数列求和在证明导数类不等式中的应用(学生)

合集下载

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。

浅谈数列求和方法及其在中学数学中的应用

浅谈数列求和方法及其在中学数学中的应用

浅谈数列求和方法及其在中学数学中的应用摘要:数列是一种特殊的函数,函数的内容几乎贯穿于整个中学和大学的学习中,在初中数学中,学生已初步接触了看数找规律的问题,到了高中,中学生正式在高中一年级接触了数列的概念,等差、等比数列的通项公式、求和及综合应用,这些基本知识都是高考大纲所要求学生必须掌握的,到了大学,学习高等数学和数学分析时,首先就给出了数列极限的概念,而这一知识点又与高中导数微分的知识接轨,所以在学习数列极限时同学们并不感到陌生,本文主要探讨不同种类数列求和的求解方法,从一些基本的简单数列和稍微复杂的数列两个方面去探讨如何求解数列求和。

关键词:数列;求和;前n项和;中学数学应用一、总结数列求和方法的意义与作用在日常生活中,我们遇到很多需要用数列及其求和的知识来解决的问题,且求和方法在高考中经常考,也是高中生必须掌握数列求和的一种方法。

数列是高中数学的必须学习的内容,在提高学生的思维及推理能力有着举足轻重的作用,同时也考查了学生的逻辑推理能力。

数列有许多同类型的题,题型变化多,其中有取对数、构造等比通项等。

数列是高中数学的重难点,题型分为填空题、选择题、解答题三种类型,它们在每年高考中占的比例也比较大,在总结每年的高考试卷后,发现数列相关问题涉及到的知识点一般都是把数列和不等式还有函数等融合在一起,所以有的压轴题综合性强,很复杂,解法也很多。

二、求和方法1、利用公式法求和我们遇到的数列通项公式一般都不会直接给出单一的常见的能够直接求出该数列的和,而是一些项的组合,对于这种情况,我们首先要把基本的公式记熟练,同时还要学会观察这些式子的一些特征,然后通过观察,要勇于动笔化简到我们熟练的式子上来,勇于尝试,最后就是要计算仔细,而且还要注意一些小细节方面的问题,比如n是否是从1开始,或者有哪些特殊的点是不满足的,这样才能正确的解决相关的数列问题。

2、错位相减法求和3、裂项相消法求和先把数列的项用常用的分解公式拆开,然后相加时抵消一部分项,化成熟悉的求和式子,这就是裂项相消法的基本思想。

求解数列不等式证明问题的方法

求解数列不等式证明问题的方法

解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。

高中数学《导数和数列综合证明 (1)》导学案

高中数学《导数和数列综合证明 (1)》导学案

高中数学《导数和数列综合证明(一)》导学案例2:已知:x x <+)1ln(2,(1)求证:)*2222()21...(81)41)(21(N n e n ∈<+⎪⎭⎫ ⎝⎛+++(2)求证:*2()311)...(8111)(911(N n e n ∈<+++)(3)求证:(1+421)(1+431)…(1+41n)<e )211ln(......)411ln()211ln()]211)...(411)(211ln[()1ln(12222222n n x x ++++++=+++∴<+ )(e n n n n <+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++++<)211)...(411)(211(12112112112121 (814121222),)311)...(8111)(911(21311213113113131......3131)311ln(......)8111ln()911()]311)...(8111)(911ln[(2212222e e n n n n n n =<+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++<++++++=+++∴)( (3)ln[(1+421)(1+431)……(1+41n )]=ln[(1+421)(1+431)+…ln (1+41n )<221+231+…+21n<)1(1321211-+⨯+⨯n n =1-21+21-31+…+n n 111--=1-n 1<1∴(1+421)(1+431)……(1+41n )<e 例3:设曲线y = f (x ) =cx bx x a ++23213在点x 处的切线斜率为k (x ),且k (-1) = 0.对一切实数x ,不等式).0()1(21)(2≠+≤≤a x x k x 恒成立(1)求f (1)的值;(2)求函数k (x )的表达式;(3)设数列)(1n k 的前n 项和为S n ,求证22+>n nS n解:(1)04)1(,0,00)(222≤--≤∆>∴≥-++++=ac b a x c bx ax c bx ax x k ①0)21)(21(4,0,021,02121222≤---≤∆<-∴≤--++c a b a x c bx ax ②又,4)1(1)1(),11(21)1(12a cb a k k k =++==∴+≤≤ 又1270)1(41=∴=∴f a(2))0()(2≠++='=a c bx ax y x k ,由0)1(,1)1(=-=k k 得⎩⎨⎧=+-=++01c b a c b a 得⎪⎩⎪⎨⎧==+2121b c a 又)1(21)(2+≤≤x x k x 恒成立,则由)0(0212≠≥+-a c x ax 恒成立得410402141==⇒⎪⎩⎪⎨⎧=+≤-=∆>c a c a ac a 同理由02121)21(2≥-++-c x x a 恒成立得41==c a 综上,21,41===b c a 412141)(2++=∴x x k(3)∑=+++⨯+⨯>+++=ni n n n i k 122])2)(1(1431321[41])1(121[41)(1 22]2121[41+=+-=n n n 法二:和式代换,要证22+>n n S n ,即也证()1121+->-n n S n ,只需证:()()()21411222++=+--+>n n n n n n a n ,只需()()()21414)(12++>+=n n n n k ,且()322121114211=+>=+==S a ,故22+>n n S n。

2022-2023学年江苏省盐城市盐城中学高三数学第一学期期末达标检测模拟试题含解析

2022-2023学年江苏省盐城市盐城中学高三数学第一学期期末达标检测模拟试题含解析

2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设()f x =()00O ,,()01A ,,()()n A n f n ,,*n N ∈,设n n AOA θ∠=对一切*n N ∈都有不等式22223122222sin sin sin sin 123n nθθθθ+++⋅⋅⋅⋅⋅⋅+ 222t t <--成立,则正整数t 的最小值为( ) A .3 B .4 C .5 D .62.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:====上规律,若=“穿墙术”,则n =( ) A .48 B .63 C .99 D .1203.已知(1)n x λ+展开式中第三项的二项式系数与第四项的二项式系数相等,2012(1)n n n x a a x a x a x λ+=++++,若12242n a a a ++⋅⋅⋅=,则012(1)n n a a a a -+-⋅⋅⋅+-的值为( ) A .1 B .-1 C .8l D .-814.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫- ⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( )A .5B .15C .10D .55.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 6.已知椭圆22y a +22x b=1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( )A B C D 7.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为( )A .54B .5CD 8.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21eD .31e 9.复数21i - (i 为虚数单位)的共轭复数是 A .1+i B .1−i C .−1+i D .−1−i10.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( )A .16B .14C .13D .1211.若(12)5i z i -=(i 是虚数单位),则z 的值为( )A .3B .5C D12.记n S 为等差数列{}n a 的前n 项和.若25a =-,416S =-,则6a =( )A .5B .3C .-12D .-13二、填空题:本题共4小题,每小题5分,共20分。

