3 第五章:平行线判定、性质的综合应用,两条平行线的距离,命题,平移
初中平行线判定定理教案
初中平行线判定定理教案教学目标:知识与技能目标:学生能够理解平行线的定义,掌握平行线的判定定理,并能够运用判定定理判断两条直线是否平行。
过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。
情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
教学重点:平行线的判定定理。
教学难点:平行线的判定定理的理解和运用。
教学准备:三角板、直尺、铅笔、投影仪。
教学过程:一、导入新课1. 教师通过展示生活中的图片,如楼梯、铁轨等,引导学生观察并找出其中的平行线。
2. 学生分享观察到的平行线,教师总结并板书平行线的定义。
二、探究平行线的判定定理1. 教师提出问题:“如何判断两条直线是否平行?”引导学生进行思考和讨论。
2. 学生尝试用尺子和三角板画出两条直线,并判断它们是否平行。
3. 教师引导学生总结判断两条直线平行的方法,学生得出平行线的判定定理。
三、巩固练习1. 教师给出几组直线,要求学生判断它们是否平行,并说明判断的依据。
2. 学生独立完成练习,教师巡回指导。
四、课堂小结1. 教师引导学生总结本节课所学的平行线的判定定理。
2. 学生分享学习收获和感悟。
教学反思:本节课通过观察生活中的实例,引导学生发现平行线,激发学生的学习兴趣。
在探究平行线的判定定理时,教师引导学生通过操作和交流,培养学生的逻辑思维能力和空间想象能力。
练习环节,教师给予学生足够的自主空间,让学生在实践中巩固知识,提高运用能力。
总体来说,本节课达到了预期的教学目标,学生对平行线的判定定理有了较好的理解和掌握。
(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)
5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
相交线与平行线全章教案
相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
平行线的性质
平行线的性质§5.3.1平行线的性质本节课的主要内容是平行线的三个性质和命题等内容,首先在研究了平行线的判定的基础上了研究平行线的性质,因为学生在研究判定是已经了解到研究平行线就是研究两条直线被第三条直线所截形成的角之间的关系,所以学生很自然就想到研究平行线的性质也要研究同位角、内错角、同旁内角的关系;因此,从平行线的判定与性质的关系入手引入了对平行线性质的探究,对于命题的相关知识是在学生已经解触了一些命题,如:“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”,“等式两边加同一个数,结果仍是等式“,“对顶角相等”等命题的基础上,初步了解了命题、命题的构成、真假命题、定理等内容,使学生初步接触有关形式逻辑概念和术语。
平行线的性质是本节课的重点,而平行线的判定与性质互为逆命题,条件与结论相反,因此区分判定和性质是本节课的一个难点,教学过程中可告诉学生,从角的关系得到两直线平行时判定,由已知直线平行得出角的相等或互补关系,是平行线的性质。
本节课在利用两直线平行,同位角相等,来推理证明其他两条性质的过程中又一次让学生感受到转化思想在解决数学问题中的应用,在教学过程中,应注意这种思想方法的渗透,有意识的让学生认识整理,使学生在今后的不断训练中掌握这种方法。
【教学重点与难点】教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.教学难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用【教学目标】1.使学生理解平行线的性质和判定的区别.2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.3.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
毛【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
平行线的性质及平移(基础)知识讲解.doc
平行线的性质及平移(基础)知识讲解责编:某老师【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、图形的平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,各组对应点的连线平行(或在同一条直线上)且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1.(2015•泰安)如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°【思路点拨】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,同旁内角互补解答.【答案】B .【解析】解:∵AB ∥CD ,∠1=58°,∴∠EFD=∠1=58°,∵FG 平分∠EFD ,∴∠GFD=∠EFD=×58°=29°,∵AB ∥CD ,∴∠FGB=180°﹣∠GFD=151°.【总结升华】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键.举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】(2015•河北模拟)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4 B.5 C.10 D.无法判断【答案】B.解:∵在五边形ABCDE中,AB∥DE,∴点E、点D到直线AB上的垂线段相等,即在△ABE与△ABD中,边AB上的高线相等,∴△ABE与△ABD是同底等高的两个三角形,S△ABE=S△ABD=5.类型三、图形的平移3.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.4.(湖南益阳)如图所示,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.【答案】30°【解析】根据平移的特征可知:∠EBD=∠CAB=50°而∠ABC=100°所以∠CBE=180°-∠EBD-∠ABC=180°-50°-100°=30°【总结升华】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△BED.则有AC=BE,AB=BD,BC=DE,∠A=∠EBD,∠C=∠E,∠ABC=∠BDE.举一反三:【变式】 (上海静安区一模)如图所示,三角形FDE经过怎样的平移可以得到三角形ABC()A.沿EC的方向移动DB长B.沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型四、平行的性质与判定综合应用5.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C【解析】过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+ ∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。
平行线的性质及平移(基础)知识讲解
平行线的性质及平移(基础)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;4.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.【高清课堂:平行线的性质及命题403103平行线的性质和判定小结】要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点四、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1.(2016•东营)如图,直线m∥n,∠1=70°,∠2=30°,则∠A的度数是()A .30°B . 35°C . 40°D .50°【思路点拨】根据平行线的性质得出∠3的度数,然后根据三角形外角的性质即可求得∠A 的度数.【答案】C .【解析】解:∵直线m ∥n ,∠1=70°,∴∠3=∠1=70°,∵∠2+∠A=∠3,∴∠A=∠3﹣∠2=70°﹣30°=40°.【总结升华】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°类型二、两平行线间的距离2.如图所示,直线l 1∥l 2,点A 、B 在直线l 2上,点C 、D 在直线l 1上,若△ABC 的面积为S 1,△ABD 的面积为S 2,则( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定【答案】B【解析】因为l 1∥l 2,所以C 、D 两点到l 2的距离相等.同时△ABC 和△ABD 有共同的底AB ,所以它们的面积相等.【点评】三角形等面积问题常与平行线间距离处处相等相结合.类型三、命题3.判断下列语句是不是命题,如果是命题,是正确的? 还是错误的?①画直线AB;②两条直线相交,有几个交点;③若a∥b,b∥c,则a∥c;④直角都相等;⑤相等的角都是直角;⑥如果两个角不相等,那么这两个角不是对顶角.【答案】①②不是命题;③④⑤⑥是命题;③④⑥是正确的命题;⑤是错误的命题.【解析】因为①②不是对某一事情作出判断的句子,所以①②不是命题;在③④⑤⑥四个命题中,③④⑥是真命题,⑤是假命题.【点评】命题必须对某件事情作出“是什么”或“不是什么”的判断,如问句、陈述句就不是命题,值得注意的是错误的命题也是命题.【高清课堂:平行线的性质及命题403103命题改写练习】举一反三:【变式】把下列命题改写成“如果……,那么……”的形式.(1)两直线平行,同位角相等;(2)对顶角相等;(3)同角的余角相等.【答案】解:(1)如果两直线平行,那么同位角相等.(2)如果两个角是对顶角,那么这两个角相等.(3)如果有两个角是同一个角的余角,那么它们相等.类型四、平移4.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【点评】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.5.(湖南益阳)如图所示,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.【答案】30°【解析】根据平移的特征可知:∠EBD=∠CAB=50°而∠ABC=100°所以∠CBE=180°-∠EBD-∠ABC=180°-50°-100°=30°【点评】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△BED.则有AC=BE,AB=BD,BC=DE,∠A=∠EBD,∠C=∠E,∠ABC=∠BDE.举一反三:【变式】(2015•泉州)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B. 3 C.5D.7【答案】A根据平移的性质,易得平移的距离=BE=5﹣3=2.故选A.类型五、平行的性质与判定综合应用6、如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C【解析】过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【点评】这是平行线性质与平行公理的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+ ∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。
人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计
平行线一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论;●掌握平行线的判定方法与平行线的性质,运用所学的知识,判定两条直线是否平行。
用作图工具画平行线,从而学习如何进行简单的推理论证;●理解两条平行线的距离的概念;●什么是命题,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论。
重点难点:●重点:平行线的判定及性质,平移变换。
●难点:平行线的判定和性质的联系与区别;推理能力的培养;平移变换的理解及应用。
学习策略:●通过观察、思考、探究等活动归纳出平行线的概念和性质,借助练习熟悉“说理”和“简单推理”的过程,从而加深理解并熟练掌握本节内容。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)两条直线被第三条直线截成的八个角中共有对同位角,对内错角,对同旁内角。
(二)同位角特征:截线旁,被截两线的方向。
内错角特征:截线旁,被截两线之间。
同旁内角特征:截线旁,被截两线之间。
知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习,请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其知识点一:平行线的概念及表示方法在同一平面内,不相交的两条直线叫做。
