控制,其内环是电流控制环,外环是转速控制环。

内环由电流调节器LT,晶闸管移相触发器CF,晶闸管整流器和电动机电枢回路所组成。

电流调节器的给定信号un。

与电机电枢回路的电流反馈信号相比较,其差值送人电流调节器.由调节器的输出通过移相触发器控制整流桥的输出电压。

在这个电压的作用下电机的电流及转矩将相应地发生变化。

电流反馈信号可以通过直流互感器取白肖流电枢回路,也可以用交流互感器取自整流桥的交流输人电流,然后经整流面得。

这两种办法所得结果相同,但后者应用较多,因为交流互感器结构比较简单。

当电流调节器的给定信号u n大于电流反馈信号uf,其差值为正时,经过调节器控制整流桥的移相角α,使整流输出电压升高,电枢电流增大。

反之,当给定信号u n 小于电流反馈信号时,使整流桥输出电压降低,电流减小,它力图使电枢电流与电流给定值相等。

外环是速度环,其中有一个速度调节器ST,在调节器的输入端送入一个速度给定信号u g,由它规定电机运行的转速。

另一个速度反馈信号u fn米自与电机同轴的测速发电机TG。

这个速度给定信号和实际转速反馈信号之差输人到速度调节器,由速度调节器的输出信号u n作电流调节器输人送到电流调节器,通过前面所讲的电流调节环的控制作用调节电机的.电枢电流Ia和转矩T ,使电机转速发生变化,最后达到转速的给定值。

直流电动机双闭环调速系统MATLAB仿真实验报告

直流电动机双闭环调速系统MATLAB仿真实验报告

直流电动机双闭环调速系统MATLAB仿真实验报告
实验目的:
本实验旨在设计并实现直流电动机的双闭环调速系统,并使用MATLAB进行仿真实验,验证系统的性能和稳定性。

实验原理:
直流电动机调速系统是通过改变电机的输入电压来实现调速的。

双闭环调速系统采用了速度环和电流环两个闭环控制器,其中速度环的输入为期望转速和实际转速的误差,输出为电机的电流设定值;电流环的输入为速度环输出的电流设定值和实际电流的误差,输出为电机的输入电压。

实验步骤:
1.建立直流电动机的数学模型。

2.设计速度环控制器。

3.设计电流环控制器。

4.进行系统仿真实验。

实验结果:
经过仿真实验,得到了直流电动机双闭环调速系统的性能指标,包括上升时间、峰值过渡性能和稳态误差等。

同时,还绘制了调速曲线和相应的控制输入曲线,分析了调速系统的性能和稳定性。

实验结论:
通过对直流电动机双闭环调速系统的仿真实验,验证了系统的性能和
稳定性。

实验结果表明,所设计的双闭环控制器能够实现快速且稳定的直
流电动机调速,满足了实际工程应用的需求。

实验心得:
本实验通过使用MATLAB进行仿真实验,深入理解了直流电动机的双
闭环调速系统原理和实现方式。

通过实验,我不仅熟悉了MATLAB的使用,还掌握了直流电动机的调速方法和控制器设计的原则。

同时,实验中遇到
了一些问题,比如系统的超调过大等,通过调整控制器参数和优化系统结
构等方法,最终解决了这些问题。

通过本次实验,我对直流电动机调速系
统有了更加深入的理解,为之后的工程应用打下了坚实的基础。

直流双闭环调速系统设计与仿真

直流双闭环调速系统设计与仿真

直流双闭环调速系统设计与仿真一、直流双闭环调速系统的基本原理电流环用于控制电机的电流,通过测量电机的电流反馈信号与给定的电流信号进行比较,得到误差信号,然后经过PID控制器计算控制信号,最后通过逆变器输出给电机控制电流。

