2018年江苏省兴华初三第一次网上阅卷适应性训练数学试卷

合集下载

2018年初三中考适应性测试数学试卷

2018年初三中考适应性测试数学试卷

2018 学年初中学业水平考试适应性测试数学试题卷注意事项:(全卷共三个大题,23 个小题,共4 页,满分120 分,考试时间120 分钟)1.考生必须把所有答案填写在答题卷上,答在试题卷上的答案无效。

2.考生必须按规定的方法和要求答题,不按要求答题所造成的后果由本人自负。

3.考试结束后,将答题卷交回,试题卷自己保管,以便讲评。

一、选择题(本大题共8 个小题,每小题只有一个正确选项,每小题4 分,满分32 分)1.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000 用科学记数法可表示为()A. 0.13×105B. 1.3×104C. 1.3×105D.13×1032.如图所示的几何体是由五个小正方体组成的,它的左视图是( )3.下列运算正确的是( )A. x2 +x3 =x5B. (x-2)2 =x2 -4C. 2x2 ⋅x3 = 2x5D. (x3)4=x74.八年级某同学6 次数学小测验的成绩分别为80 分,85 分,95 分,95 分,95 分,100 分,则该同学这6 次成绩的众数和中位数分别是()A. 95 分,95 分B. 95 分,90 分C. 90 分,95 分D. 95 分,85 分5. 下面四个手机应用图标中是轴对称图形的是()A. B. C. D.6. 已知关于x的一元二次方程(m-1)x2 +x+1=0有实数根,则m 的取值范围是()A. m≤54 B. m≤54且m≠1 C. m<54. D m<54,且m≠17.已知 A,B 两地相距 48 千米,一艘轮船从 A 地顺流航行至 B 地,又立即从 B 地逆流返回 A 地,共用去 9 小时.若水流速度为 4 千米/时,设该轮船在静水中的速度为 x 千米/时,则由题意列出的方程为( )A.4848944x x+=+- B.4848944x x+=+- C.4849x+=D9696944x x+=+-8.如图,矩形 ABCD 中,O 为 AC 中点,过点 O 的直线分别与 AB ,CD 交于点 E ,F ,连 接 BF 交 AC 于点 M ,连接 DE ,BO .若∠COB = 60°,FO = FC ,则下列结论:①FB⊥OC, OM = CM ; ②△EOB ≌△CMB ;③MB : OE = 3 : 2;④四边形 EBFD 是菱形.其中正确结论 是( )A .①②③ B.②③④ C .①④ D.①③④二、填空题(本大题共 6 小题,每题 3 分,共 18 分) 9. 32-的倒数是 10.不等式组4342x x --⎧⎨⎩f f 的解集为 11.函数 yx 的取值范围是 12.分解因式: x 3 - 9x = .13.如图,在矩形 ABCD 中, AB = 5 , AD = 3 .矩形 ABCD 绕着点 A 逆时针旋转一定角度得到矩形 AB 'C 'D ' .若点 B 对应点 B ' 落在边 CD 上,则 B 'C 的长为 .14.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴 影,依此规律,第 n 个图案中有 个涂有阴影的小正方形.(用含有 n 的代数式表示)三、解答题(本大题共 9 小题,共 70 分)15、(每题 5 分,共 10 分)(1)计算:0101( 3.14))12cos 452π--+--(- (2) 先化简2221()211x x x x x x+÷--+-,再求值,请你从-1≤x<3 的范围内选取一个你喜欢的整 数作为 x 的值.16.(本题 5 分)如图,点 B 在 AE 上,点 D 在 AC 上,AB=AD .请你添加一个适当的条件,使 △ABC≌△ADE(只能添加一个). (1)你添加的条件是 . (2)添加条件后,请说明△ABC≌△ADE 的理由.17.(本题 8 分)某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校 一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的 数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题: (1)在这次问卷调查中,一共抽查了 名学生;(2)请将上面两幅统计图补充完整;(3)图 ① 中,“踢毽”部分所对应的圆心角为 度;(4)如果全校有 1860 名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?18.(本题 6 分)端午节吃粽子是中华民族的传统习俗,据了解,甲厂家生产了 A ,B ,C 三个品种的盒装粽子,乙厂家生产 D ,E 两个品种的盒装粽子,端午节前,某商场在甲乙两个 厂家中各选购一个品种的盒装粽子销售.(1)试用树状图或列表法写出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的 B 品种粽子被选中的 概率是多少?19.(本题 7 分)如图,小明在自家楼房的窗户 A 处,测量楼前的一棵树CD 的高.现测得树顶 C 处的俯角为 45°,树底 D 处的俯角为 60°,楼底到大树的距离 BD 为 20 m .请你帮助小明计算树的高度.(精确到 0.1m )20.(本题 8 分)某特产专卖店销售“中江柚”,已知“中江柚”的进价为每个 10 元,现在的 售价是每个 16 元,每天可卖出 120 个,市场调查反映:如果调整价格,每涨价 1 元,每天要 少卖出 10 个;每降价 1 元,每天可多卖出 30 个.(1)如果专卖店每天想要获得 770 元的利润,且要尽可能的让利给顾客,那么售价应涨多 少元? (2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润.21、(本题 9 分)如图,直线 y=kx+b 与反比例函数 y= 2x(x <0)的图象交于点 A(-1,m ),与 x 轴交于点 B(1,0).(1)求 m 的值;(2)求直线 AB 的解析式;(3)若直线 x=t (t >1)与直线 y=kx+b 交于点 M ,与 x 轴交于点 N ,连接 AN ,32AMN S ∆=求 t 的值.22.(本题 8 分)如图,在△BCE 中,点 A 是边 BE 上一点,以 AB 为直径的⊙O 与 CE 相切于点 D ,AD∥OC,点 F 为 OC 与⊙O 的交点,连接 AF.(1)求证:CB 是⊙O 的切线;(2)若∠ECB=60°,AB =6,求图中阴影部分的面积.23(本题 9 分).如图,直线 y =3x - x 轴、y 轴交于点 A 、B ,⊙E 经过原点O 及A 、B 两点.(1)C 是⊙E 上一点,连结 BC 交 OA 于点 D ,若∠COD=∠CBO,求点 A 、B 、C 的坐标;(2)求经过O 、C 、A 三点的抛物线的解析式:(3)若延长 BC 到 P ,使 DP =2,连结 AP ,试判断直线 PA 与⊙E 的位置关系,并说明理由.。

2018届中考数学适应性试题含答案

2018届中考数学适应性试题含答案

2018届中考数学适应性试题本试卷分为试题卷和答题卡两部分,试题卷共4页,答题卡共6页.满分140分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考号用0.5毫米黑色签字笔填写在答题卡上,并认真核对条形码上的姓名、考号.2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后再选涂其它答案;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.考试结束后将答题卡收回.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.的相反数是A.2B.C.-2D.2. 下列计算正确的是A.x 2+x 3=2x 5B. x 2·x 3=2x 6C.(-x 3)2 =-x 6D. x 6÷x 3=x 3 3. 剪纸是中国的民间艺术。

剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):如图所示的四副图案,不能用上述方法剪出的是A. B. C. D.4. “嫦娥三号”探月器在月球表面着陆前,要随时精确测量探月器与月球表面的距离,以便计算控制探月器的速度,测量采用的是激光测距仪测算距离,从探月器上发出的激光经过6×10-4秒到达月球表面,已知光在太空中的传播速度约为3.2×108米/秒,则此时探月器与月球表面之间的距离用科学记数法表示为A .米B .米C .米D .米2-2121-4102.19⨯41092.1⨯51092.1⨯5102.19⨯5. 由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是A. 左视图与俯视图相同B. 左视图与主视图相同C. 主视图与俯视图相同D. 三种视图都相同 6.若一个圆锥的母线长是它底面半径的3倍,则它的侧面展开图的圆心角等于10. 如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,AB =,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若EF =2,∠H =120°,则DN 的长为( )A .B .C .D .11.为了考察冰川的融化状况,一支科考队在某冰川上设定一个以大本营O 为圆心,半径为4km 的圆形考察区域,线段P 1P 2是冰川的部分边623236 3-66-3212.二次函数的图象如图,下列不等关系中分析错误的是A. B.C. D.第Ⅱ卷(非选择题,共104分)二、填空题:13.分解因式:=____________14.如图,在平面直角坐标系xOy 中,△A′B′C′由△ABC绕点P 旋转得到,则点P 的坐标为_____________15.△ABC 中,AB=AC ,DE 为AB 边上的垂直平分线,垂足为D ,交另一边于E,若∠BED=65°,则∠A=______________16.已知函数,,则使不等式成立的的范围是______________.17.如图1,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图2017中有2017个直角三角形的内切圆,它们的面积分别记为S 1,S 2,S 3,…,S 2017,则S 1+S 2+S 3+…+S 2017=___________.c bx ax y ++=203>+b a 02<++c b a 04>++c b a 03<+-c b a 24129ax ax a -+21+=x y 3212+-=x y 21y y >x18. 如图,边长为a 的正六边形内有两个斜边长为a ,一个角为60°的直角三角形(数据如图),则S 阴影:S 空白的值为__________.19.计算:(1)(2)解方程:求所抽样的学生植树数量的平均数;棵的记为“表现优秀”,试根据抽样数据,估计该校120021.如图,在矩形OABC 中,OA =3,OC =2,F是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数的图象与BC 边交于点E . ⑴当F 为AB 的中点时,求该函数的解析式;⑵当k 为何值时,△EFA 的面积最大,最大面积是多少?22.已知:如图,AB 为⊙O 的直径,AB ⊥AC ,BC 交⊙O 于D ,E 是AC 的中点,ED 与AB 的延长线相交于点F .(1)求证:DE 为⊙O 的切线。