通常用“”表示平行,如图1中,直线AB与CD平行,记作,如果用l,m表示这两条直线,那么直线l与直线m平行,记作。
要点诠释:(1)平行线必须满足两个条件:①,②,但要注意直线的特点是可以向__方无限延长,在平面内只能画出有限长,如下图2中直线a,b看上去不相交,但当把它们看作无限长之后会发现它们其实是相交的,因此直线a,b不平行,从平行线的定义中,我们还可以学习到这样的知识:在同一平面内,不重合的两条直线的位置关系有两种:①,②。
《平行线》全章复习与巩固(提高)知识讲解
《平行线》全章复习与巩固(提高)知识讲解责编:康红梅【学习目标】1. 熟练找出“同位角、内错角、同旁内角”;2. 区别平行线的判定与性质,能用性质和判定解决综合问题;3. 通过具体实例认识平移,理解平移的性质;4. 会运用平行线和平移的知识解决有关的简单问题.【知识网络】【要点梳理】要点一、平行线的定义及三线八角1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.要点诠释:(1)平行线定义中包含三层含义:在同一平面内、不相交、两条直线.(2)基本事实:经过直线外一点,有且只有一条直线与这条直线平行.2.三线八角:要点二、平行线的判定和性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线互相平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线间的距离处处相等.(2)初中阶级学习了三种距离:两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、图形的平移定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.要点诠释:平移的性质:(1)平移不改变图形的形状与大小,只改变图形的位置.(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.【典型例题】类型一、平行线的定义及三线八角1. 找出下图中的同位角、内错角、同旁内角 (只限用数字表示的角).【答案与解析】解:图中同位角有: ∠1与∠3, ∠6与∠3.内错角有: ∠1与∠4, ∠4与∠6.同旁内角有: ∠1与∠2, ∠5与∠6.【总结升华】两条直线被第三条直线所截,构成的八个角中同位角有4对,内错角有2对,同旁内角有2对.举一反三:【变式】找出下图中的同位角、内错角、同旁内角 (只限用数字表示的角).【答案】解:图中同位角有: ∠1与∠4内错角有: ∠1与∠7, ∠3与∠6 ,∠2与∠5同旁内角有: ∠2与∠7, ∠7与∠6,∠2与∠6, ∠3与∠5, ∠3与∠4, ∠4与∠5 类型二、平行线的判定和性质2. (2016春•广水市期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【思路点拨】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=12∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【答案与解析】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=12∠AOC=12×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=14∠AOC=14×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°【总结升华】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是(). A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【答案】C (提示:过点E作EF∥AB)【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=.【答案】900°3.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.【答案与解析】证明:如图,过点C做CK∥FG,并延长GF、CD交于点H,∵ CD∥EF (已知),∴∠CHG=∠1(两直线平行,同位角相等).又∵ CK∥FG,∴∠CHG+∠2+∠BCK=180°((两直线平行,同旁内角互补).∴∠1+∠2+∠BCK=180°(等量代换).∵∠1+∠2=∠ABC(已知),∴∠ABC+∠BCK=180°(等量代换).∴ CK∥AB(同旁内角互补,两直线平行).∴ AB∥GF(平行的传递性).【总结升华】反复应用平行线的判定与性质,若角相等或互补,就判断直线是否平行;若两直线平行就应联想到角相等或互补.举一反三:【变式】已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.【答案】证明:∵∠ABC =∠ADC, ∴11ABC ADC 22∠∠=(等式性质).又∵BF 、DE 分别平分∠ABC 与∠ADC,∴∠1=ABC 21∠,∠2=ADC 21∠(角平分线的定义). ∴∠1=∠2 (等量代换).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB ∥DC(内错角相等,两直线平行).类型三、图形的平移4.(吉林)如图所示,把边长为2的正方形的局部进行图①~④的变换,组成图⑤,则图⑤的面积是( )A .18B .16C .12D .8【思路点拨】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.【答案】B【解析】图①到图②是将一个等腰三角形由下方平移到上方.图③到图④是将右边的小长方形平移到左侧,所以图④中阴影部分的面积与边长为2的正方形的面积是相等的,图⑤是由4个图④组成的,所以图⑤的面积是4×4=16.【总结升华】平移是由平移的方向和距离决定的.平移的性质是平移前后,图形的形状、大小不变.举一反三:【变式】(2015.镇海区模拟)如图,两个全等的直角三角形重叠在一起,将其中一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.42【答案】A类型四、综合应用5. 将一条两边沿互相平行的纸带按如图折叠,当∠1∶∠2=2∶3,则∠2的度数为().A.22.5° B.45° C.67.5° D.30°【思路点拨】由∠1∶∠2=2∶3,设∠1=2x,∠2=3x,根据a与b平行的性质和折叠的性质列出关于x的方程,求出方程的解得到x的值,即可确定出∠2的度.【答案】C【解析】解:由∠1:∠2=2:3,设∠1=2x,∠2=3x,∵a∥b,∴∠1=∠3=2x,由折叠可得:∠3+∠2=∠4,即∠4=5x,∵∠2+∠4=180°,即3x+5x=180°,解得:x=22.5°,则∠2=3x=67.5°.故选C.【总结升华】此题考查了平行线的性质,以及折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.举一反三:【变式】(山东滨州)如图,把—个长方形纸片对折两次,然后剪下—个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为().A.60° B.30° C.45° D.90°【答案】C6.如图所示,张大爷有一块四边形的耕地中间有一条折线小路MPN,现分别将折线小路改直而不影响道路两旁的耕地面积,应如何改道?请说明理由,并画出改道的图形.【答案与解析】解:(1)连接MN;(2)过P作QH∥MN交AD于Q,BC于H;(3)连NQ(MH)为所建直道,如下图.理由:∵QH∥MN,∴S△MNQ=S△MNP(等底等高的两个三角形面积相等),∴五边形ABNPM的面积等于四边形ABNQ的面积,∴五边形CDMPN的面积等于四边形CDQN的面积.即不影响道路两旁的耕地面积.【总结升华】利用“平行线间的距离处处相等”可以将三角形的面积进行等积转化.。
5-3-2 命题、定理、证明 22-23学年人教版数学七年级下册
Aபைடு நூலகம்
B
(2) 请选择其中的一个真命题加以证明. C
D
分析:(1) ①②→③ ①③→② ②③→①
F
(2) 例:若 AB//C∠D1 ,= ∠∠2 B=∠C,则∠E=∠F.
AB//CD ∠B=∠CDF ∠B=∠C
CE//BF ∠E=∠F
解:(2)例:若 AB//CD,∠B = ∠C,则∠E = ∠F.
证明:
假命题
举出一个反__例__即可
概念 判断一件事情的语句
组成
_题__设___ _结__论___
如果 那么
1. 下列关于命题的描述中,正确的是 ( C )
A. 命题一定是正确的 B. 真命题一定是定理 C. 定理一定是真命题 D. 一个反例不足以说明一个命题为假命题
2. 命题“内错角相等”是真命题吗?若是,说出 理由,若不是,请举出反例. 答:不是真命题.必须是两直线平行,内错角相等.
例如: 1. 相等的角是对顶角.
2. 画线段 AB = CD.×
例1 判断下列四个语句中,哪个是命题,哪个不是 命题,并说明理由:
(1) 对顶角相等吗?× (2) 画一条线段 AB = 2 cm;×
(3) 两直线平行,同位角相等; (4) 相等的两个角,一定是对顶角.
思路点拨:是否判断一件事.
观察下列命题,你能发现这些命题有什么共同的结构 特征?与同伴交流. (1) 如果两个三角形的三条边分别相等,那么这两个三角
平行线的 性质
请记录并观察,请说出这些语句的共同特征?
1. 对顶角相等; 2. 如果两条直线都与第三条直线平行,那么这两条 直线也相互平行; 3. 同位角相等,两直线平行; 4. 两条平行线被第三条直线所截,同旁内角互补.
(完整版)《平行线的判定与性质的综合运用》教学课件
6.如图,AB,CD,EF,MN均为直线,∠2=∠3=70°, ∠GPC=80°,GH平分∠MGB,求∠1的度数.
解:∵∠2=∠3=70°(已知), ∴AB∥CD(内错角相等,两直线平行), ∴∠BGP=∠GPC(两直线平行,内错角相等), ∵∠GPC=80°(已知), ∴∠BGP=80°(等量代换), ∴∠BGM=180°-∠BGP=100°(平角的定 义),
(完整版)《平行线的判定与性质的综合运用》教学课件
平行线的性质
第2课时 平行线的判定与性质的综合运用
导入新课
讲授新课
当堂练习
课堂小结
三、平行线的基本性质3
思考:类似地,已知两直线平行,能否得到同旁内角
之间的数量关系? 如图,已知a//b,那么2与4有什么关系呢?为什么?
解: ∵a//b (已知),
A.80° B.65° C.60°
D.55°
3.如图,BD⊥AB,BD⊥CD,则∠a的度 数是( A ) A.50° B.40° C.60° D.45°
4.已知AB∥DE,试问∠B,∠E,∠BCE有什么关系.请
完成填空:
A 解:过点C作CF∥AB, 则_∠__B__=_∠__1__ ( 两直线平行,内错角相等 ). C
B
1
F
2
又∵AB∥DE,AB∥CF,
D
E
∴__C_F__∥__D_E____(平行于同一直线的两条直线平行 ).
∴∠E=∠__2__(两直线平行,内错角相等).
∴∠B+∠E=∠1+∠2(等式的性质),
即∠B+∠E=∠BCE.
5.已知:如图,AD⊥BC于D,EG⊥BC与G, ∠E=∠3,试问:AD是∠BAC的平分线吗?若是, 请说明理由.
(完整版)相交线与平行线最全知识点