数列求和与数列不等式的证明--高考数学【解析版】

数列求和与数列不等式的证明--高考数学【解析版】

专题27 数列求和与数列不等式的证明等差数列、等比数列的性质、通项公式和前n 项和公式构成两类数列的重要内容,在历届高考中属于必考内容,既有独立考查的情况,也有二者与其它知识内容综合考查的情况.一般地,选择题、填空题往往独立考查等差数列或等比数列的基本运算,解答题往往综合考查等差数列、等比数列.数列求和问题是高考数列中的另一个易考类型,其中常见的是“裂项相消法”、“错位相减法”.数列求和与不等式证明相结合,又是,数列考题中的常见题型,关于数列中涉及到的不等问题,通常与数列的最值有关或证明(数列的和)不等式成立或确定参数的范围,对于数列中的最值项问题,往往要依靠数列的单调性,而对于数列的和不等式的证明问题,往往可以利用“放缩法”,要根据不等式的性质通过放缩,达到解题目的.【重点知识回眸】(一)数列的求和 1.公式法(1)等差数列的前n 项和公式: S n =n a 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q =a 1-a n q1-q ,q ≠1. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n 项和.裂项时常用的三种变形: ①111(1)1n n n n =-++;②1111()(21)(21)22121n n n n =--+-+;11n n n n =+++(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.(6)利用周期性求和:如果一个数列的项按某个周期循环往复,则在求和时可将一个周期内的项归为一组求和,再统计前n 项和中含多少个周期即可. (二)数列中的不等关系1.数列中的最值项,要依靠数列的单调性.如何判断数列的单调性:(1)函数角度:从通项公式入手,将其视为关于n 的函数,然后通过函数的单调性来判断数列的单调性.由于n N *∈ ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为()0,+∞ 的函数,得到函数的单调性后再结合n N *∈得到数列的单调性(2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列) (3)对于某数列的前n 项和{}12:,,,n n S S S S ,在判断其单调性时可以考虑从解析式出发,用函数的观点解决.也可以考虑相邻项比较.在相邻项比较的过程中可发现:1n n n a S S -=-,所以{}n S 的增减由所加项n a 的符号确定.进而把问题转化成为判断n a 的符号问题. (三)利用放缩法证明不等式 1.与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢.④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩.从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试. 2.放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可.3.与数列中的项相关的不等式问题:① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即()1n n a a f n +-<或()1n na f n a +<(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为n a ,另一侧为求和的结果,进而完成证明 4.常见的放缩变形: (1)()()211111n n n n n <<+-,其中2,n n N ≥∈:可称21n为“进可攻,退可守”,可依照所证不等式不等号的方向进行选择. 注:对于21n,可联想到平方差公式,从而在分母添加一个常数,即可放缩为符合裂项相消特征的数列,例如:()()22111111111211n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭,这种放缩的尺度要小于(1)中的式子.此外还可以构造放缩程度更小的,如:()()22211411111412121221214n n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭- (2)n n n=+,从而有:212111n n n n n n nn n +=<<<--+++-n2,2,n n n n N n *<--≥∈ (3)分子分母同加常数:()()0,0,0,0b b m b b m b a m a b m a a m a a m++>>>>>>>>++ 此结论容易记混,通常在解题时,这种方法作为一种思考的方向,到了具体问题时不妨先构造出形式再验证不等关系.(4)()()()()()()()121222221212122212121nn n n n n n n n n n--=<=------- ()1112,2121n nn n N *-=-≥∈-- 可推广为:()()()()()()()121111111nn n n n n n n n n n k k k k k k k k k k k k --=<=------- ()1112,2,,11n nn k k n N k k *-=-≥≥∈-- 5.利用导数证明数列不等式 (四)数学归纳法证明不等式【典型考题解析】热点一 分组求和与并项求和【典例1】(2022·全国·高三专题练习)已知数列{n a }满足11a =,()*121N n n a a n +=+∈.(1)证明{1n a +}是等比数列,并求{n a }的通项公式; (2)求数列{1]n a n ++的前n 项和n S .【答案】(1)证明见解析;21nn a =-(2)()11222n n n n S ++=+-【分析】(1)根据题意结合等比数列定义可证1121n n a a ++=+,可得{}1n a +是首项为2,公比为2的等比数列,利用等比数列通项公式代入运算;(2)因为2n n b n =+,利用分组求和结合等差、等比数列求和公式整理运算.(1)由题意可得:1120a +=≠∵()11121212111n n n n n n a a a a a a +++==++=+++所以{}1n a +是首项为2,公比为2的等比数列则12nn a +=,即21n n a =-因此{n a }的通项公式为21n n a =-(2)由(1)知21nn a =-,令1n n b a n =++则2n n b n =+所以()()()121221222nn n S b b b n =+++=++++++.()12222(12)nn =++⋯++++⋯+()()2121122n n n -+=+-()11222n n n ++=+-.综上()11222n n n n S ++=+-.【典例2】.(2021·河南·高三开学考试(文))已知等比数列{}n a 的公比大于1,26a =,1320a a +=.(1)求{}n a 的通项公式;(2)若12331log log 22n n n n b a a a ++=+,求{}n b 的前n 项和n T .【答案】(1)123n n a -=⋅(2)131n n -+ 【分析】(1)设出公比q ,根据题目条件列方程求解; (2)先写出n b ,利用裂项求和,分组求和的办法表示出n T . (1)设等比数列{}n a 的公比为()1q q >,由26a =,1320a a +=得6620q q +=,解之得3q =或13q =(舍去),由26a =得,12a =,所以{}n a 的通项公式为123n n a -=⋅.(2) 由(1)知,()1112331111232311log log 22n n n n n n b a a an n n n --++=+=⋅+=⋅+-++所以{}n b 的前n 项和为()01111111233312231n n T n n -⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦13112131311n n n n -=⨯+-=--++ 【总结提升】分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.热点二 裂项相消法求和【典例3】(2017·全国·高考真题(理))(2017新课标全国II 理科)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑____________. 【答案】21nn + 【解析】 【详解】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk knS n n n n ==-+-++-=-=+++∑. 【典例4】(2018·天津·高考真题(理))设{}n a 是等比数列,公比大于0,其前n 项和为()*n S n N ∈,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+. (I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为()*n T n N ∈,(i )求n T ;(ii )证明()()()()22*122122n nk k k k T b b n N k k n ++=+=-∈+++∑. 【答案】(Ⅰ)12n n a -=,n b n =;(Ⅱ)(i )122n n T n +=--.(ii )证明见解析.【解析】 【详解】分析:(I )由题意得到关于q 的方程,解方程可得2q =,则12n n a -=.结合等差数列通项公式可得.n b n =(II )(i )由(I ),有21nn S =-,则()112122nk n n k T n +==-=--∑.(ii )因为()()()212221221k k k k k T b b k k k k ++++=-++++,裂项求和可得()()()22122122n nk k k k T b b k k n ++=+=-+++∑. 详解:(I )设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d += 由5462a b b =+,可得131316,b d += 从而11,1,b d == 故.n b n =所以数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(II )(i )由(I ),有122112nn n S -==--,故()()1112122122212nnnk k n n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )因为()()()()()()()()1121222222212121221k k k k k k k k k k T b b k k k k k k k k k +++++--+++⋅===-++++++++, 所以()()()32432122122222222123243212n n n nk k k k T b b k k n n n ++++=+⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭∑. 【典例5】(2022·湖北·襄阳五中高三阶段练习)已知数列{}n a 满足()*1232311113333n n a a a a n n ++++=∈N . (1)求数列{}n a 的通项公式;(2)设3log n n b a =,求数列121n n n b b b ++⎧⎫⎨⎬⎩⎭的前n 项和为n T .【答案】(1)()*3N n n a n =∈(2)()()1112212n T n n ⎡⎤=-⎢⎥++⎢⎥⎣⎦【分析】(1)由递推关系取1n =可求1a ,当2n ≥时,取递推关系中的1n n 可求(2)n a n ≥,由此可得数列{}n a 的通项公式;(2)由(1)可得n b n =,利用裂项相消法求数列121n n n b b b ++⎧⎫⎨⎬⎩⎭的前n 项和为n T .(1)当1n =时,13a =,当2n 时,1232311113333n na a a a n ++++=①1231231111113333n n a a a a n --++++=-② 由①-②得()1113n n a n n =--=,即()32n n a n =. 当1n =时也成立,所以数列{}n a 的通项公式为()*3N n n a n =∈(2)因为33log log 3nn n b a n ===,所以()()()()()1211111122112n n n b b b n n n n n n n ++⎡⎤==-⎢⎥+++++⎢⎥⎣⎦, 所以()()()()()11111111112122323341122212n T n n n n n n ⎡⎤⎡⎤=-+-++-=-⎢⎥⎢⎥⋅⋅⋅⋅+++++⎢⎥⎢⎥⎣⎦⎣⎦. 【规律方法】裂项相消法的步骤、原则及规律 (1)基本步骤:裂项、累加、消项; (2)裂项原则一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (3)消项规律消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 热点三 错位相减法求和【典例6】(2020·天津·高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯. 【解析】【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果; (Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211nk k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk k n n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n nk n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414n n n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k n k k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 【典例7】(2022·云南·高三阶段练习)已知数列{}n a 的前n 项和为n S ,且243n n S a =-. (1)求数列{}n a 的通项公式; (2)令83n n nb a =⨯,求数列{}n b 的前n 项和n T . 【答案】(1)232n n a -=⋅(2)24(1)2n n T n +=+-⨯【分析】(1)根据n a 和n S 的关系式,即可求得数列{}n a 的通项公式. (2)由(1)中结论可得数列{}n b 的通项公式,再由错位相减法即可求得n T . (1)由已知得243n n S a =-. ①当1n =时,11132432S a a =-⇒=;当2n ≥时,11243243n n n n S a S a --=-⎧⎨=-⎩①②,-①②得12(2)n n a a n -=≥,所以{}n a 是以32为首项,2为公比的等比数列; 所以1232322n n n a --=⨯=⋅. (2)由(1)得1823n n n nb a n +=⨯=⋅, 所以21341222322n n T n +=⨯+⨯+⨯+⨯+⋅⋅⋅,①所以341221222(1)22n n n T n n ++=⨯+⨯+⋅⋅⋅+-⨯+⨯,②则-①②得:()234142222n n n T n ++-=-⨯+++⋅⋅⋅+,化简得24(1)2n n T n +=+-⨯.【典例8】(2020·全国卷Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 【答案】【解析】(1)设{a n }的公比为q ,由题设得2a 1=a 2+a 3,即2a 1=a 1q +a 1q 2. 所以q 2+q -2=0,解得q =1(舍去)或q =-2. 故{a n }的公比为-2.(2)记S n 为{na n }的前n 项和. 由(1)及题设可得,a n =(-2)n -1. 所以S n =1+2×(-2)+…+n ×(-2)n -1,-2S n =-2+2×(-2)2+…+(n -1)×(-2)n -1+n ×(-2)n . 可得3S n =1+(-2)+(-2)2+…+(-2)n -1-n ×(-2)n =1(2)3n---n ×(-2)n .所以S n =19-(31)(2)9nn +-.【规律方法】错位相减法求和的具体步骤:热点四 其它求和方法【典例9】(2022·湖南·麻阳苗族自治县第一中学高三开学考试)德国大数学家高斯年少成名,被誉为数学界的王子.在其年幼时,对123100++++的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成;因此,此方法也称之为高斯算法.现有函数4()42xx f x =+,则1232018()()()()2019201920192019f f f f ++++等于( ) A .1008 B .1009 C .2018 D .2019【答案】B【分析】根据()(1)1f x f x +-=,利用倒序相加法求解.【详解】解:因为4()42xx f x =+,且114444()(1)1424242244--+-=+=+=+++⨯+x x x xx x x f x f x , 令1232018()()()()2019201920192019=++++S f f f f , 又 2018201720161()()()()2019201920192019=++++S f f f f , 两式相加得:212018=⨯S , 解得1009S =, 故选:B【典例10】(2022·全国·高三专题练习(文))1202年意大利数学家列昂那多-斐波那契以兔子繁殖为例,引人“兔子数列”,又称斐波那契数列.即1,1,2,3,5,8,13,21,34,55,该数列中的数字被人们称为神奇数,在现代物理,化学等领域都有着广泛的应用.若此数列各项被3除后的余数构成一新数列{}n a ,则数列{}n a 的前2022项的和为________. 【答案】2276【分析】由数列1,1,2,3,5,8,13,21,34,55,各项除以3的余数,可得{}n a 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,知{}n a 是周期为8的数列,即可求出数列{}n a 的前2022项的和.【详解】由数列1,1,2,3,5,8,13,21,34,55,各项除以3的余数,可得{}n a 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,{}n a ∴是周期为8的数列,一个周期中八项和为112022109+++++++=,又202225286=⨯+,∴数列{}n a 的前2022项的和2022252982276S =⨯+=. 故答案为:2276.【典例11】(2016·全国·高考真题(文))等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】 【详解】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a ;(Ⅱ)由(Ⅰ)求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5a d ==.所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=; 当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 热点五 与裂项相消法相关的不等式证明【典例12】(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 【答案】(1)()12n n n a +=(2)见解析 【解析】【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得.(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭ ∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【典例13】(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=-且)*N n ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:213n T <. 【答案】(1)()*2n n a n =∈N(2)证明见解析【分析】(1)将已知条件与1212n n a a a a ++++-=-两式相减,再结合等比数列的定义即可求解;(2)利用裂项相消求和法求出n T 即可证明. (1)解:因为1212n n a a a a -+++-=-,所以1212n n a a a a ++++-=-,两式相减得12(2)n n a a n +=,当2n =时,122a a -=-, 又24a =,所以1212,2a a a ==,所以()*12n n a a n +=∈N ,所以{}n a 是首项为2,公比为2的等比数列,所以()*2n n a n =∈N ;(2)证明:()()()()11122111121212121n n n n n n n n a a +++==-------, 所以2231111111111121212121212121n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=-<⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭, 由1n ,得124n +,所以1121213n +--, 综上,213n T <. 【总结提升】(1)与不等式相结合考查裂项相消法求和问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.(2)放缩法常见的放缩技巧有: ①21111(1)1k k k kk <=---. ②2211111()2111k k k k <=--+-.③21111111k k k kk -<<-+-. ④2(12(1)n n n n n+<<--.热点六 与错位相减法相关的不等式证明【典例14】(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n nn nT --=++++, 012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++-1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.【典例15】(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22n n c c -是等比数列;(ii )证明)*12222nk k kk k a n N c a c +=∈-【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证; (ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得1112222n k k n k k k k a k c c a +-==-,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-, 所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅, 2122124222222n n n nn nna n anc c +--⋅⋅,所以1112222nk k n k k k k k a kc c a +-==-, 设10121112322222nn k n k k n T --===+++⋅⋅⋅+∑, 则123112322222n nn T =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-, 所以11112224222222nn k k n k k k k a k n c c a +--==+⎫-<⎪-⎭ 【规律方法】等差数列的判定与证明的方法方法 解读适合题型 定义法 若a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列 解答题中证明问题等差中项法 2a n =a n +1+a n -1(n ≥2,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列 选择、填空题中的判定问题前n 项和公式法验证S n =An 2+Bn (A ,B是常数)对任意的正整数n 都成立⇔{a n }是等差数列【精选精练】一.单选题1.(2021·全国·高三专题练习)数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,若2cos 3=πn n n b a ,且数列{}n b 的前n 项和为n S ,则11S =( ) A .64 B .80 C .64- D .80-【答案】C【分析】由已知可得111n n a a n n +-=+,即数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,由此求出22cos 3n n b n π=,分别令 1,2,3,,11n =可求出11S .【详解】数列{}n a 满足11a =,()()111n n na n a n n +=+++, 则111n na a n n+=++, 可得数列n a n ⎧⎫⎨⎬⎩⎭是首项为1、公差为1的等差数列,即有na n n=,即为2n a n =, 则222cos cos 33n n n n b a n ππ==, 则()()2222222222211112457810113692S =-++++++++++()22222222222222112334566789910112=-+--++--++--++ ()15234159642=-⨯+++=-. 故选:C.2.(2022·全国·高三专题练习(文))斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2022项和为( ) A .2698 B .2697 C .2696 D .2695【答案】C【分析】根据()*12123,,1n n n a a a n n a a --=+⋯∈==N , 递推得到数列{}n a ,然后再得到数列{}n b 是以6为周期的周期数列求解.【详解】因为()*12123,,1,n n n a a a n n a a --=+⋯∈==N所以数列{}n a 为 1,1,2,3,5,8,13,21,34,55,89,144,⋯此数列各项除以 4 的余数依次构成的数列{}n b 为:1,1,2,3,1,0,1,1,2,3,1,0,是以 6 为周期的周期数列, 所以20222022=(1+1+2+3+1+0)=26966S . 故选:C.3.(2018·浙江·高考真题)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>【答案】B 【解析】 【分析】先证不等式ln 1x x ≥+,再确定公比的取值范围,进而作出判断. 【详解】令()ln 1,f x x x =--则1()1f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()(1)0,ln 1f x f x x ≥=∴≥+,若公比0q >,则1234123123ln()a a a a a a a a a a +++>++>++,不合题意;若公比1q ≤-,则212341(1)(1)0,a a a a a q q +++=++≤但212311ln()ln[(1)]ln 0a a a a q q a ++=++>>,即12341230ln()a a a a a a a +++≤<++,不合题意; 因此210,(0,1)q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如ln 1,x x ≥+ 2e 1,e 1(0).x x x x x ≥+≥+≥二、填空题4.(2021·内蒙古呼和浩特·高三阶段练习(理))已知{}n a 是等比数列,公比大于1,且2420a a +=,38a =.记m b 为{}n a 在区间()*(0,]m m N ∈中的项的个数,则数列{}m b 的前60项的和60S 的值为______.【答案】243【分析】第一步求出{}n a 是等比数列的通项公式,第二步计算m b 为{}n a 在区间()*(0,]m m N ∈中的项的个数,列举求值即可。

