初二数学下册知识点总结

合集下载

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法:用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线。

3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

八年级下学期数学知识点总结

八年级下学期数学知识点总结

八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。

平移不会改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

八年级下册数学必知识点

八年级下册数学必知识点

八年级下册数学必知识点第一章统计1. 范围- 区分离散数据和连续数据- 定义范围的概念- 计算范围的方法2. 算术平均值- 了解算术平均数的概念- 计算算术平均数的方法- 通过算术平均数分析数据3. 中位数- 定义中位数的概念- 计算中位数的方法- 比较中位数与平均数4. 众数- 定义众数的概念- 计算众数的方法- 分析众数对数据的影响5. 频率分布表- 定义频率分布表的概念- 制作频率分布表的方法- 分析频率分布表的信息第二章几何1. 几何图形的基本概念- 点、线、线段、射线- 角度、三角形、四边形、圆形- 了解各种几何图形的定义和性质2. 相似三角形- 定义相似三角形的概念- 了解相似三角形的性质及证明方法- 利用相似三角形解决实际问题3. 三角形的面积- 定义三角形面积的概念- 了解计算三角形面积的方法- 利用三角形面积解决实际问题4. 圆的面积和周长- 了解圆的定义及性质- 计算圆的面积和周长的方法- 利用圆的面积和周长解决实际问题5. 体积和表面积- 了解正方体、长方体、圆柱、圆锥等几何体的定义及性质- 计算几何体的体积和表面积的方法- 利用几何体的体积和表面积解决实际问题第三章代数1. 代数式- 定义代数式的概念- 了解代数式的构成要素和运算方法- 利用代数式解决实际问题2. 方程- 定义方程的概念- 了解一元一次方程、二元一次方程及分式方程的解法- 利用方程解决实际问题3. 不等式- 定义不等式的概念- 了解一元一次不等式及二元一次不等式的解法- 利用不等式解决实际问题4. 函数- 定义函数的概念- 了解函数的表示方法和性质- 利用函数解决实际问题5. 图形的性质与函数- 了解各种图形的性质及函数与图形的关系- 利用图形的性质和函数解决实际问题第四章数据分析1. 统计图表- 了解各种统计图表的表示方法- 分析统计图表的信息2. 计算误差- 定义误差的概念- 了解算术平均误差和百分数误差的计算方法- 利用误差计算和分析数据3. 相关- 定义相对的概念- 了解相关系数的概念及计算方法- 利用相关系数分析数据4. 概率- 定义概率的概念- 了解概率的计算方法- 利用概率解决实际问题5. 实验与事件- 定义实验和事件的概念- 了解频率和概率的关系- 利用实验和事件计算概率。

八年级下册数学书的知识点

八年级下册数学书的知识点

八年级下册数学书的知识点包括以下内容:
一、代数运算
1. 有理数的加减乘除运算及其性质
2. 一元一次方程和不等式的解法
3. 平方根、绝对值、分式、分式方程等的运算及应用
二、几何基础
1. 直角三角形及斜角三角形的性质
2. 平面图形的面积和周长的计算
3. 空间几何图形的面积和体积的计算
三、概率统计
1. 随机事件的概念和基本性质
2. 频率和概率的关系
3. 抽样调查和数据处理的方法
四、函数基础
1. 函数的概念和基本性质
2. 一次函数、二次函数的图像和性质
3. 反比例函数和指数函数的概念和应用
五、图形的变换
1. 平移、旋转、对称和放缩的概念和性质
2. 直线对称、中心对称和轴对称的应用
3. 图形变换对坐标的影响和应用
以上是八年级下册数学书的主要知识点,每个知识点都包含着多个子知识点,需要同学们认真理解和掌握。

