高中物理带电粒子在电场中的运动技巧很有用及练习题.doc

合集下载

人教版高中物理选修3第一章《带电粒子在电场中的运动》讲义及练习

人教版高中物理选修3第一章《带电粒子在电场中的运动》讲义及练习

带电粒子在匀强电场中的运动1.带电粒子的加速(1)动力学分析:带电粒子沿与电场线平行方向进入电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动,如果是匀强电场,则做匀加(减)速运动.(2)功能关系分析:粒子只受电场力作用,动能变化量等于电势能的变化量. 221qU mv =(初速度为零);2022121qU mv mv -= 此式适用于一切电场. 2.带电粒子的偏转(1)动力学分析:带电粒子以速度v 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动). (2)运动的分析方法(看成类平抛运动): ①沿初速度方向做速度为v 0的匀速直线运动. ②沿电场力方向做初速度为零的匀加速直线运动.例1如图1—8—1所示,两板间电势差为U ,相距为d ,板长为L .—正离子q 以平行于极板的速度v 0射入电场中,在电场中受到电场力而发生偏转,则电荷的偏转距离y 和偏转角θ为多少? 解析:电荷在竖直方向做匀加速直线运动,受到的力F =Eq =Uq/d 由牛顿第二定律,加速度a = F/m = Uq/md水平方向做匀速运动,由L = v 0t 得t = L/ v 0由运动学公式221at s =可得: U dmv qL L md Uq y 202202)v (21=⋅= 带电离子在离开电场时,竖直方向的分速度:v ⊥dmv qULat 0== 离子离开偏转电场时的偏转角度θ可由下式确定:dmv qULv v 200Ítan ==θ 电荷射出电场时的速度的反向延长线交两板中心水平线上的位置确定:如图所示,设交点P 到右端Q 的距离为x ,则由几何关系得:x y /tan =θ21/2/tan 20202===∴dmv qLU d mv U qL yx θ答案:见解析例2两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图1—8—3所示,OA =h ,此电子具有的初动能是 ( )A .U edh B .edUh C .dheU D .d eUh解析:电子从O 点到A 点,因受电场力作用,速度逐渐减小,根据题意和图示可知,电子仅受电场力,由能量关系:OA eU mv =2021,又E =U /d ,h d U Eh U OA ==,所以deUh mv =2021 . 答案:D .例3一束质量为m 、电荷量为q 的带电粒子以平行于两极板的速度v 0进入匀强电场,如图1—8—4所示.如果两极板间电压为U ,两极板间的距离为d 、板长为L .设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为 .(粒子的重力忽略不计)解析:水平方向匀速,则运动时间t =L/ v 0 ①竖直方向加速,则侧移221at y = ② 且dmqUa =③ 由①②③得222mdv qULy =则电场力做功20222220222v md L U q mdv qUL d U q y qE W =⋅⋅=⋅= 由功能原理得电势能减少了2022222v md L U q 答案:减少222222v md L U q 例4如图1—8-5所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ; ④离子在偏转电场中的加速度;图1—8—4图1—8-5⑤离子在离开偏转电场时的横向速度y v ; ⑥离子在离开偏转电场时的速度v 的大小; ⑦离子在离开偏转电场时的横向偏移量y ; ⑧离子离开偏转电场时的偏转角θ的正切值tgθ解析:①不管加速电场是不是匀强电场,W =qU 都适用,所以由动能定理得: 0121mv qU =mqUv 20=∴ ②由于偏转电场是匀强电场,所以离子的运动类似平抛运动.即:水平方向为速度为v 0的匀速直线运动,竖直方向为初速度为零的匀加速直线运动.