高考专题训练二十三函数导数与不等式解析几何数列型解答题

合集下载

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练(一)函数与导数(1)1.已知函数f (x )=a e x x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2, ∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=a e x (x -1)+x 2x 2, 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧ x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ⎛ > +> -+ = ⎝①②③ 由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e 2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*) 又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a, ∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解, 设y =1x 3+3x =3x 2+1x3(x ∈[1,2]), ∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x在[1,2]上单调递减, ∴当x =1时,y =1x 3+3x的最大值为4, ∴2a ≤4,即a ≤2.高考中档大题规范练(一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x ) =1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6, 所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6=-14×32+154×12=15-38. 2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x 2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x 2=2⎝⎛⎭⎫12sin x 2+32cos x 2 =2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π. (2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n .(1)求A -B ; (2)若cos B =35,AC =8,求BC 的长. 解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6=45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3. 4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B .(1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6. (2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ;(2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以P A∥OQ.又OQ⊂平面QBD,P A⊄平面QBD,所以P A∥平面QBD.(2)在平面P AD内过P作PH⊥AD于点H,因为侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,PH⊂平面P AD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD.又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1=2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离(2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8=⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4=⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0, 并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10, 则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列, 所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24;当n =2k -1(k ∈N *)时,Sn =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y .3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2,所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 13.(2017·江苏运河中学质检)PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0),PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.。

2323函数导数与不等式解析几何数列型解答题

2323函数导数与不等式解析几何数列型解答题
题型三 解答题
第1页
数学(理) 新课标·高考二轮总复习
第二十三讲 函数、导数与不等式、 解析几何、数列型解答题
第2页
数学(理) 新课标·高考二轮总复习
好方法好成绩
1. 函 数 与 不 等 式 型 解 答 题 一 直 是 高 考 的 压 轴 题 之 一,这类解答题的命题方式灵活多变,其主要特点有两 个:一是涉及的知识面广泛,从简单的一次函数到复杂 的复合后的指数、对数函数及导数等;二是试题中蕴含 着丰富的数学思想方法,考生必须对数学思想方法有较 为深刻的领会,才能做出正确的解答.这类试题中值得 注意的题型是:函数、导数与不等式恒成立问题,利用
第23页
数学(理) 新课标·高考二轮总复习
[解析] (1)由题意:当 0≤x≤20 时,v(x)=60;当 20≤x≤200 时,设 v(x)=ax+b,
再由已知得2200a0a++b=b=600,, 解得ba==2-03013., 故函数 v(x)的表达式为 v(x)= 60,0≤x≤20, 13200-x,20≤x≤200.
第15页
数学(理) 新课标·高考二轮总复习
(ⅱ)设 0<k<1.x∈1,1-1 k时,(k-1)(x2+1)+2x>0, 故 h′(x)>0.而 h(1)=0,故当 x∈1,1-1 k时, h(x)>0,可得1-1 x2h(x)<0.与题设矛盾. (ⅲ)设 k≥1.此时 h′(x)>0,而 h(1)=0,故当 x∈(1, +∞)时,h(x)>0,可得1-1 x2h(x)<0.与题设矛盾. 综合得,k 的取值范围为(-∞,0].
第19页
数学(理) 新课标·高考二轮总复习
(2)设 P(x0,y0)为曲线 C:y=14x2-2 上一点,因为 y′ =12x,所以 l 的斜率为12x0.

高三数学 导数解答题专项训练(含解析)

高三数学 导数解答题专项训练(含解析)

高三数学 导数解答题专项训练(含解析)1、已知函数1ln(1)()(0)x f x x x++=>. (Ⅰ)函数()f x 在区间(0,)+∞上是增函数还是减函数?证明你的结论; (Ⅱ)当0x >时,()1kf x x >+恒成立,求整数k 的最大值; (Ⅲ)试证明:23(112)(123)(134)(1(1))n n n e -+⋅⋅+⋅⋅+⋅⋅⋅++>L .2、设函数41)(2+=x x f ,)2ln(21)(ex x g =,(其中e 为自然底数); (Ⅰ)求)()(x g x f y -=(0>x )的最小值;(Ⅱ)探究是否存在一次函数b kx x h +=)(使得)()(x h x f ≥且)()(x g x h ≥对一切0>x 恒成立;若存在,求出一次函数的表达式,若不存在,说明理由; (Ⅲ)数列{}n a 中,11=a ,)2)((1≥=-n a g a n n ,求证:83)(111∑=++<⋅-nk k k ka a a。

3、已知函数x ax x f ln 1)(--=()a ∈R .(1)讨论函数)(x f 在定义域内的极值点的个数;(2)若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围;(3)当1->>e y x 时,求证:)1ln()1ln(++>-y x e yx .4、已知函数mx x x f ++=21ln )(.(Ⅰ)若)(x f 为定义域上的单调函数,求实数m 的取值范围; (Ⅱ)当1-=m 时,求函数)(x f 的最大值; (Ⅲ)当1=m ,且10≤<≤a b 时,证明:2)()(34<--<ba b f a f .5、已知函数()ln f x x a x =-,1()()ag x a R x+=-∈. (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在区间[1,]( 2.71828......)e e =上不存在...0x ,使得00()()f x g x <成立,求实数a 的取值范围.6、函数()ln f x ax x x b =++是奇函数,且图像在点(,())e f e 处的切线斜率为3(e 为自然对数的底数).(1)求实数a 、b 的值;(2)若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 的最大值; (3)当1(,)m n m n Z >>∈时,证明:()()nmm n nm mn >.7、已知函数1()ln sin g x x x θ=+在[)1,+∞上为增函数,且(0,)θπ∈,θ为常数,1()ln ()m f x mx x m R x-=--∈. (1)求θ的值;(2)若()()y f x g x =-在[)1,+∞上为单调函数,求m 的取值范围; (3)设2()eh x x=,若在[]1,e 上至少存在一个0x ,使得000()()()f x g x h x ->成立,求 m 的取值范围.8、已知函数()ln()x f x e a =+(a 为常数,e 是自然对数的底数)是实数集R 上的奇函数,函数x x f x g sin )()(+=λ是区间[-1,1]上的减函数.(Ⅰ)求a 的值;(Ⅱ)若2()1g x t t λ≤++在[1,1]x ∈-及λ所在的取值范围上恒成立,求t 的取值范围; (Ⅲ)试讨论函数m ex x x f xx h -+-=2)(ln )(2的零点的个数.9、已知函数2()(25)5ln ()f x ax a x x a R =-++∈.(Ⅰ)若曲线()y f x =在3x =和5x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间; (Ⅲ)设25()-2g x x x =,若对任意15(0,]2x ∈,均存在25(0,]2x ∈,使得12()()f x g x <, 求a 的取值范围.10、已知函数bx x x g x x f -==221)(,ln )((b 为常数)。

导数专题训练(含答案)

导数专题训练(含答案)