同时,巩固前一年的数学基础也是十分重要的,只有掌握好基础才能更好地学习新
知识。

数学是一门需要不断练习和思考的学科,同学们需要勤奋用心,不断提高自己的数学能力。

八年级下册数学课所有知识点

八年级下册数学课所有知识点

八年级下册数学课所有知识点一、代数1. 小数1.1 小数的定义1.2 小数的四则运算1.3 小数的比较1.4 小数的化分2. 代数式2.1 代数式的定义2.2 代数式的基本性质2.3 代数式的加减法2.4 代数式的乘法2.5 代数式的因式分解3. 方程式3.1 方程式的定义3.2 方程式的解法3.3 一元一次方程式的应用3.4 一元二次方程式的解法及应用4. 不等式4.1 不等式的定义4.2 不等式的性质4.3 不等式的解法4.4 一元一次不等式的应用4.5 一元二次不等式的应用二、几何1. 相似1.1 相似的定义1.2 相似的判定1.3 相似的性质1.4 相似的应用2. 三角形2.1 三角形的分类2.2 三角形的性质2.3 三角形的面积公式2.4 相似三角形的比例关系2.5 直角三角形的性质及应用3. 四边形3.1 四边形的分类3.2 四边形的性质3.3 矩形和正方形的性质及应用3.4 菱形和平行四边形的性质及应用4. 圆和圆周角4.1 圆的性质4.2 圆的刻画4.3 圆上的重要定理4.4 圆周角的性质及应用5. 三维图形5.1 空间直角坐标系5.2 空间的位置关系5.3 立体图形的表面积及体积公式5.4 空间中重要的定理及应用三、数据与统计1. 统计表1.1 统计表的定义及构成1.2 统计表的分类1.3 统计表的读取及分析2. 统计图2.1 统计图的定义及构成2.2 统计图的分类2.3 统计图的制作及分析3. 常见的统计指标3.1 平均数的计算及应用3.2 中位数的计算及应用3.3 众数的计算及应用3.4 极差及标准差的计算及应用四、概率1. 基本概念1.1 随机事件1.2 样本空间1.3 事件的概率2. 概率的运算2.1 事件的互斥和独立2.2 联合事件的概率2.3 条件事件的概率3. 应用3.1 掷骰子与正反面3.2 抽样调查与比例估计。

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。

2. 一元一次方程的概念、解法和实际应用。

3. 一元一次不等式的概念、解法和实际应用。

4. 一元二次方程的概念、解法和实际应用。

5. 代数式的加减乘除、化简和因式分解。

6. 二元一次方程组的概念、解法和实际应用。

7. 一元二次不等式的概念、解法和实际应用。

8. 质因数分解和最大公因数、最小公倍数的求法。

9. 分式的基本概念和运算方法。

二、几何1. 平面图形的基本性质和分类。

2. 勾股定理及其应用。

3. 三角形的相似性质和判定方法。

4. 三角形的内角和及其计算。

5. 空间图形的基本性质和分类。

6. 直线与平面的位置关系及其应用。

7. 圆的基本性质和相关定理。

8. 空间中直线与平面的交角问题和判定方法。

9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。

三、概率统计1. 事件和概率的基本概念。

2. 古典概型和几何概型的概率计算。

3. 条件概率和独立性的概念和计算方法。

4. 排列和组合的概念和应用。

5. 随机变量和概率分布的定义和联系。

6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。

7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。

8. 正态分布的概念和应用。

9. 假设检验的基本概念和方法。

以上就是八年级数学下册的全部知识点总结。

在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。

同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。

八年级下册数学重要知识点初二下册数学知识点

八年级下册数学重要知识点初二下册数学知识点

八年级下册数学重要知识点初二下册数学知识点以下是初二下册数学的重要知识点:
1. 平面直角坐标系:横坐标和纵坐标的设定和运用,点的坐标和图形的位置关系。

2. 勾股定理:直角三角形中,任意直角边的平方等于其余两边平方和。

3. 角的概念和性质:角的度量、补角、余角、同位角等概念和性质。

4. 三角形的性质和分类:三角形的内角和、三边关系、等边三角形、等腰三角形等。

5. 相似三角形:相似三角形的判定方法,相似三角形的性质和应用。

6. 四边形:四边形的分类、四边形的内角和、对角线、各类四边形的特性。

7. 圆的性质:圆的构造、圆心角、弧长和扇形面积的计算。

8. 三视图:正视图、俯视图和侧视图的画法和三视图的相互关系。

9. 平面图形的计算:矩形、平行四边形、梯形和菱形的面积计算。

10. 数据的收集和分析:统计图表的制作和分析、频数、频率、中位数等统计概念和运算。

这些都是初二下册数学中的重要知识点,对于学好数学非常关键,希望对你有帮助!。

八下数学重点内容总结

八下数学重点内容总结

八下数学重点内容总结
1.有效数字:一个近似数,从左边第一个不为0的数开始,到精确的数位止,
所有的数字都是有效数字。

2.概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

3.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三
角形。

4.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,
这个角的顶点与交点之间的线段叫做三角形的角平分线。