∴在水平方向102qU mlv l t ==③d U E 2= F =qE =.d qU 2④mdqU m F a 2==⑤.mU qdl U qU ml md qU at v y 121222=•== ⑥1242222212220U md U ql U qd v v v y +=+=⑦1221222422121dU U l qU ml md qU at y =•==(和带电粒子q 、m 无关,只取决于加速电场和偏转电场)答案: 见解析基础演练1.如图l —8—6所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板间电压不变.则 ( )A .当增大两板间距离时,v 也增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间延长 答案:CD2.如图1—8—7所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的 ( )图1—8-6A .2倍B .4倍C .0.5倍D .0.25倍 答案:C3.电子从负极板的边缘垂直进入匀强电场,恰好从正极板边缘飞出,如图1—8—8所示,现在保持两极板间的电压不变,使两极板间的距离变为原来的2倍,电子的入射方向及位臀不变,且要电子仍从正极板边缘飞出,则电子入射的初速度大小应为原来的( )A .22B .21C .2D .2答案:B4.下列带电粒子经过电压为U 的电压加速后,如果它们的初速度均为0,则获得速度最大的粒子是 ( ) A .质子 B .氚核 C .氦核 D .钠离子Na +答案:A5.真空中有一束电子流,以速度v 、沿着跟电场强度方向垂直.自O 点进入匀强电场,如图1—8—9所示,若以O 为坐标原点,x 轴垂直于电场方向,y 轴平行于电场方向,在x 轴上取OA =AB =BC ,分别自A 、B 、C 点作与y 轴平行的线跟电子流的径迹交于M 、N 、P 三点,那么:(1)电子流经M ,N 、P 三点时,沿x 轴方向的分速度之比为 . (2)沿y 轴的分速度之比为 .(3)电子流每经过相等时间的动能增量之比为 . 答案:111 123 1356.如图1—8—12所示,一个电子(质量为m)电荷量为e ,以初速度v 0沿着匀强电场的电场线方向飞入 匀强电场,已知匀强电场的场强大小为E ,不计重力,问:(1)电子在电场中运动的加速度. (2)电子进入电场的最大距离.(3)电子进入电场最大距离的一半时的动能.答案:(1)m eE(2)eE m v 220 (3)420m v7.如图1—8—13所示,A 、B 为两块足够大的平行金属板,两板间距离为d ,接在电压为U 的电源上.在A 板上的中央P 点处放置一个电子放射源,可以向各个方向释放电子.设电子的质量m 、电荷量为e ,射出的初速度为v .求电子打在B 板上区域的面积.图1—8-8图1—8-9图1—8—12答案:eUd m v 222π8. 如图1—8—1 4所示一质量为m ,带电荷量为+q 的小球从距地面高h 处以一定初速度水平抛出,在距抛出点水平距离l 处,有一根管口比小球直径略大的竖直细管,管上口距地面h/2,为使小球能无碰撞地通过管子,可在管子上方的整个区域里加一个场强方向水平向左的匀强电场,求: (1)小球的初速度v 0. (2)电场强度E 的大小. (3)小球落地时的动能E k .答案:(1)hql v 20= (2)E=qhm gl2 (3)mgh E k =巩固提高1.一束带电粒子以相同的速率从同一位置,垂直于电场方向飞入匀强电场中,所有粒子的运动轨迹都是一样的,这说明所有粒子 ( ) A .都具有相同的质量 B .都具有相同的电荷量C .电荷量与质量之比都相同D .都是同位素 答案:C2.有三个质量相等的小球,分别带正电、负电和不带电,以相同的水平速度由P 点射入水平放置的平行金属板间,它们分别落在下板的A 、B 、C 三处,已知两金属板的上板带负电荷,下板接地,如图1—8—15所示,下列判断正确的是 ( )A 、落在A 、B 、C 三处的小球分别是带正电、不带电和带负电的 B 、三小球在该电场中的加速度大小关系是a A <a B <a C C 、三小球从进入电场至落到下板所用的时间相等D 、三小球到达下板时动能的大小关系是E KC <E KB <E KA 答案:AB3.