2018年初三一诊考试数学试卷及答案

2018年初三一诊考试数学试卷及答案

2018年初三一诊考试数学试题答案及解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.5B.C.﹣D.﹣52.(3分)已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm33.(3分)如图,立体图形的俯视图是()A.B.C.D.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°(6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.47.3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1B.2C.﹣7D.08.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为△x,AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:9a3b﹣ab=.10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.11.(3分)已知一组数据:3,3,4,5,5,则它的方差为.12.(3分)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商F (品共支付 16 元,B 购 5 件甲商品和 3 件乙商品共支付 25 元,求一件甲商品和一件乙商品各售多少元.设甲商品售价 x 元/件,乙商品售价 y 元/件,则可列出方程组.13.(3 分)如图,在 Rt △ABC 中,∠A=30°,BC=2 ,以直角边 AC 为直径作⊙O 交 AB 于点 D ,则图中阴影部分的面积是.14.(3 分)已知 x 1,x 2 是关于 x 的方程 x 2+ax ﹣2b=0 的两实数根,且 x 1+x 2=﹣2, x 1•x 2=1,则 b a 的值是.15.(3 分)对于实数 a ,b ,我们定义符号 max {a ,b }的意义为:当 a ≥b 时, max {a ,b }=a ;当 a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于 x 的函数为 y=max {x +3,﹣x +1},则该函数的最小值是.16.(3 分)如图,在正方形 ABCD 中,AC 为对角线,E 为 AB 上一点,过点 E 作EF ∥AD ,与 AC 、DC 分别交于点 G , ,H 为 CG 的中点,连接 DE ,EH ,DH ,FH .下列结论:①EG=DF ;②∠AEH +∠ADH=180°;③△EHF ≌△DHC ;④若,其中结论正确的有 .△DHC= ,则 3S △EDH =13S三、解答题(本大题共 8 个题,共 72 分)17.(10 分)(1)计算:|﹣2|﹣(π﹣2015)0+( )﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+ ),其中 a=.18. 6 分)如图,分别过点C 、B 作△ABC 的 BC 边上的中线 AD 及其延长线的垂线,垂足分别为 E 、F .求证:BF=CE .(19.8分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20.(8分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2参考答案一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1-8.B A C B B A CA二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9. ab (3a +1)(3a ﹣1) .10. 45° .11.12.13.14...﹣ π ..15. 2 .16. ①②③④ .三、解答题(本大题共 8 个题,共 72 分)17.(1)|﹣2|﹣(π﹣2015)0+( )﹣﹣2sin60°+=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+ ;(2)==÷(2+ )=,当 a=时,原式= = ﹣1.( (18.证明:根据题意,知 CE ⊥AF ,BF ⊥AF ,∴∠CED=∠BFD=90°,又∵AD 是边 BC 上的中线,∴BD=DC ;在 Rt △BDF 和 Rt △CDE 中,∠BDF=∠CDE (对顶角相等),BD=CD ,∠CED=∠BFD ,∴△BDF ≌△CDE (AAS ),∴BF=CE (全等三角形的对应边相等).19.解:(1)四个年级被抽出的人数由小到大排列为 30,45,55,70,∴中位数为 50;(2)根据题意得:3000×(1﹣25%)=2250 人,则该校帮助父母做家务的学生大约有 2250 人;(3)画树状图,如图所示:所有等可能的情况有 12 种,其中恰好是甲与乙的情况有 2 种,则 P== .20、解:1)设每辆 B 型自行车的进价为 x 元,则每辆 A 型自行车的进价为(x +400)元,根据题意,得= ,解得 x=1600,经检验,x=1600 是原方程的解,x +400=1 600+400=2 000,答:每辆 A 型自行车的进价为 2 000 元,每辆 B 型自行车的进价为 1 600 元;(2)由题意,得 y=(2100﹣2000)m +(1750﹣1600) 100﹣m )=﹣50m +15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随x的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.21.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S △OBC=×BO×xC=×3×4=6.23.解:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,∴AC=6,则 BC=6.在 Rt △APO 中,∵AC ⊥OP ,∴△PAC ∽△AOC ,∴AC 2=OC•PC ,解得 PC=9,∴OP=PC +OC=13.在 Rt △ PBC 中 , 由 勾 股 定 理 , 得PB==3,∵AC=BC ,OA=OE ,即 OC 为△ABE 的中位线.∴OC= BE ,OC ∥BE ,∴BE=2OC=8.∵BE ∥OP ,∴△DBE ∽△DPO ,∴=,即=,解得 BD=.24.解:(1)将 A (0,1),B (﹣ 9,10)代入函数解析式,得,解得,抛物线的解析式 y=+2x +1;(2 分)(2)∵AC ∥x 轴,A (0,1),∴ x 2+2x +1=1,解得 x 1=﹣6,x 2=0(舍),即 C 点坐标为(﹣6,1),∵点 A ( 0,1),点 B (﹣9,10),∴直线 AB 的解析式为 y=﹣x +1,设 P (m ,m 2+2m +1),∴E (m ,﹣m +1),∴PE=﹣m +1﹣( m 2+2m +1)=﹣ m 2﹣3m ,∵AC⊥PE,AC=6,(4分)∴S四边形AECP =S△AEC+S△APC=AC•EF+AC•PF,=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0,∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB时,则=,,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)11/11。

2018届九年级第一次模拟大联考(江苏卷)数学卷

2018届九年级第一次模拟大联考(江苏卷)数学卷

2018届九年级第一次模拟大联考【江苏卷】数 学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.我国是世界上严重缺水的国家,目前每年可利用的淡水资源总量为27500亿立方米,人均占有淡水量居世界第110位,因此我们要节约用水,其中27500用科学记数法表示为 A .227510⨯ B .42.7510⨯C .52.7510⨯D .327.510⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是A .0a b +=B .0a b -=C .||||a b <D .0ab >3.下列各组数中,不相等的是 A .(–3)2与–32 B .(–3)2与32C .(–2)3与–23D .|–2| 3与|–23|4.一个等腰三角形两边长分别为20和10,则周长为A .40B .50C .40或50D .不能确定5.从单词“happy ”中随机抽取一个字母,抽中p 的概率为A .15 B .14C .25D .126.如图,已知⊙O 的半径为6,弦AB 的长为8,则圆心O 到AB 的距离为A B .C .D .10第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分)7.平面直角坐标系内,点P (3,–4)到y 轴的距离是__________. 8.若分式21x x +的值为正数,则x 的取值范围为__________. 9.把x 3–9x 分解因式,结果为__________.101-忘记乘以6,算得方程的解为2x =,则a 的值为__________.11.写出不等式()5332x x +<+所有的非负整数解__________.12.如图,直线l 1∥l 2,CD ⊥AB 于点D ,若∠1=50°,则∠BCD 的度数为__________°.13.若x 1,x 2是方程x 2–2mx +m 2–m –1的两个实数根,且x 1+x 2=1–x 1x 2,则m 的值为__________. 14.如图,四边形ABCD 内接于⊙O ,若∠B =130°,OA =1,则 AC 的长为__________.15.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =8 cm 2,则图中阴影部分的面积等于__________cm 2.16.如图,菱形ABCD 内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN的面积是菱形ABCD 面积的15,则cos A =__________.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分7分)计算:()()32832245-+÷---⨯.18.(本小题满分719.(本小题满分7分)如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD =58°,点D 在GH 上,求∠BDC 的度数.20.(本小题满分8分)已知:如图,AB AE =,AC AD =,BAE CAD ∠=∠.求证:BC ED =.21.(本小题满分8分)某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.22.(本小题满分8分)如图,一次函数y1=kx+b的图象与反比例函数2myx=的图象交于点A(–2,–5),C(5,n),交y轴于点B,交x轴于点D.(1)求反比例函数2myx=和一次函数y1=kx+b的表达式;(2)连接OA,OC,求△AOC的面积;(3)根据图象,直接写出y1>y2时x的取值范围.23.(本小题满分8分)如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2 m,喷出水流的运动路线是抛物线.如果水流的最高点P到喷水枪AB所在直线的距离为1 m,且到地面的距离为3.6 m,求水流的落地点C到水枪底部B的距离.24.(本小题满分8分)如图,已知在△ABC中,AB=BC,以AB为直径的圆O交AC于点D,过点D 作DE⊥BC,垂足为E,连接OE.(1)求证:DE是⊙O的切线;(2)若CD∠ACB=30°,求OE的长.(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).27.(本小题满分11分)操作体验(1)如图1,已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD的面积大小关系.(2)如图2,在平面直角坐标系中,△ABC的边BC在x轴上,已知点A(2,4),B(–1,0),C(3,0),试确定过点A的一条直线l,平分△ABC的面积,请写出直线l的表达式.综合运用(3)如图3,在平面直角坐标系中,如果A(1,4),B(3,2),那么在直线y=–4x+20上是否存在一点C,使直线OC恰好平分四边形OACB的面积?若存在,请计算点C的坐标;若不存在,请说明理由.。