5.三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这
个三角形的中线。

6.全等图形:两个能够重合的图形称为全等图形。

7.变量:变化的数量,就叫变量。

8.自变量:在变化的量中主动发生变化的,变叫自变量。

9.因变量:随着自变量变化而被动发生变化的量,叫因变量。

10.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相
重合,那么这个图形叫做轴对称图形。

初二下学期数学知识点初二数学下册课本内容

初二下学期数学知识点初二数学下册课本内容

初二下学期数学知识点初二数学下册课本内容
一、图形的性质:
1.三角形的性质:等腰三角形、等边三角形、直角三角形、勾股定理等。

2.四边形的性质:平行四边形、矩形、正方形、菱形等。

3.圆的性质:圆周角、弧、切线、弦等。

二、数的运算:
1.有理数的运算:加法、减法、乘法、除法和分数的加减乘除等。

2.整数的乘法公式:a+(b-c)=a+b-c等。

3.分数的乘法法则:a/b÷c/d=a/b*d/c等。

4.百分数的加减乘除等运算。

三、线性方程与方程组:
1.一次方程与一元一次方程:解一元一次方程、应用实际问题。

2.二元一次方程组:解二元一次方程组、解应用实际问题。

四、函数与图像:
1.函数的概念与性质:定义域、值域、奇偶性等。

2.函数的图像和性质:线性函数、平方函数、绝对值函数等。

五、比例与相似:
1.比例的概念及其应用:相等、比例、比例的扩大、比例的缩小等。

2.相似的概念及其应用:相似三角形、相似多边形等。

六、统计与概率:
1.统计的基本概念:调查、样本、总体、频率、频率分布表等。

2.事件与概率:事件、概率、互斥事件、必然事件、不可能事件等。

七、三角函数:
1.正弦函数、余弦函数、正切函数等三角函数的定义与性质。

2.角度的度与弧度的关系。

八、平面向量:
1.平面向量的概念与性质:加法、减法、数量积与向量积等。

2.平面向量的应用:向量的平行、共线、垂直等。

初二数学下册必背知识点优秀6篇

初二数学下册必背知识点优秀6篇

初二数学下册必背知识点优秀6篇篇一:初二下册数学知识点归纳篇一第六章平行四边形1、平行四边形的性质①两组对边分别平行的四边形叫平行四边形②平行四边形不相邻的两个顶点连成的线段叫做它的对角线③平行四边形是中心对称图形,两条对角线的交点是它的对称中心④定理:平行四边形的对边,对角相等⑤平行四边形的对角线互相平分2、平行四边形的判断①定理:两组对边分别相等的四边形是平行四边形②定理:一组对边平行且相等的四边形是平行四边形③定理:对角线互相平分的四边形是平行四边形④如果两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,则这个距离称为平行线之间的距离3、三角形的中位线①连接三角形两边中点的线段叫做三角形的中位线②三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半4、多边形的内角和与外角和①定理:n边形的内角和等于(n-2)·180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在这个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和③定理:多边形的外角和都等于360°篇二:初二下册数学知识点篇二第二章一元一次不等式与一元一次不等式组1、不等关系2、不等式的基本性\\质①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变3、不等式的解集①能使不等式成立的未知数的值,叫做不等式的解②一个含有不等式所有的解,组成这个不等式的解集③求不等式解集的过程叫做解不等式4、一元一次不等式①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是15、一元一次不等式与一次函数6、一元一次不等式组①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组篇三:八年级下册数学知识点篇三1、分式:(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。

八年级下册数学知识点

八年级下册数学知识点

八年级下册数学知识点
一、数的概念
1. 定义数:数是用来表示数量的符号。

2. 整数:正整数、负整数和零。

3. 分数:分子和分母构成的数。

4. 小数:由小数点和小数部分构成的数。

二、代数
1. 平方根:一个数的平方根是另一个数的平方,即a²=b,则a 为b的平方根。

2. 开方:求一个数的平方根的过程。

3. 立方根:一个数的立方根是另一个数的立方,即a³=b,则a 为b的立方根。

4. 开立方:求一个数的立方根的过程。

三、几何
1. 平面几何:研究平面内各种形状的几何学科。

2. 空间几何:研究空间中各种形状的几何学科。

3. 直角坐标系:由一条水平线和一条垂直线组成的坐标系。

4. 平面图形:在平面上的点、线、面等形状。

八年级数学下册知识点归纳

八年级数学下册知识点归纳

八年级数学下册知识点归纳5篇分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用数据的分析1.算术平均数:2.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

6.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据5.撰写调查报告 6.交流7. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