导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。

高三数学 导数解答题专项训练附解析

高三数学 导数解答题专项训练附解析

高三数学 导数解答题专项训练附解析一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.2.已知函数()ln f x x x x =-,()2ln 1g x a x x =-+.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值; (3)证明:1111232022e 2023+++⋅⋅⋅+>,e 是自然对数的底数. 3.已知函数()ln xf x x=. (1)求曲线()y f x =在点11,e e f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭处的切线方程;(2)设()()g x f x k =-有两个不同的零点12,x x ,求证:212e x x >. 4.已知函数()f x 满足()21bf x ax =-,0a ≠,()11f =,()02f '=-. (1)求函数()f x 的表达式;(2)若0a <,数列{}n a 满足123a =,11n n a f a +⎛⎫= ⎪⎝⎭,设11n nb a =-,*n N ∈,求数列{}n b 的通项公式.5.已知函数21()ln (R)2f x x ax x a =--∈ (1)若2a =时,讨论函数()f x 的单调性;(2)设23()()12g x f x x =++,若函数()g x 在1e e⎡⎤⎢⎥⎣⎦,上有两个零点,求实数a 的取值范围6.已知函数2()e 1)(x f x ax x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线的方程; (2)若函数()f x 在0x =处取得极大值,求a 的取值范围; (3)若函数()f x 存在最小值,直接写出a 的取值范围. 7.已知函数()12ln f x x x x=--. (1)判断函数()f x 的单调性;(2)设()()()28g x f x bf x =-,当1x >时,()0g x >,求实数b 的取值范围.8.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值. 9.已知函数()321623f x x ax x =+-+在2x =处取得极值. (1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)求导求单调性即可求解;(2)()()220a x g x x x-'=>,分类讨论单调性得到()ln 1222max g x a a a =-+,要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤, 又由(1)可得到ln 10222a a a -+≥,所以ln 10222a a a -+=,即可求解;(3)由(2)知()22ln 1g x x x =≤-得到22ln 1x x ≤-,所以ln 1t t ≤-,所以e 1xx ≥+,即11e >nn n+,代入证明即可. (1)()f x 的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,当(1,)x ∈+∞时,()0,f x '>故()f x 在()01,上单调递减,在(1,)+∞上单调递增. 所以()()11min f x f ==-. (2)()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾.当0a >时,x ∈时,()0g x '>,)x ∈+∞时,()0g x '<,故()g x 在上单调递增,在)+∞上单调递减,所以()1ln 12222maxa a a ag g x a ==+=-+, 要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤又由(1)知()ln 1f x x x x =-≥-,即ln 1x x x -≥-,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 10222a a a -+=且12a = 所以2a =. (3)证明:由(2)知()22ln 1g x x x =≤-得22ln 1x x ≤-(当且仅当1x =时等号成立),令)0x t =>,则ln 1t t ≤-(当且仅当1t =时等号成立),令e x t =,所以ln e e 1x x ≤-,即e 1x x ≥+(当且仅当0x =时等号成立),令()*10x n N n =>∈,则111e >1n n n n++=从而有11111320212022223420222023e e eee>12320212022⋅⋅⋅⨯⨯⨯⨯⨯ 所以111112320212022e 2023.+++⋯++> 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.3.(1)22e 3e 0x y --=; (2)证明见解析【解析】 【分析】(1)求导,计算1e f ⎛⎫⎪⎝⎭'和1ef ⎛⎫ ⎪⎝⎭,再由点斜式代入写出切线方程;(2)设120x x >>,由题意得()1212ln ln x x k x x +=+,()1212ln ln x x k x x -=-,将证明212e x x >转化为证明()1212122lnx x x x x x ->+,令12x t x =,即证()21ln 1t t t ->+,令()()()21ln 11t h t t t t -=->+,求导判断单调性即可证明. (1)由题意,()21ln x f x x -'=,则212e e f ⎛⎫'= ⎪⎝⎭,1e e f ⎛⎫=- ⎪⎝⎭, 所以函数()y f x =在点11,e e f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为()21e 2e e y x ⎛⎫--=- ⎪⎝⎭,即22e 3e 0x y --=. (2)设120x x >>,由题意,()()120g x g x ==, 所以1122ln 0,ln 0x kx x kx -=-=,可得()1212ln ln x x k x x +=+,()1212ln ln x x k x x -=-,要证明212e x x >,只需证12ln ln 2x x +>,即()122k x x +>,因为1212ln ln x x k x x -=-,所以可转化为证明121212ln ln 2x x x x x x ->-+, 即()1212122lnx x x x x x ->+,令12x t x =,则1t >,即证()21ln 1t t t ->+,令()()()21ln 11t h t t t t -=->+,则()()()()222114011t h t t t t t -'=-=>++, 所以函数()h t 在()1,+∞上是增函数,所以()()211ln1011h t ⨯->-=+, 即()21ln 1t t t ->+得证,所以212e x x >.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.4.(1)2()1f x x =+或1()21f x x =-;(2)12n nb =. 【解析】 【分析】(1)求出导函数,然后列方程组求得,a b ,得函数解析式; (2)由(1)得2()1f x x =+,求出{}n a 的递推关系,从而得出{}n b 的递推式,得其为等比数列,从而易得通项公式. (1)由题意22()(1)ab f x ax '=--,所以2(1)11(0)22b f a f ab ⎧==⎪-⎨⎪=-=-⎩',解得11a b =-⎧⎨=-⎩或212a b =⎧⎪⎨=⎪⎩,所以2()1f x x =+或1()21f x x =-;(2)0a <,则2()1f x x =+, 11n n a f a +⎛⎫= ⎪⎝⎭22111n n n a a a ==++,11111222n n n n a a a a ++==+,11111(1)2n n a a +-=-, 11n n b a =-,则112n n b b +=,又111112b a =-=,所以{}n b 是等比数列,1111()222n n nb -=⨯=. 5.(1)单调递减区间为1),单调递增区间为1,)+∞ (2)(3,2e] 【解析】 【分析】(1)当2a =时,221()x x f x x--'=,由()0f x '<,可求()f x 的单调递减区间,由()0f x '>,可求()f x 的单调递增区间;(2)函数()g x 在1e e⎡⎤⎢⎥⎣⎦,上有两个零点等价于1ln 2x a x xx =+-在1e e ⎡⎤⎢⎥⎣⎦,上有两解,构造函数1ln ()2x h x x x x =+-,1e e x ⎡⎤∈⎢⎥⎣⎦,,利用导数可求得实数a 的取值范围. (1)当2a =时,21()2ln 2f x x x x =--,定义域为()0+∞,, 则212()21x x x xf x x '=----=, 令()0f x '=,解得1x =,或1x =(舍去),所以当1)x ∈时,()0f x '<,()f x 单调递减;当1,)x ∈+∞时,()0f x '>,()f x 单调递增;故函数的单调递减区间为1),单调递增区间为1,)+∞. (2)设223()()121ln 2g x f x x x ax x =++=-+-,函数()g x 在1e e⎡⎤⎢⎥⎣⎦,上有两个零点等价于1ln 2x a x xx =+-在1e e ⎡⎤⎢⎥⎣⎦,上有两解, 令1ln ()2x h x x x x =+-,1e e x ⎡⎤∈⎢⎥⎣⎦,,则221ln 1()2x x xh x x x ⋅-'=--2222ln x xx -+=, 令2()22ln t x x x =-+,1e e x ⎡⎤∈⎢⎥⎣⎦,,显然,()t x 在区间1e e ⎡⎤⎢⎥⎣⎦,上单调递增,又()10t =,所以当1[,1)e时,有()0t x <,即()0h x '<, 当(1e]x ∈,时,有()0t x >,即()0h x '>,所以()h x 在区间11e ⎡⎫⎪⎢⎣⎭,上单调递减,在区间(1,e]上单调递增, 则min ()(1)3h x h ==,12()2e e eh =+,(e)2e h =, 由方程1ln 2x a x xx =+-在1e e ⎡⎤⎢⎥⎣⎦,上有两解及()1e e h h ⎛⎫> ⎪⎝⎭, 可得实数a 的取值范围是(3,2e]. 6.(1)1y = (2)1(,)2-∞ (3)10,4⎛⎤ ⎥⎝⎦ 【解析】 【分析】(1)先求导后求出切线的斜率'(0)0f =,然后求出直线上该点的坐标即可写出直线方程;(2)根据函数的单调性和最值分类讨论; (3)分情况讨论,根据函数的单调性和极限求解.解:由题意得:22'e 121)e 2)()((x x ax x a f x ax x x ax =-++-=+-'(0)0f =,(0)1f =故曲线()y f x =在点(0,(0))f 处的切线的方程1y =. (2)由(1)得要使得()f x 在0x =处取得极大值,'()f x 在0x <时应该'()0f x >,'()f x 在0x >时应该'()0f x <,'e 2(1)()x x x ax f a =+-故①0a <且120aa-<,解得0a < ②0a >且120a a->,解得102a <<当0a =时,'()e x f x x =-,满足题意; 当12a =时,'21(e )2x f x x =,不满足题意; 综上:a 的取值范围为1(,)2-∞. (3)可以分三种情况讨论:①0a ≤②102a <<③12a ≥ 若0a ≤,()f x 在12(,)a a --∞上单调递减,在12(,0)aa-单调递增,在(0,)+∞上单调递减,无最小值;若102a <<时,当0x <时,x 趋向-∞时,()f x 趋向于0;当0x > ,要使函数取得存在最小值121221212112()[(41)0e ()]e a aaa a a a f a a a a a a -----=-=-≤+,解得104a <≤,故 12a x a -=处取得最小值,故a 的取值范围10,4⎛⎤⎥⎝⎦. 若12a ≥时,()f x 在x 趋向-∞时,()f x 趋向于0,又(0)1f =故无最小值; 综上所述函数()f x 存在最小值, a 的取值范围10,4⎛⎤⎥⎝⎦.7.(1)在(0,)+∞单调递增; (2)1b ≤ 【解析】 【分析】(1)对函数()f x 通过求导,判断出导数恒大于等于0,得到()f x 在(0,)+∞单调(2)将()g x 化简整理并求导,得到222(1)1()(24)-'=++-x g x x b x x,讨论b 的取值可确定()g x 在(1,)+∞单调性,即可得到取值范围. (1)因为()f x 的定义域为(0,)+∞,对函数()f x 求导,则222221221(1)()10x x x f x x x x x'-+-=+-==≥,∴函数()f x 在(0,)+∞单调递增. (2)因为()()()28g x f x bf x =-,所以22211()2ln 8(2ln )0=----->g x x x b x x x x 对1x ∀>恒成立, 322412()28(1)'=+--+-g x x b x x x x4232312248(2)⎡⎤=+--+-⎣⎦x x b x x x x222322(1)2(1)1(1)4(24)--⎡⎤=+-=++-⎣⎦x x x bx x b x x x当1x >时,124++>x x,当44≤b , 即1b ≤时,()0g x '>对1x ∀>恒成立,∴()g x 在(1,)+∞单调递增,()(1)g x g >=0符合题意.当1b >时,存在01x >使得当0(1,)x x ∈时,()0,()g x g x '<单调递减; 此时()(1)0g x g <=这与()0>g x 恒成立矛盾. 综上:1b ≤. 【点睛】本题考查函数恒成立条件下求解参数范围问题,属于难题.对函数()g x 求导,有222(1)1()(24)-'=++-x g x x b x x,再利用()1=0g 的特点,可分类讨论b 的取值范围,在1b ≤时,()g x 在(1,)+∞单调递增,原式成立,此时满足要求;当1b >时,()g x 在(1,)+∞先出现递减区间,必有()0g x <出现,与已知矛盾,即可确定b 的范围. 8.(1)答案见解析 (2)e π-- 【解析】 【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值;(2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值. (1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增, 当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减, 此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0; 当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞ 上单调递减,极值点个数为1. (2)由()()0af x g x +=,得sin 1xx a e -=. 令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根, 所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点. ()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 4x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=,所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<,所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->-所以当)e ,0xa -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2-(2)()max 312f x =,()min 163f x =- 【解析】【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案.(1)解:(1)()226f x x ax '=+-, 因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-, 令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<,所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-;(2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-;当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=, ()321116222622323f =⨯+⨯-⨯+=-, ()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-. 10.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值.(1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+,又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-.(2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e .又()22222e e ln e 3e 22e f =-+=-, 所以()f x 在2e x =处取得极小值22e -,无极大值.【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.。