2018年中考网上阅卷数学适应性考试测试卷含答案

2018年中考网上阅卷数学适应性考试测试卷含答案

2018年中考网上阅卷数学适应性考试测试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.舌尖上的浪费让人触目惊心!据统计,中国每年浪费的粮食总量约为50000000吨,把50000000用科学记数法表示为A.5×107B.50×105C.5×106D.0.5×108 2.下列运算正确的是A.22-2)2a a =(B.632a a a ÷= C.2(1)22a a --=- D.22a a a =g 3.中国古代建筑中的审格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是4.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100,则乘公共 汽车到校的学生有A. 75人B. 100人C. 125人D. 200人5.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0. 2左右,则a 的值约为A.12B.15C.18D. 20 6.如图,在⊙O 中,弦//AB CD ,若40ABC ∠=︒,则BOD ∠的度数是 A. 80° B. 60° C. 40° D. 20°7.如图,在ABC ∆中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若40B ∠=︒,36C ∠=︒,则DAC ∠的度数是A. 70°B. 44°C. 34°D. 24°8.对于二次函数2(3)4y x =--的图像,给出下列结论:①开口向上;②对称轴是直线3x =-;③顶点坐标是(3,4)--;④与x 轴有两个交点.其中正确的结论是 A.①② B.①④ C.②③ D.③④9.如图,在水平地面上有一幢房屋BC 与一棵树DE ,在地面观测点A 处测得屋顶C 与树梢D 的仰角分别是45°与60°,60CAD ∠=︒,在屋顶C 处测得90DCA ∠=︒.若房屋的高6BC =米,则树高DE 的长度为.A. B. C. D.10.如图,在等腰直角ABC ∆中,90C ∠=︒,D 为BC 的中点,将ABC ∆折叠,使点A 与点D 重合,EF 为折痕,则sin BED ∠的值是A.5 B.35 C.3D.23二、填空题:(本大题共8小题,每小题3分,共24分.把你的答案填在答题卷相应的横线上)11. 有意义,则x 满足的条件是 . 12.分解因式:228x -= .13.分式方程3111x x x+=--的解是 . 14.已知关于x 的一元二次方程210x mx m ++-=的一个根为2,则另一个根是 . 15.某公司25名员工年薪的具体情况如下表:则该公司全体员工年薪的中位数比众数多 万元.16.如图,ABO ∆中,AB OB ⊥,OB =1AB =,把ABO ∆绕点,O 顺时针旋转150°后得到11A BO ∆,则点1B 的坐标为 .17.如图,已知⊙C 的半径为3,圆外一点O 满足5OC =,点P 为⊙C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=,l 不经过点C ,则AB 的最小值为 .18.如图,长方形纸片ABCD 中,4AB =,将纸片折叠,折痕的一个端点F 在边AD 上,另一个端点G 在边BC 上,若顶点B 的对应点E 落在长方形内部,E 到AD 的距离为1,5BG =,则AF 的长为 .三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:2013()(23π--+--.20. (本题满分5分)解不等式组215621123x x x -≤⎧⎪++⎨-<⎪⎩.21.(本题满分6分)先化简,再求值:221(1)121x x x x -÷---+,其中x =22.(本题满分6分)如图,在直角坐标系中,Rt ABC ∆的直角边AC 在x 轴上,90ACB ∠=︒,1AC =,反比例函数(0)ky k x=>的图象经过BC 边的中点(3,1)D . (1)求这个反比例函数的表达式;(2)若ABC ∆与EFG ∆成中心对称,且EFG ∆的边FG 在y 轴的正半轴上,点E 在这个函数的图象上.求OF 的长.23.(本题满分8分)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列间题:(1)在表中:m = ,n = ; (2)补全频数分布直方图;(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A 、C 两组学生的概率是多少?并列表或画树状图说明.24.(本题满分8分)已知:如图,在Rt ACB ∆中,90ACB ∠=︒,点D 是AB 的中点,点E 是CD 的中点,过点C 作//CF AB 交AE 的延长线于点F .(1)求证: ADE FCE ∆≅∆;(2)若120DCF ∠=︒,2DE =,求BC 的长.25.(本题满分8分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x (s),甲、乙行走的路程分别为1y (cm)、2y (cm),1y 、2y 与x 之间的函数图像如图所示,根据图像所提供的信息解答下列问题:(1)乙比甲晚出发 s ,乙提速前的速度是每秒 cm ,m = ,n = ; (2)当x 为何值时,乙追上了甲?(3)在乙提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过20cm 时,求x的取值范围.26.(本题满分10分)如图,在等腰ABC ∆中,AB BC =,以AB 为直径的⊙O 与AC 相交于点D ,过点D 作DE BC ⊥交AB 延长线于点E ,垂足为点F . (1)证明:DE 是⊙O 的切线;(2)若4BE =,30E ∠=︒,求由»BD、线段BE 和线段DE 所围成图形(阴影部分)的面积,(3)若⊙O 的半径5r =,sin A =求线段EF 的长.27.(本题满分10分)如图,四边形OABC 的顶点A 、C 分别在x 、y 轴的正半抽上,点D 是OA 上的一点,4,6OC OD OA ===,点B 的坐标为(4,4).动点E 从点C 出发,以每CD 向点D 运动,过点E 作BC 的垂线EF 交线段BC 于点F ,以线段EF 为斜边向右作等腰直角EFG ∆.设点E 的运动时间为t 秒(04t ≤≤). (1)点G 的坐标为( , )(用含t 的代数式表示),(2)连接OE 、BG ,当t 为何值时,以O 、C 、E 为顶点的三角形与BFG ∆相似? (3)设点E 从点C 出发时,点E 、F 、G 都与点C 重合,点E 在运动过程中,当ABG ∆的面积为72时,求点E 运动的时间t 的值,并直接写出点G 从出发到此时所经过的路径长 (即线段AG 的长).28.(本题满分10分)如图1,抛物线2(2)2(0)y ax a x a =+++≠与x 轴交于点(4,0)A ,与y 轴交于点B ,在x 轴上有一动点(,0)(04)P m m <<,过点P 作x 轴的垂线交直线AB于点N ,交抛物线于点M . (1)求a 的值;(2)若:1:3PN PM =,求m 的值,(3)如图2,在(2)的条件下,设动点P 对应的位置是1P ,将线段1OP 绕点O 逆时针旋转得到2OP ,旋转角为(090)αα︒<<︒,连接2AP 、2BP ,求2232APBP +的最小值.。

2018年中考第1次模拟考试数学试卷(含答案)

2018年中考第1次模拟考试数学试卷(含答案)

2018年初三第一次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分) 1.如图,数轴上表示-2的相反数的点是( ) A.点P B.点Q C.点M D.点N 2.下列运算正确的是( ) A.9=±3B. 532)(m m =C. 532a a a =⋅D.222)(y x y x +=+3.如图,AD 与BC 相交于点O,AB//CD,如果∠B =20°,∠D =40° ,那么∠BOD 为( ) A. 40° B.50° C.60° D.70°4.估计18-的值在( )A. 0到1之间B. 1到2之间C.2到3之间D. 3至4之间 5.用配方法解一元二次方程0542=-+x x ,此方程可变形( ) A. 9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x6.下列各因式分解正确的是( ) A.22)1(12-=-+x x xB.)2)(2()2(22+-=-+-x x xC.)2)(2(43-+=-x x x x xD.22)1(22++=+x x x7.若a>b,则下列式子一定成立的是( )A.0>+b aB. 0>-b aC.0>abD.0>ba8.△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长是( ) A. 4B. 5C.32D. 29.若关于x 的一元一次不等式组⎩⎨⎧>-<-001a x x 无解,则a 的取值范围是( )A.1≥aB.1>aC. 1≤aD.1-<a 10.已知点A ),(11y x ,B ),(22y x 是反比例函数xy 2=图像上的点,若210x x >>,则一定成立的是( ) A.021>>y yB.210y y >>C.210y y >>D.120y y >>11.如图是王老师去公园锻炼及原路返回家的距离y (千米)与时间t (分钟)之间的函数图像,根据图像信息,下列说法正确的是( ) A. 王老师去时所用时间少于回家的时间 B. B. 王老师在公园锻炼了40分钟C. 王老师去时走上坡路,回家时走下坡路D. D.王老师去时速度比回家时的速度慢12.如图,CD 是Rt △ABC 斜边AB 边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( ) A. 60° B.45° C. 30° D.25° 13.如图,在Rt △ABC 中,∠C =90°,AC=4cm ,BC=6cm ,动点P 从点C 沿CA,以1cm/s 的速度向点A 运动,同时动点O 从点C 沿CB,以2cm/s 的速度向点B 运动,其中一个动点运动到终点时,另一个动点也停止运动。