如图1—8—16所示,一个带负电的油滴以初速v 0从P 点倾斜向上进入水平方向的匀强电场中,若油滴达最高点时速度大小仍为v 0,则油滴最高点的位置 ( )A 、P 点的左上方B 、P 点的右上方C 、P 点的正上方D 、上述情况都可能 答案:A图1—8—14图1—8—15图1—8—164. 一个不计重力的带电微粒,进入匀强电场没有发生偏转,则该微粒的 ( ) A. 运动速度必然增大 B .运动速度必然减小C. 运动速度可能不变 D .运动加速度肯定不为零 答案:D5. 氘核(电荷量为+e ,质量为2m)和氚核(电荷量为+e 、质量为3m)经相同电压加速后,垂直偏转电场方向进入同一匀强电场.飞出电场时,运动方向的偏转角的正切值之比为(不计原子核所受的重力) ( )A .1:2B .2:1C .1:1D .1:4 答案:C6. 如图1-8-17所示,从静止出发的电子经加速电场加速后,进入偏转电场.若加速电压为U 1、偏转电压为U 2,要使电子在电场中的偏移距离y 增大为原来的2倍(在保证电子不会打到极板上的前提下),可选用的方法有 ( ) A .使U 1减小为原来的1/2 B .使U 2增大为原来的2倍C .使偏转电场极板长度增大为原来的2倍D .使偏转电场极板的间距减小为原来的1/2答案:ABD7.如图1-8-18所示是某示波管的示意图,如果在水平放置的偏转电极上加一个电压,则电子束将被偏转.每单位电压引起的偏转距离叫示波管的灵敏度,下面这些措施中对提高示波管的灵敏度有用的是 ( ) A .尽可能把偏转极板L 做得长一点 B .尽可能把偏转极板L 做得短一点C .尽可能把偏转极板间的距离d 做得小一点D .将电子枪的加速电压提高答案:AC8.一个初动能为E k 的电子,垂直电场线飞入平行板电容器中,飞出电容器的动能为2E k ,如果此电子的初速度增至原来的2倍,则它飞出电容器的动能变为 ( )A .4E kB .8E kC .4.5E kD .4.25E k 答案:D9. 电子所带电荷量最早是由美国科学家密立根通过油滴实验测出的.油滴实验的原理如图1-8-19所示,两块水平放置的平行金属板与电源连接,上、下板分别带正、负电荷.油滴从喷雾器喷出后,由于摩擦而带电,油滴进入上板中央小孔后落到匀强电场中,通过显微镜可以观察到油滴的运动情况.两金属板间的距离为d ,忽略空气对油滴的浮力和阻力.(1)调节两金属板间的电势u ,当u=U 0时,使得某个质量为m 1的油滴恰好做匀速运动.该油滴所带电荷量q 为多少?图1-8-17图1-8-18(2)若油滴进入电场时的速度可以忽略,当两金属板间的电势差u=U 时,观察到某个质量为m 2的油滴进入电场后做匀加速运动,经过时间t 运动到下极板,求此油滴所带电荷量Q.答案:(1)01U gd m q =(2))2(22t dg U d m Q -=1.如图1—8—10所示,—电子具有100 eV 的动能.从A 点垂直于电场线飞 入匀强电场中,当从D 点飞出电场时,速度方向跟电场强度方向成1500角.则 A 、B 两点之间的电势差U AB = V .答案:300V2.静止在太空中的飞行器上有一种装置,它利用电场加速带电粒子形成向外发射的高速电子流,从而对飞行器产生反冲力,使其获得加速度.已知飞行器质量为M ,发射的是2价氧离子.发射离子的功率恒为P ,加 速的电压为U ,每个氧离子的质量为m .单位电荷的电荷量为e .不计发射氧离子后飞行器质量的变化,求:(1)射出的氧离子速度.(2)每秒钟射出的氧离子数.(离子速度远大于飞行器的速度,分析时可认为飞行器始终静止不动)答案:(1)2meU (2)eU P23.在匀强电场中,同一条电场线上有A 、B 两点,有两个带电粒子先后由静止从A 点出发并通过B 点.若两粒子的质量之比为2:1,电荷量之比为4:1,忽略它们所受重力,则它们由A 点运动到B 点所用时间之比为( ) A.1:2 B .2:1 C .1:2 D .2:1答案:A4.