全国卷高考数学导数、解析几何大题专项训练含答案(二)

全国卷高考数学导数、解析几何大题专项训练含答案(二)

全国卷高考数学导数、解析几何解答题专项训练(二)一、解答题1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。

(I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围。

2.(本小题满分12分) 已知函数22()ln axf x x e=-,(a e R,∈为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0, )P t ()t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x ,222(,())P x f x 12()≠x x ,求证12x x +为定值,并求出该定值。

3.若函数()x f 满足:在定义域内存在实数0x,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n Λ()*∈N n . 4.已知x=1是()2ln bf x x x x =-+的一个极值点(1)求b 的值; (2)求函数()f x 的单调增区间;(3)设x x f x g 3)()(-=,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。

5.已知函数2()x f x e x ax =--,如果函数()f x 恰有两个不同的极值点1x ,2x ,且12x x <.(Ⅰ)证明:1ln 2x <;(Ⅱ)求1()f x 的最小值,并指出此时a 的值.6.设函数2()ln 4f x a x x =-,2()(0,0,,)g x bx a b a b R =≠≠∈.(Ⅰ)当32b =时,函数()()()h x f x g x =+在1x =处有极小值,求函数()h x 的单调递增区间;(Ⅱ)若函数()f x 和()g x 有相同的极大值,且函数()()()g x p x f x x =+在区间2[1,]e 上的最大值为8e -,求实数b 的值(其中e 是自然对数的底数) 7.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x +=-∈(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.8.已知函数2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,它们的导函数分别为()y f x '=与()y g x '=(1)若()g x 图象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,求、a b 的值;(2)对于任意的实数k,且、a b 均不为0,证明:当0ab >时,()y f x '=与()y g x '=的图象有公共点;(3)在(1)的条件下,设112212(,),(,),()A x yB x y x x <是函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<9.(本小题满分13分)已知函数21()ln (,0).2f x x ax a R a =-∈≠(I )求函数()f x 的单调区间;(II )已知点1111(1,),(,)(1):()2A a x y x C y f x ->=设B 是曲线图角上的点,曲线C上是否存在点00(,)M x y 满足:①1012x x +=;②曲线C 在点M 处的切线平行于直线AB ?请说明理由。

2-3-23函数、导数与不等式、解析几何、数列型解答题

2-3-23函数、导数与不等式、解析几何、数列型解答题

高考专题训练二十三函数、导数与不等式、解析几何、数列型解答题班级_______ 姓名_______ 时间:45分钟 分值:72分 总得分________1.(12分)(2011·成都市高中毕业班第二次诊断性检测)设△ABC 的三内角A 、B 、C 所对应的边长分别为a 、b 、c ,平面向量m =(cos A ,cos C ),n =(c ,a ),p =(2b,0),且m ·(n -p )=0.(1)求角A 的大小;(2)当|x |≤A 时,求函数f (x )=sin x cos x +sin xsin ⎝ ⎛⎭⎪⎫x -π6的值域. 解:(1)m ·(n -p )=(cos A ,cos C )·(c -2b ,a ) =(c -2b )cos A +a cos C =0⇒(sin C -2sin B )cos A +sin A cos C =0⇒-2sin B cos A +sin B =0. ∵sin B ≠0,∴cos A =12⇒A =π3.(2)f (x )=sin x cos x +sin x sin ⎝ ⎛⎭⎪⎫x -π6=12sin x cos x +32sin 2x =14sin2x +32·1-cos2x 2=34+14sin2x - 34cos2x =34+12sin ⎝ ⎛⎭⎪⎫2x -π3.∵|x |≤A ,A =π3,∴-π3≤x ≤π3-π≤2x -π3≤π3∴-1≤sin ⎝ ⎛⎭⎪⎫2x -π3≤32⇒3-24≤34+12sin ⎝ ⎛⎭⎪⎫2x -π3≤32.∴函数f (x )的值域为[3-24,32].2.(12分)(2011·正定)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求四面体B —DEF 的体积.分析:本题考查空间线面平行、线面垂直、面面垂直、体积的计算等基础知识,同时考查空间想象能力与推理论证能力.解:(1)证明:设AC 与BD 交于点G ,则G 为AC 的中点.连接EG 、GH ,由于H 为BC 的中点,故GH 綊12AB .又EF 綊12AB ,∴EF 綊GH ,∴四边形EFHG 为平行四边形,∴EG ∥FH ,而EG ⊂平面EDB ,∴FH ∥平面EDB . (2)证明:由四边形ABCD 为正方形,有AB ⊥BC .又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC ,∴EF⊥FH ,∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC . ∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .(3)∵EF ⊥FB ,∠BFC =90°,∴BF ⊥平面CDEF . ∴BF 为四面体B -DEF 的高.∵BC =AB =2,∴BF =FC = 2.又EF =1, ∴V B -DEF =13×12×1×2×2=13.3.(12分)(2011·预测题)小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为45,34,23,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用X 表示小王所获得奖品的价值,写出X 的概率分布列,并求X 的数学期望.解:(1)设小王过第一关但未过第二关的概率为P 1,则P 1=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫14+34×14=725.(2)X 的取值为0,1000,3000, 6000, 则P (X =0)=15+45×15=925,P (X =1000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫14+34×14=725,P (X =3000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫232-C 12⎝ ⎛⎭⎪⎫232×13=775, P (X =6000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+C 12⎝ ⎛⎭⎪⎫232×13=415, ∴X 的概率分布列为∴X 的数学期望E (X )=0×25+1000×25+3000×75+6000×415=2160.4.(12分)(2011·天津卷)已知a >0,函数f (x )=ln x -ax 2,x >0.(f (x )的图象连续不断)(1)求f (x )的单调区间;(2)当a =18时,证明:存在x 0∈(2,+∞),使f (x 0)=f ⎝ ⎛⎭⎪⎫32;(3)若存在均属于区间[1,3]的α,β,且β -α≥1,使f (α)=f (β),证明:ln3-ln25≤a ≤ln23.分析:本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力、分类讨论的思想、分析解决问题的能力.解:(1)f ′(x )=1x -2ax =1-2ax 2x ,x ∈(0,+∞).令f ′(x )=0,解得x =2a2a.当x 变化时,f ′(x )、f (x )的变化情况如下表:⎝⎭⎝ ⎛⎭⎪⎫2a 2a ,+∞. (2)证明:当a =18时,f (x )=ln x -18x 2,由(1)知f (x )在(0,2)内单调递增,在(2,+∞)内单调递减.令g (x )=f (x )-f ⎝ ⎛⎭⎪⎫32.由于f (x )在(0,2)内单调递增, 故f (2)>f ⎝ ⎛⎭⎪⎫32,即g (2)>0.取x ′=32e>2,则g (x ′)=41-9e 232<0.所以存在x 0∈(2,x ′),使g (x 0)=0,即存在x 0∈(2,+∞),使f (x 0)=f ⎝ ⎛⎭⎫32.(说明:x ′的取法不唯一,只要满足x ′>2,且g (x ′)<0即可.)(3)证明:由f (α)=f (β)及(1)的结论知α<2a2a<β,从而f (x )在[α,β]上的最小值为f (α),又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故⎩⎪⎨⎪⎧ f (2)≥f (α)≥f (1),f (2)≥f (β)≥f (3).即⎩⎪⎨⎪⎧ln2-4a ≥-a ,ln2-4a ≥ln3-9a . 从而ln3-ln25≤a ≤ln23.5.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4.求y 0的值.分析:本题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算能力和推理能力.解:(1)由e =c a =32,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2.解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1.所以椭圆的方程为x 24+y 2=1.(2)由(1)可知A (-2,0),设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).于是A ,B 两点的坐标满足方程组⎩⎨⎧y =k (x +2),x 24+y 2=1.由方程组消去y 并整理,得 (1+4k 2)x 2+16k 2x +(16k 2-4)=0. 由-2x 1=16k 2-41+4k 2,得 x 1=2-8k 21+4k 2,从而y 1=4k 1+4k 2.设线段AB 的中点为M ,则M 的坐标为⎝ ⎛⎭⎪⎫-8k 21+4k 2,2k 1+4k 2. 以下分两种情况:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →=(2,-y 0).由QA →·QB →=4,得y 0=±2 2.②当k ≠0时,线段AB 的垂直平分线的方程为 y -2k 1+4k =-1k ⎝ ⎛⎭⎪⎫x +8k 21+4k 2. 令x =0,解得y 0=-6k 1+4k2. 由|QA →|=(-2,-y 0),QB →=(x 1,y 1-y 0), QA →·QB →=-2x 1-y 0(y 1-y 0)=-2(2-8k 2)1+4k 2+6k 1+4k 2⎝ ⎛⎭⎪⎫4k1+4k 2+6k 1+4k 2=4(16k 4+15k 2-1)(1+4k 2)2=4,整理得7k 2=2,故k =±147,所以y 0=±2145.综上,y 0=±22或y 0=±2145.6.(12分)(2011·湖北卷)已知数列{a n }的前n 项和为S n ,且满足:a 1=a (a ≠0),a n +1=rS n (n ∈N *,r ∈R ,r ≠-1).(1)求数列{a n }的通项公式;(2)若存在k ∈N *,使得S k +1,S k ,S k +2成等差数列,试判断:对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2是否成等差数列,并证明你的结论.分析:本小题主要考查等差数列、等比数列等基础知识,同时考查推理论证能力,以及特殊与一般的思想.解:(1)由已知a n +1=rS n ,可得a n +2=rS n +1,两式相减可得 a n +2-a n +1=r (S n +1-S n )=ra n +1,即a n +2=(r +1)a n +1,又a 2=ra 1=ra ,所以当r =0时,数列{a n }为:a,0,…,0,…;当r ≠0,r ≠-1时,由已知a ≠0,所以a n ≠0(n ∈N *), 于是由a n +2=(r +1)a n +1,可得a n +2a n +1=r +1(n ∈N *),∴a 2,a 3,…,a n ,…成等比数列, ∴当n ≥2时,a n =r (r +1)n -2a .综上,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧a ,n =1,r (r +1)n -2a ,n ≥2. (2)对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2成等差数列,证明如下:当r =0时,由(1)知,a n =⎩⎪⎨⎪⎧a ,n =1,0,n ≥2.∴对于任意的m∈N*,且m≥2,a m+1,a m,a m+2成等差数列.当r≠0,r≠-1时,∵S k+2=S k+a k+1+a k+2,S k+1=S k+a k+1.若存在k∈N*,使得S k+1,S k,S k+2成等差数列,则S k+1+S k+2=2S k,∴2S k+2a k+1+a k+2=2S k,即a k+2=-2a k+1.由(1)知,a2,a3,…,a m,…的公比r+1=-2,于是对于任意的m∈N*,且m≥2,a m+1=-2a m,从而a m+2=4a m,∴a m+1+a m+2=2a m,即a m+1,a m,a m+2成等差数列.综上,对于任意的m∈N*,且m≥2,a m+1,a m,a m+2成等差数列.。