2018年中考招生统一适应性考试数学试题含答案

2018年中考招生统一适应性考试数学试题含答案

2018年高中阶段教育学校招生统一适应性考试数 学本试卷分第一部分(选择题)和第二部分(非选择题)两部分,共8页. 考生作答时,必须将答案答在答题卡上,在本试题卷、草稿纸上答题无效. 满分150分,考试时间120分钟. 考试过程中不能使用任何型号的计算器.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数和负数,若气温为零上10℃记作+10℃,则-3℃表示气温为:A .零上3℃B .零下3℃C .零上7℃D . 零下7℃ 2.下列各式计算正确的是:A.34=-a aB.428a a a =÷C.623)(a a =- D.632a a a =∙3.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是: A.2200cm B.2600cm C.2100cm π D.2200cm π4.一组数据4,5,6,4,4,7,x ,5的平均数是5.5,则该组数据的中位数和众数分别是: A.4,4 B.5,4 C.5,6 D.6,7 5.如图,在平面直角坐标系中,∠α的一边与x 轴正半轴重合,顶点为坐标原点,另一边过点 )2,1(A ,那么αsin 的值为:A.552B.21C.2D.556.已知关于x 的方程12-=-x a x 的解是非负数,则a 的取值范围为:A.1≥aB.1 aC.1≤aD.1 a7.如图,四边形ABCD 内接于⊙O ,延长CO 交圆于点E ,连接BE.若∠A=100°,∠E=60°,则∠OCD 的度数为:A.30°B.50°C.60°D.80°8.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是: A .4.5 B .5 C .5.5 D .69. 若关于x 的一元二次方程m x x =--)3)(2(有实数根21,x x ,且21x x ≠,有下列结论: ①3,221==x x ;②41-m ;③二次函数m x x x x y +--=))((21的图象与x 轴的交点坐标分别为(2,0)和(3,0).其中正确的个数有:A. 0B. 1C. 2D. 310.如图,M 是双曲线x y 3=上一点,过点M 作x 轴、y 轴的垂线,分别交直线m x y +-=于点D 、C ,若直线m x y +-=与y 轴交于点A ,与x 轴交于点B ,则BC AD ∙的值为:A.2B.3C.6D.32第二部分(非选择题 共120分) 注意事项: 1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无 效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.本部分共16小题,共120分.二、填空题:本大题共6小题,每小题3分,共18分. 11.-7的倒数是 ▲ .12.小明和他的爸爸、妈妈共3人站成一排拍照,他的爸爸、妈妈相邻的概率是 ▲ . 13.分解因式:22)2()2(y x x y +-+= ▲ .14.如图,扇形纸片AOB 中,已知∠AOB=90º,OA=6,取OA 的中点C ,过点C 作DC ⊥OA 交AB 于点D ,点F 是AB 上一点.若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合,用剪刀沿着线段BD 、DF 、FA 依次剪下,则剩下的纸片(阴影部分)面积是 ▲ .15.圆锥的底面直径为40cm ,母线长90cm ,则它的侧面展开图的圆心角度数为 ▲ . 16.如果关于x 的一元二次方程02=++c bx ax 有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程,正确的是 ▲ (写出所有正确说法的序号).①方程022=--x x 是倍根方程;②若0))(2(=+-n mx x 是倍根方程,则05422=++n mn m ; ③若点),(q p 在反比例函数xy 2=的图象上,则关于x 的方程032=++q x px 是倍根方程; ④若一元二次方程02=++c bx ax 是倍根方程,且相异两点),1(s t M +,),4(s t N -都在抛物线c bx ax y ++=2上,则方程02=++c bx ax 的一个根为45. 三、本大题共3小题,每小题9分,共27分.17.计算:1--1123--21)()(π++18.解不等式组⎪⎩⎪⎨⎧+-≥--215124)2(3x x x x ,并把解集在数轴上表示出来.19.如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,且∠1=∠2.(1)若CE=1,求BC 的长度; (2)求证:AM=DF+ME.四、本大题共3小题,每小题10分,共30分. 20.当n m ,为何值时,方程组⎩⎨⎧=-=+72y x n y mx 与方程组⎩⎨⎧=+=+83y x mny x 同解?21.某校初三年级部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了如图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有▲名;(2)补全条形统计图;(3)扇形统计图中的“体育活动C”所对应的圆心角度数为▲度;(4)若喜欢“交流谈心”的5名同学中有三名男生和两名女生,老师想从5名同学中任选两名同学进行交流,请用画树状图或列表的方法,求出选取的两名同学恰好是“一男一女”的概率.22.如图,为了开发利用海洋资源,某勘测飞机预测量一岛屿两端A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45°,求岛屿两端A、B的距离. 五、本大题共2小题,每小题10分,共20分.23.已知一次函数bxy+=32的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数xky=(0x)的图象相交于点C,OA=3.(1)求一次函数的解析式和点B的坐标;(2)作CD⊥x轴,垂足为D,若AOBS∆:BODCS梯形=1:3,求反比例函数xky=的解析式.24.已知21,xx是关于x的一元二次方程01442=++-kkxkx的两个实数根.(1)是否存在实数k,使23)2)(2(2121-=--xxxx成立?若存在,求出k的值;若不存在,请说明理由.(2)求使21221-+xxxx的值为整数的实数k的整数值.六、本大题共2小题,第25题12分,第26题13分,共25分.25.【探索发现】如图①,是一张直角三角形纸片,∠B=90º,小明想从中剪出一个以∠B 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE 、EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性.(1)图①中矩形的最大面积与原三角形面积的比值为 ▲ . (2)【拓展应用】如图②,在△ABC 中,a BC =,BC 边上的高h AD =,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 ▲ .(用含h a ,的代数式表示) (3)【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. (4)【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB=50cm ,BC=108cm ,CD=60cm ,且34tan tan ==C B ,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积.26.如图,二次函数)0(2≠++=a c bx ax y 的图象关于y 轴对称且交y 轴负半轴于点C ,与x 轴交于点A 、B ,已知AB=6,OC=4,⊙C 的半径为5,P 为⊙C 上一动点.(1)求出二次函数的解析式;(2)是否存在点P ,使得△PBC 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; (3)连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值是多少?答案一、选择题.(本大题共10个小题,每小题3分,共30分)1、B2、C3、D4、B5、A6、A7、B8、A9、C 10、D二、填空题.(本大题共6个小题,每小题3分,共18分)11. 71-; 12. 32; 13. ))((3y x y x -+; 14.27-9π; 15. 80º; 16.②③三、解答题.(本大题共3个小题,每小题9分,共27分)17.解:原式=2-3+32+1 ……………………………8分 =3+3 ………………………………9分 18.解:解不等式①得1≤x ………………………………3分 解不等式②得x >-7 ………………………………6分 所以不等式组的解集为-7<x ≤1 ………………………………7分 在数轴上表示为…………………………9分19.(1)解:∵有菱形ABCD∴AB ∥CD ,BC=CD …………………………1分 ∴∠1=∠MCE ∵∠1=∠2∴∠MCE=∠2 ,即△MCD 是等腰三角形 ………………………2分 ∵ME ⊥CD∴CE=DE (三线合一,也可用全等)…………………………3分 ∵CE=1∴BC=CD=2 …………………………4分(2)证明:延长DF 、AB 交于点G.…………………………5分∵AB ∥CD ∴∠G=∠2 ∴∠1=∠G∴AM=MG …………………………6分 ∵F 是BC 的中点 ∴BF=CF又∵∠GFB=∠DFC∴△GBF ≌△DCF(AAS)∴GF=DF …………………………7分 ∵有菱形ABCD ,AC 为对角线 ∴∠FCM=∠ECM ∵CF=21BC ,CE=21CD ,且BC=CD ∴CF=CE∴有⎪⎩⎪⎨⎧=∠=∠=CM CM ECM FCM CE CF∴△FCM ≌△ECM (SAS ) ∴MF =ME …………………………8分∴AM=MG=GF+MF=DF+ME …………………………9分四、解答题.(本大题共3个小题,每小题10分,共30分)20. 解:由题意得⎩⎨⎧=+=-8372y x y x ……①和⎩⎨⎧=+=+m ny x n y mx ……②…………………………2分解方程组①得⎩⎨⎧-==13y x …………………………6分将⎩⎨⎧-==13y x 代入方程组②得⎩⎨⎧=-=-m n n m 313解得2,1==n m …………………………10分21. 解:(1)由题意可得总人数为10÷20%=50名; ……………………2分 (2)听音乐的人数为50﹣10﹣15﹣5﹣8=12名,补全统计图得:……………4分(3)“体育活动C”所对应的圆心角度数= ︒=︒⨯1083605015………………6分 (4)画树状图得:………8分∵共有20种等可能的结果,选出同学是“一男一女”的有12种情况, ∴选取的两名同学都是女生的概率=532012= . ……………………………10分 22.解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F.………………1分 ∵AB ∥CD∴∠AEF=∠EFB=∠ABF=90° ∴四边形ABFE 为矩形∴AB=EF ,AE=BF由题意可知:AE=BF=100米,CD=500米………………………4分 在Rt △AEC 中,∠C=60°,AE=100米∴CE=33100310060tan ==︒AE (米)……………………………6分 在Rt △BFD 中,∠BDF=45°,BF=100米∴DF==100(米) ……………………………8分 ∴AB=EF=CD+DF ﹣CE=600-33100(米) 答:岛屿两端A .B 的距离为(600-33100)米.……………………10分 五、解答题.(本大题共2个小题,每小题10分,共20分)23. 解:(1)∵0A=3∴A (-3,0) ……………………………1分将A (-3,0)代入b x y +=32中得2=b ∴一次函数的解析式为232+=x y ……………………………3分令0=x 得2=y∴点B 的坐标为(0,2) ……………………………4分(2)由题知321=⨯⨯=∆OB OA S AOB ……………………………5分∵AOB S ∆:BODC S 梯形=1:3∴BODC S 梯形=9 ……………………………6分 设)232,+m m C (,则有92322(21)21=⨯++⨯=⨯+⨯m m OD CD OB )( 解得舍负取正)(9,321-==m m∴),(43C ……………………………8分 ∵),(43C 在反比例函数xky =上∴反比例函数的解析式为xy 12=……………………………10分 24.解:(1)∵方程有两个实数根 ∴有△=04016-42≠≥=-k k ac b 且∴0 k ……………………………1分 由韦达定理得:121=+x x ;kk x x 4121+=∙ …………………2分 ∵23)2)(2(2121-=--x x x x若存在,则有23419-122-=+⨯⨯k k解得59=k ……………………………4分∵59=k >0∴不存在满足条件的k 值. ……………………………5分(2)原式=2212221-+x x x x =22-2121221-+x x x x x x )(=14-+k ……………………………7分 ∵其值为整数∴有4211±±±=+或或k ………………………………8分 解得:5-33-12-0,,,,或=k …………………………9分 ∵0 k∴5-3-2,,-=k ……………………………………10分六、解答题.(第25题12分,第26题13分,共计25分)25.解:(1)21………………………………………2分(2)4ah……………………………………5分提示:由 △APN ~△ABC 得hPQh a PN -= 所以PQ haa PN -= 设x PQ =则有4)2()(2ah h x h a x h a a x PN PQ S +--=-=∙=矩形 所以当2h PQ =时,矩形有最大面积4ah.(3)如图所示,延长BA 、DE 交于点F , 延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF的中点I ,FG 的中点K ,连接IK.…………………6分 ∵有矩形ABCH ,AB=32,BC=40,AE=20,CD=16 ∴EH=20,DH=16 ∴AE=EH ,CD=DH易证△AEF ≌△HED ,△CDG ≌△HDE ∴AF=DF=16,CG=EH=20∴BG=60,BF=48 ……………………………………8分 ∵BI=24<32∴中位线IK 两端点在线段AB 、DE 上 作KJ ⊥BC 于点J由探索发现知,矩形最大面积为7204860412121=⨯⨯=∙BF BG …………9分(4)如图,延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于H. ∵34tan tan ==C B ∴∠B=∠C ∴EB=EC∵BC=108且EH ⊥BC 于H∴BH=CH=54 ……………………………………10分∵34tan =B ∴EH=72 ……………………………………11分 ∴9022=+=BH EH BE易知BE 的中点Q 在线段AB 上,CE 的中点P 在线段CD 上由拓展应用可知,矩形PQMN 的最大面积为2194441cm EH BC =∙……………12分26. 解(1)∵AB=6,OC=4且图象关于y 轴对称∴A (-3,0),B (3,0),C (0,﹣4)………………………………2分 设二次函数解析式为4-2ax y =将A (-3,0)代入得94=a ∴二次函数解析式为4-942x y = ……………………………………4分(2)存在点P ,使得△PBC 为直角三角形.①当PB 与⊙相切时,△PBC 为直角三角形,如图,连接BC. ∵OB=3.OC=4, ∴BC=5 ∵CP 2⊥BP 2,CP 2=∴BP 2=2过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F 则△CP 2F ∽△BP 2E ,四边形OCP 2B 是矩形 ∴==2,设OF=P 2E=2x ,CP 2=OE=x∴BE=3﹣x ,CF=2x ﹣4∴==2 ∴x=,2x=,即FP 2=,EP 2=∴P 2(,﹣)………………………………6分过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H.同理求得P 1(﹣1,﹣2)…………7分 ②当BC ⊥PC 时,△PBC 为直角三角形 过P 4作P 4H ⊥y 轴于H 则△BOC ∽△CHP 4∴==∴CH=,P 4H=∴P 4(,﹣﹣4) ………………………9分 同理P 3(﹣,﹣4)…………………………10分综上所述:点P 的坐标为(﹣1,﹣2)或(,﹣)或(,﹣﹣4)或(﹣,﹣4).(3)如图,连接AP ∵OB=OA ,BE=EP ∴OE 为△ABP 的中位线 ∴AP OE 21=……………………………………11分 ∴当AP 最大时,OE 最大∵当P 在AC 的延长线上时,AP 最大,最大值为55+ ∴OE 的最大值为255+.……………………………………13分。