导数与数列

导数与数列

导数与数列的综合应用导数引入中学数学教材,给传统的中学数学内容注入了新的生机与活力,怎样利用导数这一工具重新认识原中学数学课程中的有关问题并为其研究提供新的途径和方法,是当今中学数学教学中的新课题之一。

纵观各类刊物,对导数的研究多都停留在函数,解析几何等内容上,而对其他方面关注甚少,本文从一个侧面,介绍导数在一类数列求和问题中的应用,以开阔视野。

一.利用导数求数列之和例1 1x ≠求下列数列之和:(1)21123n x x nx -+++; (2)22221123n x x n x -+++(3)sin 2sin 23sin 3sin x x x n nx ++++二.利用导数证明数列不等式 例2:对于函数,若存在,使成立,则称为的不动点.如果函数有且仅有两个不动点、,且. (Ⅰ)试求函数的单调区间;(Ⅱ)已知各项不为1的数列满足14()1n nS f a ⋅=,求证:; (Ⅲ)在(2)中,设,为数列的前项和,求证:.()f x 0x R ∈00()f x x =0x ()f x 2()(,*)x a f x b c N bx c+=∈-021(2)2f -<-()f x {}n a 1111ln n n n a n a ++-<<-1n nb a =-n T {}n b n 200820071ln 2008T T -<<练习.1已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为 (0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521n n n x x x x x y -⋅⋅⋅<<.2【2014·陕西卷(理21)】设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.。

数列知识点:等差数列的通项求和公式

数列知识点:等差数列的通项求和公式

数列知识点:等差数列的通项求和公式高中数列知识点:等差数列的通项求和公式学好数学的关键是公式的掌握,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等,为了学好数学,下面是小编为大家整理的数列知识点:等差数列的通项求和公式,希望能帮助到大家!等差数列的通项求和公式an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。

抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。

2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。

首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。

3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。

象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。

4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。

一定要用新的教学理念进行高三数学教学与复习,5、细心审题、耐心答题,规范准确,减少失误计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。

数学分析在中学数学中的应用

数学分析在中学数学中的应用

数学分析在中学数学中的应用数学,作为一门基础学科,在中学教育中占据着重要地位。

而数学分析作为高等数学的一个重要分支,其理论和方法在中学数学中也有着广泛而深入的应用。

它不仅能够帮助学生更好地理解数学知识,还能培养学生的逻辑思维和解决问题的能力。

一、函数的单调性与极值在中学数学中,函数是一个核心概念。

函数的单调性和极值问题是常见的考点。

数学分析中的导数概念为解决这类问题提供了有力的工具。

通过求导,可以判断函数的单调性。

当导数大于零,函数单调递增;当导数小于零,函数单调递减。

例如,对于函数 f(x) = x² 2x,其导数为 f'(x) = 2x 2。

令 f'(x) = 0,解得 x = 1。

当 x < 1 时,f'(x) < 0,函数单调递减;当 x > 1 时,f'(x) > 0,函数单调递增。

因此,x = 1 为函数的极小值点。

利用导数求函数的极值,能够让学生更加清晰地理解函数的变化趋势,而不仅仅是依靠图像来直观判断。

二、不等式的证明不等式的证明在中学数学中具有一定的难度,但数学分析的方法可以使证明过程更加简洁和严谨。

比如,利用函数的单调性证明不等式。

假设要证明 a > b,可以构造一个函数 f(x),使得 f(a) > f(b),且能证明 f(x)单调递增。

这样就通过函数的性质完成了不等式的证明。

再如,柯西不等式在中学数学中也有应用。

对于两组实数a₁, a₂,,aₙ 和 b₁, b₂,, bₙ,有(a₁²+ a₂²++ aₙ²)(b₁²+ b₂²++bₙ²) ≥ (a₁b₁+ a₂b₂++ aₙbₙ)²。

通过巧妙地构造和运用,可以解决一些复杂的不等式问题。

三、曲线的切线问题曲线的切线是中学数学中解析几何部分的重要内容。

数学分析中的导数定义与几何意义为解决切线问题提供了理论基础。

对于给定的曲线方程 y = f(x),在点(x₀, y₀) 处的切线斜率即为函数在该点的导数 f'(x₀)。

小结数列与不等式证明题的四种实用方法

小结数列与不等式证明题的四种实用方法

小结数列与不等式证明题的四种实用方法高中数学,当数列与不等式以综合题的形式出现时,难度较大。

怎样在紧张而又急迫的考试中准确的选择合适的方法解决难题并且不浪费时间,这成为众多学者头痛的问题。

笔者在高中自主学习和课堂听课中总结了四种实用的方法。

在这篇文章中,笔者把不等式右边是常数的证明题定义为常数型,把不等式右边是变量的证明题定义为变量型。

有的方法只适合常数型的不等式,而有的方法既适合变量型的不等式,也适合常数型的不等式。

下面笔者分常数型和变量型依次总结。

方法一:GP.放缩法。

(常数型)这种方法的应用比较广泛,同时也是放缩法中较简单的一种方法。

下面我们以例题的形式来说明。

例:求证:2121...915131211n <++++++-。

解析:该题属于和式与和式作比较,将2看成某个数列求和即可。

等比数列中,当公比q ≠1时, q 1q a q 1a q 1q 1a n 11n 1n ---=--=)(S ,若使q1q a n1-随n 的增大而趋向于0,则︳q ︳∈(0,1),观察通项1211n +-,q 取21的可能性较大,则令q=21,2q1a 1=-,解得1a 1=。

所以可以得出目标等比数列1n n 21a -=)(。

证明:因为121n +->1n 2-, 所以1211n +-<1n 21-, 得121...915131211n ++++++-<1n 21...8141211-+++++=1n 212--)(<2,所以原不等式得证。

这种方法的关键点在于找出目标等比数列,当然也有局限性,不适用于变量型不等式。

方法二:数学归纳法。

(常数型和变量型)数学归纳法的应用比较广范,在某些证明题中,数学归纳法常常作为考生首选的方法,它的重要性是毋庸置疑的。

但是,某些题型不适合用数学归纳法证明。

当不等号左边的第一项是某个具体的常数时,直接用数学归纳法就不可以证明,必须选择恰当的中间量方可。

例如:求证:2121...915131211n <++++++-。

例谈导数的几个简单的应用

例谈导数的几个简单的应用

例谈导数的几个简单的应用王耀辉高中阶段学习导数以后,常常把导数作为研究函数单调性、极大(小)值、最大(小)值和解决生活中优化问题等来运用.实际上,它还有其他方面更多的应用.本文就根据高中学过的一些内容,列举了导数的几个简单的应用,供读者学习时参考.1.利用导数的定义求极限 在一些教辅资料、高考题中,出现了一类特殊极限求值问题,最常见的是00型,感觉不好求.若能灵活运用导数的定义,问题便会迎刃而解.例1.求值:(1)0sin lim x x x →,(2)0ln(1)lim x x x→+. 解:(1)根据导数的定义,该式实际上为求函数()sin f x x =在点0x =处的导数. 所以00sin sin sin 0lim =lim x x x x x x→→-00(sin )|cos |cos 01x x x x =='====. (2)根据导数的定义,该式实际上为求函数()ln(1)f x x =+在点0x =处的导数. 所以000ln(1)1lim=[ln(1)]||11x x x x x x x ==→+'+==+. 例2.(2010年全国卷文科21题)设函数2()(1)x f x x e ax =--.若当0x ≥时()0f x ≥,求实数a 的取值范围.解:由已知得()(1)x f x x e ax =--≥0(x ≥0),即1x e ax --≥0(x ≥0), 当0x =时,a R ∈;当0x >时,分离参数得1x e a x -≤(0x >),令1()x e g x x-=(0x >),求导得21()x x xe e g x x-+'=(0x >),再令()1x x h x xe e =-+(0x >),则()0x h x xe '=>(0x >),∴()1x x h x xe e =-+在(0,)+∞上递增,∴()(0)0h x h >=,∴()0g x '>,∴1()x e g x x-=在(0,)+∞上递增.∴0()lim ()x g x g x →>,所以0lim ()x a g x →≤.因为00001lim ()=lim =lim 0x x x x x e e e g x xx →→→---00()||1x x x x e e =='===,所以1a ≤. 综上所述,实数a 的取值范围为1a ≤.2.利用函数极值点导数为零的性质,在三角函数中求值例3.已知()sin 2cos 2()f x a x x a R =+∈图像的一条对称轴方程为2x π=,则a 的值为( )A .12B C .3 D .2 解析:由于三角函数的对称轴与其曲线的交点为极值点,所以由()2cos 22sin 2f x a x x '=-,得()2cos 2sin =0266f a πππ'=-,故3a =. 例4.已知函数()cos f x x x =的图像向左平移ϕ(0)ϕ>个单位所得图像对应的函数为偶函数,则ϕ的最小值是( )A .6πB .3πC .23πD .56π解析:设函数()f x 图像向左平移ϕ(0)ϕ>个单位后的函数解析式为:()cos())g x x x ϕϕ=++,由于()g x 为偶函数,所以(0)0g '=.又()sin())g x x x ϕϕ'=-+-+,所以sin 0ϕϕ-=,tan ϕ=ϕ的最小值为23π.例5.已知2cos sin x x -=,求tan x 的值.解析:设()2cos sin f x x x =-,则曲线()2cos sin f x x x =-过点(,t .由于2cos sin )x x x x -=+cos cos sin )x x ϕϕ=+)x ϕ=+,其中cos ϕϕ==所以函数()2cos sin f x x x =-在点(,t 处取极小值,导数为零.即()2sin cos 0f t t t '=--=,所以1tan 2t =-,从而1tan 2x =-.3.导数在数列求和中的应用例6.已知数列{}n a 的通项为12n n a n -=⋅,求数列{}n a 前n 项的和n S .解析:令2x =,则11ni i i x -=⋅∑1()n i i x ='=∑12(1)1(1)=1(1)nn n x x n x n x x x +'⎡⎤--++⋅=⎢⎥--⎣⎦所以n S 121(1)22=(12)n n n n +-+⋅+⋅-1=1(1)22n nn n +-+⋅+⋅4.导数在二项式中的应用例7.证明:1231232n n n n n n C C C nC n -+++⋯+=⋅.证明:令012233(1)n n nn n n n n x C C x C x C x C x +=+++++…,对等式两边求导,得:1121321(1)23n n n n n n n n x C C x C x nC x --+=++++…, 令1x =,代入上式即得1123223n n n n n n n C C C nC -⋅=+++⋯+,即1231232n n n n n n C C C nC n -+++⋯+=⋅.5.导数在三角恒等变换公式中的应用在三角恒等变换公式中,公式多,不易记,应用导数可以将这些恒等式进行沟通.(1)两角和、差的三角函数公式cos cos cos sin sin αβαβαβ-=+(),①视α为变量,β为常量,对等式①两边求导,得sin()sin cos cos sin αβαβαβ--=-+即sin()sin cos cos sin αβαβαβ-=-,②反过来,视α为变量,β为常量,对等式②两边求导,得cos cos cos sin sin αβαβαβ-=+()故利用上述求导方法有:cos cos cos sin sin αβαβαβ±=()αα对求导对求导sin()sin cos cos sin αβαβαβ±=±(2)二倍角公式 22cos 2cos sin ααα=-αα对求导对求导sin 22sin cos ααα=(3)积化和差公式 1sin cos [sin()sin()]2αβαβαβ⋅=++- αα对求导对求导1cos cos [cos()cos()]2αβαβαβ⋅=++-, 1cos sin [sin()sin()]2αβαβαβ⋅=+-- αα对求导对求导1sin sin [cos()cos()]2αβαβαβ⋅=-+--. 当然,导数的应用不只这些,本文只是抛砖引玉,有兴趣的读者还可以继续探索.。