二、直流双闭环调速系统的设计1.确定系统参数:包括电机的转矩常数,转矩惯量,电感,电阻等参数。

2.设计速度环控制器:根据转速信号和转速误差信号,设计速度环控制器的传递函数。

可以选择PID控制器,也可以选择其他类型的控制器。

3.设计电流环控制器:根据电流信号和电流误差信号,设计电流环控制器的传递函数。

同样可以选择PID控制器或其他类型的控制器。

4.进行系统仿真:将设计好的速度环和电流环控制器加入电机模型,进行系统仿真。

通过调整控制器参数,观察系统的响应特性,可以优化系统性能。

5.调整控制参数:根据仿真结果,调整控制器的参数,使系统响应更加快速、稳定。

三、直流双闭环调速系统的仿真1.定义系统模型:建立直流电机的状态方程,包括速度环和电流环的动态方程。

2.设定系统初始条件和输入信号:设置电机的初始状态和给定的转速信号以及电流信号。

3.选择控制器类型和参数:根据设计要求,选择控制器类型和参数。

可以选择PID控制器,并根据调试经验选择合适的参数。

4.搭建控制系统模型:将速度环和电流环的控制器模型和电机模型连接在一起,构建闭环控制系统模型。

5.进行系统仿真:利用MATLAB或其他仿真软件进行系统仿真,根据给定的转速信号和电流信号,观察系统的响应特性。

四、直流双闭环调速系统的优化1.参数调整:根据仿真结果,调整控制器的参数,使系统的性能得到优化。

可以通过试探法或自适应调节方法进行参数调整。

2.饱和处理:考虑到电机的饱和特性,可以在控制器中添加饱和处理模块,以提高系统的稳定性和抗干扰能力。

3.鲁棒性设计:考虑到系统参数的不确定性,可以采用鲁棒控制方法,提高系统的鲁棒性能。

4.死区补偿:在电机控制中常常会出现死区现象,可以在控制器中添加死区补偿模块,以减小死区对系统性能的影响。

双闭环直流电动机调速系统设计及MATLAB仿真

双闭环直流电动机调速系统设计及MATLAB仿真

双闭环直流电动机调速系统设计及M A T L A B仿真(共21页)-本页仅作为预览文档封面,使用时请删除本页-目录1、引言..................................................错误!未定义书签。

二、初始条件:...........................................错误!未定义书签。

三、设计要求:...........................................错误!未定义书签。

四、设计基本思路.........................................错误!未定义书签。

五、系统原理框图.........................................错误!未定义书签。

六、双闭环调速系统的动态结构图...........................错误!未定义书签。

七、参数计算.............................................错误!未定义书签。

1. 有关参数的计算 ...................................错误!未定义书签。

2. 电流环的设计 .....................................错误!未定义书签。

3. 转速环的设计 .....................................错误!未定义书签。

七、双闭环直流不可逆调速系统线路图.......................错误!未定义书签。

1.系统主电路图 ......................................错误!未定义书签。

2.触发电路 ..........................................错误!未定义书签。

3.控制电路 ..........................................错误!未定义书签。

实验三 双闭环直流调速系统MATLAB仿真

实验三 双闭环直流调速系统MATLAB仿真

实验三双闭环直流调速系统MATLAB仿真
一、实验目的
1.掌握双闭环直流调速系统的原理及组成;
2.掌握双闭环直流调速系统的仿真。

二、实验原理
一、实验内容
基本数据如下:
直流电动机:220V, 136A, 1460r/min.Ce=0.132Vmin/r.允许过载倍数为1.5;晶闸管装置放大系数: Ks=40;Ts=0.0017s;
电枢回路总电阻: ;
时间常数: ;
电流反馈系数: ;
电流反馈滤波时间常数: ;
电流反馈系数: ;
转速反馈系数α=0.007vmin/r
转速反馈滤波时间常数:
设计要求:设计电流调节器, 要求电流无静差, 电流超调量。

转速无静差, 空载起动到额定负载转速时转速超调量。

并绘制双闭环调速系统的动态结构图。

四、实验步骤
1. 根据原理和内容搭建电路模型;
2. 设置各元器件的参数;
3. 设置仿真参数:仿真时间设为0.06s;计算方法为ode15或ode23。

4. 仿真实现。

五、实验报告
1.Idl=0和Idl=136A时电流和转速的输出波形
2.讨论PI 调节器参数对系统的影响.
τi =TL,s
i i K R
T KT Kp βτ•∑=
…………………………取KT=0.5 转速环设计成典型二型系统
h =5, T 087.0)2(=+==∑∑on i n n T T h hT τ Kn=7.112)1(=∑+=
n
RT h CeTm
h Kn αβ
取11.7 , 11.7/0.087。