2018届九年级第一次模拟考试数学试题(附答案)

2018届九年级第一次模拟考试数学试题(附答案)

2018年江苏省徐州中考数学模拟试卷(满分:140分时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2的倒数是()A.-12B.12C.-2 D.22. 下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3. 某桑蚕丝的直径约为0.000016米,将0.000016用科学计数法表示是()A.41.610-⨯B.51.610-⨯C.71.610-⨯D.41610-⨯4. 在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+15. 关于2、6、1、10、6的这组数据,下列说法正确的是( )A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是106. 如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°-2α B.2α C.90°+α D.90°-α7. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位8. 如图在矩形ABCD中,AB=5,AD=3,动点P满足13PAB ABCDS S∆=四边形,则点P 到A、B两点距离之和P A+PB的最小值为()(第6题)(第8题)ABC.D二、填空题(本大题有10小题,每题3分,满分30分,将答案填在答题纸上) 9.a 的取值范围是.10. 如图,转盘中6个扇形的面积都相等.任意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是 .11. 如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O ,若∠A =50°,则∠BOC = .12. 已知反比例函数y =2x ,当x <-1时,y 的取值范围为___________.13. 如图,直线a ∥b ∥c ,直线l 1,l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若AB ︰BC =1︰2,DE =3,则EF 的长为 . 14. 已知a 2+a =1,则代数式3-a 2-a 的值为15. 如图所示的正六边形 ABCDEF ,连结 FD ,则∠FDC 的大小为 .(第10题)(第11题) (第13题)cb a (第15题)(第16题)A(第17题)E16. 如图,AC 是⊙O 的切线,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD ,若∠A =50°,则∠COD 的度数为 .17. 在矩形ABCD 中,AB =2,BC =3,若点E 为边CD 的中点,连接AE ,过点B 作BF ⊥AE于点F ,则BF 长为 .18. 某广场用同一种如图所示的地砖拼图案,第一次拼成的图形如图1所示的图案,第二次拼成图形如图2所示的图案,第三次拼成的图形如图3所示的图案,第四次拼成的图形如图4所示的图案......按照这样的规律进行下去,第n 次拼成的图形共用地砖 块.三、解答题 (本大题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题10分)(1) (-2018)°-(31)-1+9; (2)44422-+-a a a ÷a a a 222+--3.20. (本题10分)(1)解方程:1x -2+2=1-x 2-x ; (2)解不等式组:21571023()x x x x ⎧+>-⎪⎨+>⎪⎩.21. (本题7分)中华文明,源远流长,中华汉字,寓意深广。

数学-初2018届初三适应性考试数学答案

数学-初2018届初三适应性考试数学答案

3
3
2
12
长度.
∵点 G 到直线 AⅱB 的距离与点 G 到直线 A¢C 的距离相等
∴点 G 是∠ CAⅱB 的角平分线或外角平分线所在直线与抛物线 y¢对称轴的交点
1)若点 G 是∠ CAⅱB 的角平分线所在直线与抛物线 y¢对称轴的交点
如图 3,在△PAO 中,tan∠PAO= PO = 2 3 = 3
21.解:(1) 2a( a - 4b ) - 2( a - 2b )2
= 2a2 - 8ab - 2( a2 - 4ab +4b2 )………………………3 分
= 2a2 - 8ab - 2( a2 - 4ab +4b2 ) …………4 分
= - 8b2 ………………………………………5 分
(2) ( x - 2 - 5 ) ? x - 3 x +2 2x +4
开始
第一位 a
b
c
d
e
第二位b c d e a c d e a b d e a b c e a b c d
…………………………………………………6 分
在 20 个结果中,有 12 个结果为恰好 1 名小学学生 1 名初中学生,则 P
3 =5
………………………8 分
四、解答题:
九年级 数学参考答案 第 1 页 共 6 页
AO 2
∴∠PAB=600 ∴∠ CAⅱB =600
设直线 A¢G 与 y 轴交于点 H ,直线 AⅱB 与 y 轴交于点 O¢则∠ HAⅱO =300
∵tan∠ HAⅱO
=
HOⅱ AⅱO
=
HO 3
=
3 3
yC
2
P
∴ HO¢=

2018年初中毕业年级适应性测试数学试卷

2018年初中毕业年级适应性测试数学试卷

半圃,正好与对边 BC 相切.如图(甲),将
它沿 DE 折叠,使A点落在 BC 上,如图 (乙),这时,半圆还露在外面的部分〈阴 影部分)的面积是 一一一一一 cm2 .


(第14题固〉
15 ..如图,在矩形 ABCD 中,点G在 AD 上,且 GD = A
E AB=l,AG = 2,点 是线段 BC 上的一个动点(点E不
DBC=
65
。 .