压轴题07 数列的通项、求和及综合应用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题07  数列的通项、求和及综合应用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题07数列的通项、求和及综合应用数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显(特别是与函数、导数的结合问题),浙江卷小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.数列与数学归纳法的结合问题,也应适度关注.考向一:数列通项、求和问题考向二:数列性质的综合问题考向三:实际应用中的数列问题考向四:以数列为载体的情境题考向五:数列放缩1、利用定义判断数列的类型:注意定义要求的任意性,例如若数列{}n a 满足1n n a a d +-=(常数)(2n ≥,n *∈N )不能判断数列{}n a 为等差数列,需要补充证明21a a d -=;2、数列{}n a 满足212n n n a a a +++=()*n ∈N ,则{}n a 是等差数列;3、数列{}n b 满足1n n b qb +=()*n ∈N ,q 为非零常数,且10b ≠,则{}n b 为等比数列;4、在处理含n S ,n a 的式子时,一般情况下利用公式n a =1*1,1,2,n n S n S S n n - =⎧⎨-∈⎩N≥且,消去n S ,进而求出{}n a 的通项公式;但是有些题目虽然要求{}n a 的通项公式,但是并不便于运用n S ,这时可以考虑先消去n a ,得到关于n S 的递推公式,求出n S 后再求解n a .5、遇到形如1()n n a a f n +-=的递推关系式,可利用累加法求{}n a 的通项公式,遇到形如1()n na f n a +=的递推关系式,可利用累乘法求{}n a 的通项公式,注意在使用上述方法求通项公式时,要对第一项是否满足进行检验.6、遇到下列递推关系式,我们通过构造新数列,将它们转化为熟悉的等差数列、等比数列,从而求解该数列的通项公式:(1)形如1n n a pa q +=+(1p ≠,0q ≠),可变形为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则1n q a p ⎧⎫+⎨⎬-⎩⎭是以11q a p +-为首项,以p 为公比的等比数列,由此可以求出n a ;(2)形如11n n n a pa q ++=+(1p ≠,0q ≠),此类问题可两边同时除以1n q +,得111n n n n a a p q q q ++=⋅+,设n n n a b q =,从而变成1n b +=1n pb q+,从而将问题转化为第(1)个问题;(3)形如11n n n n qa pa a a ++-=,可以考虑两边同时除以1n n a a +,转化为11n nq pa a +-=的形式,设1n nb a =,则有11n n qb pb +-=,从而将问题转化为第(1)个问题.7、公式法是数列求和的最基本的方法,也是数列求和的基础.其他一些数列的求和可以转化为等差或等比数列的求和.利用等比数列求和公式,当公比是用字母表示时,应对其是否为1进行讨论.81k=,1111()n n k k n n k ⎛⎫=- ⎪++⎝⎭,裂项后产生可以连续相互抵消的项.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,但是前后所剩项数一定相同.常见的裂项公式:(1)111(1)1n n n n =-++;(2)1111(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(3)1111(2)22n n n n ⎛⎫=- ⎪++⎝⎭;(4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;(5)(1)(2)(1)(1)(1)3n n n n n n n n ++--++=.9、用错位相减法求和时的注意点:(1)要善于通过通项公式特征识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.10、分组转化法求和的常见类型:(1)若n n n a b c =±,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和;(2)通项公式为,, n n nb n ac n ⎧=⎨⎩奇数偶数,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和;(3)要善于识别一些变形和推广的分组求和问题.11、在等差数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a +=+=.在等比数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a ==.12、前n 项和与积的性质(1)设等差数列{}n a 的公差为d ,前n 项和为n S .①n S ,2n n S S -,32n n S S -,…也成等差数列,公差为2n d .②n S n ⎧⎫⎨⎬⎩⎭也是等差数列,且122n S d d n a n ⎛⎫=+- ⎪⎝⎭,公差为2d .③若项数为偶数2k ,则 S S kd -=奇偶,1k kS a S a +=偶奇.若项数为奇数21k +,则1 k S S a +-=奇偶,1S k S k+=奇偶.(2)设等比数列{}n a 的公比为q ,前n 项和为.n S ①当1q ≠-时,n S ,2n n S S -,32n n S S -,…也成等比数列,公比为.n q ②相邻n 项积n T ,2n n T T ,32n nT T ,…也成等比数列,公比为()nn q 2n q =.③若项数为偶数2k ,则()2111k a q S S q--=+奇偶,1S S q=奇偶;项数为奇数时,没有较好性质.13、衍生数列(1)设数列{}n a 和{}n b 均是等差数列,且等差数列{}n a 的公差为d ,λ,μ为常数.①{}n a 的等距子数列{}2,,,m m k m k a a a ++ ()*,k m ∈N 也是等差数列,公差为kd .②数列{}n a λμ+,{}n n a b λμ±也是等差数列,而{}na λ是等比数列.(2)设数列{}n a 和{}n b 均是等比数列,且等比数列{}n a 的公比为q ,λ为常数.①{}n a 的等距子数列{}2,,,m m k m k a a a ++ 也是等比数列,公比为k q .②数列{}(0)n a λλ≠,(0)n a λλ⎧⎫≠⎨⎬⎩⎭,{}n a ,{}n n a b ,n n a b ⎧⎫⎨⎬⎩⎭,{}mn a也是等比数列,而{}log a n a ()010n a a a >≠>,,是等差数列.14、判断数列单调性的方法(1)比较法(作差或作商);(2)函数化(要注意扩展定义域).15、求数列最值的方法(以最大值项为例,最小值项同理)方法1:利用数列的单调性;方法2:设最大值项为n a ,解方程组11n n nn a a a a -+⎧⎨⎩≥≥,再与首项比较大小.一、单选题1.(2023·上海闵行·统考二模)若数列{}n b 、{}n c 均为严格增数列,且对任意正整数n ,都存在正整数m ,使得[]1,m n n b c c +∈,则称数列{}n b 为数列{}n c 的“M 数列”.已知数列{}n a 的前n 项和为n S ,则下列选项中为假命题的是()A .存在等差数列{}n a ,使得{}n a 是{}n S 的“M 数列”B .存在等比数列{}n a ,使得{}n a 是{}n S 的“M 数列”C .存在等差数列{}n a ,使得{}n S 是{}n a 的“M 数列”D .存在等比数列{}n a ,使得{}n S 是{}n a 的“M 数列”2.(2023·全国·模拟预测)已知等差数列{}n a 的前n 项和为n S ,1530S =,160S <,则()A .当15n =时,n S 最大B .当16n =时,n S 最小C .数列{}n S 中存在最大项,且最大项为8SD .数列{}n S 中存在最小项3.(2023·山西·校联考模拟预测)记n S 为等差数列{}n a 的前n 项和,若70a >,70S <,则()A .360a a +<B .580a a +>C .47S S <D .1493S a >4.(2023·陕西西安·西北工业大学附属中学校考模拟预测)已知数列{}n a 满足:212n n n a a a +++=对*n ∈N 恒成立,且981a a <-,其前n 项和n S 有最大值,则使得0n S >的最大的n 的值是()A .10B .12C .15D .175.(2023·北京门头沟·统考一模)已知数列{}n a 满足11a =,2112n n n a a a +=-.给出下列四个结论:①数列{}n a 每一项n a 都满足*01()n a n <≤∈N ;②数列{}n a 的前n 项和2n S <;③数列{}n a 每一项都满足21n a n ≤+成立;④数列{}n a 每一项n a 都满足1*1(()2n n a n -≥∈N .其中,所有正确结论的序号是()A .①③B .②④C .①③④D .①②④6.(2023·云南昆明·昆明市第三中学校考模拟预测)已知一族曲线22:20(1,2,)n C x nx y n -+== .从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .则下列结论错误的是()A .数列{}n x 的通项为1n nx n =+B .数列{}n y的通项为n y =C .当3n >时,1352111n n nx x x x x x --⋅⋅⋅>+ Dnnxy <7.(2023·河南信阳·校联考模拟预测)在正三棱柱111ABC A B C -中,若A 点处有一只蚂蚁,随机的沿三棱柱的各棱或各侧面的对角线向相邻的某个顶点移动,且向每个相邻顶点移动的概率相同,设蚂蚁移动n 次后还在底面ABC 的概率为n P ,有如下说法:①112P =;②21325P =;③12n P ⎧-⎫⎨⎬⎩⎭为等比数列;④11111052n n P -⎛⎫=-⨯-+ ⎪⎝⎭,其中说法正确的个数是()A .1B .2C .3D .48.(2023·北京·北京四中校考模拟预测)给定函数()f x ,若数列{}n x 满足()()1n n n n f x x x f x +=-',则称数列{}n x 为函数()f x 的牛顿数列.已知{}n x 为()22f x x x =--的牛顿数列,2ln1n n n x a x -=+,且()11,1n a x n +=<-∈N ,数列{}n a 的前n 项和为n S .则2023S =()A .202321-B .202421-C .2022112⎛⎫- ⎪⎝⎭D .2023112⎛⎫- ⎪⎝⎭9.(2023·河南安阳·统考二模)已知数列{}n x 和{}n a 满足()212223n n n n x x x x +-=>-,2ln1n n n x a x -=-,11a =.若()22n n n b a a n *++=+∈N ,124b b +=,则数列{}n n b a -的前2022项和为()A .20222B .20202C .202224-D .202023-10.(2023·北京海淀·清华附中校考模拟预测)已知数列{}n a 为等差数列,其前n 项和为n S ,119a =-,746a a -=,若对于任意的*n ∈N ,总有n m S S ≥恒成立,则m =()A .6B .7C .9D .10二、多选题11.(2023·辽宁锦州·统考模拟预测)如果有限数列{}n a 满足()11,2,,i n i a a i n -+== ,则称其为“对称数列”,设{}n b 是项数为()*21N k k -∈的“对称数列”,其中121,,,k k k b b b +- 是首项为50,公差为4-的等差数列,则()A .若10k =,则110b =B .若10k =,则{}n b 所有项的和为590C .当13k =时,{}n b 所有项的和最大D .{}n b 所有项的和可能为012.(2023·湖南益阳·统考模拟预测)如图,有一列曲线1Ω,2Ω,L ,n Ω,L ,且1Ω是边长为6的等边三角形,1i +Ω是对(1,2,)i n Ω= 进行如下操作而得到:将曲线i Ω的每条边进行三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉得到1i +Ω,记曲线(1,2,)n n Ω= 的边长为n a ,周长为n c ,则下列说法正确的是()A .212(3n n a -=⋅B .52569c =C .在3Ω中OA OC OD OC ⋅=⋅D .在3Ω中40OB OC ⋅=13.(2023·浙江·统考二模)“冰雹猜想”也称为“角谷猜想”,是指对于任意一个正整数x ,如果x 是奇数㩆乘以3再加1,如果x 是偶数就除以2,这样经过若干次操作后的结果必为1,犹如冰雹掉落的过程.参照“冰雹猜想”,提出了如下问题:设*N k ∈,各项均为正整数的数列{}n a 满足11a =,1,,2,,nn n n n a a a a k a +⎧⎪=⎨⎪+⎩为偶数为奇数则()A .当5k =时,54a =B .当5n >时,1n a ≠C .当k 为奇数时,2n a k≤D .当k 为偶数时,{}n a 是递增数列14.(2023·重庆九龙坡·统考二模)已知数列{}n a 满足12a =,11,2,n n n n a n a a n ++⎧+⎪=⎨⎪⎩为奇数为偶数,设2n n b a =,记数列{}n a 的前2n 项和为2n S ,数列{}n b 的前n 项和为n T ,则下列结论正确的是()A .524a =B .2nn b n =⋅C .12n n T n +=⋅D .()122122n n S n +=-+15.(2023·河北唐山·统考二模)如图,ABC 是边长为2的等边三角形,连接各边中点得到111A B C △,再连接111A B C △的各边中点得到222A B C △,…,如此继续下去,设n n n A B C 的边长为n a ,n n n A B C 的面积为n M ,则()A .234n n M =B .2435a a a =C .21222nn a a a -++⋅⋅⋅+=-D.12n M M M ++⋅⋅⋅+16.(2023·浙江金华·模拟预测)已知定义在R 上且不恒为0的函数()f x ,若对任意的,R x y ∈,都有()()()f xy xf y yf x =+,则()A .函数()f x 是奇函数B .对*N n ∀∈,有()()nf x nf x =C .若()22f =,则()()()23(2)222(1)2-2n nf f f f n ++++=+ D .若(2)2f =,则2310111122210232123101024f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭++++=-三、填空题17.(2023·广西·统考模拟预测)有穷数列{}n a 共有k 项,满足127a =,2737a =,且当*n ∈N ,3n k ≤≤时,211n n n n a a a ---=-,则项数k 的最大值为______________.18.(2023·江西九江·校联考模拟预测)著名科学家牛顿用“作切线”的方法求函数的零点时,给出了“牛顿数列”,它在航空航天中应用广泛.其定义是:对于函数()f x ,若数列{}n x 满足1()()n n n n f x x x f x +=-',则称数列{}n x 为牛顿数列,若函数2()f x x =,2log n n a x =,且11a =,则8a =__________.19.(2023·北京石景山·统考一模)项数为(),2k k k *∈≥N 的有限数列{}n a 的各项均不小于1-的整数,满足123123122220k k k k k a a a a a ----⋅+⋅+⋅+⋅⋅⋅+⋅+=,其中10a ≠.给出下列四个结论:①若2k =,则22a =;②若3k =,则满足条件的数列{}n a 有4个;③存在11a =的数列{}n a ;④所有满足条件的数列{}n a 中,首项相同.其中所有正确结论的序号是_________.20.(2023·广西·统考一模)古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,…,我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中的“落一形”锥垛就是每层为“三角形数”的三角锥的锥垛(如图所示,顶上一层1个球,下一层3个球,再下一层6个球…),若一“落一形”三角锥垛有10层,则该锥垛球的总个数为___________.(参考公式:()2222*(1)(21)1236n n n n n ++++++=∈N )21.(2023·陕西渭南·统考二模)已知数列{}n a 中,11,0n a a =>,前n 项和为n S .若)*1N ,2n n n a S S n n -=∈≥,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前2023项和为___________.22.(2023·广东深圳·深圳中学统考模拟预测)已知数列{}n a 的前n 项和为n S ,满足:()*122n n n a a a n ++=+∈N ,且3a ,7a 为方程218650x x -+=的两根,且73a a >.若对于任意*n ∈N ,不等式()()2241nn n a a λ->-恒成立,则实数λ的取值范围为___________.23.(2023·湖北武汉·统考模拟预测)已知在正项等比数列{}n a 中,38a =,532a =,则使不等式511n S >成立的正整数n 的最小值为________.24.(2023·广东广州·广州市第二中学校考模拟预测)数列{}n a 满足n a n p =-+,数列{}n b 满足52n n b -=,设,,n n nn n nn a a b c b a b ≤⎧=⎨>⎩,且对任意*n ∈N 且9n ≠,有9n c c >,则实数p 的取值范围为____.四、解答题25.(2023·全国·模拟预测)已知数列{}n a 中,n S 是其前n 项的和,21511S S =,112n n naa a++=-.(1)求1a ,2a 的值,并证明11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)证明:11111222n n n n S n +-+<<-+.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2023·天津·校联考一模)已知数列{}n a 满足12n n a a +-=,其前8项的和为64;数列{}n b 是公比大于0的等比数列,13b =,3218b b -=.(1)求数列{}n a 和{}n b 的通项公式;(2)记211n n n n na c a ab ++-=,*n ∈N ,求数列{}n c 的前n 项和n T ;(3)记()12221,21,N1,2,N n n n n n a n k k a d n k k b +**⎧-⋅=-∈⎪⎪+=⎨=∈⎪⎪⎩,求221nn k k S d ==∑.28.(2023·广西桂林·校考模拟预测)设数列{}n a 的前n 项和为n S ,且n a 与4-n 的等差中项为n n S a -.(1)证明:数列{}2n a +是等比数列;(2)设32log 2n n a b +=,证明:1352111111111n b b b b -⎛⎫⎛⎫⎛⎫⎛⎫++++>⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 29.(2023·天津·统考一模)已知数列{}n a 中,11a =,22a =,()24Nn n a a n *+-=∈,数列{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式:(2)若215n n b S n=+,求数列{}n b 的前n 项和n T ;(3)在(2)的条件下,设124n n n n n b c b b ++=,求证:111346822n n n k n n --=++-<-.30.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.31.(2023·天津河北·天津外国语大学附属外国语学校校考模拟预测)已知数列{}n a 的前n 项和为n S ,()2*n S n n =∈N ,数列{}n b 为等比数列,且21a +,41a +分别为数列{}n b 第二项和第三项.(1)求数列{}n a 与数列{}n b 的通项公式;(2)若数列()()1322(1)11+⋅-=+-⋅--n nn n n n n c a b b b ,求数列{}n c 的前2n 项和2n T ;(3)求证:()2131nii i b b =<-∑.32.(2023·河北石家庄·统考一模)伯努利不等式,又称贝努利不等式,由数学家伯努利提出:对于实数1x >-且0x ≠,正整数n 不小于2,那么(1)1n x nx +≥+.研究发现,伯努利不等式可以推广,请证明以下问题.(1)证明:当[1,)α∈+∞时,(1)1x x αα+≥+对任意1x >-恒成立;(2)证明:对任意*n ∈N ,123(1)n n n n n n n ++++<+ 恒成立.。