直流电机双闭环PID调速系统仿真设计

直流电机双闭环PID调速系统仿真设计

目录直流电机双闭环PID调速系统仿真 (1)1 转速、电流双闭环直流调速系统的组成及工作原理 (2)2 双闭环调速系统的动态数学模型 (2)3 调节器的设计 (4)3.1 电流调节器的设计 (4)3.2 转速调节器的设计 (6)4 搭建模型 (8)5 参数计算 (10)5.1 参数的直接计算 (10)5仿真具体参数 (13)6 仿真结果 (13)7 结束语 (14)8 参考文献 (16)直流电机双闭环PID调速系统仿真摘要在工程的应用中,直流电动机的占有很大的比例,同时对于直流系统的调速要求日益增长。

在直流调速系统中比较成熟并且比较广泛的是双闭环调速系统,本文对于直流双闭环的PID调速系统作简要的设计,同时利用Matlab/Simulink 仿真软件进行仿真处理。

关键词: 直流双闭环 PID调速在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能。

而直流调速系统调速范围广、静差率小、稳定性好,过载能力大,能承受频繁的冲击负载,可实现频率的无级快速起制动和反转等良好的动态性能,能满足生产过程自动化系统中各种不同的特殊运行要求。

在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。

开环直流调速由于自身的缺点几乎不能满足生产过程的要求,在应用广泛地双闭环直流调速系统中,PID控制已经得到了比较成熟的应用。

Matlab是目前国际上流行的一种仿真工具,它具有强大的矩阵分析运算和编程功能,建模仿真可视化功能Simulink是Matlab五大公用功能之一,他是实现动态系统仿真建模的一个集成环境,具有模块化、可重载、图形化编程、可视化及可封装等特点,可以大大提高系统仿真的效率和可靠性。