AB=200
米,求观景亭D到小路 AC 的距离约为多少米?(结果精确到1米,参考数据: sin65。 句
O. 91,cos65 。句0. 42,tan65。何2. 14)
D
C
BA
数学试题卷 第4页
20. (9分)如图,反比例函数 y = 一k 的图象经过点A(l,4),直线 y = 2x+b(b¥=0 ) 与双曲 X
=X1,+x2+…+马 n
第二步:在该问题中,n= 4, X1 =3,工2= 4, X3= 5, X4= 6;
第三步:x=3+4+4 5+6= 4. 5 <棵).
数学试题卷第3页( 共6
①小宇的分析是不正确的,他错在第几步? ②请你帮他计算出正确的平均数,并估计这 360 名学生共植树多少棵.
18. (9分〉如图,半圆 0的直径为 AB,D是半圆上的一个动点〈不与点 A,B 重合〉,连 接 BD 并延长至点C,使 CD=BD,过点D作半圆0的切线交 AC 于点 E.
5.如图,将一副三角板和 一 张对边平行的纸条按下列方式摆放,两个三角板的一直角边 重合,含45。角的直角三角板的斜边与纸条一边重合,含30 。角的
三角板的一个顶点在 纸条的另一边上,则ζl的度数是

江苏省兴化市顾庄学区九年级数学下学期第一次模拟(网上阅卷适应性训练)试题

江苏省兴化市顾庄学区九年级数学下学期第一次模拟(网上阅卷适应性训练)试题

2018年九年级第一次网上阅卷适应性训练数学试卷注意:1. 本试卷共4页,满分为150分,考试时间为120分钟.2. 答题前,考生务必将本人的姓名、考试号填写在答题纸相应的位置上.3. 考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.16的平方根是( ▲ )A .±4B .±2C .4D .22.下列计算错误的是( ▲ )A =B =C 3=D .28= 3.下列图形中,是轴对称图形但不是中心对称图形的是( ▲ )A .等边三角形B .正六边形C .正方形D .圆4.在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是( ▲ )A .平均数是87B .中位数是88C .众数是85D .方差是2305.用反证法证明:如果AB ⊥CD ,AB ⊥EF ,那么CD ∥EF .证明该命题的第一个步骤是( ▲ )A .假设CD ∥EFB .假设AB ∥EFC .假设CD 和EF 不平行 D .假设AB 和EF 不平行6.如图,点E 为菱形ABCD 边上的一个动点,并沿着A →B →C →D 的路径移动,设点E 经过的路径长为x ,△ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( ▲ )第6题图 A . B . C . D.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.5的相反数是 ▲ .8.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 ▲ 千克.9.若某种彩票的中奖率为5%,则“小明选中一张彩票一定中奖”这一事件是 ▲ (填“必然事件”、“不可能事件”或“随机事件”).第11题图 第12题图10.若1x =,则221x x ++= ▲ .11.如果将一副三角板按如图方式叠放,那么∠1= ▲ .12.如图,△ABC 的顶点是正方形网格的格点,则tan A 的值为 ▲ .第14题图 第15题图 第16题图13.若方程22130x x +-=的两根分别为m 、n ,则mn (m +n )= ▲ .14.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上),为了测量B 、C 两地之间的距离,某工程队乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的仰角为30°,则BC 两地间的距离为 ▲ m .15.如图,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B 、E 是半圆O 的三等分点,若OA =2,则图中阴影部分的面积为 ▲ .16.已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F分别在AC 和BC 上.如图,若AD ∶DB =1∶4,则CE ∶CF = ▲ .三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(1)计算:212cos 30()2-+-; (2)解不等式:122123x x -+-≥.18.(本题满分8分)九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 ▲ 名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?19.(本题满分8分)小明最喜欢吃芝麻馅的汤圆了,一天早晨小明妈妈给小明下了四个大汤圆,一个花生馅,一个水果馅,两个芝麻馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)求小明吃第一个汤圆恰好是芝麻馅的概率;(2)请利用树状图或列表法,求小明吃前两个汤圆恰好是芝麻馅的概率.20.(本题满分8分)如图,在△ABC 中,AB =AC ,∠DAC 是△ABC 的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF探究与猜想:若∠BAE =36°,求∠B 的度数. 40%第20题图21.(本题满分10分)如图,在△ABC中,D是BC边的中点,分别过点B、C作射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)若AF=FD,在不添加辅助线的条件下,直接写出与△ABD面积相等的所有三角形(不含△ABD).第21题图22.(本题满分10分)如图,点C在⊙O上,连接CO并延长交弦AB于点D,AC⌒ =BC⌒,连接AC、OB,若CD=8,AC=(1)求弦AB的长;(2)求sin∠ABO的值.第22题图23.(本题满分10分)平面直角坐标系xOy中,直线y=x+1与双曲线kyx的一个交点为P(m,6).(1)求k的值;(2)M (2,a ),N (n ,b )分别是该双曲线上的两点,直接写出当a >b 时,n 的取值范围.24.(本题满分10分)为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?25.(本题满分12分)如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以PE 为边作正方形PEFG ,顶点G 在线段PC 上. 对角线EG 、FP 相交于点O .(1)若AP =3,求AE 的长;(2)连接AC ,判断点O 是否在AC 上,并说明理由;(3)在点P 从点A 到点B 的运动过程中,正方形PEFG 也随之运动,求DE 的最小值.第25题图26. (本题满分14分)已知直线y =2x -2与抛物线2y mx mx n =++交于点A (1,0)和点B ,且m <n .(1)当m =2-时,直接写出该抛物线顶点的坐标.(2)求点B 的坐标(用含m 的代数式表示).(3)设抛物线顶点为C ,记△ABC 的面积为S . ①若113m -≤≤-,求线段AB 长度的取值范围;②当1058S 时,求对应的抛物线的函数表达式.第26题图2018年初三第一次适应性训练数学参考答案一、选择题(本大题共有6小题,每小题3分,共18分)1.A ;2.B;3.A;4.C;5.C;6.D.二、填空题(本大题共10小题,每小题3分,满分30分)7. -5; 8. 52.110-⨯; 9. 随机事件; 10. 2; 11.105︒; 12.12; 13. 26;14. ;23π; 16. 23.三、解答题(本大题共10小题,满分102分)17.(12分)(1)原式==3(1分)﹣2×(1分)+4(1分)﹣(﹣1)(1分)=3﹣+4﹣+1(1分)=+5(1分);(2)去分母得:3﹣6x ﹣6≥2x+4,(2分)移项、合并同类项得:﹣8x ≥7,(2分)化系数为1得:x ≤﹣.(2分)18.(8分)解:(1)560(2分),(2)“讲解题目”的人数是:84(图上标上数字正确1分).画图正确(2分),(3)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人)(3分).19.(8分)解:(1)小明吃第一个汤圆,可能的结果有4种,其中是芝麻馅的结果有2种, ∴小明吃第一个汤圆恰好是芝麻馅的概率==(3分);(2)分别用A ,B ,C 表示花生馅,水果馅,芝麻馅的大汤圆, 画树状图得:∵共有12种等可能的结果,小明吃前两个汤圆恰好是芝麻馅的有2种情况,(3分) ∴小明吃前两个汤圆恰好是芝麻馅的概率为=(2分).20. (8分)(1)作图正确(2分),在图中标上字母且正确(1分)(2) 作图正确(2分),∵AB=AC ,∴∠ABC=∠ACB ,∵AM 平分∠DAC ,∴∠DAM=∠CAM ,而∠DAC=∠ABC+∠ACB,∴∠CAM=∠ACB,∴EF垂直平分AC,∴OA=OC,∠AOF=∠COE(1分),在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,即AC和EF互相垂直平分,∴四边形AECF的形状为菱形.∴EA=EC,∴∠EAC=∠ACB=∠B=1(18036)3=48°.∴∠B=48°(2分).21.(10分)(1)证明:在△ABF与△DEC中,∵D是AB中点,∴BD=CD,∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°(1分),在△ABF与△DEC中,,(2分)∴△BED≌△CFD(AAS),∴ED=FD,∵BD=CD,∴四边形BFEC是平行四边形;(2分)(2)与△ABD面积相等的三角形有△ACD、△CEF、△BEF、△BEC、△BFC.(计5分, 一个正确得1分)22.(10分)解:(1)∵CD过圆心O,=,∴CD⊥AB,AB=2AD=2BD,(2分)∵CD=40,AC=4,∠ADC=90°,∴AD==4,(1分)∴AB=2AD=8;(2分)(2)设圆O的半径为r,则OD=8﹣r,∵BD=AD=4,∠ODB=90°,∴BD2+OD2=OB2,即42+(8﹣r)2=r2,(2分)解得,r=5,OD=3,(1分)∴sin∠ABO==.(2分)23.(10分)(1)∵直线y=x+1于双曲线y=的一个交点为P(m,6),∴把P(m,6)代入一次函数解析式得:6=m+1,即m=5,(2分)∴P的坐标为(5,6),(1分)把P坐标代入反比例解析式得:k=30;(2分)(2)根据题意得:当a>b时,n的取值范围为n<0或n>3.(5分,只有一个正确给3分)24.(10分)解:设每个小组有x名学生,(1分)根据题意得:,(4分)解之得 x=10,(3分)经检验,x=10是原方程的解,且符合题意.(1分)答:每组有10名学生(1分).25.(12分)(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠BPC,∴△APE∽△BCP(2分),∴,即,解得:AE=;(2分)(2)点O在AC上(1分).理由:过点O分别作AD、AB的垂线,垂足分别为M、N,证得OM=ON,(1分),证得点O 在∠BAD 的平分线上(1分),证得AC 是∠BAD 的平分线,所以,点O 在AC 上。