高中数学等差数列求和公式有哪些

高中数学等差数列求和公式有哪些

高中数学等差数列求和公式有哪些高中数学等差数列求和公式有哪些等差数列公式an=a1+(n-1)d前n项和公式为:Sn=na1+n(n-1)d/2若公差d=1时:Sn=(a1+an)n/2若m+n=p+q则:存在am+an=ap+aq若m+n=2p则:am+an=2ap第n项的值an=首项+(项数-1)×公差前n项的和Sn=首项+末项×项数(项数-1)公差/2公差d=(an-a1)÷(n-1)项数=(末项-首项)÷公差+1数列为奇数项时,前n项的和=中间项×项数数列为偶数项,求首尾项相加,用它的和除以2等差中项公式2an+1=an+an+2其中{an}是等差数列以上n均为正整数。

高考数学拿满分的方法有哪些第一、拿到卷子先明确15分的位置,也就是每块的最后几题,在题号上划个杠,告诉自己,不求完美,大不了不做了,安心做那135分。

第二、分配时间,把一半小时分给剩下的135分,把时间写在卷子上。

第三、打草稿,打草稿是非常重要的一环,草稿是过程,答题纸是结果,过程错误,结果一定错误,过程正确,结果错不到哪里去。

打草稿,就要像写作业一样工工整整的写,从左上角开始,标好题号,一行行地写,写完一题,打个框框起来,和其它题的草稿进行区分,把重要步骤的结果用圆圈圈起来。

刚开始这么做,你会发现浪费了很多时间,平时课堂测验时间不足,成绩下滑,但不要灰心,你收获的将是非常良好的做题习惯,速度会越来越快,你会越来越自信,坚持一个学期两个学期,你会有质的改变。

第四、题中绝不复查,更不要做一题检查一题。

选择题、填空题做完,如果分配的时间还有大量的没有用完,才可以检查,而你刚才做的工整的草稿会使你的检查非常的迅速而高效。

第五、最后如果你还剩下半个多小时,开始对付最后15分。

高考怎样才能考高分高考中数学要考高分,需要具备以下条件:课本基本知识和所有例题掌握异常扎实,公式定理及其推导证明烂熟于胸。

导数应用与数列求和论文

导数应用与数列求和论文

导数应用与数列求和高中引入了导数概念,给出了导数的定义,讲清楚了导数的几何意义及物理意义,在应用方面也给出了一些例题,主要是解决函数单调性、最值、不等式证明等问题。

但是在数列求和方面的应用基本上还没有涉及到,因此我仅以本文来为导数的应用开辟一条新的途径。

问题一:数列(an)的通项公式an=n×2n-1(n∈n*),求数列(an)的前项和sn.1.错位相减法:sn=1×20+2×21+3×22+...+n×2n-1 (1)2sn=1×21+2×22+...+(n-1)×2n-1+n×2n (2)由(1)-(2)得,-sn=1+21+22+…+2n-1-n×2n,有-sn=1+(n-1)×2(n∈n*)2.导数法:令f(x)=x+x2+x3+…xn(x≠0,x≠1)f(x)=1×x0+2x1+3x2+…+nxn-1,所以sn=f(2),f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因为f(x)=[1-(n-1)xn](1-x)+(x-xn-1)/(1-x)2 有sn=f(2)=1+(n-1)×2n定理1:数列(an)的通项公式an=n×pn-1(p≠0,p≠1,n∈n*),其前项n和为sn,则sn=1+[(p-1)n-1]pn/(1-p)2。

证明:令f(x)=x+x2+x3+…+xn(x≠0,x≠1),所以,f(x)=1×x0+2x1+3x2+…+nxn-1,所以sn=f(p),f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因为f(x)=[1-(n+1)xn](1-x)+(x-xn-1)/(1-x)2有sn=f(p)=1+[(p-1)n-1]pn/(1-p)2,证毕。