初中八年级下册数学知识点

初中八年级下册数学知识点

初中八年级下册数学知识点
1. 勾股定理:勾股定理是一个基本的几何定理,用于描述直角三角形中三条边的关系。

在八年级下册,学生将学习如何使用勾股定理解决实际问题。

2. 二次根式:二次根式是数学中的一种表达式,表示一个数的平方根。

学生需要掌握二次根式的性质、运算规则以及与实数的关系。

3. 一元二次方程:一元二次方程是包含一个未知数的二次方程。

学生需要掌握一元二次方程的解法、应用以及与现实生活的关系。

4. 平面直角坐标系:平面直角坐标系是一个基本的数学工具,用于描述平面上的点的位置。

学生需要掌握如何使用坐标系表示点的位置,以及如何通过坐标系解决实际问题。

5. 一次函数与反比例函数:一次函数和反比例函数是两种基本的函数形式。

学生需要掌握它们的性质、图像以及在实际生活中的应用。

6. 数据的收集与整理:学生需要掌握如何收集和整理数据,以及如何使用图表来表示数据。

这将帮助他们更好地理解和分析现实生活中的问题。

以上是初中八年级下册数学的主要知识点。

在学习过程中,学生需要注重理解和应用,通过大量的练习来巩固所学知识。

初二下册数学重点知识点

初二下册数学重点知识点

初二下册数学重点知识点
1. 平面几何
- 直角三角形:
- 定理1:勾股定理(a² + b² = c²)
- 定理2:勾股定理的逆定理
- 定理3:直角三角形的斜边上取任意一点的正弦、余弦和正切的定义
- 平面直角坐标系:
- 直线的倾斜率
- 点到直线的距离公式
- 定理:两直线的位置关系
2. 空间几何
- 空间中的点、线、面和体的定义
- 球的体积和表面积的公式
- 空间坐标系的引入
- 定理:两个平面的位置关系
3. 线性代数
- 向量:
- 向量的模和特征
- 向量的加法和减法
- 定理:向量的数量积和向量积的公式
- 矩阵:
- 矩阵的形式和运算
- 定理:矩阵的乘法规则
- 矩阵的逆和转置运算
4. 概率论
- 事件的概念和性质
- 事件的发生和不发生的概率
- 定理:事件的和、积、差的概率
5. 统计学
- 数据的分布类型
- 数据的平均数、中位数和众数
- 数据的离散程度
- 定理:总体和样本的差异
以上就是初二下册数学重点知识点的概要。