一、本章共分4大节共14个课时;(2.16~3.7第1、4周)章节内容课时第五章 相交线与平行线145.1 相交线35.2 平行线及其判定 35.3 平行线的性质 45.4 平移2单元小结2二、本章有四个数学基本事实1.过直线外一点有且只有一条直线与这条直线平行;2.过一点有且只有一条直线与这条直线垂直;3.两条直线被第三条直线所截,如果同位角相等,那么两直线平行;4.两直线平行,同位角相等. 三、本章共有19个概念1.对顶角2.邻补角3.垂直4.垂线5.垂足6.垂线段7.点到直线的距离8.同位角9.内错角10.同旁内角11.平行12.数学基本事实13.平行公理14.命题15.真命题16.假命题17.定理18.证明19.平移四、转化的数学思想遇到新问题时,常常把它转化为已知(或已解决)的问题.P14五、平移1.找规律2.转化求面积3.作图(2009年安徽中考)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长cm ,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ;【解】(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?【解】第19题图相交线与平行线知识点5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线.注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.1243AB C DO4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆.如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长.PO 是垂线段.PO 是点P 到直线AB 所有线段中最短的一条.现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度. 联系:具有垂直于已知直线的共同特征.(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间. 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离.⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同.5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作∥a b a .b 2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行.因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行 如左图所示,∵∥,∥b a c a ∴∥b cPA BOab 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行.5、三线八角 两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角. 如图,直线被直线所截b a ,l ①∠1与∠5在截线的同侧,同在被截直线的上方,l b a ,叫做同位角(位置相同) ②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在l b a ,内且交错) ③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角.l b a , ④三线八角也可以成模型中看出.同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型.6、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全. 例如: 如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8. 我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图. 如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角.abl1234567816B A D 2345789FEC A BF 21ABC17ABCD26ADBF1AF58C注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成.7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行 几何符号语言: ∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180° ∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行.平行线的判定是写角相等,然后写平行.注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”.上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”.⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行.②如果两条直线都平行于第三条直线,那么这两条直线平行.典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线. ⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交. ⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”.“在同一平面内”是一项重要条件,不能遗漏. ⑵正确 ⑶不正确,正确的说法是“过直线外一点”而不是“过一点”.因为如果这一点不在已知直线上,是作不出这条直线的平行线的.典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行;A BC DEF 1234⑵由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;⑶由∠ACF +∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行.5.3平行线的性质1、平行线的性质: 性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补. 几何符号语言: ∵AB ∥CD ∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD ∴∠3=∠2(两直线平行,同位角相等) ∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补)2、两条平行线的距离 如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离.注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离.3、命题:⑴命题的概念:判断一件事情的语句,叫做命题.⑵命题的组成每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果……,那么……”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论. 有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显.对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.4、平行线的性质与判定①平行线的性质与判定是互逆的关系A BC DEF 1234A EGBC FHDn 两直线平行 内错角相等; 两直线平行 同旁内角互补.其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.典型例题:已知∠1=∠B ,求证:∠2=∠C 证明:∵∠1=∠B (已知) ∴DE ∥BC (同位角相等, 两直线平行) ∴∠2=∠C (两直线平行 同位角相等)注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了.典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数解答:∵DE ∥BC (已知) ∴∠2=∠1=65°(两直线平行,内错角相等) ∵AB ∥DF (已知) ∴AB∥DF (已知) ∴∠3+∠2=180°(两直线平行,同旁内角互补) ∴∠3=180°-∠2=180°-65°=115°5.4平移1、平移变换 ①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. ②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 ③连接各组对应点的线段平行且相等2、平移的特征: ①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化. ②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.典型例题:如图,△ABC 经过平移之后成为△DEF ,那么:⑴点A 的对应点是点_________;⑵点B 的对应点是点______.⑶点_____的对应点是点F ;⑷线段AB的对应线段是线段_______;⑸线段BC 的对应线段是线段_______;⑹∠A 的对应角是______. ⑺____的对应角是∠F.AD FBE C123解答: ⑴D;⑵E;⑶C;⑷DE;⑸EF;⑹∠D;⑺∠ACB.思维方式:利用平移特征:平移前后对应线段相等,对应点的连线段平行或在同一直线上解答.考点一:对相关概念的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公理的区别等例1:判断下列说法的正误。
2022-2023学年人教版七年级下册数学:5.3.1平行线的性质(2)说课稿
2022-2023学年人教版七年级下册数学:5.3.1平行线的性质(2)说课稿一、教学目标1.知识与技能:–掌握平行线的性质:平行线的定义、平行线的判定条件。
–能够判断两条线段是否平行。
2.过程与方法:–通过引入学生日常生活中的场景,激发学生的学习兴趣;–引导学生观察、发现规律,培养学生的思维能力和观察力;–利用演绎法和归纳法进行知识的传递和归纳。
3.情感态度与价值观:–培养学生积极思考和动手实践的能力;–培养学生对数学知识的兴趣和好奇心;–培养学生合作学习的意识和团队精神。
二、教学重难点1.教学重点:–平行线的概念与性质:平行线的定义、平行线的判定条件。
–判断两条线段是否平行的方法。
2.教学难点:–平行线与垂直线之间的关系。
三、教学过程1. 导入新课通过观察一个图形,让学生来判断两根线段是否平行。
引导学生思考并给出自己的判断依据,引入平行线的概念。
2. 探究平行线的性质•引导学生回顾上节课所学习的平行线的定义,让学生复述并展示出来。
•通过给出几个示例,让学生观察线段的位置关系,引导他们尝试总结得出判定两条线段平行的条件。
•引导学生根据已掌握的知识,对给出的几组线段进行判断是否平行。
•分析并总结判断线段平行的方法和条件。
3. 练习和巩固•让学生在黑板上写出用于判断线段平行的条件,并帮助学生梳理知识。
•给学生发放练习册,让学生在课堂上独立完成相关习题。
•点评学生的作业,解答学生存在的问题。
4. 拓展应用•设计一些更加复杂的问题,让学生综合运用平行线的性质进行解答。
•鼓励学生思考,提高解决问题的能力。
5. 总结与展望•对本节课的学习内容进行总结和回顾,强调平行线的性质和判定方法。
•展望下节课的内容,告知学生将学习平行线的性质(3)。
四、板书设计平行线的性质•定义:平行线是在同一个平面内,不相交且无论如何延长也不会相交的两条直线。
•判定条件:1.两条平行线上的任意一对相交线段对顶角相等;2.两条平行线上的任意一对对顶角相等。
七年级数学上册-5.3平行线的性质 解析版
5.3平行线的性质【考点梳理】考点一:平行线的性质考点二:根据平行线性质探究角的关系考点三:根据平行线性质求角的大小考点四:平行线性质在生活应用问题考点五:平行线之间的距离问题考点六:与命题有关的问题考点七:平行线的判定和性质的综合问题知识一:平行线的性质1:两条平行线被第三条直线所截,同位角相等.简单地说:两直线平行,同位角相等.2:两条平行线被第三条直线所截,内错角相等.简单地说:两直线平行,内错角相等.3:两条平行线被第三条直线所截,同旁内角互补.简单地说:两直线平行,同旁内角互补.注意:是先有两直线平行,才有以上的性质,前提是“线平行”。
一个结论:平行线间的距离处处相等。
例如:应用于说明矩形(包括长方形、正方形)的对边相等,还有梯形的对角线把梯形分成分别以上底为底的两等面积的三角形,或以下底为底的两等面积的三角形。
(因为梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。
)知识二、命题判断一件事情的语句叫命题。
命题包括“题设”和“结论”两部分,可写成“如果……那么……”的形式。
例如:“明天可能下雨。
”这句语句______命题,而“今天很热,明天可能下雨。
”这句语句_____命题。
(填“是”或“不是”)1命题分为真命题与假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。
假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。
2逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。
注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。