问题二:数列(cn)的通项公式cn=anbn(n∈n*),其中,an=pn+q (p,q是常数),bn=r·sn-1(rs≠0),求数列(an)前项和tn。

高考数学一轮复习 第六章 数列 第4讲 数列求和教学案 理 北师大版-北师大版高三全册数学教学案

高考数学一轮复习 第六章 数列 第4讲 数列求和教学案 理 北师大版-北师大版高三全册数学教学案

第4讲 数列求和一、知识梳理 1.数列求和方法(1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列求和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.2.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+(2n -1)=n 2; (3)2+4+6+8+…+2n =n 2+n . 3.数列求和的常用方法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(2)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.(3)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (4)分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后再相加减.(5)并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.常用结论记住常用的裂项公式(1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .二、教材衍化1.一个球从100 m 高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)解析:选 A.第10次着地时,经过的路程为100+2(50+25+…+100×2-9)=100+2×100×(2-1+2-2+…+2-9)=100+200×2-1(1-2-9)1-2-1=100+200(1-2-9). 2.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0172 018,则项数n 为( )A .2 014B .2 015C .2 016D .2 017解析:选D.a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0172 018,所以n =2 017.故选D. 3. 1+2x +3x 2+…+nxn -1=________(x ≠0且x ≠1).解析:设S n =1+2x +3x 2+…+nx n -1,① 则xS n =x +2x 2+3x 3+…+nx n,② ①-②得:(1-x )S n =1+x +x 2+…+xn -1-nx n=1-x n1-x -nx n,所以S n =1-x n(1-x )2-nx n1-x. 答案:1-x n(1-x )2-nxn 1-x一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )答案:(1)√ (2)√ (3)× 二、易错纠偏常见误区|K(1)不会分组致误; (2)错位相减法运用不熟练出错.1.已知数列:112,214,318,…,⎝ ⎛⎭⎪⎫n +12n ,…,则其前n 项和关于n 的表达式为________.解析:设所求的数列前n 项和为S n ,则S n =(1+2+3+…+n )+12+14+…+12n =n (n +1)2+1-12n .答案:n (n +1)2+1-12n2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 解析:S n =1×2+2×22+3×23+…+n ×2n,① 所以2S n =1×22+2×23+3×24+…+n ×2n +1,②①-②得-S n =2+22+23+…+2n -n ×2n +1=2×(1-2n)1-2-n ×2n +1,所以S n =(n -1)2n +1+2.答案:(n -1)2n +1+2分组转化求和(师生共研)(2020·某某模拟)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解】 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d , 又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n. 因为b n =a 2n +2a n -1, 所以b n =2n -1+2n,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+ (2)) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.分组转化法求和的常见类型(1)若a n =b n ±,且{b n },{}为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,,n 为偶数的数列,其中数列{b n },{}是等比数列或等差数列,可采用分组转化法求和.1.若数列{a n }是2,2+22,2+22+23,…,2+22+23+ (2),…,则数列{a n }的前n 项和S n =________.解析:a n =2+22+23+ (2)=2-2n +11-2=2n +1-2,所以S n =(22+23+24+…+2n +1)-(2+2+2+ (2)=22-2n +21-2-2n =2n +2-4-2n .答案:2n +2-4-2n2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =2an +(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n , 故b n =2n+(-1)nn . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+ (2))+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52. 所以T n=⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.错位相减法求和(师生共研)(2020·某某市部分区联考)已知数列{a n }是等差数列,数列{b n }是等比数列,且a 1=1,a 3+a 4=12,b 1=a 2,b 2=a 5.(1)求{a n }和{b n }的通项公式;(2)设=(-1)na nb n (n ∈N +),求数列{}的前n 项和S n .【解】 (1)设等差数列{a n }的公差为d ,因为a 1=1,a 3+a 4=12, 所以2a +5d =12,所以d =2,所以a n =2n -1.设等比数列{b n }的公比为q ,因为b 1=a 2,b 2=a 5, 所以b 1=a 2=3,b 2=a 5=9, 所以q =3,所以b n =3n.(2)由(1)知,a n =2n -1,b n =3n,所以=(-1)n ·a n ·b n =(-1)n ·(2n -1)·3n =(2n -1)·(-3)n, 所以S n =1·(-3)+3·(-3)2+5·(-3)3+…+(2n -1)·(-3)n,① 所以-3S n =1·(-3)2+3·(-3)3+…+(2n -3)·(-3)n +(2n -1)·(-3)n +1,②①-②得,4S n =-3+2·(-3)2+2·(-3)3+…+2·(-3)n-(2n -1)·(-3)n +1=-3+2·(-3)2[1-(-3)n -1]1+3-(2n -1)·(-3)n +1=32-4n -12·(-3)n +1. 所以S n =38-4n -18·(-3)n +1.运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错位相减,如本题先把①式两边同乘以-3得到②式,再把两式错位相减;三是注意符号,相减时要注意最后一项的符号.(2020·某某模拟)设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求数列{a n }的通项公式;(2)设b n =n a n,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a na n -1=3(n ≥2), 又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3,所以{a n }是首项为1,公比为3的等比数列, 所以a =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n .裂项相消法求和(师生共研)(2020·某某八所重点高中4月联考)设数列{a n }满足a 1=1,a n +1=44-a n(n ∈N +).(1)求证:数列{1a n -2}是等差数列; (2)设b n =a 2na 2n -1,求数列{b n }的前n 项和T n . 【解】 (1)证明:因为a n +1=44-a n ,所以1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n2a n -4-1a n -2=2-a n 2a n -4=-12,为常数. 因为a 1=1,所以1a 1-2=-1,所以数列{1a n -2}是以-1为首项,-12为公差的等差数列. (2)由(1)知1a n -2=-1+(n -1)(-12)=-n +12, 所以a n =2-2n +1=2nn +1, 所以b n =a 2n a 2n -1=4n2n +12(2n -1)2n =4n 2(2n -1)(2n +1)=1+1(2n -1)(2n +1)=1+12(12n -1-12n +1), 所以T n =b 1+b 2+b 3+…+b n=n +12(1-13+13-15+15-17+…+12n -1-12n +1)=n +12(1-12n +1)=n +n2n +1, 所以数列{b n }的前n 项和T n =n +n2n +1.利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ·⎝ ⎛⎭⎪⎫1a n -1a n +2,1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1(a n ≠0).1.数列{a n }满足a 1=1, a 2n +2=a n +1(n ∈N +).(1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1, 又由已知易得a n >0, 所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.2.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.并项求和(师生共研)(2020·某某八市重点高中联盟测评)已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6-2成等比数列.(1)求数列{a n }的通项公式;(2)记b n =(-1)na 2n +1a n a n +1,数列{b n }的前n 项和为S n ,求S 2n .【解】 (1)设等差数列{a n }的公差为d , 因为a 2+2,a 4,a 6-2成等比数列, 所以a 24=(a 2+2)(a 6-2),所以(a 3+d )2=(a 3-d +2)(a 3+3d -2),又a 3=3,所以(3+d )2=(5-d )(1+3d ),化简得d 2-2d +1=0,解得d =1, 所以a n =a 3+(n -3)d =3+(n -3)×1=n . (2)由(1)得,b n =(-1)na 2n +1a n a n +1=(-1)n 2n +1n (n +1)=(-1)n (1n +1n +1),所以S 2n =b 1+b 2+b 3+…+b 2n =-(1+12)+(12+13)-(13+14)+…+(12n +12n +1)=-1+12n +1=-2n2n +1.用并项求和法求数列的前n 项和一般是指把数列的一些项合并组成我们熟悉的等差数列或等比数列来求和.可用并项求和法的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n”;三是数列{a n }是周期数列.[提醒] 运用并项求和法求数列的前n 项和的突破口是会观察数列的各项的特征,如本题,数列{b n }的通项公式为b n =(-1)n2n +1n (n +1),易知数列{b n }是摆动数列,所以求和时可以将各项进行适当合并.(2020·某某某某二检)已知数列{a n }的前n 项和S n =n 2-2kn (k ∈N +),S n 的最小值为-9.(1)确定k 的值,并求数列{a n }的通项公式;(2)设b n =(-1)n·a n ,求数列{b n }的前2n +1项和T 2n +1.解:(1)由已知得S n =n 2-2kn =(n -k )2-k 2,因为k ∈N +,则当n =k 时,(S n )min =-k 2=-9,故k =3.所以S n =n 2-6n .因为S n -1=(n -1)2-6(n -1)(n ≥2),所以a n =S n -S n -1=(n 2-6n )-[(n -1)2-6(n -1)]=2n -7(n ≥2). 当n =1时,S 1=a 1=-5,满足a n =2n -7, 综上,a n =2n -7.(2)依题意,得b n =(-1)n ·a n =(-1)n(2n -7), 则T 2n +1=5-3+1+1-3+5-…+(-1)2n(4n -7)+(-1)2n +1[2(2n +1)-7]=5-=5-2n .数列与其他知识的交汇问题一、数列与不等式的交汇问题(2020·某某某某二模)设S n 是数列{a n }的前n 项和,且a 1=3,当n ≥2时,有S n+S n -1-2S n S n -1=2na n ,则使得S 1S 2…S m ≥2 019成立的正整数m 的最小值为________.【解析】 因为S n +S n -1-2S n S n -1=2na n (n ≥2), 所以S n +S n -1-2S n S n -1=2n (S n -S n -1)(n ≥2), 所以(2n +1)S n -1-(2n -1)S n =2S n S n -1(n ≥2). 易知S n ≠0,所以2n +1S n -2n -1S n -1=2(n ≥2).令b n =2n +1S n,则b n -b n -1=2(n ≥2),又b 1=3S 1=3a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列,所以b n =2n -1,所以2n +1S n =2n -1,所以S n =2n +12n -1.所以S 1S 2…S m =3×53×…×2m +12m -1=2m +1≥2 019,所以m ≥1 009.即使得S 1S 2…S m ≥2 019成立的正整数m 的最小值为1 009. 【答案】 1 009解决本题的关键:一是细观察、会构造,即通过观察所给的关于S n ,a n 的关系式,思考是将S n 往a n 转化,还是将a n 往S n 转化;二是会解不等式,把求出的相关量代入已知不等式,转化为参数所满足的不等式,解不等式即可求出参数的最小值.二、数列与三角函数的综合(2020·某某某某4月联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且3sin B -sin C b -a =sin A +sin B c .(1)求角A 的大小;(2)若等差数列{a n }的公差不为零,a 1sin A =1,且a 2,a 4,a 8成等比数列,b n =1a n a n +1,求数列{b n }的前n 项和S n .【解】 (1)由3sin B -sin C b -a =sin A +sin Bc ,根据正弦定理可得3b -c b -a =b +a c,即b 2+c 2-a 2=3bc , 所以cos A =b 2+c 2-a 22bc =32,由0<A <π,得A =π6.(2)由(1)知,A =π6,设数列{a n }的公差为d (d ≠0),因为a 1sin A =1,所以a 1sin π6=12a 1=1,解得a 1=2.因为a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ), 所以d 2=2d .又d ≠0,所以d =2,则a n =2n ,b n =1a n a n +1=12n (2n +2)=14(1n -1n +1),则S n =14[(1-12)+(12-13)+…+(1n -1n +1)]=14(1-1n +1)=n 4n +4.破解数列与三角函数相交汇问题的策略:一是活用两定理,即会利用正弦定理和余弦定理破解三角形的边角关系;二是会用公式,即会利用等差数列与等比数列的通项公式求解未知量;三是求和方法,针对数列通项公式的特征,灵活应用裂项相消法、分组求和法、错位相减法等求和.三、数列与函数的综合(2020·某某某某5月联考)已知等差数列{a n }的前n 项和为S n ,公差d >0,a 6和a 8是函数f (x )=154ln x +12x 2-8x 的极值点,则S 8=( )A .-38B .38C .-17D .17【解析】 因为f (x )=154ln x +12x 2-8x ,所以f ′(x )=154x +x -8=x 2-8x +154x=(x -12)(x -152)x,令f ′(x )=0,解得x =12或x =152.又a 6和a 8是函数f (x )的极值点,且公差d >0, 所以a 6=12,a 8=152,所以⎩⎪⎨⎪⎧a 1+5d =12,a 1+7d =152,解得⎩⎪⎨⎪⎧a 1=-17,d =72.所以S 8=8a 1+8×(8-1)2×d =-38,故选A.【答案】 A破解数列与函数相交汇问题的关键:一是会利用导数法求函数的极值点;二是会利用等差数列的单调性,若公差大于0,则该数列单调递增,若公差小于0,则该数列单调递减,若公差等于0,则该数列是常数列,不具有单调性;三是会利用公式法求和,记清等差数列与等比数列的前n 项和公式,不要搞混.四、数列中的新定义问题(2020·某某模拟)数列{a n }的前n 项和为S n ,定义{a n }的“优值”为H n =a 1+2a 2+…+2n -1a n n,现已知{a n }的“优值”H n =2n,则S n =________.【解析】 由H n =a 1+2a 2+…+2n -1a n n=2n,得a 1+2a 2+…+2n -1a n =n ·2n ,①当n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)2n -1,②由①-②得2n -1a n =n ·2n -(n -1)2n -1=(n +1)2n -1,即a n =n +1(n ≥2),当n =1时,a 1=2也满足式子a n =n +1, 所以数列{a n }的通项公式为a n =n +1, 所以S n =n (2+n +1)2=n (n +3)2.【答案】n (n +3)2破解此类数列中的新定义问题的关键:一是盯题眼,即需认真审题,读懂新定义的含义,如本题,题眼{a n }的“优值”H n =2n的含义为a 1+2a 2+…+2n -1a n n=2n;二是想“减法”,如本题,欲由等式a 1+2a 2+…+2n -1a n =n ·2n 求通项,只需写出a 1+2a 2+…+2n -2a n -1=(n -1)·2n -1,通过相减,即可得通项公式.五、数列中的新情境问题(2020·某某六校第二次联考)已知{a n }是各项均为正数的等比数列,且a 1+ a 2=3,a 3-a 2= 2,等差数列{b n }的前n 项和为S n ,且b 3=5,S 4=16.(1)求数列{a n },{b n }的通项公式;(2)如图,在平面直角坐标系中,有点P 1(a 1,0),P 2(a 2,0),…,P n (a n ,0),P n +1(a n +1,0),Q 1(a 1,b 1),Q 2(a 2,b 2),…,Q n (a n ,b n ),若记△P n Q n P n +1的面积为,求数列{}的前n 项和T n .【解】 (1)设数列{a n }的公比为q ,因为a 1+a 2=3,a 3-a 2=2,所以⎩⎪⎨⎪⎧a 1+a 1q =3,a 1q 2-a 1q =2,得3q 2-5q -2=0,又q >0, 所以q =2,a 1=1,则a n =2n -1.设数列{b n }的公差为d ,因为b 3=5,S 4=16,所以⎩⎪⎨⎪⎧b 1+2d =5,4b 1+6d =16,解得⎩⎪⎨⎪⎧b 1=1,d =2,则b n =2n -1.(2)由(1)得P n P n +1=a n +1-a n =2n -2n -1=2n -1,P n Q n =b n =2n -1,故=S △P n Q n P n +1=2n -1(2n -1)2=(2n -1)2n -2,则T n =c 1+c 2+c 3+…+=12×1+1×3+2×5+…+(2n -1)2n -2,① 2T n =1×1+2×3+4×5+…+(2n -1)2n -1,②由①-②得,-T n =12+2(1+2+…+2n -2)-(2n -1)·2n -1=12+2(1-2n -1)1-2-(2n -1)2n -1=(3-2n )2n -1-32,故T n =(2n -3)2n -1+32(n ∈N +).数列中新情境问题的求解关键:一是观察新情境的特征,如本题中的各个直角三角形的两直角边长的特征;二是会转化,如本题,把数列{}的通项公式的探求转化为直角三角形的两直角边长的探求;三是活用数列求和的方法,如本题,活用错位相减法,即可得数列{}的前n 项和.[基础题组练]1.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16解析:选A.S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.在数列{a n }中,a 1=2,a 2=2,a n +2-a n =1+(-1)n,n ∈N +,则S 60的值为( ) A .990 B .1 000 C .1 100D .99解析:选A.n 为奇数时,a n +2-a n =0,a n =2;n 为偶数时,a n +2-a n =2,a n =n .故S 60=2×30+(2+4+…+60)=990.3.已知函数f (x )=a x+b (a >0,且a ≠1)的图象经过点P (1,3),Q (2,5).当n ∈N +时,a n =f (n )-1f (n )·f (n +1),记数列{a n }的前n 项和为S n ,当S n =1033时,n 的值为( )A .7B .6C .5D .4解析:选D.因为函数f (x )=a x+b (a >0,且a ≠1)的图象经过点P (1,3),Q (2,5),所以⎩⎪⎨⎪⎧a +b =3,a 2+b =5,所以⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =4(舍去),所以f (x )=2x+1,所以a n =2n+1-1(2n +1)(2n +1+1)=12n +1-12n +1+1, 所以S n =⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-19+…+ ⎝ ⎛⎭⎪⎫12n +1-12n +1+1=13-12n +1+1, 令S n =1033,得n =4.故选D.4.(2020·某某某某期末)在数列{a n }中,若a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N +),则该数列的前100项之和是( )A .18B .8C .5D .2解析:选C.因为a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N +),所以a 3=3-1=2,a 4=2-3=-1,a 5=-1-2=-3,a 6=-3+1=-2,a 7=-2+3=1,a 8=1+2=3,a 9=3-1=2,…,所以{a n }是周期为6的周期数列,因为100=16×6+4,所以S 100=16×(1+3+2-1-3-2)+(1+3+2-1)=5.故选C.5.已知数列{a n }满足a 1=1,a n +1·a n =2n(n ∈N +),则S 2 018等于( ) A .22 018-1B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B.a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,所以a n +2a n=2.所以a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,所以S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.故选B.6.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.解析:因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2.因此S 2 017=S 2 016+a 2 017=(a 1+a 2+a 3+a 4)+…+(a 2 009+a 2 010+a 2 011+a 2 012)+(a 2 013+a 2 014+a 2 015+a 2 016)+a 2 017=2 0164×2+a 1=1 008.答案:1 0087.(2020·某某三湘名校(五十校)第一次联考)已知数列{a n }的前n 项和为S n ,a 1=1.当n ≥2时,a n +2S n -1=n ,则S 2 019=________.解析:由a n +2S n -1=n (n ≥2),得a n +1+2S n =n +1,两式作差可得a n +1-a n +2a n =1(n ≥2),即a n +1+a n =1(n ≥2),所以S 2 019=1+2 0182×1=1 010.答案:1 0108.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N +),记T n=1S 1+1S 2+…+1S n(n ∈N +),则T 2 018=________.解析:由a n +2-2a n +1+a n =0(n ∈N +),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n (a 1+a n )2=n (n +1)2,所以1S n=2n (n +1)=2(1n -1n +1),T n =1S 1+1S 2+…+1S n =2(11-12+12-13+…+1n -1n +1)=2(1-1n +1)=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019. 答案:4 0362 0199.已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n4(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =4na n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n4①,所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N +) ②,①-②得4n -1a n =14(n ≥2,n ∈N +),所以a n =14n (n ≥2,n ∈N +).由于a 1=14,故a n =14n (n ∈N +).(2)由(1)得b n =4na n 2n +1=12n +1,所以b n b n +1=1(2n +1)(2n +3)=12(12n +1-12n +3),故T n =12(13-15+15-17+…+12n +1-12n +3)=12(13-12n +3)=n 6n +9. 10.已知数列{a n }的前n 项和为S n ,S n =3a n -12.(1)求a n ;(2)若b n =(n -1)a n ,且数列{b n }的前n 项和为T n ,求T n . 解:(1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1(n ≥2),② ①-②得,2(S n -S n -1)=3a n -3a n -1, 化简得a n =3a n -1(n ≥2), 在①中,令n =1可得,a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列, 从而有a n =3n -1.(2)b n =(n -1)3n -1,T n =0×30+1×31+2×32+…+(n -1)×3n -1,③则3T n =0×31+1×32+2×33+…+(n -1)×3n.④ ③-④得,-2T n =31+32+33+…+3n -1-(n -1)×3n=3-3n1-3-(n -1)×3n =(3-2n )×3n-32.所以T n =(2n -3)×3n+34.[综合题组练]1.(2020·某某五个一名校联盟第一次诊断)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 018项的和为( )A .1 008B .1 009C .2 017D .2 018解析:选D.设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,所以数列{a n cos n π}的前 2 018项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 017+b 2 018)=2×2 0182=2 018.故选D.2.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76B .78C .80D .82解析:选B.由已知a n +1+(-1)na n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,两式相减得a n +2+a n =(-1)n·(2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.已知数列{a n },若a n +1=a n +a n +2(n ∈N +),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则数列{b n }的前2 019项和为________.解析:由“凸数列”的定义及b 1=1,b 2=-2,得b 3=-3,b 4=-1,b 5=2,b 6=3,b 7=1,b 8=-2,…,所以数列{b n }是周期为6的周期数列,且b 1+b 2+b 3+b 4+b 5+b 6=0,于是数列{b n }的前2 019项和等于b 1+b 2+b 3=-4.答案:-44.(2020·某某质量监测)已知数列{a n }和{b n }满足a 1a 2a 3…a n =2b n (n ∈N +),若数列{a n }为等比数列,且a 1=2,a 4=16,则数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =________.解析:因为{a n }为等比数列,且a 1=2,a 4=16,所以公比q =3a 4a 1=3162=2,所以a n =2n ,所以a 1a 2a 3…a n =21×22×23×…×2n =21+2+3+…+n=2n (n +1)2.因为a 1a 2a 3…a n =2b n ,所以b n =n (n +1)2.所以1b n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.所以⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =b 1+b 2+b 3+…+b n=2⎝ ⎛⎭⎪⎫11-12+12-13+13-14+…+1n -1n +1=2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 答案:2n n +15.已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)·(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n4na n a n +1=(-1)n(12n -1+12n +1), 当n 为偶数时,T n =-(1+13)+(13+15)-(15+17)+…-(12n -3+12n -1)+(12n -1+12n +1),所以T n =-1+12n +1=-2n2n +1. 当n 为奇数时,T n =-(1+13)+(13+15)-(15+17)+…+(12n -3+12n -1)-(12n -1+12n +1), 所以T n =-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数-2n +22n +1,n 为奇数.。