2018年初中毕业生学业评价适应性考试数学试卷

2018年初中毕业生学业评价适应性考试数学试卷

2018年初中毕业生学业评价适应性考试数学试卷2019 年初中毕业生学业评价适应性考试数学试题卷(2019.5)考生须知:1. 全卷分试卷和答题卷二部分,考生须在答题卷上作答.全卷满分150 分,考试时间120分钟.2. 试卷分试卷Ⅰ(选择题),试卷Ⅱ(非选择题)两部分,共8 页.试卷Ⅰ(选择题,共40 分)请将本卷的答案,用铅笔在答题纸上对应的选项位置涂黑、涂满.一、选择题(本题有10 每小题4 分,共40 分)1. -3的相反数是()A. -13B.13C. 3D.- 3第 1 页2.下列图案中,是轴对称图形但不是中心对称图形的是(▲)A.B.C.D .第2 题图3.下列运算正确的是(▲ )A.x4+x2=x6 B.x2•x3=x6 C.(x2)3=x6 D.x2﹣y2=(x﹣y)24.下列水平放置的几何体中,左视图不是矩形的是( ▲ )第 2 页第 3 页第 4 页 6.线段 PQ 的黄金分割点是 R (PR>RQ ),则下列各式正确的是( ▲ )A. PR RQ PQ PQ =B. PR PQ PQ PR =C. PQ RQ PR PQ =D. PR RQ PQ RQ = 7.如图,在平面直角坐标系中,正方形 ABCO 的顶点 A 、C 分别在 y 轴、x 轴上,以 AB 为弦的⊙M 与 x 轴相切,若点 A 的坐标为(0,8),则圆心 M 的坐标为( ▲ ) 第 7 题图 A .(-4,3) B .(-3,4) C .(-5,4) D .(-4,5)8.如图,在△ABC 中,∠ACB=90°,分别以点 A 和点 C 为圆心,以相同的长(大于12AC )为 半径作弧,两弧相交于点M 和点 N ,作直线 MN 交 AB 于点D ,交 AC 于点E ,连接 CD .下 列结论错误的是( ▲ )A .AD=CDB .∠A=∠DCEC .∠ADE=∠DCBD .∠A=2∠DCB9. 一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的 时间为 x(时 ),两车之间( ▲ )千米到达甲地.A .70B .80C . 90D .100 10.一个大平行四边形按如图方式分割成九个小平行四边形,且只有标号为①和②的两个小平行四边形为菱形,在满足条件的所有分割中,若知道九个小平行四边形中n 个小平行四边形的周长,就一定能算出这个大平行四边形的周长,则n的最小值是( ▲ )A.2 B.3 C.4D.5第8 题图第9 题图第10题图第 5 页第 6 页试 卷 Ⅱ(非选择题,共 110 分)二、填空题(本题有 6 小题,每小题 5 分,共 30 分) 11. 在学雷锋活动中,我市青少年积极报名争当“助人为乐志愿者”,仅一个月就有 107000 人报名,将 107000 用科学记数法表示为 ▲ .12.因式分解:3ax 2+6ax +3a= ▲ . 13.如图,AB ∥CD ∥EF ,如果 AC=2,AE=5.5,DF=3,那么 BD= ▲ .14.已知二次函数 y = x 2 + bx + c 的图象与 x 轴的一个交点坐标为(-1,0),与 y 轴的交点坐 标为(0,-3).将该二次函数的图象水平向右平移,可使得平移后所得图象经过坐标原点,直 接写出平移后所得图象与 x 轴的另一个交点的坐标 ▲ .15.直角三角形 ABC 中,AB=3,∠B=90°,∠C=30°,折叠三角形使得点A 与 BC 边上的点 D 重合,折痕分别交 AC 、AB 于点 M ,N,当△CDM 是直角三角形时,AM= ▲ . 16.如图平面直角坐标系中放置 Rt △PEF ,∠E=90°,EP=EF, △PEF 绕点 P(-1,-3)转动,PE 、PF所在直线分别交y 轴、x 轴正半轴于点 B (0, b ) , A (a ,0),作矩形 AOBC,双曲线 y =k x (k > 0) 经过C 点,当 a , b 均为正整数时, k = ▲ .第 13 题图 第 15 题图 第 16 题图三、解答题(本题有 8 小题,第 17~20 题各 8 分,第 21 题 10 分,第 22~23 题各 12 分,第 24题 14 分,共 80 分)17. (本小题 8 分)计算(1)2001()tan 60(2018)3π-+-第 7 页解不等式组(2)322(1)4x x x x ≥-⎧⎨--+⎩18. (本小题 8 分)如图,点 B 、E 、C 、F 在一条直线上,BC=EF ,AB ∥DE ,∠A=∠D. 求证:△ABC ≌△DEF.19. (本小题8 分)某报社为了解绍兴市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,第19 题图(1)本次参与调查的市民共有▲人,m= ▲ ,n= ▲ ;(2)图2 所示的扇形统计图中D 部分扇形所对应的圆心角是▲度;(3)根据调查结果.学校准备开展关于雾霾知识竞赛,某班要从小明和小刚中选一人参加,现设计了如下游戏来确定:在一个不透明的袋中装有2 个红球和3 个白球,它们除了颜色外都相同,小明先从袋中随机摸出一个球,小刚再从剩下的四个球中随机摸出一个球,若摸出的两个球颜色相同,则小明去;否则小刚去.现在,小明同学摸出了一个白球,则小明参加竞赛的概率为多少?20. (本小题8分)如图,一起重机的机身(A到地面的距离)高21m,吊杆AB长36m,吊杆与水平线的夹角∠B AC可从30°升到80°.(1)当起重机位置不变时使用的最大水平距离AC 的长;(2)求起重机起吊的最大高度(吊钩本身的长度和所挂重物的高度忽略不计)(精确到0.1米,sin80°=0.9848,第 8 页第 9 页cos80°=0.1736,1.732 )第 20 题图21. (本小题10分)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=300, CD = 2(1)求直径 AB 的长;(2)求阴影部分图形的周长和面积. 22. (本小题 12 分)一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如 下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过 m (吨)时,超过部分每吨加收环境保护费100m 元.下图反映了每月收取的水费 y (元)与每月用水量 x (吨)之间的函数关系.请你解答下列问题:(1)将 m 看作已知量,分别写出当 0<x <m 和 x >m 时, y 与 x 之间的函数关系式;(2)按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五 两月的水费分别是按哪种方案计算的?并求出 m 的值.)23. (本小题12 分)定义:等腰三角形ABC,如果腰长是底边长的两倍,则称三角形ABC 是等腰倍边三角形.(1)如图1,等腰倍边三角形ABC,AB=AC,BC=2,则AB=,tanB= ;(2)如图2,平行四边形ABCD,AB=8,对角线交于点O,若分成的四个以O 为顶点的三角形中存在等腰倍边三角形,求AC+BD 的值.第23 题图1 第23 题图2 第23 题备用图第 10 页第 11 页 (本小题 14 分)如图平面直角坐标系,O 为原点,点 A(-6,0),点 B(0,3),点 E(-2,0),点 F(0,1).矩 形 OEDF 绕点 O 顺时针旋转,得矩形 OE ′D ′F ′,记旋转角为 α.(0<α<180°) 第 24 题图 1 第 24 题图 2 第 24 题备用图 (1)如图 1,当 α=90°时,写出 E ′,D ′的坐标;(2)如图 2,在旋转过程中,''AE BF 的值是否发生改变?若改变,请写出至少两个不同的值;若不变,请计算它的值并说明理由;(3)在矩形OEDF 旋转过程中,直线 AE ′与直线 BF ′相交于点 P ,连结 PE ,PO ,直接写出△ PEO 面积的最大值.。