需详细了解每个知识点的定义、公式和定理,并进行深入学习和练习。

最全面八年级下册数学知识点归纳总结

最全面八年级下册数学知识点归纳总结

最全面八年级下册数学知识点归纳总结八年级下册数学知识点归纳总结一、代数基础1.数的基础知识正数、负数的概念,求相反数,绝对值。

2.代数式代数式的概念,如何列代数式,代数式的简单加减乘除。

3.一元一次方程一元一次方程的概念,如何列一元一次方程,方程的解。

4.解一元一次方程组一元一次方程组的概念,如何列一元一次方程组,解一元一次方程组。

二、图形的性质1.平面图形各种多边形的定义、性质和判定方法。

2.圆的相关知识圆的定义和性质、弧、圆周角、相交弧、相切弧的性质。

3.相似三角形相似三角形的概念、性质、判定方法及三倍线定理。

4.勾股定理勾股定理的概念、性质、证明及应用场景。

5.解锐角三角函数正弦、余弦、正切函数,锐角函数基本关系式。

三、空间几何1.空间图形的计算长方体、正方体、球体等几何体的体积、表面积的计算。

2.解同面直线和平面的关系两个平面的交线是直线,两个直线的位置关系是什么,两个直线的夹角,两条垂直直线之间的夹角。

3.平面与立体图形的关系平面和立体图形的交、相交线,截面的形状及性质。

四、统计数学1.概率的基本概念概率的概念、事件、随机事件的计算公式,样本空间、基本事件。

2.事件的独立性事件的并、交、余、互斥,两个事件的独立性及其判定。

3.频率与概率的关系频率与概率的定义及其区别,频率越大,概率越小。

五、函数初步1.函数的定义函数的概念及表示方法,自变量、因变量和函数值。

2.函数的图像与性质函数图像的概念,单调性、奇偶性、周期性、对称性等。

3.函数的应用如何应用函数进行模型建立,自变量和因变量的定量关系。

六、反比例函数1.反比例函数的概念反比例函数的定义,反比例函数图像。

2.反比例函数的性质反比例函数的单调性、渐近线、变化率,反比例函数与直线的关系。

3.应用反比例函数如何应用反比例函数进行模型建立,自变量和因变量的定量关系。

七、数列1.等差数列等差数列的概念、通项公式、通项公式的推导及应用。

2.等比数列等比数列的概念、通项公式、通项公式的推导及应用。

初二数学下册知识点总结4篇

初二数学下册知识点总结4篇

初二数学下册知识点总结4篇初二数学下册知识点总结1第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

八年级下册数学全章知识点

八年级下册数学全章知识点

八年级下册数学全章知识点八年级下册数学包括7个章节:利用数据统计、平面图形的认识、角的认识、三角形的认识、相似形的认识、比例和文字题及解方程。

下面将逐一介绍每个章节的知识点。

一、利用数据统计1. 数据的集中趋势数据的中位数、众数、平均数及其间的关系。

2. 数据的分散程度数据的极差、四分位数及其间的关系。

3. 经验概率试验次数较多时,事件发生的频率近似为一定值,即经验概率。

用频率估计概率的方法。

二、平面图形的认识1. 相似和全等的概念图形的相似、全等、对称及轴对称。

2. 平面直角坐标系平面直角坐标系的建立,坐标、向量的概念及其坐标表示法。

3. 平面图形的坐标表示法平面图形的坐标表示法,直线的方程及其应用。

三、角的认识1. 角的基本概念角的定义、度数、正弦、余弦、正切的概念及其应用。

2. 角的比较大小角度的比较,角度的加减、乘除及其应用。

四、三角形的认识1. 三角形的基本概念三角形的定义、分类、特殊角和特殊边。

2. 三角形的面积三角形面积公式及其应用。

五、相似形的认识1. 相似形的基本概念相似的概念及其性质。

2. 图形的相似变换由相似的概念引入“相似变换”的概念。

六、比例和文字题1. 比例的基本概念比例的定义,比例例题的求解方法。

2. 文字题的常见解法小学常见的问题以及解决方法。

七、解方程1. 解一次方程一元一次方程的定义及解题方法。

2. 解方程的应用应用题的分析和解答方法。

以上就是八年级下册数学全章的知识点。

当然,这只是一份简要的概述,各个知识点都有很多细节需要掌握,希望同学们能够认真学习,踏实练习,从基础打好数学的基础,为未来的发展打下坚实的基础。

初2数学下册知识点

初2数学下册知识点

初2数学下册知识点初二数学下册知识点一、代数基础1. 整式与多项式初二数学下册的代数部分主要围绕整式和多项式展开。

整式是由常数项和各种代数项经过有限次的加法、减法和乘法运算得到的表达式。

多项式是一类特殊的整式,它由一系列以加法连接的代数项组成,其中每个代数项均为单项式。

初二数学下册会进一步学习多项式的加法和减法运算,以及多项式的因式分解和乘法运算。

2. 一元一次方程在代数部分的学习中,一元一次方程是一个重要的内容。

一元一次方程指的是只含有一个未知数的一次方程,例如:2x+3=7。

初二下册会学习一元一次方程的解法,以及解一元一次方程在实际问题中的应用。

二、几何图形1. 平面直角坐标系平面直角坐标系是初二数学下册几何图形部分的重中之重。

在平面直角坐标系中,每个点都可以用一个有序对表示,其中第一个数表示点的横坐标,第二个数表示点的纵坐标。

初二下册会学习如何利用平面直角坐标系表示点、线段、直线等几何图形,以及如何计算它们的长度和斜率。

2. 图形的相似与全等图形的相似与全等是初二下册的另一个重要内容。

相似图形指的是形状相同但尺寸不同的图形,而全等图形则是形状和尺寸都完全相同的图形。

初二下册将学习相似图形和全等图形的性质与判定条件,并通过解决与它们相关的实际问题加深理解。

三、数据与图表1. 平均数与中位数数据与图表部分的重点是平均数与中位数。

平均数是一组数据的总和除以数据的个数,用来表示这组数据的平均水平;中位数是将一组数据按照从小到大的顺序排列后,处于中间位置的数值。

初二下册会学习如何计算平均数和中位数,并通过实际问题应用它们。

2. 直方图与折线图初二下册还会学习直方图和折线图,这两种图表是常用于表示数据分布和趋势的工具。

直方图用矩形表示数据的频数或频率,而折线图则用折线连接一系列离散数据点。

初二下册将学习如何读取并绘制直方图和折线图,以及如何从图表中获取有关数据的信息。

四、概率与统计1. 随机事件与概率概率与统计是初二数学下册的最后一个部分。

八年级下册数学各章节知识点总结

八年级下册数学各章节知识点总结

八年级下册数学各章节知识点总结第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c bc a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为a bx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b) 一元一次不等式解集 图示叙述语言表达⎩⎨⎧>>b x ax x>bba 两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找 ⎩⎨⎧><bx ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学下册知识点总结
(一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法
我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.
(六)提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
①列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
(九)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。

用x表示这个数,根据题意,可得方程ax=b (a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。

对x来说,字母a是x的系数,b是常数项。

这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

本文出自:/xwzx/ce/26.html。

相关文档
最新文档