图1—8—20是静电分选器的原理示意图,将磷酸盐和石英的混合颗粒由传送带送至两个竖直的带电平行板上方,颗粒经漏斗从电场区域中央处开始下落,经分选后的颗粒分别装入A 、B 桶中.混合颗粒离开漏斗进入电场时磷酸盐颗粒带正电,石英颗粒带负电,所有颗粒所带的电荷量与质量之比均为10-5C /kg .若已知两板间的距离为10 cm ,两板的竖直高度为50 cm .设颗粒进入电场时的速度为零,颗粒间相互作用不计.如果要求两种颗粒离开两极板间的电场区域时有最大的偏转量且又恰好不接触到极板. (1)两极板间所加的电压应多大?(2)若带电平行板的下端距A 、B 桶底的高度H=1.3m ,求颗粒落至桶底时速度的大小.答案:(1)1×104V (2)1.36m/s图1-8-20图1—8—105.(20分)如图,水平放置的平行板电容器,原来两极板不带电,上极板接地,它的极板长L=0.1 m,两极板间距离d=0.4 cm.有一束相同微粒组成的带电粒子流从两板中央平行于极板射入,由于重力作用微粒落到下板上.已知微粒质量为m=2×10-6 kg,电荷量为q=+1×10-8 C,电容器电容为C=10-6 F,g取10 m/s2,求:(1)为使第一个微粒的落点范围在下极板中点到紧靠边缘的B点之内,则微粒入射速度v0应为多少?(2)若带电粒子落到AB板上后电荷全部转移到极板上,则以上述速度射入的带电粒子最多能有多少个落到下极板上?答案:(1)2.5 m/s<v0<5 m/s(2)600个__________________________________________________________________________________________________________________________________________________________________1.带电粒子经加速电场加速后垂直进入两平行金属板间的偏转电场,要使它离开偏转电场时偏转角增大,可采用的方法有()A.增加带电粒子的电荷量B.增加带电粒子的质量C.增大加速电压D.增大偏转电压答案:D2.一束带有等量电荷的不同离子从同一点垂直电场线进入同一匀强偏转电场,飞离电场后打在荧光屏上的同一点,则()A.离子进入电场的初速度相同B.离子进入电场的初动量相同C.离子进入电场的初动能相同D.离子在电场中的运动时间相同答案:C3. 一个示波器在工作的某一段时间内,荧光屏上的光点在x轴的下方,如图所示,由此可知在该段时间内的偏转电压情况是()A.有竖直方向的偏转电压,且上正下负B.有竖直方向的偏转电压,且上负下正C.有水平方向的偏转电压,且左正右负D.有水平方向的偏转电压,且右正左负答案:B4.如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中O点自由释放后,分别抵达B、C两点,若AB=BC,则它们带电荷量之比q1:q2等于()A.1:2 B.2:1C.1: 2 D.2:1答案:B5. (2014年80中高二)如图所示,电子由静止开始从A板向B板运动,当到达B板时速度为v,保持两板电压不变,则()A.当增大两板间距离时,v增大B.当减小两板间距离时,v减小C.当改变两板间距离时,v不变D.当增大两板间距离时,电子在两板间运动的时间增大答案:CD6. (2014年西城期中)如图所示,带等量异号电荷的两平行金属板在真空中水平放置,M、N为板间同一电场线上的两点,一带电粒子(不计重力)以速度vM经过M点在电场线上向下运动,且未与下板接触,一段时间后,粒子以速度vN折回N点,则()A.粒子受静电力的方向一定由M指向NB.粒子在M点的速度一定比在N点的大C.粒子在M点的电势能一定比在N点的大D.电场中M点的电势一定高于N点的电势答案:B7.(2014年东城期中)如图所示,竖直放置的一对平行金属板间的电势差为U1,水平放置的一对平行金属板间的电势差为U2.一电子由静止开始经U1加速后,进入水平放置的金属板间,刚好从下板边缘射出.不计电子重力,下列说法正确的是()A.增大U1,电子一定打在金属板上B.减小U1,电子一定打在金属板上C.减小U2,电子一定能从水平金属板间射出D.增大U2,电子一定能从水平金属板间射出答案:BC。