题型一:平行线的性质1.(2023下·广西贺州·七年级统考期末)如图,直线a ,b 被直线c 所截,若a b ∥,∠1=70°,则∠2的度数是()A .50°B .60°C .70°D .110°【答案】C 【分析】由a b ∥,∠1=70°,可得2170,Ð=Ð=°从而可得答案.【详解】解:∵a b ∥,∠1=70°,∴2170,Ð=Ð=°故选C【点睛】本题考查的是平行线的性质,掌握“两直线平行,同位角相等”是解本题的关键.2.(2024上·河南周口·七年级河南省淮阳中学校考期末)如图,沿路线A B C D →→→行走,若AB CD ∥,122B ∠=︒,则C ∠=()A .58︒B .122︒C .128︒D .132︒【答案】B 【分析】本题考查平行线性质,根据两直线平行,内错角相等,即可解题.【详解】解: AB CD ∥,122B ∠=︒,C ∴∠=122B ∠=︒,故选:B .3.(2024上·河南周口·七年级统考期末)如图,AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,170=︒∠,则3∠的度数为()A .70︒B .80︒C .40︒D .30︒【答案】C 【分析】本题考查了角平分线的定义,平行线的性质;根据角平分线的定义求出BEF ∠,再根据平行线的性质即可求出3∠.【详解】解:∵170=︒∠,EG 平分BEF ∠,∴170BEG ∠=∠=︒,∴1140BEF BEG ∠=∠+∠=︒,∵AB CD ,∴318040BEF ∠=︒-∠=︒,故选:C .题型二:根据平行线性质探究角的关系4.(2024下·七年级课时练习)如图,直线a ,b 被c ,d 所截,且a b ∥,则下列结论中正确的是()A .14∠=∠B .23180∠+∠=︒C .3=4∠∠D .24180∠+∠=︒【答案】C 【分析】根据平行线的性质,逐项判断即可求解.【详解】解:A .由a b ,无法判断1∠和4∠的大小,故本选项错误,不符合题意;B .由a b ,无法得出23180∠+∠=︒,故本选项错误,不符合题意;C .因为a b ,所以3=4∠∠,故本选项正确,符合题意;D .由a b ,无法得出24180∠+∠=︒,故本选项错误,不符合题意;故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.(2023下·山东德州·七年级校考阶段练习)如图:,AB CD OE ∥平分,,,40BOC OF OE OP CD ABO ∠⊥⊥∠=︒,则下列结论:①OF 平分BOD ∠②POE BOF ∠=∠③70BOE ∠=︒④2POB DOF ∠=∠,其中结论正确的序号是()A .只有①②③B .只有①③④C .①②③④D .只有①④【答案】A 【分析】根据AB ∥CD 可得40BOD ABO ∠=∠=︒,利用平角得到140COB ∠=︒,再根据角平分线的定义得到70BOE ∠=︒,则③正确;利用OP CD ⊥,AB ∥CD ,40ABO ∠=︒,可得50OB ∠=︒,20BOF ∠=︒,20FOD ∠=︒,进而可得OF 平分BOD ∠,则①正确;由70EOB ∠=︒,50POB ∠=︒,20POE ∠=︒,由20BOF POF POB ∠=∠-∠=︒,进而可得POE BOF ∠=∠,则②正确;由②可知50POB ∠=︒,20FOD ∠=︒,则④不正确.【详解】③AB ∥CD ,40BOD ABO ∴∠=∠=︒,18040140COB ∴∠=︒-︒=︒,又OE 平分BOC ∠,BOE ∴∠=12COB ∠=1214070⨯︒=︒,故③正确;①OP CD ⊥ ,90POD ∴∠=︒,又AB ∥CD ,90BPO ∴∠=︒,又40ABO ∠=︒ ,904050POB ∴∠=︒-︒=︒,907020BOF EOF EOB ∴∠=∠-∠=︒-︒=︒,402020FOD ∠=︒-︒=︒,OF ∴平分BOD ∠,故①正确;②70EOB ∠=︒ ,904050POB ∠=︒-︒=︒,705020POE ∴∠=︒-︒=︒,POE BOF ∴∠=∠,故②正确;④由①可知904050POB ∠=︒-︒=︒,402020FOD ∠=︒-︒=︒,故2POB DOF ∠≠∠,故④不正确.故结论正确的是①②③,故选A .【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中角和角的关系,再进行解答.6.(2024上·四川巴中·七年级统考期末)如图,AB CD ∥,E 为AB 上一点,且EF CD ⊥垂足为F ,90CED ∠=︒,CE 平分AEG ∠,且CGE α∠=,则下列结论:①1902AEC α∠=︒-;②DE 平分GEB ∠;③CEF GED ∠=∠;④180FED BEC ∠+∠=︒;其中正确的有()A .①②B .②③④C .①②③④D .①③④【答案】C 【分析】本题考查了平行线的性质,角平分线的定义,垂线的定义,熟记“一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线”,“当两直线所组成的角为直角时,称它们互相垂直,其中一条直线叫做另一条直线的垂线”的相关概念,利用α表示各个角度.根据角平分线的性质,角平分线和垂线的定义逐个分析计算即可.【详解】解:CGE α∠= ,AB CD ∥,CGE GEB α∴∠=∠=,180AEG α∴∠=︒-,CE 平分AEG ∠,119022AEC CEG AEG α∴∠=∠=∠=︒-,故①正确;90CED ∠=︒ ,1122DEB GEB α∴∠==∠,即DE 平分GEB ∠,故②正确;EF CD ⊥ ,AB CD ∥,90AEF ∴∠=︒,90AEC CEF ∴∠+∠=︒,12CEF α∴∠=,12GED GEB DEB α∠=∠-∠= ,CEF GED ∴∠=∠,故③正确;190902FED BED α∠=︒-∠=︒- ,1180902A BEC EC α∠=∠=︒-︒+,180FED BEC ∴∠+∠=︒故④正确;综上所述,正确的有①②③④,故选:C .题型三:根据平行线性质求角的大小7.(2024下·全国·七年级专题练习)如图,直线m n ∥,含有45︒角的三角板的直角顶点O 在直线m 上,点A 在直线n 上,若120∠=︒,则2∠的度数为()A .15︒B .25︒C .35︒D .45︒【答案】B 【分析】本题考查平行线的性质,过B 作BK m ∥,推出BK n ∥,由平行线的性质得到120OBK ∠=∠=︒,2ABK ∠=∠,求出25ABK ABO OBK ∠=∠-∠=︒,即可得到225∠=︒.【详解】解:过B 作BK m ∥,∵m n ∥,∴BK n ∥,∴120OBK ∠=∠=︒,2ABK ∠=∠,∵45ABO ∠=︒,∴452025ABK ABO OBK ∠=∠-∠=︒-︒=︒,∴225ABK ∠=∠=︒.故选:B .8.(2024上·重庆沙坪坝·七年级重庆南开中学校考期末)如图,直线MN PQ ∥,点A C 、分别在直线MN PQ 、上,AD 平分BAN ∠,CD 平分110ECQ B ∠∠︒,=,若DCQ α∠=,则1∠等于()A .30α︒+B .30α︒-C .35α︒+D .35α︒-【答案】C 【分析】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解题的关键.过点B 作BG PQ ∥交AD 于点G ,由CD 平分ECQ DCQ α∠∠=,可知2ECQ α∠=,故2EBG ECQ α∠=∠=,由110ABE ∠=︒可知1102ABG ABE EBG α∠=∠-∠=︒-,再由MN PQ BG PQ ∥,∥可知()1801801102BAN ABG α∠=︒-∠=︒-︒-,根据AD 平分BAN ∠可得出NAD ∠的度数,进而得出结论.【详解】解:如图,过点B 作BG PQ ∥交AD 于点G ,∵CD 平分ECQ DCQ α∠∠=,,∴2ECQ α∠=,∴2EBG ECQ α∠=∠=,∵110ABE ∠=︒,∴1102ABG ABE EBG α∠=∠-∠=︒-,∵MN PQ BG PQ ∥,∥,∴()1801801102702BAN ABG αα∠=︒-∠=︒-︒-=︒+,∵AD 平分BAN ∠,∴1352NAD BAN α∠=∠=︒+,∴135NAG α∠=∠=︒+.故选:C .9.(2024·全国·七年级竞赛)如图,82BAC ∠=︒,68CDE ∠=︒,AF 平分BAC ∠,若AF D E ⊥,则ACD ∠的度数为()A .18︒B .19︒C .20︒D .21︒【答案】B 【分析】本题主要考查平行线的性质,角平分线的性质,掌握平行线的性质,角平分线的性质,垂直的性质,合理作出平行线是解题的关键.如图所示,作DG AF 交AC 于G ,作CH AF ∥,根据平行线的性质可求出ACH ∠的度数,根据垂直的性质可求出CDG ∠的度数,最后根据ACD ACH DCH ∠=∠-∠即可求解.【详解】解:如图所示,作DG AF 交AC 于G ,作CH AF ∥,∵AF 平分BAC ∠,∴82241CAF ∠=︒÷=︒,∴41AGD ACH CAF ∠=∠=∠=︒,∵68DE AF CDE ⊥∠=︒,,∴906822DCH CDG ∠=∠=︒-︒=︒,∴412219ACD ACH DCH ∠=∠-∠=︒-︒=︒.题型四:平行线性质在生活应用问题10.(2023上·吉林长春·七年级统考期末)如图,一条街道有两个拐角ABC ∠和BCD ∠,已知AB CD ∥,若150ABC ∠=︒,则BCD ∠的度数是()A .30︒B .120︒C .130︒D .150︒【答案】D 【分析】本题考查了平行线的性质:两直线平行,内错角相等,由AB CD ,根据两直线平行,内错角相等,可得BCD ∠的度数,解题的关键是将实际问题转化为数学问题求解.【详解】∵150AB CD ABC ∠=︒,∴150BCD ABC ∠=∠=︒(两直线平行,内错角相等).故选:D .11.(2023下·江西抚州·七年级统考期中)一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是()A .先右转30︒,后左转60︒B .先左转30︒,后右转60︒C .先右转30︒,后左转150︒D .先右转30︒,后左转30︒【答案】D【分析】利用平行的性质:两直线平行,同位角相等来选择即可.【详解】解:两次拐弯后,仍在原来的方向上平行行驶,即转弯前与转弯后的道路是平行的,因而右转的角与左转的角应相等,理由是两直线平行,同位角相等.故选:D .【点睛】本题主要考查了平行线的性质,能够根据条件,找到解决问题的依据是解决本题的关键.12.(2023下·河北邢台·七年级校考期中)生活中常见一种折叠拦道闸如图1所示.若想求解某些特殊状态下的角度,需将其抽象为如图2所示的几何图形,其中BA AE ⊥,垂足为A ,CD AE ∥,则ABC BCD ∠+∠=()A .270︒B .250°C .230︒D .200︒【答案】A 【分析】过B 作BF CD ∥,然后根据平行线的性质和垂线的定义即可得解.【详解】解:如图,过B 作BF CD ∥,∵CD AE ∥,则BF AE ,∴180BCD CBF ∠+∠=︒,∵BA AE ⊥,∴90BAE ∠=︒,∴18090ABF BAE ∠=︒-∠=︒,∴270ABC BCD ABF CBF BCD ∠+∠=∠+∠+∠=︒,故选:A .【点睛】本题考查平行线的综合应用,熟练掌握平行线的性质和垂线的定义是解题关键.题型五:平行线之间的距离问题13.(2023下·湖南娄底·七年级统考期末)如图,∥MN AB ,P ,Q 为直线MN 上的任意两点,PAB 和QAB 的面积关系是()A .PAB QAB S S >△△B .PAB QABS S =△△C .PAB QAB S S <△△D .无法确定【答案】B 【分析】根据两条平行线之间的距离处处相等,可知PAB 与QAB 底边AB 边上的高相等,从而得到它们的面积相等.【详解】解:因为∥MN AB ,所以点P 与点Q 到直线AB 的距离相等,即PAB 与QAB 是同底等高的两个三角形,故PAB QAB S S =△△.故选:B .【点睛】本题考查两条平行线之间的距离处处相等,掌握这一性质是解题的关键.14.(2023下·广西桂林·七年级校联考期末)如图,AD BC ∥,5BC =,点E 在BC 上,8BE =,DCE △的面积为6,则ABE 的面积为()A .6B .12C .16D .20【答案】C 【分析】ABE 的边BE 上的高和DCE △的边CE 上的高长度相同,设高为h ,可求得ABE S 和DCE S 之间的数量关系.【详解】∵5BC =,8BE =,∴853CE BE BC =-=-=.∵AD BC ∥,∴ABE 的边BE 上的高和DCE △的边CE 上的高长度相同.设ABE 的边BE 上的高和DCE △的边CE 上的高为h .根据题意,得1322DCE S h CE h == △,142ABE S h BE h == △.∴8861633ABE DCE S S ==⨯=△△.故选:C .【点睛】本题主要考查两条平行线之间的距离(如果两条直线平行,那么其中一条直线上每个点到另一条直线的距离都相等,这个距离,叫做这两条平行线之间的距离),牢记两条平行线之间的距离的定义是解题的关键.15.(2022下·河北石家庄·七年级校考期末)如图,点P 、Q 为平面内两个定点,定直线a PQ ∥,M 是直线a 上一动点,对下列各值:①PQM 的周长;②PQM 的面积;③点M 到PQ 的距离;④PMQ ∠的大小.其中会随点M 的移动而变化的是()A .②③B .②④C .①④D .①③【答案】C 【分析】根据平行线间的距离不变即可判断③;根据三角形的周长和点M 的运动变化可判断①④;根据同底等高的三角形的面积相等可判断②;进而可得答案.【详解】解:∵直线a PQ ∥,∴点M 到直线PQ 的距离不会随点M 的移动而变化,故③正确;∵PM ,QM 的长随点M 的移动而变化,∴PQM 的周长会随点M 的移动而变化,PMQ ∠的大小会随点M 的移动而变化,故①④错误;∵点M 到直线PQ 的距离不变,PQ 的长度不变,∴PQM 的面积不会随点M 的移动而变化,故②正确;综上,不会随点M 的移动而变化的是①④.故选:C .【点睛】本题主要考查了平行线间的距离和同底等高的三角形的面积相等等知识,属于基础题型,熟练掌握平行线间的距离的概念是关键.题型六:与命题有关的问题16.(2024下·全国·七年级专题练习)下列各命题的逆命题是假命题的是()A .