Simulink提供了丰富的模型库供系统仿真使用,它的仿真工具箱可用来解决某些特定类型的问题,也包括含有专门用于电力电子与电气传动学科仿真研究的电气系统模型库。

此外,用户可根据自己的需要开发并封装模型以扩充现有的模型库。

双闭环直流调速系统的建模与仿真实验研究

双闭环直流调速系统的建模与仿真实验研究

双闭环直流调速系统的建模与仿真实验研究双闭环直流调速系统是现代控制领域的重要研究内容之一、它采用了两个闭环控制回路,可以实现对电机的速度和电流进行精确控制。

本文将对双闭环直流调速系统的建模方法和仿真实验进行研究,以期提高调速系统的控制性能。

首先,需要建立双闭环直流调速系统的数学模型。

该模型包括机械部分、电磁部分和电气部分。

机械部分主要是电机的动力学方程,包括转速、负载转矩和机械转动惯量等参数。

电磁部分包括电机的电磁方程和电磁转矩。

电气部分则包括电机的电流方程和电压方程。

将这些方程组合在一起,可以得到双闭环直流调速系统的数学模型。

接下来,可以利用MATLAB/Simulink等仿真软件进行系统仿真实验。

仿真实验的目的是验证建立的数学模型的准确性,并进行控制性能的评估。

首先,可以进行开环控制的仿真实验。

开环控制时,将输入期望速度信号,通过电流控制器输出加到电机输入端,然后通过机械部分的动力学模型计算出电机轴的转速。

仿真实验中,可以调节电流控制器的参数,观察实际转速与期望转速之间的误差。

通过不断调整电流控制器的参数,使得转速误差最小,从而得到最佳的开环控制参数。

然后,可以进行闭环控制的仿真实验。

闭环控制中,需要加入速度反馈回路,将实际转速信号与期望转速信号进行比较,并通过调节电流控制器输出的电流信号来实现转速的闭环控制。

在仿真实验中,可以观察调整速度环和电流环的参数对闭环控制性能的影响。

通过不断优化参数,使得系统的响应速度更快、稳定性更好。

最后,可以进行扰动实验。

扰动实验是为了评估系统在外部扰动下的鲁棒性能。

通过加入外部扰动信号,观察系统对扰动的抑制能力。

可以进行不同程度和频率的扰动实验,评估系统对扰动的抑制能力,并通过调整控制器参数来提高系统的抗扰能力。

通过以上的建模与仿真实验研究,可以得到双闭环直流调速系统的数学模型,并且评估调速系统的控制性能。

这对于实际工程控制中的双闭环直流调速系统设计和调试具有重要意义,可以帮助工程师更好地设计和优化控制系统,提高系统的性能和稳定性。

双闭环直流调速系统仿真(Matlab)

双闭环直流调速系统仿真(Matlab)

Wcli (s)
Ti
1 s2 1
s 1
KI
KI
联系仿真实例,经计算可得
136.2 W cli(s)0.00367s2s136.2
根据经验公式,转速环的开环传函为
Wn(s)
KN(ns1)
s2(Tns1)
同理可得 Wn(s)03.041.67s34s3399.s12
通过MATLAB指令可得其闭环传函为
图1 原始调速系统结构框图
2021/7/1
3
对于该系统,联系仿真实例,经计算可得其开环传递函数为
3 5 G (s) 0 .1 2 9 (0 .0 0 1 6 7 s 1 )(0 .0 0 1 s2 0 .0 5 s 1 )
借助于MATLAB仿真软件,绘制Bode图如图2所示。
图2 原始控制系统伯德图
主程序文件main.m 和目标函数文件optm.m,运行主程序,得到 kp,ki,kp1,ki1的
存储空间,在Command window键入gatool,调用出遗传算法工具箱的人机接 口,在里面设置相关参数,设置完毕后点击start按钮开始运行。经过迭代,
会得到 kp,ki,kp1,ki1的最优解,参数值如图7所示,将再其带入图6中即可
Id(s)
R
Tm s
1 n(s) Ce
电流环
Tois 1
Ton s 1
2021/7/1
图3 双闭环直流调速系统动态结构框图
5
3.仿真环境中步长的选择
刚性是指其Jacobian(雅可比)矩阵的特征值
相差悬殊。在解的性态上表现为,其中一些解
变化缓慢,刚性方程,又称为Stiff方程。
根据经验公式,电流环闭环传递函数公式为

运动控制系统双闭环直流调速系统仿真

运动控制系统双闭环直流调速系统仿真

本科生课程论文课程名称运动控制系统学院机自学院专业电气工程及其自动化学号 1212XXXX学生姓名翟自协指导教师杨影分数题目:双闭环直流调速系统仿真对例题3.8设计的双闭环系统进行设计和仿真分析,仿真时间10s。

具体要求如下:在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:P N=60kW,U N=220V,I N=308 A,n N=1000 r/min ,电动势系数C e=0.196 V·min/r ,主回路总电阻R=0.18Ω,变换器的放大倍数K s=35。

电磁时间常数T l=0.012s,机电时间常数T m=0.12s,电流反馈滤波时间常数T oi=0.0025s,转速反馈滤波时间常数T on=0.015s。

额定转速时的给定电压(U n∗)N=10V,调节器ASR,ACR饱和输出电压U im∗= 8V ,U cm=7.98V。

系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量≤5% ,空载起动到额定转速时的转速超调量≤10%。

试求:(1)确定电流反馈系数β(假设起动电流限制在以内)和转速反馈系数α。

(2)试设计电流调节器ACR.和转速调节器ASR。

(3)在matlab/simulink仿真平台下搭建系统仿真模型。

给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。

(4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn。

并与仿真结果进行对比分析。

(5)估算空载起动到额定转速的时间,并与仿真结果进行对比分析。

(6)在5s突加40%额定负载,给出转速调节器限幅后的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),并对波形变化加以分析。