高考数学必做题--函数与导数 (后附参考答案与详解)

高考数学必做题--函数与导数 (后附参考答案与详解)

1 23 4 56 7 8 9 10 1112 13 14 15 1617 18 19 20 212223,且关于的方的取值范围是.24252627 28 29 30123,4.567解析式最值奇偶性二次函数二次函数的概念、图象和性质导数及其应用导数概念及其几何意义导数的运算数列数列的应用数列与不等式数列的概念数列的递推公式数列的前n项和89恒成立,则有即恒成立,,令,解得.得:,,或,时矛盾.函数的模型及其应用导数及其应用利用导数研究函数的单调性10如图点在的下方,∴得.再根据当与相切时,设切点坐标为,则,∴,此时,此时与有个交点,∴.故选.函数与导数函数分段函数图象函数与方程方程根的个数函数图象的交点11函数与导数函数单调性函数与方程函数的零点导数及其应用导数与零点导数与分类讨论导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式1213解析几何直线与方程直线的倾斜角与斜率14又图象可知交点为∴解得.∵,∴,由()知,当时,在故要证原不等式成立,只需要证明:当时,令,则,∴在上为增函数,∴,即,∴,即.函数与导数函数与方程函数图象的交点导数及其应用导数概念及其几何意义导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式解析几何直线与方程直线的倾斜角与斜率直线的方程15对应的点坐标的最高点为最低点为,此两点也是函数的最高和最低点,由此可知.同理可得时,取得最大值.依理,当时,取得最小值,即.16在上至少有三个零点可化为少有三个交点,在上单调递减,则,解得:.函数与导数函数奇偶性二次函数二次函数的概念、图象和性质对数函数对数函数的概念、图象及其性质函数与方程方程根的个数函数的零点B. C.,关于的不等式只有两个整数解,则实数17C函数的定义域为,则,当得,即即,即,由得,得即,即,即当时,函数取得极大值,同时也是最大值即当时,有一个整数解当时,有无数个整数解,若,则得若,则由得或当时,不等式由无数个整数解,不满足条件.当时,由得当时,没有整数解,则要使当有两个整数解,∵,,∴当时,函数有两个整数点,∴要使有两个整数解,则,即.故选.函数与导数二次函数二次型函数导数及其应用导数与零点导数的运算利用导数研究函数的单调性18单调性19复合函数20易知共有个交点.函数与导数函数分段函数奇偶性周期性函数与方程函数图象的交点2122,则,恰好是正方形的面积,所以23,且关于的方的取值范围是.,如图所示,2425函数与导数导数及其应用导数与恒成立导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式不等式与线性规划解不等式分式不等式2627正弦函数的图象与性质282930。