两直线平行,同旁内角互补B .若两个数0a b +=,则这两个数为相反数C .对顶角相等D.如果22a b=,那么a b=【答案】C【分析】本题考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,写出命题的逆命题后判断正误即可.【详解】解:A、逆命题为同旁内角互补,两直线平行,是真命题,不符合题意;a b+=,是真命题,不符合题意;B、逆命题为如果两个数互为相反数,那么0C、逆命题为相等的角为对顶角,是假命题,符合题意;D、逆命题为如果a b=,那么22a b=,是真命题,不符合题意.故选:C.17.(2023下·辽宁鞍山·七年级校考阶段练习)下列命题:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线;④从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短;⑤垂直于同一条直线的两条直线垂直,其中的假命题有()A.4个B.3个C.2个D.1个【答案】B【分析】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:①过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;②在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;③把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,原命题是真命题;④从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短是真命题;⑤垂直于同一条直线的两条直线平行,原命题是假命题,故选:B.18.(2023下·广西玉林·七年级统考期中)下列命题;①内错角相等;②两个锐角的和是钝角;③a ,b ,c 是同一平面内的三条直线,若a b ,b c P ,则a c P ;④a ,b ,c 是同一平面内的三条直线,若a b ⊥r r ,b c ⊥,则a c P ;其中真命题的个数是()A .1个B .2个C .3个D .4个【答案】B【分析】本题考查了命题与定理的知识.利用平行线的性质及判定方法分别判断后即可确定正确的选项.【详解】解:①两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;②两个锐角的和不一定是钝角,错误,是假命题,不符合题意;③a ,b ,c 是同一平面内的三条直线,若a b ,b c P ,则a c P ;正确,是真命题,符合题意;④a ,b ,c 是同一平面内的三条直线,若a b ⊥r r ,b c ⊥,则a c P ,正确,是真命题,符合题意;真命题有2个,故选:B .题型七:平行线的判定和性质的综合问题19.(2024上·江苏南通·七年级统考期末)如图,AE BD ∥,A BDC ∠=∠,AEC ∠的平分线交CD 的延长线于点F .(1)求证:AB CD ∥;(2)探究A ∠,AEC ∠,C ∠之间的数量关系,并说明理由;(3)若140BDC ∠=︒,20F ∠=︒,求C ∠的度数.【答案】(1)见解析(2)360A AEC C ∠+∠+∠=︒,理由见解析(3)100C ∠=︒【分析】本题考查了平行线的性质、角平分线的定义,熟练掌握平行线的性质,添加适当的辅助线是解此题的关键.(1)由平行线的性质可得180A ABD ∠+∠=︒,求出ABD BDF ∠=∠,即可得证;(2)作EG AB ∥,则180A AEG ∠+∠=︒,EG CD ∥,再由平行线的性质可得180C CEG ∠+∠=︒,即可得出答案;(3)作EG AB ∥,则180A AEG ∠+∠=︒,求出40AEG =︒∠,得出EG CD ∥,由平行线的性质可得20GEF F ∠=∠=︒,从而得出60AEF GEF AEG ∠=∠+∠=︒,由角平分线的定义可得2120AEC AEF ∠=∠=︒,由(2)可得360A AEC C ∠+∠+∠=︒,由此即可得出答案.【详解】(1)证明:AE BD ∥ ,180A ABD ∴∠+∠=︒,180BDC BDF A BDC ∠+∠=︒∠=∠ ,,ABD BDF ∴∠=∠,AB CD ∴∥;(2)解:360A AEC C ∠+∠+∠=︒,理由如下:如图,作EG AB ∥,,则180A AEG ∠+∠=︒,由(1)可得AB CD ∥,EG CD ∴∥,180C CEG ∴∠+∠=︒,360A AEG C CEG ∴∠+∠+∠+∠=︒,AEG CEG AEC ∠+∠= ,360A AEC C \Ð+Ð+Ð=°;(3)解:如图,作EG AB ∥,,则180A AEG ∠+∠=︒,140BDC A BDC ∠=︒∠=∠ ,,40AEG ∴∠=︒,由(1)可得AB CD ∥,EG CD ∴∥,20GEF F ∴∠=∠=︒,204060AEF GEF AEG ∴∠=∠+∠=︒+︒=︒,AEC ∠的平分线交CD 的延长线于点F ,2120AEC AEF ∴∠=∠=︒,由(2)可得:360A AEC C ∠+∠+∠=︒,360100C A AEC ∴∠=︒-∠-∠=︒.20.(2024下·全国·七年级专题练习)如图,已知:ABC 中,D 、E 、F 、G 分别在BC 、AC 和AB 上,连接DE 、BF 和FG ,AGF ABC ∠=∠,180GFB EDB ∠+∠=︒.(1)判断BF 与DE 的位置关系,并证明;(2)若BF AC ⊥,150EDB ∠=︒,求AFG ∠的度数.【答案】(1)BF DE ∥,理由见详解(2)60︒【分析】本题考查了平行线的性质和判定,平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.(1)先证明GF BC ∥,可得GFB FBD =∠∠,等量代换后可得180FBD EDB ∠+∠=︒,继而得到BF DE ∥;(2)由平行线同旁内角互补,可得18030DBF EDB ∠=︒-∠=︒,根据平行线内错角相等可得30GFB DBF ∠=∠=︒,依据90AFB ∠=︒,可计算出AFG ∠.【详解】(1)解:BF DE ∥,理由如下:∵AGF ABC ∠=∠,∴GF BC ∥,∴GFB FBD =∠∠,又∵180GFB EDB ∠+∠=︒.∴180FBD EDB ∠+∠=︒,∴BF DE ∥.(2)由(1)可知,GF BC ∥,BF DE ∥.∵150EDB ∠=︒,∴18030DBF EDB ∠=︒-∠=︒,∵GF BC ∥,∴30GFB DBF ∠=∠=︒,∵BF AC ⊥,∴90AFB ∠=︒,∴9060AFG GFB ∠=︒-∠=︒.21.(2024上·湖南衡阳·七年级衡阳市华新实验中学校考期末)问题情境1:如图1,AB CD ∥,P 是ABCD 内部一点,P 在BD 的右侧,探究B ∠,P ∠,D ∠之间的关系?(1)如图2,过P 作PE AB ,可得B ∠,P ∠,D ∠之间满足______关系.(直接写出结论)问题情境2如图3,AB CD ∥,P 是AB ,CD 内部一点,P 在BD 的左侧,(2)得B ∠,P ∠,D ∠之间满足______关系.(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB CD ∥,ABE ∠与CDE ∠两个角的角平分线相交于点F .(3)如图4,若80E ∠=︒,求BFD ∠的度数;(写证明过程)(4)如图5中,13ABM ABF ∠=∠,13CDM CDF ∠=∠,写出M ∠与E ∠之间数量关系并证明结论.【答案】(1)360B BPD D ∠+∠+∠=︒;(2)B D BPD ∠+∠=∠;(3)140︒;(4)6360E M ∠+∠=︒,证明见解析【分析】本题主要考查了平行线的性质与判定,角平分线的定义:(1)先证明PE AB CD ∥∥,再由平行线的性质得到180180B BPE D DPE +=︒+=︒∠∠,∠∠,进而可得360B BPD D ∠+∠+∠=︒;(2)如图所示,过P 作PE AB ,先证明PE AB CD ∥∥,再由平行线的性质得到B BPE D DPE ==∠∠,∠∠,进而可得B D BPD ∠+∠=∠;(3)由(1)(2)的结论可得F ABF CDF ∠=∠+∠,360E ABE CDE ++=︒∠∠∠,则可求出280ABE CDE ∠+∠=︒,再由角平分线的定义可得1114022F ABF CDF ABE CDE =+=+=︒∠∠∠∠∠;(4)由(1)(2)的结论可知M ABM CDM ∠=∠+∠,360E ABE CDE ++=︒∠∠∠,进而得到3ABF CDF M +=∠∠∠,再由角平分线的定义得到6ABE CDE M +=∠∠∠,则6360E M ∠+∠=︒.【详解】解:(1)∵AB CD ∥,PE AB ,∴PE AB CD ∥∥,∴180180B BPE D DPE +=︒+=︒∠∠,∠∠,∴360B BPE D DPE +++=︒∠∠∠∠∵BPD BPE DPE =+∠∠∠,∴360B BPD D ∠+∠+∠=︒,故答案为:360B BPD D ∠+∠+∠=︒;(2)如图所示,过P 作PE AB ,∵AB CD ∥,PE AB ,∴PE AB CD ∥∥,∴B BPE D DPE ==∠∠,∠∠,∴B D BPE DPE+=+∠∠∠∠∵BPD BPE DPE =+∠∠∠,∴B D BPD ∠+∠=∠,故答案为:B D BPD ∠+∠=∠;(3)由(1)(2)的结论可知F ABF CDF ∠=∠+∠,360E ABE CDE ++=︒∠∠∠,∵80E ∠=︒,∴360280ABE CDE E ∠+∠=︒-∠=︒,∵ABE ∠与CDE ∠两个角的角平分线相交于点F ,∴1122ABF ABE CDF CDE ==∠∠,∠∠,∴1114022F ABF CDF ABE CDE =+=+=︒∠∠∠∠∠;(4)6360E M ∠+∠=︒,证明如下:由(1)(2)的结论可知M ABM CDM ∠=∠+∠,360E ABE CDE ++=︒∠∠∠,∵13ABM ABF ∠=∠,13CDM CDF ∠=∠,∴1133M ABM CDM ABF CDF =+=+∠∠∠∠∠,∴3ABF CDF M +=∠∠∠,∵ABE ∠与CDE ∠两个角的角平分线相交于点F ,∴22ABE ABF CDE CDF ∠∠∠∠=,=,∴()2226ABE CDE ABF CDF ABF CDF M ∠+∠=∠+∠=∠+∠=∠,∴6360E M ∠+∠=︒.一:选择题22.(2024下·黑龙江绥化·七年级校考)如图,已知直线c 与直线a b ,都相交.若145a b ∠=︒,∥,则2∠=()A .145︒B .135︒C .55︒D .45︒【答案】B 【分析】本题考查邻补角互补,平行线的性质.熟练掌握平行线的性质是解题关键.根据两直线平行同位角相等即可得出3145∠=∠=︒,再根据邻补角互补求解即可.【详解】解:如图,∵a b ∥,∴3145∠=∠=︒,∴21803135∠∠︒︒=-=.故选B .23.(2024下·全国·七年级假期作业)下列语句中,是命题的个数为()①若两个角相等,则它们是对顶角;②等腰三角形两底角相等;③画线段1cm AB =;④同角的余角相等;⑤同位角相等.A .2个B .3个C .4个D .5个【答案】C 【分析】本题主要考查命题,熟练掌握命题的概念是解题的关键;因此此题可根据“一般的,在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题”进行排除选项.【详解】解:①②④⑤符合命题的定义,而③不能写出题设与结论出来,故不是命题,所以是命题的个数有4个;故选C .24.(2024上·河南南阳·七年级统考期末)如图,直线a b ∥,直线c 与直线a 、b 分别相交于A 、B 两点,AC AB ⊥于点A ,交直线b 于点C .如果138∠=︒,那么2∠的度数为()A .52︒B .48︒C .38︒D .32︒【答案】A 【分析】本题考查平行线的性质,根据两直线平行,同旁内角互补,进行求解即可.【详解】解:∵AC AB ⊥,∴90BAC ∠=︒,∵a b ∥,∴12180BAC ∠+∠+∠=︒,∴2180903852∠=︒-︒-︒=︒;故选:A .25.(2024上·江苏南通·七年级统考期末)将一直尺和一块含30︒角的三角尺按如图放置,若40CDE ∠=︒,则BFA ∠的度数为()A .40︒B .50︒C .130︒D .140︒【答案】D 【分析】本题考查了平行线的性质,邻补角的定义,根据题意知AF DE ∥,进而可得40CFA CDE ∠=∠=︒,再由邻补角定义即可求解,准确识图是解题的关键.【详解】解:由题意可知AF DE ∥,∵40CDE ∠=︒,∴40CFA CDE ∠=∠=︒,∴180140BFA CFA ∠=︒-∠=︒,故选:D .26.(2024下·全国·七年级专题练习)如图,已知:ABC 中,D 、E 、F 、G 分别在BC 、AC 和AB 上,连接DE 、BF 和FG ,AGF ABC ∠=∠,180GFB EDB ∠+∠=︒.(1)判断BF 与DE 的位置关系,并证明;(2)若BF AC ⊥,150EDB ∠=︒,求AFG ∠的度数.【答案】(1)//BF DE ,理由见解析(2)60︒【分析】本题考查了平行线的判定与性质和余角的计算,熟练掌握平行线的相关判定和性质是解题关键.