解:(1)β=U im∗I dm=8V1.1∗I N=8V339A=0.0236 V A⁄α=101000⁄=0.01V min r⁄(2)①电流调节器设计确定时间常数:a) T s=0.00333sb) T oi=0.0025sc) T∑i=T oi+T s=0.0025+0.00333=0.00583s电流调节器结构确定:因为σi≤5%,可按典型I型系统设计,选用PI调节器,W ACR(S)=K i(τi S+1)τi S电流调节器参数确定:τi=T l=0.012s,选K I T∑i=0.5 ,K I=0.5T∑i⁄=85.76 s−1,K i=K Iτi RK sβ=85.76×0.012×0.1835×0.0236=0.224校验等效条件:ωci=K I=85.76 s−1电力电子装置传递函数的近似条件:1 3T s =13×0.00333=101.01>ωci忽略反电势的影响的近似条件:3√1T m T l =3√10.12×0.012=79.06 s−1<ωci电流环小时间常数的近似条件:1 3√1T s T oi=13√10.00333×0.0025=115.52 s−1>ωci可见满足近似等效条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双闭环直流调速系统
1、题目要求:
某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:
直流电动机:220V 、136A 、1460r/min,e C =0.132.min/r,允许过载电流倍数λ=1.5; 晶闸管装置的放大系数:;40=s K
电枢回路总电阻:R=0.5Ω;
时间常数:;18.0,03.0s T s T m l ==
电流反馈系数:β=0.05V/A;
转速反馈系数α=0.007V .min/r;
设计要求:设计电流调节器,要求电流超调量σ≤5%。

要求转速无静差,空载起动到额定转速超调量δ≤10%。

对以上调节器的设计采用工程设计方法。

a 、电流调节器的设计:
根据工程设计的方法将电流环校成典型Ⅰ系统,典型Ⅰ系统的跟随性较好,超调量较小。

s T T T S Oi i 0037.0=+=∑。


=i I T K 21=135.1;S T l 03.0= ;013.1=i K т=0.03 根据上述的设计参数,电流环可以达到的动态跟随性能指标为
σ=4.3%<5%,符合设计要求
动态框架图:
b 、转速环的设计:
根据工程的方法设计转速环:
令h=5;T=S T K ON I
0174.001.00074.01=+=+ ,т=hT=5*0.0174=0.087S; 4.396212=∑
+=N N T h h K ,,Kn=11.7, 动态框架图:
2、实验图形及数据分析
a 、电流环调节器分析:
KT=0.5时,
当,03.1 i K т=0.03时的电流的波形:
KT=0.25时,电流环输出的波形:
从波形中可以看出此时的电枢电流没有超调量,存在稳态误差。

KT=1.0时,电流环输出的波形:
此时的超调量较大,但上升时间快。

总结:从以上各电流环的图形得出KT越大时上升时间越快,但同时超调量也比较大,当KT=0.5时,各项动态参数较合理。

b、转速环的图形:
取KT=0.5,h=5时情况下,
空载起动时波形:
满载运行时起动的波形:
抗干扰性的测试:
4、调试分析过程及仿真描述
系统惯性环节滞后大,造成系统稳定前震荡较多,通过调节Ki,适当减小Ki 值,可以减小震荡,减小超调,使系统性能得到改善,又从书上及互联网上了解到若采用PID调节即加入微分环节,适当调节Kd,可以使系统震荡减弱。

5、总结
通过这次课程设计,我从中学到了如何利用simulink建立模型来仿真一个实际系统,这次我们就是利用simulink建模的方法来仿真单闭环直流调速系统,从中我学到了如何初始化simulink,如何调用设置模块,如何连接系统框图,怎样查看示波器等,还学到了稳定边界法这种科学有效的PID参数整定方法。

学习和设计的过程虽然辛苦却也快乐,特别是和一群志同道合的朋友同学们一起努力,相互切磋探讨,去充分挖掘解决问题之道以及发掘知识的魅力,我相信科学的探索是永无止境的,也正是由于这种求知的渴望才让人类越发强大和充满智慧,这次课程设计也很好的锻炼了我对知识的实践应用能力,也让我充分认识到了应用前的知识都是停留在书本上的死知识,只有将其用于实践才能充分认识到
其价值所在,才能将知识用活用好。

相关文档
最新文档