高三数学 导数解答题专项训练附解析

高三数学 导数解答题专项训练附解析

高三数学 导数解答题专项训练附解析一、解答题1.已知函数()()e ,R x f x x a a =+∈.(1)若函数()f x 在区间[3,)-+∞上是增函数,求实数a 的取值范围. (2)若2()e f x ≥在[]0,2x ∈时恒成立,求实数a 的取值范围. 2.已知函数2()cos sin e f x x x x -=--,[]0,x π∈. (1)求()f x 的最大值;(2)证明:2e sin e e cos 1x x x x x x x -+>+-;(3)若320()2e f x ax -++≥恒成立,求实数a 的取值范围. 3.已知函数()f x 满足()21bf x ax =-,0a ≠,()11f =,()02f '=-. (1)求函数()f x 的表达式;(2)若0a <,数列{}n a 满足123a =,11n n a f a +⎛⎫= ⎪⎝⎭,设11n nb a =-,*n N ∈,求数列{}n b 的通项公式.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.6.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 7.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.8.已知函数2()2ln f x x x =-+,()()ag x x a x =+∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 与()g x 有相同的极值点,求函数()g x 在区间1[,3]2上的最值. 9.已知函数()12ln f x x x x=--. (1)判断函数()f x 的单调性;(2)设()()()28g x f x bf x =-,当1x >时,()0g x >,求实数b 的取值范围.10.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)【参考答案】一、解答题1.(1)[2,)+∞ (2)2[e ,)+∞ 【解析】 【分析】(1)求出导函数,由题意可得()0f x '≥在[3,)-+∞上恒成立,从而可求出a 的取值范围,(2)将问题转化为2e x a x -≥-在[]0,2x ∈时恒成立,构造函数2()e x g x x -=-,利用导数求出其最大值即可 (1)由()()e ,R x f x x a a =+∈,得()(1)e x f x x a '=++, 因为()f x 在区间[3,)-+∞上是增函数, 所()0f x '≥在[3,)-+∞上恒成立, 所以10x a ++≥在[3,)-+∞上恒成立, 因为1y x a =++在[3,)-+∞上为增函数, 所以满足题意只需310a -++≥,得2a ≥, 所以a 的取值范围为[2,)+∞ (2)因为()()e ,R x f x x a a =+∈所以2()e e x x a +≥ 即2e x a x -≥-在[]0,2x ∈时恒成立, 令2()e x g x x -=- ,[]0,2x ∈,则22()e 1(e 1)0x x g x --'=--=-+<, 所以2()e x g x x -=-在[]0,2x ∈上递减,所以2max ()(0)e g x g ==,所以2e a ≥,所以a 的取值范围为2[e ,)+∞ 2.(1)2max ()e f x -=- (2)证明见解析 (3)1,6a ⎡⎫∈+∞⎪⎢⎣⎭【解析】 【分析】(1)直接利用导数判断单调性,求出最大值; (2)利用分析法,转化为证明1e x x ->f (x ). 令g (x )=1e xx-,[]0,x π∈,利用导数求出g (x )≥g (2)=-2e -,而2max ()(0)e f x f -==-,即可证明;(3)把问题转化为x cos x -sin x +2ax 3≥0恒成立,令h (x )=x cos x -sin x +2ax 3,[]0,x π∈,二次求导后,令()6sin x ax x ϕ=-,对a 分类讨论:i. a ≤-16, ii. a ≥16,iii.-16<a <16,分别利用导数计算即可求解. (1)∵2()cos sin e f x x x x -=--,[]0,x π∈,∴()cos sin cos sin 0f x x x x x x x '=--=-,∴f (x )在[0,π]上单调递减,∴2max ()(0)e f x f -==-.(2)要证2e sin e e cos 1x x x x x x x -+>+-,只要证21cos sin e e x x x x x -->--,即证1e xx ->f (x ), 令g (x )=1e x x -,[]0,x π∈,则()2ex x g x -'=, 故g (x )在(0,2)上单调递减;g (x )在(2,π)上单调递增,所以g (x )≥g (2)=-2e -,又 f (x )≤-2e -,且等号不同时取到,所以2e sin e e cos 1x x x x x x x -+>+- (3)()3220f x ax -≥++e ,等价于x cos x -sin x +2ax 3≥0,令h (x )=x cos x -sin x +2ax 3,[]0,x π∈,则()2sin 66sin h x x x ax x ax x '=-+=(-),令()6sin x ax x ϕ=-,则()6cos x a x ϕ=-',i.当a ≤-16时,()0x ϕ',所以()ϕx 在[0,π]上递减,所以()(0)0x ϕϕ=, 所以()0h x '≤,所以h (x )在[0,π]上递减,所以h (x )≤h (0)=0,不合题意. ii.当a ≥16时,()0x ϕ',所以()ϕx 在[0,π]上递增,所以()(0)0x ϕϕ= 所以()0h x '≥,所以h (x )在[0,π]上递增,所以h (x )≥h (0)=0,符合题意. iii.当-16<a <16时,因为(0)610a ϕ=-<',()160a ϕπ=+>',且()x ϕ'在[0,π]上递增,所以0x ∃[]0,π∈,使得()00x ϕ'=,所以当0(0,)x x ∈时,()0x ϕ'<,此时()ϕx 在(0,x 0)上递减,所以()(0)0x ϕϕ<=,所以()0h x '<,所以h (x )在(0,x 0)上递减,所以h (x )<h (0)=0,不合题意.综上可得: 1,6a ⎡⎫∈+∞⎪⎢⎣⎭. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 3.(1)2()1f x x =+或1()21f x x =-;(2)12n nb =. 【解析】 【分析】(1)求出导函数,然后列方程组求得,a b ,得函数解析式; (2)由(1)得2()1f x x =+,求出{}n a 的递推关系,从而得出{}n b 的递推式,得其为等比数列,从而易得通项公式. (1)由题意22()(1)ab f x ax '=--,所以2(1)11(0)22b f a f ab ⎧==⎪-⎨⎪=-=-⎩',解得11a b =-⎧⎨=-⎩或212a b =⎧⎪⎨=⎪⎩,所以2()1f x x =+或1()21f x x =-;(2)0a <,则2()1f x x =+, 11n n a f a +⎛⎫= ⎪⎝⎭22111n n n a a a ==++,11111222n n n n a a a a ++==+,11111(1)2n n a a +-=-, 11n n b a =-,则112n n b b +=,又111112b a =-=,所以{}n b 是等比数列,1111()222n n nb -=⨯=. 4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增, 又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减,所以,()()01r x r <=,所以不等式()21e 011xxx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a -<<<-,所以βα-> 所以21x x-> 综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii )小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011xx x x +<<<-,进行放缩可得()()1201,21ii i ix ax f x ix +'⋅+->==-,从而构造二次函数()(222mx ax a x =-++++21x x ->5.(1)详见解析; (2)详见解析; 【解析】 【分析】(1)由2a =-,得到2()2ln f x x x =-,然后求导2()2f x x x'=-求解;(2)令2()ln (2)22=+-+++g x x a x a x a ,求导()()21()--'=x a x g x x,分0a ≤,012a <<,12a =,122a<<讨论求解. (1)解:当2a =-时,2()2ln f x x x =-, 所以2()2f x x x'=-,令()0f x '=,得1x =, 当01x <<时,()0f x '<,当1x >时,()0f x '>, 所以1x =是函数()f x 的极小值点; (2)当2(]0,x ∈时,令2()ln (2)22=+-+++g x x a x a x a ,则()()2212(2)()2(2)---++'=+-+==x a x a x a x a g x x a x x x,当0a ≤时,01x <<时,()0g x '<,12x <≤时,()0g x '>, 所以当1x =时,()g x 取得极小值,且0x →,()g x ∞→+,当()110g a =+>,即10a -<≤,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当()110g a =+=,即1a =-时,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+≥⎪⎩,即21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+<⎪⎩,即2ln 2a <-,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当012a <<,即02a <<时,02ax <<或1x >时,()0g x '>,12a x <<时,()0g x '<,所以当2ax =时,()g x 取得极大值,当1x =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>恒成立,所以函数()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当12a =,即2a =时,()0g x '≥恒成立,所以()g x 在(0,2]上递增,所以函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点;当122a <<,即24a <<时,01x <<或22a x <<时,()0g x '>,12ax <<时,()0g x '<,所以当1x =时,()g x 取得极大值,当2ax =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>,()22ln 20=+<g a ,2ln 20242⎛⎫=-+++> ⎪⎝⎭a a a g a a 恒成立,所以()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点.综上: 当10a -<≤时,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当1a =-或 2ln 2a <-或04a <<时,()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点.6.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++,所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减. ∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点;当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增,又()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1. 【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解. 7.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()max ln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-.所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.8.(1)单增区间为(0,1),单减区间为(1,)+∞(2)min ()2g x =,max 10()3g x =【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求出()f x 的单调区间; (2)由有相同的极值点求出a 的值,再利用对勾函数的单调性求出()g x 在区间1,32⎡⎤⎢⎥⎣⎦上的最值. (1)()f x 的定义域:()0,∞+()()22122x f x x x x--'=-+=,由()0f x '>得01x <<,由()0f x '<得1x >, ∴()f x 的单增区间为()0,1,单减区间为()1,+∞. (2)()21ag x x ='-,由(1)知()f x 的极值点为1. ∵函数()f x 与()g x 有相同的极值点, ∴()10g '=,即10a -=,∴1a =, 从而()1g x x x =+,()g x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上递增, 又1522g ⎛⎫= ⎪⎝⎭,()1033g =,∴在区间1,32⎡⎤⎢⎥⎣⎦上,()()min 12g x g ==,()max 103g x =.9.(1)在(0,)+∞单调递增; (2)1b ≤ 【解析】【分析】(1)对函数()f x 通过求导,判断出导数恒大于等于0,得到()f x 在(0,)+∞单调递增.(2)将()g x 化简整理并求导,得到222(1)1()(24)-'=++-x g x x b x x,讨论b 的取值可确定()g x 在(1,)+∞单调性,即可得到取值范围. (1)因为()f x 的定义域为(0,)+∞,对函数()f x 求导,则222221221(1)()10x x x f x x x x x'-+-=+-==≥,∴函数()f x 在(0,)+∞单调递增. (2)因为()()()28g x f x bf x =-,所以22211()2ln 8(2ln )0=----->g x x x b x x x x 对1x ∀>恒成立, 322412()28(1)'=+--+-g x x b x x x x4232312248(2)⎡⎤=+--+-⎣⎦x x b x x x x222322(1)2(1)1(1)4(24)--⎡⎤=+-=++-⎣⎦x x x bx x b x x x当1x >时,124++>x x,当44≤b , 即1b ≤时,()0g x '>对1x ∀>恒成立,∴()g x 在(1,)+∞单调递增,()(1)g x g >=0符合题意.当1b >时,存在01x >使得当0(1,)x x ∈时,()0,()g x g x '<单调递减; 此时()(1)0g x g <=这与()0>g x 恒成立矛盾. 综上:1b ≤. 【点睛】本题考查函数恒成立条件下求解参数范围问题,属于难题.对函数()g x 求导,有222(1)1()(24)-'=++-x g x x b x x,再利用()1=0g 的特点,可分类讨论b 的取值范围,在1b ≤时,()g x 在(1,)+∞单调递增,原式成立,此时满足要求;当1b >时,()g x 在(1,)+∞先出现递减区间,必有()0g x <出现,与已知矛盾,即可确定b 的范围.10.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关;(2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减,∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望.由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.。

高三数学专项训练:函数与导数,解析几何解答题(二)(理科)

高三数学专项训练:函数与导数,解析几何解答题(二)(理科)
(1)求椭圆的方程;
(2)过右焦点 的直线与椭圆交于不同的两点 、 ,则 内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
35.某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中 、 是过抛物线 焦点 的两条弦,且其焦点 , ,点 为 轴上一点,记 ,其中 为锐角.
(3)求证: .
4.已知函数 .
(Ⅰ)若函数 的值域为 ,若关于 的不等式 的解集为 ,求 的值;
(Ⅱ)当 时, 为常数,且 , ,求 的取值范围.
5.已知函数 ,函数 .
(I)试求f(x)的单调区间。
(II)若f(x)在区间 上是单调递增函数,试求实数a的取值范围:
(III)设数列 是公差为1.首项为l的等差数列,数列 的前n项和为 ,求证:当 时, .
41.(13分) 已知椭圆C的中心在原点,离心率等于 ,它的一个短轴端点点恰好是抛物线 的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足 = ,试问直线AB的斜率是否为定值,请说明理由。
(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为 ,点P的坐标是(0,-1), 与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.
27.已知两点 及 ,点 在以 、 为焦点的椭圆 上,且 、 、 构成等差数列.
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 与椭圆 有且仅有一个公共点,点 是直线 上的两点,且 ,
. 求四边形 面积 的最大值.

高三数学 导数解答题专项训练(含解析)

高三数学 导数解答题专项训练(含解析)