课题:数列的综合应用之数列与不等式 教案

课题:数列的综合应用之数列与不等式 教案

数列的综合应用——数列与不等式厦门市海沧中学 韩耀辉一、高考定位1. 数列与不等式的知识通常以交汇的形式在解答题中加以考查,涉及数列概念,等差数列、等比数列的概念,通项公式和前n 项的和,常见数列的求和方法,函数与导数、不等式的知识;2.考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)解答数列与不等式的综合问题,要善于综合运用函数与方程思想、化归转化思想,分类与整合等数学思想来分析、解决问题.需要具备较高的运算求解能力,推理论证能力.二、复习目标1.复习数列概念,等差数列、等比数列的定义、通项公式、前n 项和公式和简单性质.以及一些特殊数列求和方法;2.会用数列的性质和不等式的基本性质或应用函数与方程的思想方法,如函数的单调性、最值等解决数列中的不等式问题;培养学生主动探索的精神和科学理性的思维方法.三、教学重点1.能总结知识点、解题思路和思想方法,引导学生整理归纳;2.正确应用函数导数、放缩法等解决数列和不等式的问题. 四、教学难点应用函数导数、放缩法等方法解决数列和不等式的问题. 五、教学过程一)预习展示,梳理总结(学生整理,老师引导)(1)知识点; (2)思想方法; (3)数学能力; (4)点评预习中的亮点. 二)引例讲解例1 已知:数列{}n a 的前n 项和()13312n n S n N -*⎛⎫=⋅-∈ ⎪⎝⎭(Ⅰ)试求{}n a 的通项公式,并说明{}n a 是否为等比数列; (Ⅱ)设数列{}n b 满足1312log n n n a b a ++=,求n b 的最小值.解:(I )1n =时,113112a S ==⨯-=2n ≥时,12113333()3()()222n n n n n n a S S ----===⨯-⨯= 12 1 3() 2 2n n n a n -=⎧⎪=⎨≥⎪⎩11132()2a -=≠∴ {}n a 不是等比数列(II )13123()2log nn n n a b a n++==,11333()()1332222()()()()12(1)22(1)n n n n n n n n n b b n n n n n n ++---∴-=-==+++ ∴当2n ≤时有:11230,>n n b b b b b +-≤=即当 2n >时有:13450,n n b b b b b +-><<< 即……; n b ∴的最小值为2398b b ==例2 已知函数()x f x a a x =-⋅,e a …,e 2.71828=⋅⋅⋅为自然对数的底数. (Ⅰ)当e a =时,求函数f (x )在点(1,(1))f 处的切线方程; (Ⅱ)设*n ∈N ,比较(1)ln 2n n a +与ln(1)ln(21)ln(31)ln(1)a a a na -+-+-++-的大小,并加以证明.解:(Ⅰ)当e a =时,函数()e e x f x x =-⋅,则()e e x f x '=-,1分所以(1)0f '=,且(1)0f =, 2分 于是f (x )在点(1,(1))f 处的切线方程为(1)(1)(1)y f f x '-=⋅-, 3分 故所求的切线方程为0y =. 4分 (Ⅱ)解法一:*(1)ln ln(1)ln(21)ln(31)ln(1)()2n n a a a a na n +>-+-+-++-∈N . 5分理由如下:因为e a …,构造函数()1(,[1,))x u x a ax a e x =-+≥∈+∞, 6分 所以()ln x u x a a a '=-,因为e a …,所以ln ln 1a e =…,所以()ln x x u x a a a a a '=->-0…. 7分所以函数()1x u x a ax =-+在[1,)+∞上单调递增,且(1)1u a a =-+1=0>, 所以()(1)0u x u >…, 9分即当[1,)x ∈+∞,且e a …时,10x a ax -+>恒成立,所以1x a ax >-. 10分取x n =*()n ∈N ,得1n a na >-成立. 11分 所以23(1)(21)(31)(1)n a a a a a a a na ⋅⋅⋅⋅>----, 12分 所以(1)2(1)(21)(31)(1)n n a a a a na +>----,13分所以*(1)ln ln(1)ln(21)ln(31)ln(1)()2n n a a a a na n +>-+-+-++-∈N 成立. 14分解法二:*(1)ln ln(1)ln(21)ln(31)ln(1)()2n n a a a a na n +>-+-+-++-∈N . 5分理由如下:因为e a …, 欲证*(1)ln ln(1)ln(21)ln(31)ln(1)()2n n a a a a na n +>-+-+-++-∈N 成立,只需证(1)2(1)(21)(31)(1)n n a a a a na +>----*()n ∈N ,只需证23(1)(21)(31)(1)n a a a a a a a na ⋅⋅⋅⋅>----, 6分即证1n a na >-*()n ∈N . 8分 用数学归纳法证明如下: ①当1n =时,1a a >-成立, ②当n k =时,假设1k a ka >-成立,9分那么当1n k =+时,1k k a a a +=⋅ (1)ka a >-⋅,下面只需证明(1)(1)1ka a k a -⋅>+-, 10分 只需证明2()21k a a a ->-,因为e a …,所以20a a ->,所以只需证明221a k a a->-, 所以只需证明2211a a a->-,只需证明(3)1a a ->-, 只需证明2310a a -+>对e a …恒成立即可. 11分 构造函数2()31(e)h a a a a =-+…, 因为235()()24h a a =--在[,)e +∞单调递增,所以235()()()024h a h e e ≥=-->. 12分所以当1n k =+时,1(1)1k a k a +>+-成立, 由①和②可知,对一切n ∈*N ,1n a na >-成立. 13分所以当a e ≥时,*(1)ln ln(1)ln(21)ln(31)ln(1)()2n n a a a a na n +>-+-+-++-∈N 成立. 14分三)课堂练习数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意*n ∈N ,总有,n a n S ,2n a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)正数数列{}n b 中,()11,n n n a b ++=()*n ∈N ,求数列{}n b 中的最大项.解:(Ⅰ)由题意可知,对于对于任意*n ∈N ,总有22n n n S a a =+①成立∴21112n n n S a a ---=+()2n ≥ ②①-②得22112n n n n n a a a a a --=+--∴()()111n n n n n n a a a a a a ---+=+- ∵数列{}n a 的各项均为正数 ∴11n n a a --=()2n ≥又1n =时,21112S a a =+,解得11a =∴数列{}n a 是以1为首项和公差的等差数列,且n a n =(Ⅱ) 由题意可知2212a b ==得到1b = 3323a b ==得到2b4434a b ==得到3b , 5545a b ==得到4b =归纳可得 12,c c <2345c c c c >>>>猜想2n ≥时,数列{}n b 是递减数列,证明如下令ln (),x f x x =则21ln ()xf x x -'= ∵当3x ≥时,ln 1x >,()0f x '< ∴在[)3,+∞ 内函数()f x 单调递减。