江苏省兴化市九年级网上阅卷适应性训练数学试卷

江苏省兴化市九年级网上阅卷适应性训练数学试卷

第6题图 Ot(分)s(米)s(米)s(米)1200600510152025O1200600O1200600Os(米)O6001200江苏省兴化市初三网上阅卷适应性训练数学试卷(考试用时:120分钟 满分:150分)一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填在答题卡相应位置.......上) 1.21-的相反数是 A .21 B .21- C .2 D .2-2.下列运算正确的是A .523a a a =+ B .632a a a =⋅C .22))((b a b a b a -=-+ D.222)(b a b a +=+3.下列图形中既是中心对称图形,又是轴对称图形的是4.如图是某体育馆内的颁奖台,其左视图是. 5.下列命题中错误的是A .两组对边分别相等的四边形是平行四边形B .一组对边平行的四边形是梯形C .一组邻边相等的平行四边形是菱形D .对角线相等的平行四边形是矩形6.如图,⊙O 的内接多边形周长为3 ,⊙O 的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是A .6B .8C .10D .177.小亮每天从家去学校上学行走的路程为1200米,某天他从家去上学时以每分40米的速度行走了600米,为了不迟到他加快了速度,以每分60米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是A .B .C .D .第18题图N HB第8题图DC B A OyxA .B .C .D .8.直角梯形OABC 中,BC ∥OA ,∠OAB=90°,OA=4,腰AB 上有一点D ,AD=2,四边形ODBC 的面积为6,建立如图所示的直角坐标系,反比例函数xmy =(x >0)的图象恰好经过点C 和点 D ,则CB 与BD 的比值是A .1B .34C .56 D .78二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.一组数据4,3,5,x ,4,5的众数是4,则x = ▲ .10.“万亩荷塘绿,千岛菜花黄”,兴化第二届千岛菜花旅游节期间,共接待海内外游客48万,48万用科学计数法表示为 ▲ . 11.分解因式:x x 93-= ▲ .12.已知关于x 的方程432x m -=的解是x m =,则m 的值为 ▲ . 13.如果2x – 1的值为21,那么4x 2-4x –41= ▲ .14.已知一个多边形的内角和等于900°,则这个多边形的边数是 ▲ .15.已知⊙A 的半径为2cm ,AB=3cm .以B 为圆心作⊙B ,使得⊙A 与⊙B 外切,则⊙B的半径是 ▲ cm .16.已知一扇形的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的高为 ▲ cm .17.二次函数3)12(2++=x y 的图象为抛物线,它的顶点坐标为 ▲ . 18.如图,在矩形ABCD 中,E 、F 分别是边AD 、BC 的中点,点G 、H 在DC 边上,点M 、N 在AB 边上,且GH=21DC ,MN=31AB .若AB=10,BC=12,则图中阴影部分面积和为 ▲ .三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:31)14.3(2703----π; (2)先化简21422++--a a a ,再从1、2、3中选一个合适的数作为a 的值代入求值.20.(本题满分8分)解不等式组⎩⎨⎧≥++xx x 3)1(201>,判断x =27是否满足该不等式组,并说明理由.21.(本题满分8分)建筑学规定,民用住宅的窗户面积必须小于地板面积,但窗户面积与地板面积的比值越大,住宅的采光条件越好.我们设地板面积为a 平方米,窗户面积为b 平方米,若窗户面积和地板面积同时增加m 平方米. (1)写出增加后的窗户面积与地板面积的比值;(2)增加后,住宅的采光条件变好了还是变坏了?请说明理由.22.(本题满分8分)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球.(1)请用树状图列举出3个小球放入盒子的所有可能情况; (2)求白球恰好被放入③号盒子的概率. 23.(本题满分10分)图①、图②反映是某电器商场去年8-12月份的商品销售额统计情况.观察图①和图②,解答下面问题:图②图①15%16%12%14%25%30%25%20%15%10%5%8月9月10月11月12月月份百分比电脑部各月销售额占商场当月销售总额的百分比商场各月销售总额统计图销售总额(万元)85706080月份11月10月9月8月100908070605040302010(1)来自商场财务部的报告表明,商场8-12月份的销售总额一共是360万元,请你根据这一信息补全统计图①;(2)商场电脑部12月份的销售额是多少万元?(3)王华观察图②后认为,12月份电脑部的销售额比11月份减少了.他的说法正确吗?为什么?24.(本题满分10分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:CE = CF ;F E OD C BA 812(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论. EMD OCFBA25.(本题满分10分)如图,某天然气公司的主输气管道从A 市向北偏东60°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市北偏东30°方向,测绘员沿主输气管道步行8000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上用尺规作图的方法(不写作法,保留作图痕迹)找出支管道连接点N ,使到该小区铺设的管道最短,并求出AN 的长.北东C AM东西北26.(本题满分10分)如图,AB 是⊙O 的直径,OD 垂直弦AC 于点D ,OD 的延长线交⊙O 于点E ,与过点C 的⊙O 的切线交于点F ,已知OD=3,DE=2. (1)求弦AC 的长; (2)求线段CF 的长; (3)求tan ∠ABD .27.(本题满分12分)水利专家为了考察某河流的堤岸的抗洪能力,一组专家乘坐勘测船从甲码头顺流出发,往返于甲、乙码头;另一组专家从甲、乙两码头间的丙码头出发,乘一橡皮艇漂流而下,直至到达乙码头.若两组专家同时出发,船、艇离丙码头的距离y (km)与出发的时间x (h )之间的函数关系如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年初三第一次网上阅卷适应性训练数学试卷
注意:1. 本试卷共4页,满分为150分,考试时间为120分钟.
2. 答题前,考生务必将本人的姓名、考试号填写在答题纸相应的位置上.
3. 考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.
一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)
1.16的平方根是( ▲ )
A .±4
B .±2
C .4
D .2
2.下列计算错误的是( ▲ )
A =
B
C 3=
D .28=
3.下列图形中,是轴对称图形但不是中心对称图形的是( ▲ )
A .等边三角形
B .正六边形
C .正方形
D .圆
4.在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是( ▲ )
A .平均数是87
B .中位数是88
C .众数是85
D .方差是230
5.用反证法证明:如果AB ⊥CD ,AB ⊥EF ,那么CD ∥EF .证明该命题的第一个步骤是( ▲ )
A .假设CD ∥EF
B .假设AB ∥EF
C .假设C
D 和EF 不平行 D .假设AB 和EF 不平行
6.如图,点E 为菱形ABCD 边上的一个动点,并沿着A →B →C →D 的路径移动,设点E 经过的路径长为x ,△ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( ▲ )
第6题图 A . B . C . D.
二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)
7.5的相反数是 ▲ .
8.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 ▲ 千克.
9.若某种彩票的中奖率为5%,则“小明选中一张彩票一定中奖”这一事件是 ▲ (填“必然事件”、“不可能事件”或“随机事件”).
第11题图 第12题图
10
.若1x =,则221x x ++= ▲ .
11.如果将一副三角板按如图方式叠放,那么∠1= ▲ .
12.如图,△ABC 的顶点是正方形网格的格点,则tan A 的值为 ▲ .
第14题图 第15题图 第16题图
13.若方程22130x x +-=的两根分别为m 、n ,则mn (m +n )= ▲ .
14.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上),为了测量B 、C 两
地之间的距离,某工程队乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的仰角为30°,则BC 两地间的距离为 ▲ m .
15.如图,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B 、E 是半
圆O 的三等分点,若OA =2,则图中阴影部分的面积为 ▲ .
16.已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分
别在AC 和BC 上.如图,若AD ∶DB =1∶4,则CE ∶CF = ▲ .
三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本题满分12分)(1)
21
2cos30()12-+-; (2)解不等式:122123
x x -+-≥.
18.(本题满分8分)九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主
动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:
40%
(1)在这次评价中,一共抽查了 ▲ 名学生;
(2)请将条形图补充完整;
(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?
19.(本题满分8分)小明最喜欢吃芝麻馅的汤圆了,一天早晨小明妈妈给小明下了四个大汤圆,一个花
生馅,一个水果馅,两个芝麻馅,四个汤圆除内部馅料不同外,其他一切均相同.
(1)求小明吃第一个汤圆恰好是芝麻馅的概率;
(2)请利用树状图或列表法,求小明吃前两个汤圆恰好是芝麻馅的概率.
20.(本题满分8分)如图,在△ABC 中,AB =AC ,∠DAC 是△ABC 的一个外角.
实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)
(1)作∠DAC 的平分线AM ;
(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF
探究与猜想:若∠BAE =36°,求∠B 的度数.
第20题图
21.(本题满分10分)如图,在△ABC 中,D 是BC 边的中点,分别过点B 、C 作射线AD 的垂线,垂足
分别为E 、F ,连接BF 、CE .
(1)求证:四边形BECF 是平行四边形;
(2)若AF =FD ,在不添加辅助线的条件下,直接写出与△ABD 面积相等的所有三角形(不含△ABD ).
第21题图 22.(本题满分10分)如图,点C 在⊙O 上,连接CO 并延长交弦AB 于点D ,AC
⌒ =BC ⌒ ,连接AC 、OB ,
若CD =8,AC =
(1)求弦AB 的长;
(2)求sin ∠ABO 的值.
第22题图
23.(本题满分10分)平面直角坐标系xOy 中,直线y =x +1与双曲线k y x
=的一个交点为P (m ,6). (1)求k 的值;
(2)M (2,a ),N (n ,b )分别是该双曲线上的两点,直接写出当a >b 时,n 的取值范围.
24.(本题满分10分)为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?
25.(本题满分12分)如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以PE 为边作正方形PEFG ,顶点G 在线段PC 上. 对角线EG 、FP 相交于点O .
(1)若AP =3,求AE 的长;
(2)连接AC ,判断点O 是否在AC 上,并说明理由;
(3)在点P 从点A 到点B 的运动过程中,正方形PEFG 也随之运动,求DE 的最小值.
第25题图
26. (本题满分14分)已知直线y =2x -2与抛物线2y mx mx n =++交于点A (1,0)和点B ,且m <n .
(1)当m =2-时,直接写出该抛物线顶点的坐标.
(2)求点B 的坐标(用含m 的代数式表示).
(3)设抛物线顶点为C ,记△ABC 的面积为S . ①若1
13
m -≤≤-,求线段AB 长度的取值范围;
②当
105
8
S 时,求对应的抛物线的函数表达式.
第26题图。

相关文档
最新文档