高三数学 导数解答题专项训练(含解析)一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.2.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.3.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围; (ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数)4.已知函数()e (ln 1)(R)ax f x x a =+∈,()f x '为()f x 的导数.(1)设函数()()eax f x g x '=,求()g x 的单调区间;(2)若()f x 有两个极值点,1212,()x x x x <,求实数a 的取值范围 5.己知数列{}n a 和{}n b ,12a =且()11n n b n a *=-∈N ,函数()()ln 11mx f x x x=+-+,其中0m >.(1)求函数()f x 的单调区间;(2)若数列{}n a 各项均为正整数,且对任意的n *∈N 都有2112112nn n n a a a a +++-<+.求证:(ⅰ)()12n n a a n *+=∈N ;(ⅱ)53123e n b b b b ->,其中e 2.71828=⋅⋅⋅为自然对数的底数.6.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围7.已知函数()1e xaxf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 8.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值; (2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.9.已知函数()222(0)exmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224ef x f x -≤恒成立,求实数m 的取值范围. 10.已知函数2()ln f x a x x =+.(1)若1a =,求()f x 在点(1(1))f ,处的切线方程;(2)若对于任意2x ≥,()f x x '≥恒成立,求实数a 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>,①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x-+-'=--=,且()10f =, 由题意可知,对任意的1≥x ,()()01f x f ≤=,设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数, 因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min11e e g x g ⎛⎫==- ⎪⎝⎭, 当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<, 当10,ex ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-.设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦,令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x x x x --'=-=--,当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>, 所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数,又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11ex <<时,()0p x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 3.(1)(2e 1y x =-+(2)(ⅰ)(2e 2e ,4e -;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解; (2)(ⅰ)原问题等价于12,x x 22e ex a -=-的两根,且1201x x ,从而构造函数())22e e0x g x x -=>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()111221e 0x ax f x '++-=,即1e 2x -2114x <<,从而可证216ea x x +--<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增, 又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011xxx x+<<<-,设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a -<<<-,所以βα-> 所以21x x-> 综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii )小题证明的关键是,利用1e x x +≤,进行放缩可得1x21x x -<;再利用()21e 011x x x x +<<<-,进行放缩可得()()1201,21ii i ix ax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax a x =-++++21x x ->4.(1)当0a <时,()g x 的减区间为(0,)+∞,无增区间; 当0a >时,()g x 的减区间为1(0,)a,增区间为1(,)a +∞ (2)2(e ,).+∞ 【解析】 【分析】 (1)依题意,()f x 的定义域为(0,)+∞,且()1()ln e ax f x g x a x a x'==++,则21()ax g x x -'=,再对a 进行分类讨论即可得到答案. (2)因为()f x 有两个极值点,所以()g x 有两个零点.由(1)知0a <时不合题意;当0a >时,min 1()()(21)g x g a na a==-,接下来对a 进行讨论即可得到答案. (1) 依题意,()f x 的定义域为(0,)+∞,e ()e (ln 1)axax f x a x x'=++, 则()1()ln e ax f x g x a x a x'==++,则21().ax g x x -'=①当0a <时,()0g x '<在,()0x ∈+∞上恒成立,()g x 单调递减;②当0a >时,令()0g x '=得,1x a =,所以,当1(0,)x a∈时,()0g x '<,()g x 递减; 当1(,)x a ∈+∞时,()0g x '>,()g x 递增;综上,当0a <时,()g x 的减区间为(0,)+∞,无增区间; 当0a >时,()g x 的减区间为1(0,)a ,增区间为1(,).a+∞ (2)因为()f x 有两个极值点,所以()g x 有两个零点, 由(1)知0a <时不合;当0a >时,min 1()()(21).g x g a na a==-当20e a <<时,1()()0g x g a >>,()g x 没有零点,不合题意;当2e a =时,1()0g a =,()g x 有一个零点1a ,不合题意;当2e a >时,1()0g a<,21()(12ln )g a a a a=+-,设()12ln a a a ϕ=+-,2e a >,则2()10a aϕ'=->,所以22()(e )e 30a ϕϕ>=->,即21()0g a >, 所以存在1211(,)x a a∈,使得1()0g x =; 又因为1()e 0eg =>,所以存在211(,)ex a ∈,使得2()0.g x =()f x 的值变化情况如下表:e a >综上,a 的取值范围是2(e ,).+∞5.(1)单调增区间为()1,1m --,单调减区间为()1,m ∞-+ (2)(ⅰ)、(ⅱ)证明见解析 【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求得单调区间(2)(i )将已知恒成立的不等式化简之后再放缩得到121n na a +-<,又12n n a a +-为整数,则120n n a a +-=,即得所证(ii )对所要证明的不等式两边同时取对数,等价转化为115ln 123nk k =⎛⎫->- ⎪⎝⎭∑,利用(1)的结论可得()ln 11x x x+≥+(1x >-),赋值累加之后进一步将问题转化为证明115213nk k =<-∑,对通项进行放缩,即可证明(1)()()()211111x m m f x x xx --'=-=+++(1x >-),令()0f x '=得1x m =-. 因为0m >,所以11m ->-,当()1,1x m ∈--时,()0f x '<;当()1,x m ∈-+∞时,()0f x '>.故函数()f x 的单调递减区间为()1,1m --,单调递增区间为()1,m ∞-+. (2)(i )法一:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+.于是()211112122112n n n n n n n nn n a a a a a a a a a a +++++-=-≥-++,又2112112n n n n a a a a +++-<+, 所以121n n a a +-<,由题意12n n a a +-为整数, 因此只能120n n a a +-=,即12n n a a +=. (i )法二:由题,22111122111111212122222n n n n n n n n n n n n a a a a a a a a a a a a +++++--<⇔<⇔--<-<+++,因为{}n a 各项均为正整数,即1n a ≥, 故11022n a <≤,于是()111,022na --∈-且()110,122n a +∈. 由题意12n n a a +-为整数,因此只能120n n a a +-=,即12n n a a +=.(ii )法一:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn kk S ==<-∑. 记121k k c =-,则+1+1+1+1212111212222k k k k k k k kc c c c --=<=⇒<--. 1513S =<;215133S =+<; 当3n ≥时,1122222211111153211222312n n n S c c c c c --⎛⎫- ⎪⎝⎭<+++++=+<-.故原不等式成立.(ii )法二:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn k k S ==<-∑.1513S =<;215133S =+<; 当3k ≥时,24k >,故()42132k k ->⋅,即1412132k k <⋅-.当3n ≥时,2233111414414451582132133233332312n nnn k k n k kS --==⎛⎫- ⎪⎝⎭=+<+=+⋅=-<-⋅-∑∑.故原不等式成立. 【点睛】利用导数证明不等式,一般要结合所证不等式,抽象构造出函数,利用导数求出函数的单调性或最值,证明不等式成立,然后把已经证明的不等式替换,或应用得到需要证明的不等式,能力要求较高,属于难题. 6.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立,则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤,设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减, 故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 7.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x .列表得:0(2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 8.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.9.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦(2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤ 即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min 242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立 ()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦10.(1)320x y --=; (2)[)4,∞-+. 【解析】 【分析】(1)把1a =代入,求出函数()f x 的导数,利用导数的几何意义结合直线点斜式方程求解作答.(2)根据给定条件,分离参数,借助二次函数的最大值推理作答. (1)当1a =时,2()ln f x x x =+,求导得:1()2f x x x'=+,则(1)3f '=,而(1)1f =,有13(1)y x -=-,即320x y --=,所以所求切线方程为320x y --=. (2)当2x ≥时,()f x x '≥恒成立,即当2x ≥时,2a x x x+≥恒成立,有2≥-a x 在[2,)x ∈+∞上恒成立,而函数2y x =-在[2,)+∞上单调递减,当2x =时,max 4y =-,于是得4a ≥-, 所以实数a 的取值范围为[)4,∞-+.。

巧解数列、导数和不等式综合性的压轴高考题

巧解数列、导数和不等式综合性的压轴高考题

巧解数列、导数和不等式综合性的压轴高考题
很多高三同学认为,数学高考试卷的最后一题压轴题很难拿分,往往在答题前,就已经先入为主地认为做不出是意料之内的事情,以至于很多考生在压轴题上得分都很低,这是非常可惜的。

首先同学们要正确认识压轴题。

压轴题主要出在函数,解几,数列三部分内容,一般有两到三小题。

记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!下面我们用一道题来看看高考中所谓的压轴题:看到这道题是不是一头雾水呢,毫无头绪,别忙,仔细看一看,题目中的特征,是不是貌似又有些思路了呢,你要想想出题人的意图,你要相信题目中的数字不是想当然设置的:你能够解出这个问,你必须知道极值点的意义!第二问是不是有点难度呢?你看懂了嘛?看看下面这道行测题,你能在30秒内秒杀吗?留下你的答案,你的秒杀技巧吧!。