高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)

高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)

高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p vgh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=2.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .3.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+;(2)① ②()1122211sin 2e v mθϕϕ=-+4.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v ,则:t 1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;5.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 20v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 02y )2y由数学知识可知,当(x 02y )2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm6.如图所示,两块平行金属极板MN 水平放置,板长L =" 1" m .间距d =33m ,两金属板间电压U MN = 1×104V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2,已知A 、F 、G 处于同一直线上.B 、C 、H 也处于同一直线上.AF 两点距离为23m .现从平行金属极板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .(1)求带电粒子从电场中射出时的速度v 的大小和方向(2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1 (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件. 【答案】(152310/m s ;垂直于AB 方向出射.(2)3310(323+ 【解析】试题分析:(1)设带电粒子在电场中做类平抛运动的时间为t ,加速度为a , 则:U qma d =解得:102310/qU a m s md == 50110Lt s v -==⨯ 竖直方向的速度为:v y =at =33×105m/s 射出时速度为:22502310/y v v v m s =+=速度v 与水平方向夹角为θ,03tan 3y v v θ==,故θ=30°,即垂直于AB 方向出射. (2)带电粒子出电场时竖直方向的偏转的位移213262d y at ===,即粒子由P 1点垂直AB 射入磁场,由几何关系知在磁场ABC 区域内做圆周运动的半径为12cos303d R m ==o由211vB qv mR=知:113310mvB TqR==(3)分析知当轨迹与边界GH相切时,对应磁感应强度B2最大,运动轨迹如图所示:由几何关系得:221sin60RRo+=故半径2(233)R m=-又222vB qv mR=故2235B T+=所以B2应满足的条件为大于235T+.考点:带电粒子在匀强磁场中的运动.7.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆=(2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为: 2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆= (2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ= 设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=, 式中00y U e v t dm =又:1mv R Be= 解得:00U t B dL= ②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=8.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B的匀强磁场.荧光屏MN与电场方向平行,且到匀强电、磁场右侧边界的距离为x,电容器左侧中间有发射质量为m带+q的粒子源,如图甲所示.假设a、b、c三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O点;b粒子在电、磁场中向上偏转;c粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a、b、c粒子在原来位置上以各自的原速度水平射入电场,结果a粒子仍恰好打在荧光屏上的O点;b、c中有一个粒子也能打到荧光屏,且距O点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B d q m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a 粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O 点,运动轨迹如图中Ⅰ所示.U q Bqv d=, Bd U v =, L LBd t v U==, 222122a Uq L B qd y t dm mU==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d= (2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122d y L L x +, 1()2x y d L =+ (3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md= 122221·2y Uq t m y t dv +=, 22158qU y t md=, 124=5y y , 11224==5Uq y W d Uq W y d9.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0;(2)第三、四象限磁感应强度的大小B /;【答案】(1)3E B(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r,由几何知识得:23603 d d drsin sinα===︒根据2mvqv Br=得233qBdvm=粒子在第一象限中做类平抛运动,则有21602qEr cos tm-︒=();00yv qEttanv mvα==联立解得03EvB=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x和y,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x轴正方向的夹角等于α.则有:x=v0t,2yvy t=得322yvy tanx vα===由几何知识可得 y=r-rcosα=132r=则得23x d=所以粒子在第三、四象限圆周运动的半径为125323d dRsinα⎛⎫+⎪⎝⎭==粒子进入第三、四象限运动的速度0432v qBdv vcosα===根据2'vqvB mR=得:B′=2.4B考点:带电粒子在电场及磁场中的运动10.如图,光滑水平面上静置质量为m ,长为L 的绝缘板a,绝缘板右端园定有竖直挡板,整个装置置于水平向右的匀强电场中.现将一质量也为m 、带电量为q(q>0)的物块b 置于绝缘板左端(b 可视为质点且初速度为零),已知匀强电场的场强大小为E=3μmg/q ,物块与绝缘板板间动摩擦数为μ(设最大静摩擦力等于滑动摩擦力),物块与绝缘板右端竖直挡板碰撞后a 、b 速度交换,且碰撞时间极短可忽略不计,物块带电量始终保持不变,重力加速度为g 。

高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。

整个空间存在电场强度E =100N/C 的水平向左的匀强电场。

现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。

求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。

【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。

-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。

此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析

设此时的圆心位置为 O ,有: Oa r sin 30
OO 3d Oa 解得 OO d
即从 O 点进入磁场的电子射出磁场时的位置距 O 点最远
所以 ym 2r 2d 电子束从 y 轴正半轴上射入电场时的纵坐标 y 的范围为 0 y 2d 设电子从 0 y 2d 范围内某一位置射入电场时的纵坐标为 y,从 ON 间射出电场时的位
);
(3) 0 B 16mv0 或 15qL
B 16mv0 3qL
【解析】 【分析】 (1)a、b 碰撞,由动量守恒和能量守恒关系求解碰后 a、b 的速度; (2)碰后 a 在电场中向左做类平抛运动,根据平抛运动的规律求解 P 点的位置坐标; (3)要使 b 球不从 CD 边界射出,求解恰能从 C 点和 D 点射出的临界条件确定磁感应强度的 范围。 【详解】 (1)a 匀速,则
解得: L 9 d 4
当3 d 2y 2y
【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正 确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经 常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的 应用.
6.如图所示,荧光屏 MN 与 x 轴垂直放置,与 x 轴相交于 Q 点, Q 点的横坐标 x0 6cm ,在第一象限 y 轴和 MN 之间有沿 y 轴负方向的匀强电场,电场强度 E 1.6105 N / C ,在第二象限有半径 R 5cm 的圆形磁场,磁感应强度 B 0.8T ,方 向垂直 xOy 平面向外.磁场的边界和 x 轴相切于 P 点.在 P 点有一个粒子源,可以向 x 轴 上方 180°范围内的各个方向发射比荷为 q 1.0108C / kg 的带正电的粒子,已知粒子的