(1)由AGF ABC ∠=∠,根据“同位角相等,两直线平行”得GF BC ∥,再根据“两直线平行,内错角相等”得GFB FBD =∠∠,再利用“同旁内角互补,两直线平行”,即可证得结论;(2)由GF BC ∥,根据“两直线平行,同旁内角互补”,可求出30DBF ∠=︒,再根据“两直线平行,内错角相等”得30GFB DBF ∠=∠=︒,然后根据余角定义即可求出AFG ∠的度数.【详解】(1)解:BF DE ∥,理由如下:AGF ABC ∠=∠,GF BC \∥,∴GFB FBD =∠∠,又 180GFB EDB ∠+∠=︒,∴180FBD EDB ∠+∠=︒,∴BF DE ∥.(2)解:由(1)可知,GF BC ∥,BF DE ∥,150EDB ∠=︒,∴18015030DBF ∠=︒-︒=︒,∴30GFB DBF ∠=∠=︒,BF AC ⊥,∴90AFB ∠=︒,∴9060AFG GFB ∠=︒-∠=︒.27.(2024上·浙江金华·七年级统考期末)如图,已知AB AC ⊥于点A ,90C EDC ∠+∠=︒.(1)试说明180BAE E +=︒∠∠.(填空)已知AB AC ⊥,得90BAC ∠=︒,所以C ∠+______90=︒,又已知90C EDC ∠+∠=︒,根据______,得B EDC ∠=∠,根据______,得AB DE ∥,根据______,得180BAE E +=︒∠∠.(2)若,55C EAC E ∠=∠∠=︒,求B ∠的度数.【答案】(1)见解析(2)55B ∠=︒.【分析】本题考查平行线的判定和性质,掌握平行线的判定方法和性质,是解题的关键.(1)根据互余关系,平行线的判定和性质,作答即可;(2)根据C EAC ∠=∠,得到AE BC ∥,进而得到EDC E ∠=∠,根据EDC B ∠=∠,即可得出结果.【详解】(1)解:已知AB AC ⊥,得90BAC ∠=︒,所以90C B ∠+∠=︒,又已知90C EDC ∠+∠=︒,根据同角的余角相等,得B EDC ∠=∠,根据同位角相等,两直线平行,得AB DE ∥,根据两直线平行,同旁内角互补,得180BAE E +=︒∠∠;故答案为: B ∠,同角的余角相等;同位角相等,两直线平行;两直线平行,同旁内角互补;(2)∵C EAC ∠=∠,∴AE BC ∥,∴EDC E ∠=∠,由(1)知:EDC B ∠=∠,∴55B E ∠=∠=︒.一、单选题28.(2024上·四川宜宾·七年级统考期末)如图,BD 是ABC ∠的角平分线,DE AB ∥,EF 是DEC ∠的角平分线,有下列四个结论:①BDE DBE ∠=∠;②EF BD ∥;③ABF FEC BFE ∠=∠+∠;④ABF ABED S S =△四边形.其中,正确的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】此题考查了角平分线的定义,平行线的判定及性质,平行线间的距离处处相等等相关内容,熟练掌握平行线的判定与性质是解题关键.利用DE AB ∥,BD 平分ABC ∠,EF 平分DEC ∠,可以判断出①②正确;再证明DBF BFE ∠=∠,再利用FEC DBC ABD ∠=∠=∠,可判断出③正确;根据EF BD ∥,推出BDF V 与BDE 是等底等高的三角形,最后利用等式性质可得到④正确.【详解】解:∵DE AB ∥,∴ABD BDE ∠=∠,ABC DEC ∠=∠,∵BD 平分ABC ∠,EF 平分DEC ∠,∴12ABD DBE ABC ∠=∠=∠,12DEF FEC DEC ∠=∠=∠,∴BDE DBE ∠=∠,FEC DBC ABD ∠=∠=∠,∴EF BD ∥,故①②正确;∵EF BD ∥,∴DBF BFE ∠=∠,∵ABF ABD DBF ∠=∠+∠,FEC ABD ∠=∠,∴ABF FEC BFE ∠=∠+∠,故③正确;∵EF BD ∥,∴BDF V 与BDE 是等底等高的三角形,∴BDF BDE S S =△△,∴ABF ABED S S =△四边形,故④正确,∴①②③④正确.故选:D .29.(2024上·山西长治·七年级统考期末)如图,AB CD ,130PAB ∠=︒,120PCD ∠=︒,则APC ∠的度数为()A .140︒B .130︒C .120︒D .110︒【答案】D 【分析】此题考查的是平行线的判定及性质,掌握构造平行线的方法是解决此题的关键.过P 作直线∥MN AB ,根据两直线平行,同旁内角互补即可求出APN ∠,然后根据平行于同一条直线的两直线平行可得MN CD ∥,进而可求出NPC ∠,从而求出APC ∠.【详解】解:过P 作直线∥MN AB ,如下图所示,∵∥MN AB ,130PAB ∠=︒,∴180PAB APN ∠+∠=︒(两直线平行,同旁内角互补),∴18050APN PAB ∠=︒-∠=︒,∵∥MN AB ,AB CD ,120PCD ∠=︒,∴MN CD ∥,∴180PCD NPC ∠+∠︒=,∴60NPC ∠︒=,∴6050110APC NPC APN ∠=∠+∠=︒+︒=︒,故选:D .30.(2024上·福建泉州·七年级统考期末)如图,AB CD ∥,直线l 分别交AB ,CD 于点E ,F ,且满足1BEP BEF n ∠∠=,1DFP DFE n ∠∠=,则P ∠的度数为()A .1801n + B .180n C .1801n -o D .不确定【答案】B 【分析】本题考查了平行线的性质,过P 作PG AB ∥,由平行的判定方法得PG AB CD ∥∥,由平行线的性质得1EPG BEP BEF n ∠=∠=∠,1FPG DFP DFE n ∠=∠=∠,180BEF DFE ∠+∠=︒,等量代换计算得180EPG DFP n︒∠+∠=,即可求解;掌握性质,作出辅助线求解是解题的关键.【详解】解:如图,过P 作PG AB ∥,PG AB CD ∴∥∥,1EPG BEP BEF n ∴∠=∠=∠,1FPG DFP DFE n∠=∠=∠,180BEF DFE ∠+∠=︒,BEF n EPG ∴∠=∠,DFE n DFP ∠=∠,180n EPG n DFP ∴∠+∠=︒,180EPG DFP n︒∴∠+∠=,180P n ︒∴∠=;故选:B .31.(2024上·重庆九龙坡·七年级重庆实验外国语学校校考期末)如图,,AB CD A BCD ∠=∠∥,点M 是边AD 上一点,连接BM ,延长BM 、CD 交于点P .点N 是边BC 上一点,连接MN ,使得NMC MCN ∠=∠,作NMP ∠的平分线MQ 交CP 于点Q .若CMQ α∠=,则AMP ∠的度数用含α的式子表示为()A .180α︒-B .1802α︒-C .45α︒+D .90α︒+【答案】B 【分析】本题考查三角形内角和定理,平行线的判定和性质等知识,解题的关键是理解题意,学会利用参数解决问题.证明2PMD α∠=,可得结论.【详解】解:设NMC x ∠=.∥ AB CD ,A ADP ∴∠=∠,A BCD ∠=∠ ,APD BCD ∴∠=∠,AD BC ∴∥,NM NC = ,NMC NCM x ∴∠=∠=,CMD NCM x ∴∠=∠=,MQ 平分NMP ∠,QMP QMN x α∴∠=∠=+,()2PMD PMQ QMD x x ααα∴∠=∠+∠=++-=,1801802AMP PMD α∴∠=︒-∠=︒-.故选:B .32.(2024上·重庆巴南·七年级校考期末)如图,,AB CD BF ∥平分,EBA DG ∠平分,CDE E α∠∠=,则H ∠的度数用含α的式子表示为()A .180α︒-B .12αC .1902α︒+D .1902α︒-【答案】B 【分析】本题考查平行线的判定和性质等知识,解题的关键是理解题意,正确作出辅助线.根据角平分线得出12,34,∠=∠∠=∠过H 作,HM DC ∥过E 作,EN AB ∥证出2123,513,FHG FHM α=∠-∠∠=∠-∠=∠-∠即可得结论;【详解】BF 平分,EBA DG ∠平分,CDE Ð12,34,∴∠=∠∠=∠过H 作,HM DC ∥过E 作,EN AB ∥,AB CD ∥Q ,AB CD HM EN ∴∥∥∥15,216,35,623,FHM FHG CDE α∴∠=∠=∠+∠∠=+∠∠=∠∠=∠=∠2123,513,FHG FHM α∴=∠-∠∠=∠-∠=∠-∠.2FHG α∴∠=故选:B .33.(2023下·山东济南·七年级山东省济南稼轩学校校考阶段练习)下列结论:①如图1,AB CD ∥,则180A E C ∠+∠+∠=︒;②如图2,AB CD ∥,则P A C ∠=∠-∠;③如图3,AB CD ∥,则1E A ∠=∠+∠;④如图4,直线AB CD EF ∥∥,点O 在直线EF 上,则180αβγ∠-∠+∠=︒.正确的个数有()A .1个B .2个C .3个D .4个【答案】B 【分析】本题考查的是平行线的性质及三角形外角的性质;①过点E 作直线EF ∥AB ,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;②如图2,先根据三角形外角的性质得出1C P ∠=∠+∠,再根据两直线平行,内错角相等即可作出判断;③如图3,过点E 作直线EF ∥AB ,由平行线的性质可得出1180A AEC ∠+∠-∠=︒,即得1801AEC A ∠=︒+∠-∠;④如图4,根据平行线的性质得出BOF α∠=∠,180COF γ∠+∠=︒,再利用角的关系解答即可.【详解】解:①如图1,过点E 作直线EF AB ∥,AB CD ∥,∴AB CD EF ∥∥,1180A ∴∠+∠=︒,2180C ∠+∠=︒,12360A C ∴∠+∠+∠+∠=︒,360A AEC C ∴∠+∠+∠=︒,故①错误;②如图2,1∠ 是CEP 的外角,1C P ∴∠=∠+∠,AB CD ∥,1A ∴∠=∠,即P A C ∠=∠-∠,③如图3,过点E 作直线EF AB ∥,AB CD ∥,∴AB CD EF ∥∥,3180A ∴∠+∠=︒,12∠=∠,1180A AEC ∴∠+∠-∠=︒,即1801AEC A ∠=︒+∠-∠,故③错误;④如图4,AB EF ∥,BOF α∴∠=∠,CD EF ∥,180COF γ∴∠+∠=︒,BOF COF β∠=∠+∠ ,COF αβ∴∠=∠-∠,180γαβ∴∠+∠-∠=︒,故④正确;综上结论正确的个数为2,故选:B .二、填空题34.(2024下·江苏·七年级周测)如图,一辆汽车经过一段公路两次拐弯后,和原来的行驶方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角B ∠等于142︒,第二次拐的角∠C 的度数为.【答案】142︒/142度【分析】此题考查了平行线的性质,根据平行线的性质得出B C ∠=∠,解题的关键是熟练掌握平行线的性质及其应用.【详解】∵原来的行驶方向相同,也就是拐弯前后的两条路互相平行,∴142C B ∠=∠=︒(两直线平行,内错角相等).35.(2024上·山东济南·七年级统考期末)如图,将三角板与直尺贴在一起,使三角板的直角顶点A 与直尺的一边重合,若130∠=︒,则2∠的度数是°.【答案】60【分析】本题考查了平行线的性质,互余关系;由13∠∠,互余可求得3∠,再由平行线的性质即可求得结果.【详解】解:如图,∵1+3=90∠∠︒,130∠=︒,∴390160∠=︒-∠=︒;∵直尺的两边平行,∴2360∠=∠=︒,故答案为:60.36.(2024上·河南南阳·七年级统考期末)将一副三角板按如图所示重叠放置,其中45BOA ∠=︒,30DOC ∠=︒,90BAO ∠=︒,90DCO ∠=︒,30︒和45︒的两个角顶点重合在一起.若将三角板AOB 绕点O 旋转,在旋转过程中,当AB OC ∥时,BOC ∠=.【答案】45︒或135︒【分析】本题考查了平行线的性质,旋转的性质,直角三角板的角的度数的知识,熟记性质是解题的关键.根据题意画出图形,由平行线的性质可得出答案.【详解】解:如图1,当AOB 绕点O 顺时针旋转90︒时,AB OC ∥,此时45BOC ABO ∠=∠=︒.。
第五章+相交线与平行线+章节复习-2022-2023学年七年级数学下册同步备课系列(人教版)
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
性质2:两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
性质3:两条平行线被第三条直线所截,同旁内角互补.
BC
∴∠EDC=∠5(________________________).
两直线平行,内错角相等
∴∠5=∠A(已知),
等量代换
∠A
∴∠EDC=______(__________).
同位角相等,两直线平行
∴DC//AB(_______________________).
同旁内角互补,两直线平行
∴∠5+∠ABC=180°(________________________),即∠5+∠2+∠3=180°
例5.如图,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,则
∠A=∠F,为什么?
解:∠AGB=∠DGF (对顶角相等)
∠AGB=∠EHF (已知)
∴∠DGF=∠EHF (等量代换)
∵BD//CE (同位角相等,两直线平行)
∴∠C=∠ABD (两直线平行,同位角相等)
∵∠C=∠D (已知)
过程叫做证明.
四、平移
1. 平移的定义:“三要素”
一个图形、一个方向、一个距离.
2. 平移的性质:“四特征”
• 图形的形状和大小不改变;
• 对应点所连的线段平行(或在一条直线上)且相等;
• 对应线段平行(或在一条直线上)且相等;
• 对应角相等.