2020高考数学二轮复习专题检测二十三解答题“函数导数与不等式”专练理

2020高考数学二轮复习专题检测二十三解答题“函数导数与不等式”专练理

专题检测(二十三) 第21题解答题“函数、导数与不等式”专练1.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =0时,函数f (x )取得极小值为f (0)=0,函数f (x )的极大值点为x =3.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增, 则f (x )在[1,e]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.2.(2017·山西四校联考)已知函数f (x )=1x-a ln x (a ∈R).(1)若h (x )=f (x )-2x ,当a =-3时,求h (x )的单调递减区间; (2)若函数f (x )有唯一的零点,求实数a 的取值范围. 解:(1)由题意,h (x )=1x+3ln x -2x (x >0),h ′(x )=-1x 2+3x -2=-2x 2-3x +1x2=-x -x -x2,由h ′(x )<0,得0<x <12或x >1,故h (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,12和(1,+∞). (2)问题等价于a ln x =1x有唯一的实根,显然a ≠0,则关于x 的方程x ln x =1a有唯一的实根,构造函数φ(x )=x ln x ,则φ′(x )=1+ln x , 由φ′(x )=1+ln x =0,得x =e -1,当0<x <e -1时,φ′(x )<0,φ(x )单调递减, 当x >e -1时,φ′(x )>0,φ(x )单调递增, ∴φ(x )的极小值为φ(e -1)=-e -1.作出函数φ(x )的大致图象如图所示,则要使方程x ln x =1a有唯一的实根,只需直线y =1a与曲线y =φ(x )有唯一的交点, 则1a =-e -1或1a>0,解得a =-e 或a >0,故实数a 的取值范围是{-e}∪(0,+∞).3.(2017·沈阳质检)已知函数f (x )=e x -1-x -ax 2. (1)当a =0时,证明:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围; (3)若x >0,证明:(e x-1)ln(x +1)>x 2.解:(1)证明:当a =0时,f (x )=e x-1-x ,f ′(x )=e x-1. 当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,f (x )min =f (0)=0,∴f (x )≥0.(2)f ′(x )=e x-2ax -1,令h (x )=e x-2ax -1, 则h ′(x )=e x -2a .①当2a ≤1,即a ≤12时,在[0,+∞)上,h ′(x )≥0,h (x )单调递增,h (x )≥h (0),即f ′(x )≥f ′(0)=0,∴f (x )在[0,+∞)上为增函数,∴f (x )≥f (0)=0, ∴当a ≤12时满足条件.②当2a >1时,令h ′(x )=0,解得x =ln 2a ,在[0,ln 2a )上,h ′(x )<0,h (x )单调递减,∴当x ∈(0,ln 2a )时,有h (x )<h (0)=0,即f ′(x )<f ′(0)=0,∴f (x )在区间(0,ln 2a )上为减函数, ∴f (x )<f (0)=0,不合题意. 综上,实数a 的取值范围为⎝⎛⎦⎥⎤-∞,12. (3)证明:由(2)得,当a =12,x >0时,e x-1>x +x 22,欲证不等式(e x -1)ln(x +1)>x 2,只需证ln(x +1)>2x x +2. 设F (x )=ln(x +1)-2x x +2, 则F ′(x )=1x +1-4x +2=x 2x +x +2.∵当x >0时,F ′(x )>0恒成立,且F (0)=0, ∴F (x )>0恒成立. ∴原不等式得证.4.(2017·天津高考)设a ,b ∈R ,|a |≤1.已知函数f (x )=x 3-6x 2-3a (a -4)x +b ,g (x )=e xf (x ). (1)求f (x )的单调区间;(2)已知函数y =g (x )和y =e x的图象在公共点(x 0,y 0)处有相同的切线, ①求证:f (x )在x =x 0处的导数等于0;②若关于x 的不等式g (x )≤e x在区间[x 0-1,x 0+1]上恒成立,求b 的取值范围. 解:(1)由f (x )=x 3-6x 2-3a (a -4)x +b ,可得f ′(x )=3x 2-12x -3a (a -4)=3(x -a )[x -(4-a )]. 令f ′(x )=0,解得x =a ,或x =4-a . 由|a |≤1,得a <4-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递增区间为(-∞,a ),(4-a ,+∞),单调递减区间为(a,4-a ). (2)①证明:因为g ′(x )=e x[f (x )+f ′(x )],由题意知⎩⎪⎨⎪⎧gx 0=e x 0,g x 0=e x 0,所以⎩⎪⎨⎪⎧f x 0x 0=e x 0,e x 0[f x 0+fx 0=e x 0,解得⎩⎪⎨⎪⎧f x 0=1,f x 0=0.所以f (x )在x =x 0处的导数等于0. ②因为g (x )≤e x,x ∈[x 0-1,x 0+1], 由e x>0,可得f (x )≤1. 又因为f (x 0)=1,f ′(x 0)=0,所以x 0为f (x )的极大值点,结合(1)知x 0=a . 另一方面,由于|a |≤1,故a +1<4-a ,由(1)知f (x )在(a -1,a )内单调递增,在(a ,a +1)内单调递减,故当x 0=a 时,f (x )≤f (a )=1在[a -1,a +1]上恒成立,从而g (x )≤e x在[x 0-1,x 0+1]上恒成立. 由f (a )=a 3-6a 2-3a (a -4)a +b =1, 得b =2a 3-6a 2+1,-1≤a ≤1. 令t (x )=2x 3-6x 2+1,x ∈[-1,1], 所以t ′(x )=6x 2-12x ,令t ′(x )=0, 解得x =2(舍去)或x =0.因为t (-1)=-7,t (1)=-3,t (0)=1, 因此t (x )的值域为[-7,1]. 所以b 的取值范围是[-7,1].。