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)利用导数证明数列不等式是高考中常见的题型,可以考查学生灵活运用知识的能力。

这种题型一方面以函数为背景,让学生探究函数的性质;另一方面,体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为有具体特征的数列。

可以说,这种题型涉及到函数、导数、数列和不等式,是一题多考的巧妙结合,也是近年来高考的热门题型。

常见的题型有两种类型:一种是利用放缩通项公式解决数列求和中的不等问题,另一种是利用递推公式处理通项公式中的不等问题。

恒成立不等式的来源主要有两种:一是函数的最值,最值可以提供XXX成立的不等式;二是恒成立问题的求解,参数范围内的值均可提供恒成立不等式。

常见的恒成立不等式有lnxx+1.关于前n项和的放缩问题,求数列前n项公式往往要通过数列的通项公式来解决。

高中阶段求和的方法有倒序相加、错位相减、等比数列求和公式和裂项相消。

在处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,应优先考虑。

对于数列求和不等式,要从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。

在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向。

放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)。

数列不等式也可考虑利用数学归纳法进行证明。

经典例题是已知函数f(x)=kx-xlnx,求函数f(x)的单调区间、当<x≤1时,f(x)≤k恒成立的k的取值范围,以及证明ln1ln2+23+lnnn(n-1)≤n+14.1.已知函数$f(x)=\ln(ax+1)(x\geq0,a>0)$,$g(x)=x-\frac{x^3}{3}$。

1)讨论函数$y=f(x)-g(x)$的单调性;2)若不等式$f(x)\geq g(x)+1$在$x\in[0,+\infty)$时恒成立,求实数$a$的取值范围;3)当$a=1$时,证明:frac{1}{1\cdot3\cdot5\cdots(3572n+1)}+\frac{1}{2\cdot4\cd ot6\cdots(3572n+2)}+\cdots+\frac{1}{(2n-1)(2n+1)}<f^{(n)}(n)(n\in N^*),$$其中$f^{(n)}(n)$表示$f(x)$的$n$阶导数在$x=n$处的值。

运用导数解题探析

运用导数解题探析
! l J 】 1 上
说明:一般地,欲b f( ) g x, ∈ ,) Y x ( ) b 可等价转换为 _ z
F x =f x一 () 0若F() 0则函 () () gx > . x > , 数F x在 z (,) () ∈ 口b上
是增函数,如果F() 0 由增函数的定义可知,当z 口b 时, F 口 , ∈( ,) 有
在 高等数 学 这 门课 中,导 数及 导数 的运 用是 一 个重 要 内容 ,处 于一种 特 殊 的地 位 ,是与 中学知 识 的一个 重 要交 汇 点 ,是联 系 很多 相 关数 学知 识及 解 决有 关 问题 的重 要 工具 。 导数 知识 的运 用 在数 学 中是 非常 广泛 的 ,下 面谈 谈
二 、导 数在 解析 几何 方面 的应 用
例 5.讨论 曲线Y=4 n I +k与Y=4 x+I 的交点个数 。 n 分析:问题等价于讨论方程 h 一41 a nx+4 x—k=0有几个不 同的实根 。
根据导数的几何意义,函数在点 处的导数就是曲线在点 p(o X) oX, o f( 处的切线的斜率 。因此,在解析几1中有关涉及切线问题的知识,也可通过 茸
l < <e ;e 3 4 5 ’ 2 eP >3 >4 >5 >… 即a = +3 n )
减 数列 。
=0l , 为单调 , 2 …) ,
() F() . () g > 口 0 即f x > ()
四 、导数 在讨 论 方程 的根 的运 用
说 明 :此题 巧妙 运用 求 导数 的方 法 ,找 出函数 的 单调 区 间,进 而判 断 出 给 出数 列 的单调 性 。
令 f x =(+ ) O+ ) ac n ,则f 0 : () 1 ' 一 rt x n a () 0

导数压轴7-利用函数单调性证明数列型不等式教师

导数压轴7-利用函数单调性证明数列型不等式教师

1 第七课:利用函数单调性证明数列型不等式利用导数来证明不等式,通常应从需要证明的结论入手。

一.如果所需证明不等式其中一边是数列求和的形式,但不能直接求和,那么证明大概分为以下几步:1. 将不等号两侧都化为求和形式,如果是乘积的并且出现e 的指数次幂的考虑取对数2. 将左右两侧的求和形式化为∑ a n< ∑b n的形式,找到a n 和b n 的通项公式3. 将n 换成 x 〔或其它 x 的表达式〕,利用导数证明a n < b n 例1. 函数 f (x ) = 1ax 2- ln x (x > 0) ,证明: 1 + .... + 1 >n -12对话与解答:ln 2 ln n n +111 首先不等式左边已经是求和的形式 + .... +一共n -1项,右边的 n -1 可变为ln 2 ln n n +11 + 1 + ... + 1 ,这样我们刚好把左右两边变为相同项数(n -1项) 的两个不同的数 n + 1 n + 1 n +1 n -1个1 1列,接下来写出通项公式,其中a k = ln k ,b k = n +1.下一步应该比拟两边通项大小,要证明原不等式,即证 > 1 (k ≤ n ) ,且k ∈ N *, n ∈ N *,而 11 1,可通过证明ln k n +1 ln k ln n ln n> 1 n +1 1 来得到结果,要证 ln n > 1n +1,即证n +1- ln n > 0 ,设 f (x ) = x +1- ln x ,其中x > 0 ,通过求导找 f (x ) 最小值:f '(x ) = 1- 1,当1 > x > 0 时,f '(x ) < 0 , f (x ) 单调递减,x当 x > 1 时, f '(x ) > 0 , f (x ) 单调递增。

∴ f (x ) ≥ f (1) > 0 在 x > 0 恒成立, ∴n +1- ln n > 0∴ 1 ln n > 1 n +1∴ 1 + .... + 1 n -1 n -1 > > ,证毕 ln 2 ln n ln n n +1例2. 设m 为整数,且对于任意正整数n ,(1+ 1)(1+ 1 ) (1)1) < m ,求m 的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和在证明导数类不等式中的应用
例1.已知函数()()ln 3f x a x ax a R =--∈
(1)讨论函数)(x f 的单调性;
(2)证明:*1111ln(1)()23n n N n +
+++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ⋅⋅⋅<≥∈ (4)证明:()*22222ln 2ln3ln 4ln5ln 112,23452n n n n n N n n +⎛⎫⋅⋅⋅<⋅≥∈ ⎪⎝⎭
(5)证明:()444442*44444ln 2ln 3ln 4ln 5ln (1)2,23454n n n n N n n
+⋅⋅⋅<≥∈ (6)求证:()()()
()222222121ln 2ln3ln ...2,2321n n n n n N n n *-++++<≥∈+ (7)求证:()22221111111...12482n e n N *⎛
⎫⎛⎫⎛⎫⎛⎫++++<∈ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
例2.已知函数()ln 1f x x x =-+。
(1)求()f x 的最大值;
(2)证明不等式:()*121n n n n e n N n n n e ⎛⎫⎛⎫⎛⎫+++<∈ ⎪ ⎪ ⎪-⎝⎭⎝⎭
⎝⎭
例3.已知函数()()2ln 1f x x x =-+
(1)当0x >时,求证:()3
;f x x < (2)当n N *∈时,求证:
()33311111511...23421n
k f k n n n =⎛⎫<++++≤- ⎪+⎝⎭∑
例4.设函数()2
()ln(1)0f x x m x m =++≠ (1)若12m =-,求)(x f 的单调区间;
(2)如果函数)(x f 在定义域内既有极大值又有极小值,求实数m 的取值范围;
(3)求证:对任意的*N n ∈,不等式311ln n
n n n ->+恒成立。
例5.已知函数()ln(1)(1)1()f x x k x k =---+∈R ,
(1)求函数()f x 的单调区间;
(2)若()0f x ≤恒成立,试确定实数k 的取值范围;
(3)证明:
ln 2ln 3ln (1)3414n n n n -+++<+(),1n N n ∈>.
例6.已知函数)0()(>++=a c x
b ax x f 的图像在点))1(,1(f 处的切线方程为1-=x y 。
(1)用a 表示出c b ,;
(2)若x x f ln )(≥在),1[+∞上恒成立,求a 的取值范围;
(3)证明:)1()
1(2)1ln(131211≥+++>++++
n n n n n .
例7.已知函数2()2ln 1f x a x x =-+。
(1)当1a =时,求函数()f x 的单调区间及()f x 的最大值;
(2)令()()g x f x x =+,若()g x 在定义域上是单调函数,求a 的取值范围; (3)对于任意的*2,n n N ≥∈,试比较22222ln 2ln 3ln 4ln 5ln n +++++与232(1)n n n n --+的大小并证明你的结论。
例8.已知函数1ln(1)()(0)x f x x x
++=> (1)函数()f x 在区间(0,)+∞上是增函数还是减函数?证明你的结论。
(2)当0x >时,()1
k f x x >+恒成立,求整数k 的最大值; (3)试证明:23*(112)(123)(134)(1(1))().n n n e n N -+⨯+⨯+⨯+⨯+>∈
例9.已知函数()()ln 0f x x a x a =-->
(1)若1a =,求()f x 的单调区间及()f x 的最小值; (2)若0a >,求()f x 的单调区间;
(3)试比较()()()
()222222121ln 2ln3ln ...2,2321n n n n n N n n *-++++≥∈+与的大小,并证明。
例10.已知函数()()()ln ,a f x x g x x a R x
==+∈, (1)若1x ≥时,()()f x g x ≤恒成立,求实数a 的取值范围。
(2)求证:
()ln 2ln 3ln 12,341n n n N n n
*⋅<≥∈+
例11.已知函数()2ln f x x x ax =+- (1)若函数()f x 在其定义域上为增函数,求a 的取值范围;
(2)设()11n a n N n
=+
∈*,求证:()()22212123...ln 12n n a a a a a a n n +++----<++L
例12.设各项为正的数列{}n a 满足111,ln 2,n n n a a a a n N +==++∈*.求证:21n n a ≤-.。

相关文档
最新文档