四、平移
3.平移作图的一般步骤:
平移作图是平移性质的应用,利用平移可以得到许多美丽的图案,在具体作
七年级数学下册平行线的判定课件
在解决三角形的相关问题时,可以利用平行线的性质进行证明和计算,如证明三角形的相似、计算三 角形的面积等。
复杂几何图形中的平行线
复杂几何图形中的平行关系
在复杂的几何图形中,经常需要找出其中的平行线,并利用平行线的性质进行证明和计算。
平行线在复杂几何图形中的应用
平行线在解决复杂几何图形的问题时有着广泛的应用,如计算图形的面积、证明图形的相关性质等。同时,掌握 平行线的性质和判定方法也是解决这类问题的关键。
梯形中的平行线
梯形的一组对边是平行的
梯形只有一组对边是平行的,这也是梯形与平行四边形的主要区别之一。
平行线在梯形中的应用
在解决梯形的相关问题时,经常需要利用平行线的性质,如计算梯形的高、证 明梯形的相关性质等。
三角形中的平行线
三角形中的中位线
三角形的中位线与三角形的两边平行,并且等于第三边的一半。这是三角形中平行线的一个重要应用 。
04 平行线与实际问题联系
实际生活中平行线现象
铁路轨道
铁路轨道是平行线的典型实例, 它们保持固定的间距以确保列车
的平稳运行。
电线杆与电线
在电力传输中,电线杆上的电线 通常保持平行,以减少电磁干扰
和能量损失。
建筑物轮廓线
许多现代建筑物的轮廓线由平行 线构成,这种设计使建筑物显得
简洁、整齐。
平行线在建筑设计中的应用
两条直线被第三条直线所截,在截线的同旁,被截两直线的同一方, 我们把这种位置关系的角称为同位角。
内错角
两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条 被截直线之间,具有这样位置关系的一对角叫做内错角。
同旁内角
两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角, 叫做同旁内角。
苏教版七年级下册数学[平行线的性质及平移(提高)知识点整理及重点题型梳理]
苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习平行线的性质及平移(提高)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、图形的平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,各组对应点的连线平行(或在同一条直线上)且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1.如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.【答案与解析】解:作PM∥AB,交AC于点M,如图:∵AB∥CD∴∠CAB+∠ACD=180°∵PA平分∠CAB,PC平分∠ACD∴∠1+∠4=90°∵AB∥PM∥CD∴∠1=∠2,∠3=∠4∴∠2+∠3=90°∴∠APC=90°【总结升华】平行线与角的关系非常密切,平行线的性质都是以角的关系来体现,在求角度的过程中,如果能够适时运用平行线的性质,将会使问题的解决显得简便快捷.举一反三:【变式】(2016•重庆模拟)如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【答案】B解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.类型二、两平行线间的距离2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、图形的平移3.如图所示,①、②两图中,哪个图形中的一个三角形可以经过另一个三角形平移得到?【答案与解析】解:图①DE和AC平行,但不相等,DE和BC相等,但不平行,不符合平移的特征,无论怎样平移其中一个三角形也得不到另一个三角形.图②符合平移的特征,三角形PQR沿射线PM方向移动PM长即可得到三角形MNO.所以,图②中一个三角形可以经过另一个三角形平移得到.【总结升华】平移变换的实质是图形沿直线运动,它的形状、大小都不发生变化,否则就不是平移变换.举一反三:【变式】下面生活中的物体的运动情况可以看成平移的是(填写序号).(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).【答案】(2)(6).解:(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)摇动的大绳,方向发生改变,不属于平移;(5)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;(6)从楼顶自由落下的球沿直线运动,属于平移.∴可以看成平移的是(2)(6).4.(2015春•天津期末)某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为.【思路点拨】根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.【答案】200m.【解析】解:∵荷塘中小桥的总长为100米,∴荷塘周长为:2×100=200(m)故答案为:200m.【总结升华】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题关键.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型四、平行的性质与判定综合应用5.(湖南模拟)如图所示,∠ABC的边BC与∠DEF的边DE交于点K,下面给出三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断为结论,填人“试说明”栏中,使之成为一个完整的正确命题,并将理由叙述出来.已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,________,________,试说明________.【答案与解析】解:三个论断分别可以组成①②⇒③;①③⇒②;②③⇒①三种不同情形的命题,选择其中任何一个即可.以①②⇒③为例,说明如下已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,∠B=∠E,AB∥DE,试说明BC∥EF.理由叙述:因为AB∥DE,所以∠B=∠CKD.又因为∠B=∠E,所以∠E=∠CKD,所以BC∥EF.【总结升华】此类问题具有较强的灵活性,解决这类题的基本思路是先写出可能的结果,再判断其是否正确.【平行线的性质及命题403103 平行线的性质练习1】举一反三:【变式】已知,如图,∠1=∠2,∠3=65°,则∠4= .【答案】115°6.如图,AB∥CD,点M,N分别为AB,CD上的点.(1)若点P1在两平行线内部,∠BMP1=45°,∠DNP1=30°,则∠MP1N=;(2)若P1,P2在两平行线内部,且P1P2不与AB平行,如图,请你猜想∠AMP1+∠P1 P2N 与∠MP1 P2+∠P2ND的关系,并证明你的结论;(3)如图,若P1,P2,P3在两平行线内部,顺次连结M,P1,P2,P3,N,且P1P2,P2P3不与AB平行,直接写出你得到的结论.【答案与解析】解:(1)75°;(2)结论:∠AMP1+∠P1 P2N=∠MP1 P2+∠P2ND证明:如图,分别过P1,P2作P1Q1∥AB,P2Q2∥AB.又∵AB∥CD,∴∠AMP1=∠1,∠2=∠3,∠4=∠P2ND.∴∠AMP1+∠P1 P2N=∠AMP1+∠3+∠4=∠1+∠2+∠P2ND=∠MP1 P2+∠P2ND.(3)∠BMP1+∠P1 P2P3+∠P3 ND=∠MP1 P2+∠P2 P3N.【总结升华】通过作平行线,问题便迅速得到解决.举一反三:【变式】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°【答案】D。
数学知识点归纳之平行线间距离
数学知识点归纳之平行线间距离数学知识点归纳之平行线间距离在我们平凡的学生生涯里,是不是经常追着老师要知识点?知识点也可以通俗的理解为重要的内容。
那么,都有哪些知识点呢?以下是店铺精心整理的数学知识点归纳之平行线间距离,供大家参考借鉴,希望可以帮助到有需要的朋友。
平行线间距离1、定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。
2、性质:⑴ 两条平行线间的距离处处相等;⑵ 两条平行线间的任何两条平行线段都是相等的。
希望上面对平行线间距离知识的总结学习,能很好的帮助同学们对此知识的巩固学习,相信同学们一定没问题的吧。
数学平行线知识点平行线:在同一平面内,永不相交的两条直线叫平行线(parallel lines),平行线具有传递性。
平行线的判定方法1.平行线的定义(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理推论:平行于同一直线的两条直线互相平行。
3.在同一平面内,垂直于同一直线的两条直线互相平行。
4.内错角相等,两直线平行。
5.同旁内角互补,两直线平行。
6.同位角相等,两直线平行平行线的性质1.两条平行线被第三条直线所截,同位角相等2.两条平行线被第三条直线所截,内错角相等3.两条平行线被第三条直线所截,同旁内角互补4. 两条平行线被第三条直线所截,外错角相等以上性质可简单说成:1.两条直线平行,同位角相等2.两条直线平行,内错角相等3.两条直线平行,同旁内角互补4.两条直线平行,外错角相等平行公理1.在同一平面内,经过直线外一点,有且只有一条直线与这条直线平行。
平行公理的推论:(平行传递性)1.如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
即平行于同一条直线的两条直线平行。
2.经过直线外一点,有且只有一条直线与这条直线平行。
《相交线与平行线》的知识点归纳一、目标与要求同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
平行线的性质ppt课件
A. 100°
B. 110°
C. 120°
D. 130°
(第 8 题图)
(第 9 题图)
9. 如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF= (
A. 120°
B. 180°
C. 270°
) D. 360°
-5-
7.5 平行线的性质
10. 如图,AB∥CD,AE 平分∠CAB 交 CD 于点 E,若 ∠C=48°,则∠AED 等于 ______.
答案:解:EF∥BC,DE∥AB. 理由:∵∠1∶∠2∶∠3=2∶3∶4, ∴ 可设∠1=2k,∠2=3k,∠3=4k. ∵∠1+∠2+∠3=180°(平角的定义), ∴2k+3k+4k=180°, ∴9k=180°,k=20°, ∴∠1=40°,∠2=60°,∠3=80°. ∵∠AFE=60°(已知), ∴∠AFE=∠2(等量代换), ∴DE∥AB(内错角相等,两直线平行). ∵∠BDE=120°, ∴∠BDE+∠2=180°, ∴EF∥BC(同旁内角互补,两直线平行).
(第 10 题图)
-6-
7.5 平行线的性质
第二课时 平行线性质与判定的综合应用
▍考点集训/夯实基础
■考点 1 平行线性质与判定的综合应用
1. 如图,∠1=∠2,∠3=40°,则∠4 等于 (
A. 120°
B. 130°
C. 140°
) D. 40°
(第 1 题图)
-7-
7.5 平行线的性质
2. 点 P 为互相垂直的直线 a、b 外一点,过点 P 分别画直线 c、d,使
选择平行线的哪条性质来应用会使得计算简便.