高考数学 专题练习 二十一 函数、导数与不等式、解析几何、数列型解答题 文

高考数学 专题练习 二十一 函数、导数与不等式、解析几何、数列型解答题 文

高考专题训练二十一函数、导数与不等式、解析几何、数列型解答题班级_______ 姓名_______ 时间:45分钟 分值:80分 总得分_______1.(2011·湖北卷)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)分析:本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解:(1)由题意:当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13-x ,20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x -x ,20≤x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1200; 当20≤x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +-x 22=100003,当且仅当x =200-x ,即x =100时,等号成立.所以,当x =100时,f (x )在区间[20,200]上取得最大值100003.综上,当x =100时,f (x )在区间[0,200]上取得最大值100003≈3333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时. 2.(2011·广东卷)设b >0,数列{a n }满足a 1=b ,a n =nba n -1a n -1+n -1(n ≥2).(1)求数列{a n }的通项公式; (2)证明:对于一切正整数n,2a n ≤bn +1+1.分析:通过变形转化,构造基本数列(等差数列、等比数列)是求解递推数列通项的常用思路,而对于不等式的证明,可运用分析法,将其变形再给予证明.(1)由a n =nba n -1a n -1+n -1联想到取倒数得n a n =1b +1b·n -1a n -1,令c n =n a n,有c n =1b +1bc n -1,当b =1时,{c n }为等差数列,当b ≠1时,设c n +k =1b (c n -1+k ),展开对比得k =11-b ,构造等比数列⎩⎨⎧⎭⎬⎫c n +11-b ,求得c n 后再求a n ;(2)当b =1时,易验证,当b ≠1时,先用分析法将2a n ≤bn +1+1转化为2n-b b n1-bn≤b n+1+1,利用公式a n -b n =(a -b )(an -1+an -2b +…+b n -1),再转化为2nb n ≤(b n +1+1)(1+b +b 2+…+b n -1),然后将右边乘开,再利用基本不等式即可得证.解:(1)∵a 1=b >0,a n =nba n -1a n -1+n -1,∴n a n =1b +1b ·n -1a n -1,令c n =n a n,则c n =1b +1bc n -1,①当b =1时,c n =1+c n -1,且c 1=1a 1=1b=1,∴{c n }是首项为1,公差为1的等差数列,∴c n =1+(n -1)×1=n ,于是c n =na n=n ,这时a n =1;②当b ≠1时,c n +11-b =1b ⎝ ⎛⎭⎪⎫c n -1+11-b ,且c 1+11-b =1b +11-b =1b-b, ⎩⎨⎧⎭⎬⎫c n +11-b 是首项为1b -b ,公比为1b的等比数列, ∴c n +11-b =1b-b ·⎝ ⎛⎭⎪⎫1b n -1,由n a n +11-b =1-b b n 得a n =n -b bn1-bn,(2)证明:由(1)得,当b =1时,a n =1,2a n ≤b n +1+1⇔2≤2成立,当b ≠1时,a n =n-b b n1-b ,2a n ≤b n +1+1⇔2n -b b n1-b≤b n +1+1, 而1-b n=(1-b )(1+b +b 2+…+b n -1),又b >0,故只需证:2nb n ≤(b n +1+1)(1+b +b 2+…+bn -1),(※)而(bn +1+1)(1+b +b 2+…+bn -2+bn -1)=(b 2n+b2n -1+…+bn +1)+(bn -1+bn -2+…+b +1)=(b 2n+1)+(b 2n -1+b )+…+(bn +1+bn -1)≥2b n+2b n+…+2b n=2nb n.∴(※)式成立,原不等式成立.3.(2011·重庆卷)设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.分析:本小题主要考查利用导数的求法、导数的几何意义、二次函数的图象与性质讨论函数的极值等问题.在具体处理过程中,先求得函数的导数,再根据导数的符号明确其增减性,进而明确极值情况.解:(1)因f (x )=2x 3+ax 2+bx +1,故f ′(x )=6x 2+2ax +b .从而f ′(x )=6⎝ ⎛⎭⎪⎫x +a 62+b -a 26,即y =f ′(x )关于直线x =-a 6对称,从而由题设条件知-a 6=-12,解得a =3. 又由于f ′(1)=0,即6+2a +b =0,解得b =-12. (2)由(1)知f (x )=2x 3+3x 2-12x +1,f ′(x )=6x 2+6x -12=6(x -1)(x +2).令f ′(x )=0,即6(x -1)(x +2)=0,解得x 1=-2,x 2=1.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,1)时,f ′(x )<0,故f (x )在(-2,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数.从而函数f (x )在x 1=-2处取得极大值f (-2)=21,在x 2=1处取得极小值f (1)=-6.4.(2011·四川卷)过点C (0,1)的椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32.椭圆与x 轴交于两点A (a,0)、B (-a,0).过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P .直线AC 与直线BD 交于点Q .(1)当直线l 过椭圆右焦点时,求线段CD 的长; (2)当点P 异于点B 时,求证:OP →·OQ →为定值.分析:本小题考查直线、椭圆、平面向量基本概念,考查直线与圆锥曲线的位置关系,考查解析几何中的常见思想方法,考查学生细致的运算能力及综合运用知识分析和解决问题的能力.属于较难题.解:(1)由已知得b =1,e =c a =32,解得a =2,所以椭圆方程为x 24+y 2=1.椭圆的右焦点为(3,0),此时直线l 的方程为y =-33x +1,代入椭圆方程化简得7x 2-83x =0.解得x 1=0,x 2=837,代入直线l 的方程得y 1=1,y 2=-17,所以D 点坐标为⎝ ⎛⎭⎪⎫837,-17.故|CD |=⎝ ⎛⎭⎪⎫837-02+⎝⎛⎭⎪⎫-17-12=167.(2)证明:当直线l 与x 轴垂直时与题意不符. 设直线l 的方程为y =kx +1(k ≠0且k ≠12).代入椭圆方程化简得 (4k 2+1)x 2+8kx =0.解得x 1=0,x 2=-8k4k 2+1,代入直线l 的方程得y 1=1,y 2=1-4k 24k 2+1,所以D 点坐标为⎝ ⎛⎭⎪⎫-8k 4k 2+1,1-4k 24k 2+1. 又直线AC 的方程为x 2+y =1,直线BD 的方程为y =1+2k2-4k(x +2),联立解得⎩⎪⎨⎪⎧x =-4k ,y =2k +1.因此Q 点坐标为(-4k,2k +1).又P 点坐标为⎝ ⎛⎭⎪⎫-1k,0.所以OP →·OQ →=⎝ ⎛⎭⎪⎫-1k ,0·(-4k,2k +1)=4.故OP →·OQ →为定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题训练二十三函数、导数与不等式、解析几何、数列型解答题班级_______ 姓名_______ 时间:45分钟 分值:72分 总得分________1.(12分)(2011·成都市高中毕业班第二次诊断性检测)设△ABC 的三内角A 、B 、C 所对应的边长分别为a 、b 、c ,平面向量m =(cos A ,cos C ),n =(c ,a ),p =(2b,0),且m ·(n -p )=0.(1)求角A 的大小;(2)当|x |≤A 时,求函数f (x )=sin x cos x +sin xsin ⎝ ⎛⎭⎪⎫x -π6的值域. 解:(1)m ·(n -p )=(cos A ,cos C )·(c -2b ,a ) =(c -2b )cos A +a cos C =0⇒(sin C -2sin B )cos A +sin A cos C =0⇒-2sin B cos A +sin B =0. ∵sin B ≠0,∴cos A =12⇒A =π3.(2)f (x )=sin x cos x +sin x sin ⎝ ⎛⎭⎪⎫x -π6=12sin x cos x+32sin 2x =14sin2x +32·1-cos2x 2=34+14sin2x - 34cos2x =34+12sin ⎝ ⎛⎭⎪⎫2x -π3. ∵|x |≤A ,A =π3,∴-π3≤x ≤π3⇒-π≤2x -π3≤π3.∴-1≤sin ⎝ ⎛⎭⎪⎫2x -π3≤32⇒3-24≤34+12sin ⎝ ⎛⎭⎪⎫2x -π3≤32.∴函数f (x )的值域为[3-24,32].2.(12分)(2011·正定)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求四面体B —DEF 的体积.分析:本题考查空间线面平行、线面垂直、面面垂直、体积的计算等基础知识,同时考查空间想象能力与推理论证能力.解:(1)证明:设AC 与BD 交于点G ,则G 为AC 的中点.连接EG 、GH ,由于H 为BC 的中点,故GH 綊12AB .又EF 綊12AB ,∴EF 綊GH ,∴四边形EFHG 为平行四边形,∴EG ∥FH ,而EG ⊂平面EDB ,∴FH ∥平面EDB . (2)证明:由四边形ABCD 为正方形,有AB ⊥BC .又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC ,∴EF ⊥FH , ∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC . ∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .(3)∵EF ⊥FB ,∠BFC =90°,∴BF ⊥平面CDEF . ∴BF 为四面体B -DEF 的高.∵BC =AB =2,∴BF =FC = 2.又EF =1, ∴V B -DEF =13×12×1×2×2=13.3.(12分)(2011·预测题)小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为45,34,23,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用X 表示小王所获得奖品的价值,写出X 的概率分布列,并求X 的数学期望.解:(1)设小王过第一关但未过第二关的概率为P 1,则P 1=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫14+34×14=725.(2)X 的取值为0,1000,3000, 6000, 则P (X =0)=15+45×15=925,P (X =1000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫14+34×14=725,P (X =3000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫232-C 12⎝ ⎛⎭⎪⎫232×13=775, P (X =6000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+C 12⎝ ⎛⎭⎪⎫232×13=415, ∴X 的概率分布列为∴X 的数学期望E (X )=0×925+1000×725+3000×775+6000×415=2160.4.(12分)(2011·天津卷)已知a >0,函数f (x )=ln x -ax 2,x >0.(f (x )的图象连续不断)(1)求f (x )的单调区间;(2)当a =18时,证明:存在x 0∈(2,+∞),使f (x 0)=f ⎝ ⎛⎭⎪⎫32;(3)若存在均属于区间[1,3]的α,β,且β -α≥1,使f (α)=f (β),证明:ln3-ln25≤a ≤ln23.分析:本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力、分类讨论的思想、分析解决问题的能力.解:(1)f ′(x )=1x -2ax =1-2ax 2x ,x ∈(0,+∞).令f ′(x )=0,解得x =2a2a.当x 变化时,f ′(x )、f (x )的变化情况如下表:⎝⎭⎝ ⎛⎭⎪⎫2a 2a ,+∞. (2)证明:当a =18时,f (x )=ln x -18x 2,由(1)知f (x )在(0,2)内单调递增,在(2,+∞)内单调递减.令g (x )=f (x )-f ⎝ ⎛⎭⎪⎫32.由于f (x )在(0,2)内单调递增, 故f (2)>f ⎝ ⎛⎭⎪⎫32,即g (2)>0.取x ′=32e>2,则g (x ′)=41-9e 232<0.所以存在x 0∈(2,x ′),使g (x 0)=0,即存在x 0∈(2,+∞),使f (x 0)=f ⎝ ⎛⎭⎪⎫32.(说明:x ′的取法不唯一,只要满足x ′>2,且g (x ′)<0 即可.)(3)证明:由f (α)=f (β)及(1)的结论知α<2a2a <β,从而f (x )在[α,β]上的最小值为f (α),又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故⎩⎪⎨⎪⎧f (2)≥f (α)≥f (1),f (2)≥f (β)≥f (3).即⎩⎨⎧ln2-4a ≥-a ,ln2-4a ≥ln3-9a .从而ln3-ln25≤a ≤ln23.5.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4.求y 0的值.分析:本题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算能力和推理能力.解:(1)由e =ca =32,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2.解方程组⎩⎨⎧a =2b ,ab =2,得a =2,b =1.所以椭圆的方程为x 24+y 2=1.(2)由(1)可知A (-2,0),设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).于是A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1.由方程组消去y 并整理,得 (1+4k 2)x 2+16k 2x +(16k 2-4)=0.由-2x 1=16k 2-41+4k 2,得 x 1=2-8k 21+4k 2,从而y 1=4k 1+4k2. 设线段AB 的中点为M ,则M 的坐标为⎝ ⎛⎭⎪⎪⎫-8k 21+4k 2,2k 1+4k 2. 以下分两种情况:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →=(2,-y 0).由QA →·QB →=4,得y 0=±2 2.②当k ≠0时,线段AB 的垂直平分线的方程为 y -2k 1+4k 2=-1k ⎝ ⎛⎭⎪⎪⎫x +8k 21+4k 2. 令x =0,解得y 0=-6k 1+4k2.由|QA →|=(-2,-y 0),QB →=(x 1,y 1-y 0), QA →·QB →=-2x 1-y 0(y 1-y 0) =-2(2-8k 2)1+4k 2+6k 1+4k 2⎝ ⎛⎭⎪⎪⎫4k 1+4k 2+6k 1+4k 2=4(16k 4+15k 2-1)(1+4k 2)2=4,整理得7k 2=2,故k =±147,所以y 0=±2145.综上,y 0=±22或y 0=±2145.6.(12分)(2011·湖北卷)已知数列{a n }的前n 项和为S n ,且满足:a 1=a (a ≠0),a n +1=rS n (n ∈N *,r ∈R ,r ≠-1).(1)求数列{a n }的通项公式;(2)若存在k ∈N *,使得S k +1,S k ,S k +2成等差数列,试判断:对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2是否成等差数列,并证明你的结论.分析:本小题主要考查等差数列、等比数列等基础知识,同时考查推理论证能力,以及特殊与一般的思想.解:(1)由已知a n +1=rS n ,可得a n +2=rS n +1,两式相减可得 a n +2-a n +1=r (S n +1-S n )=ra n +1,即a n +2=(r +1)a n +1,又a 2=ra 1=ra ,所以当r =0时,数列{a n }为:a,0,…,0,…;当r ≠0,r ≠-1时,由已知a ≠0,所以a n ≠0(n ∈N *), 于是由a n +2=(r +1)a n +1,可得a n +2a n +1=r +1(n ∈N *),∴a 2,a 3,…,a n ,…成等比数列, ∴当n ≥2时,a n =r (r +1)n -2a .综上,数列{a n }的通项公式为a n =⎩⎨⎧a ,n =1,r (r +1)n -2a ,n ≥2.(2)对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2成等差数列,证明如下:当r =0时,由(1)知,a n =⎩⎨⎧a ,n =1,0,n ≥2.∴对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2成等差数列. 当r ≠0,r ≠-1时,∵S k +2=S k +a k +1+a k +2,S k +1=S k +a k +1.若存在k ∈N *,使得S k +1,S k ,S k +2成等差数列,则S k +1+S k +2=2S k ,∴2S k +2a k +1+a k +2=2S k ,即a k +2=-2a k +1.由(1)知,a 2,a 3,…,a m ,…的公比r +1=-2,于是 对于任意的m ∈N *,且m ≥2,a m +1=-2a m ,从而a m +2=4a m , ∴a m +1+a m +2=2a m ,即a m +1,a m ,a m +2成等差数列.综上,对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2成等差数列.。

相关文档
最新文档