-5-
人教版数学七年级下册重难点
人教版数学七年级下册重难点七年级下册重难点相交线与平行线(共6课时)课题:5.1相交线垂线1教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.掌握垂线的性质,并会利用所学知识进行简单的推理。
教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用、垂线的定义及性质难点:理解对顶角相等的性质的探索、垂线的画法。
课题:5.2平行线直线平行的条件2教学目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;会用直线平行的条件来判定直线平行4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;教学重点与难点]重点:平行线的概念与平行公理;判定两条直线平行方法的应用;难点:对平行公理的理解.简单的逻辑推理过程.课题:5.3平行线的性子2教学目标]1.使学心了解平行线的性子和断定的区别.2.使学生掌握平行线的三个性子,并能应用它们作简单的推理.重点难点]重点:平行线的三个性质;平行线性质和判定综合应用,两条平行线的距离,命题等概念难点:平行线的三个性质和怎样区分性质和判定.平行线性质和判定灵活运用课题:5.4平移1教学目标]1.相识平移的概念,会进行点的平移,了解平移的性子,能解决简单的平移问题2.培养学生的空间观念,学会用运动的观点分析问题.教学重点与难点]重点:平移的概念和作图方法.难点:平移的作图平面直角坐标系(共4课时)课题:6.1有序数对平面直角坐标系2教学目标]1.理解有序数对的应用意义,了解平面上确定点的常用方法2.熟悉平面直角坐标系,相识点的坐标的意义,会用坐标透露表现点,能画出点的坐标位教学重点与难点]重点:有序数对及平面内肯定点的方法;平面直角坐标系和点的坐标.难点:利用有序数对表示平面内的点.正确画坐标和找对应点课题:6.2用坐标表示地理位置用坐标表示平移2教学目标]1.了解用平面直角坐标系来表示地理位置的意义及主要过程;培养学生解决实际问题的能力.2.通过进修若何用坐标透露表现地理位置,发展学生的空间观念、象思维能力,和数形结合的意识3.通过研究,学生能够用坐标系来描述地理位置.4.通过用坐标系透露表现实际生活中的一些地理位置,培养学生的认真、严谨的做事立场.教学重点与难点]重点:利用坐标透露表现地理位置.难点:建立适当的直角坐标系,利用坐标变革与图形平移的关系解决实际问题三角形(共6课时)课题:7.1与三角形的关的线段、外角2教学目标】1、通过观察、操作、想像、推理、交流等活动,发展空间观念、推理能力和表达能力;3、学会三角形的表示及掌握对边与对角的关系;重点难点】重点:相识三角形定义、三边关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【本讲教育信息】一. 教学内容:第五章:平行线判定、性质的综合应用,两条平行线的距离,命题,平移二、教学要求(一)综合运用平行线的判定、性质说理和计算;(二)理解两条平行线间的距离的含义;(三)弄清命题、公理、定理等概念的含义;重点掌握命题的概念和命题的构成;(四)理解平移的定义,掌握平移的特征并会应用。
三、重点及难点(一)重点1、理解两条平行线间的距离的含义;2、理解命题、题设、结论的含义,能够判断一个语句是否是命题,能正确确定一个命题的题设和结论;3、理解平移的定义,掌握平移的特征,熟练地利用平移作图,能利用平移转化图形解决几何问题。
(二)难点1、综合运用平行线的判定、性质说理和计算;2、运用平移的基础知识分析复杂图形的形成过程,用平移知识解决生活中的问题。
【知识要点】(一)两条平行线间的距离1、定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。
如图1所示,a//b,A是直线上任意一点,,垂足为B,则线段AB的长即是两平行线、间的距离。
若在直线上任找一点,过作,垂足为D,则线段CD的长也是两平行线、间的距离。
由此可见:图12、平行线间的距离处处相等。
(二)命题1、命题:判断一件事情的语句叫做命题。
命题有正确和错误之分,正确的命题叫做真命题,错误的命题叫做假命题。
2、命题的构成:命题是由题设(或条件)和结论两部分组成。
题设是命题的已知条件部分,通常“如果”后面接题设部分;结论是由题设推出的事项,通常“那么”后面接结论部分。
3、公理:正确性是人们长期以来在实践中总结出来的,并作为判定其他命题真假的根据的命题叫做公理。
4、定理:正确性是用推理证实的,这种用推理的方法得到的真命题叫做定理。
(三)平移1、平移的定义:在平面内,将一个图形沿着一定的方向移动一定的距离,这样的图形运动称为平移。
2、平移的两个要素:平移的方向和距离。
图形上的每一个点都沿同一个方向移动了相同的距离。
——整体角度3、平移的性质:(1)图形平移前后线段、角、点的关系:——局部角度对应线段平行(或在同一条直线上)且相等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。
(2)平移前后图形的形状和大小的关系:——平移结果图形的形状和大小都没有发生变化,即平移不改变图形的形状和大小。
研究平移的性质时,从图形的整体特征的变与不变到分解成线段、角,最后再到点。
平移只改变图形的位置,不改变图形的形状、大小。
4、平移的方向、距离的确定:方向为前后对应点射线方向,距离为对应点之间的线段的长度。
5、简单图形的平移作图:线段、角、三角形的平移是最简单的平移问题,关键条件是平移的方向和距离。
在作图过程中,通过确定图形上几个关键点平移后的位置,得到图形平移后的图形,运用“以局部带整体”的平移作图法:(1)确定图形中的关键点;(2)将关键点沿指定的方向移动指定的距离;6、图形平移的作用:利用基本图形,通过平移,组成更大的图案。
平移变换常常将一个角、一条线段、一个图形平移到适当位置,使分散的条件集中到一个图形上,以方便问题的解决。
【典型例题】例1. 把下列命题改写成“如果……那么……”的形式,指出其题设和结论,并判断命题的真假。
(1)等角的余角相等;(2)相等的角是对顶角;(3)两点确定一条直线;(4)平行于同一条直线的两直线平行。
分析:弄清各命题的题设和结论,再把命题改写成“如果……那么……”的形式,最后利用有关性质判定命题的真假。
解答:(1)如果两个角相等,那么它们的余角也相等。
题设:两个角相等,结论:它们的余角相等。
该命题是真命题。
(2)如果两个角相等,那么它们是对顶角。
题设:两个角相等,结论:它们是对顶角。
该命题是假命题。
(3)如果过两点画直线,那么只能画出唯一一条直线。
题设:过两点画直线,结论:只能画出唯一一条直线。
该命题是真命题。
(4)如果两条直线都平行于同一条直线,那么这两条直线也平行。
题设:两条直线都平行于同一条直线,结论:这两条直线也平行。
该命题是真命题。
说明:命题改写后,要确保句子的叙述清晰、语句通顺,并且不能改变命题的原意。
例2. 如图所示,已知AD//BC,AB//EF,DC//EG,且点和点分别在直线上,平分,。
(1)求证:线段的长是两直线的距离;(2)第(1)问是否是命题?若是,是真命题还是假命题?并说明理由;若不是,也请说明理由。
分析:第(1)问,要证线段的长是两直线的距离,只需证明且,即证明即可;第(2)问,因为第(1)题既有题设,也有结论,所以第(1)问是命题,若第(1)问的结论是正确的,则是真命题,反之,则是假命题。
解答:(1)∵AB//EF,∴.∵,∴. 同理可证.∵三点共线,∴.∴.∵平分,∴.∴.∵AD//BC,∴即于,且于.∴线段的长是两直线的距离.(2)第(1)题是命题,是真命题。
因为题目中的已知条件是题设,“线段的长是两直线的距离”是结论,所以是命题。
而且通过证明,由题设可推出结论,所以是真命题。
例3. (2006. 海淀)在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A. 先向下移动1格,再向左移动1格;B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格;D. 先向下移动2格,再向左移动2格分析:向何处移和移多少是确定图形移动的两个关键因素。
本题只要找准平移的方向和距离即可。
解答:选C。
例4. 经过平移,△ABC的边AB移到了EF,作出平移后的三角形。
分析:根据平移的特征,我们可以从不同的角度来分析,从而找到作法。
1. 根据平移后的图形与原来的图形的对应线段平行,那么应有EG∥AC,FG∥BC;2. 根据平移后的图形与原来的图形的对应角相等,那么应有∠EFG=∠ABC,∠FEG=∠BAC;3. 根据平移后对应点所连的线段平行且相等,那么连结AE,应有CG∥AE,CG=AE;解答:解法1:过点E、F分别作EH∥AC,FP∥BC,两射线交于点G,则△EFG即为所求;解法2:过点E作射线EH,使∠FEH=∠BAC,过点F作射线FP,使∠EFP=∠ABC,EH与FP交于G,则△EFG即为所求;解法3:连结AE,过C按射线AE的方向作射线CG∥AE,取CG=AE,连结EG、FG,则△EFG即为所求。
说明:确定关键点的对应点是平移作图的要点之一,关键点平移后的位置确定了,就可以得到平移后的整体图形;确定平移的方向和距离是平移作图的要点之二。
例5. 如图1,在一个边长不超过的大正方形中,放入三张面积均为25的正方形纸片,这个大正方形被三张纸片盖住部分的面积是45,问大正方形的面积是多少?图1 图2分析:本题中三个正方形位置的摆放没有特殊性,如果思维停留在这种摆放模式,则很难找到突破口,但运用平移的特征,平移只改变图形的位置,并不改变图形的形状和大小,把三个正方形如图2所示放置,就会有“山重水复疑无路,柳暗花明又一村”的变化。
解答:把红色正方形纸片平移到最左端,如图所示,设空白小正方形的边长为,根据题意得:,解得,从而大正方形的边长为5+2=7,故大正方形的面积是。
说明:平移只改变图形的位置,并不改变图形的形状和大小,是集中或转移条件的重要方法。
例6. 如图,AB与CD交于O,且∠AOC=60°,AB=CD=1。
求证:AC+BD≥1。
分析:在平面几何的解题中,往往由于条件的隐蔽和分散,很难找到解题的途径,而恰当地运用轴对称、平移、旋转等几何变换,将那些分散、远离的条件从图形的某一部分转移到适当的新位置上,条件得以相对集中,以便于各条件的综合与应用,从而达到变繁为简,化难为易,巧妙解题的目的。
本题应将AC、BD和AB移到同一个三角形中,可采用平移变换。
解答:将AB沿着AC方向平移线段AB的长度到CB',连结DB'、BB'。
∴AC=BB',CB'//AB,CB'=AB.∵AB=CD=1,∴CB'=CD.∵∠AOC=60°,∴∠1=∠AOC=60°,∴△CDB'是等边三角形,即DB'=1.当D、B、B'三点不共线时,在△DBB'中,BB'+BD>DB',即AC+BD>1.当D、B、B'三点共线时,AC+BD=1.综上所述,AC+BD≥1.【小结】1、能综合运用平行线的性质和判定证明和计算;2、理解两条平行线间的距离的含义;3、掌握命题的概念和命题的构成;4、理解平移的定义,掌握平移的特征,能根据条件画出平移后的图形,应用平移知识解决几何问题和实际问题。
【模拟试题】(答题时间:30分钟)一. 选择题1. 关于下列说法正确的个数有()①△ABC在平移过程中,对应线段一定平行;②△ABC在平移过程中,对应线段一定相等;③△ABC在平移过程中,对应角一定相等;④△ABC在平移过程中,图形大小不改变。
A. 1个B. 2个C. 3个;D. 4个2. (2003. 吉林)如图,菱形花坛 ABCD的边长为 6 m,∠B=60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为()。
A. 18mB. 20mC. 22mD. 24m3. (2006. 淄博)在平面内,将一个图形沿某个方向移动一定距离,这样的图形变换为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首位依次相接的三角形,至少需要移动()A. 12格B. 11格C. 9格D. 8格二. 填空题4. 如图,已知长方形的长是2cm,宽是1cm,弧DF和弧BE的弧长相等,求阴影部分的面积是。
5. 如图,长方形内有两个相邻的正方形,边长分别为5和3,那么阴影部分的面积为。
6. 如图所示,求出此图形的周长是。
7. 写出下列命题的题设和结论:(1)两条直线平行,同旁内角互补;题设:;结论:;(2)同角的补角相等;题设:;结论:;(3)三角形三内角的和等于。
题设:;结论:;三. 作图题8. 如图,先将△ABC沿北偏西60°方向平移2.5cm,得△A1B1C1,再将△ABC沿南偏西60°方向平移2.5cm,得△A2B2C2,观察△A1B1C1、△A2B2C2,你能发现这两个三角形有什么关系吗?四. 解答题9. 如图所示,是小李家电视机的背景墙面上的装饰板,它是一块底色为蓝色的正方形板,边长18cm,上面横竖各两道红条进行装饰,红条宽都是2cm,问蓝色部分板面面积是多少?10. (本题中四个矩形的水平方向的边长均为,竖直方向的边长均为):在图1中,将线段向右平移1个单位到,得到封闭图形(即阴影部分);在图2中,将折线向右平移1个单位到,得到封闭图形(即阴影部分).图1 图2 图3(1)在图3中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1= ,S2= ,S3= ;(3)联想与探索:如图4,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你的猜想是正确的.图411. 四边形ABCD中,DC//AB,∠D=2∠B,CD=3,AD=2,求AB的长度.【试题答案】1. C2. B3. C4.5. 6(把小正方形向下平移,阴影部分就变成了长为3,宽为(5-3)的长方形)6. 147. (1)题设:两条直线平行,结论:同旁内角互补。