高中物理带电粒子在电场中的运动试题(有答案和解析)

高中物理带电粒子在电场中的运动试题(有答案和解析)

高中物理带电粒子在电场中的运动试题(有答案和解析)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,EF 与GH 间为一无场区.无场区左侧A 、B 为相距为d 、板长为L 的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A 为正极板.无场区右侧为一点电荷Q 形成的电场,点电荷的位置O 为圆弧形细圆管CD 的圆心,圆弧半径为R ,圆心角为120°,O 、C 在两板间的中心线上,D 位于GH 上.一个质量为m 、电荷量为q 的带正电粒子以初速度v 0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:(1)O 处点电荷的电性和电荷量; (2)两金属板间所加的电压.【答案】(1)负电,2043mv R kq ;(2) 2033mdv qL【解析】(1)粒子进入圆管后受到点电荷Q 的库仑力作匀速圆周运动,粒子带正电,则知O 处点电荷带负电.由几何关系知,粒子在D 点速度方向与水平方向夹角为30°,进入D 点时速度为:0023303v v v cos ==︒ …①在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q 带负电且满足22Qq v k mR R =…② 由①②得:2043mv RQ kq=(2)粒子射出电场时速度方向与水平方向成30° tan 30°=0y v v …③v y =at…④qUa md=…⑤ 0Lt v =…⑥ 由③④⑤⑥得:22003033mdv tan mdv U qL qL︒==2.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥3.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+4.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos o=0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin o=0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180o×100%=29%5.如图所示,在平面直角坐标系xOy平面内,直角三角形abc的直角边ab长为6d,与y轴重合,∠bac=30°,中位线OM与x轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y轴正向的匀强电场,场强大小E与匀强磁场磁感应强度B的大小间满足E=v0B.在x=3d的N点处,垂直于x轴放置一平面荧光屏.电子束以相同的初速度v0从y轴上-3d≤y≤0的范围内垂直于y轴向左射入磁场,其中从y轴上y=-2d处射入的电子,经磁场偏转后,恰好经过O点.电子质量为m,电量为e,电子间的相互作用及重力不计.求(1)匀强磁杨的磁感应强度B(2)电子束从y轴正半轴上射入电场时的纵坐标y的范围;(3)荧光屏上发光点距N点的最远距离L【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:20v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-' 解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =-⋅ 即98y d =时,L 有最大值 解得:94L d =当322d y y -=【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.6.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T 0+T ′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B 0中偏转60°,而后又在− B 0中再次偏转60°,经过n 次这样的循环后恰恰从N 点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.7.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1) 224mv E qR=2v ,速度方向沿y 轴负方向(2)82225mv mv B qR qR ≤≤(3))2713mvqR【解析】 【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v' 1v v=、2v at=,2tanvvθ=联立可得224mvEqR=进入磁场的速度22122v v v v=+='45θ=︒,速度方向沿y轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A点射出时,运动半径12Rr=由211mvqv Br=''得122mvB=当粒子从C点射出时,由勾股定理得()222222RR r r⎛⎫-+=⎪⎝⎭解得258r R=由2 22mvqv Br=''得2825mvBqR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvBqR qR≤≤时,粒子从AC边界射出(3)为使粒子不再回到电场区域,需粒子在CD区域穿出磁场,设出磁场时速度方向平行于x轴,其半径为3r,由几何关系得222332Rr r R⎛⎫+-=⎪⎝⎭解得()3714Rr+=由233mvqv Br=''得()322713mvBqR-=磁感应强度小于3B,运转半径更大,出磁场时速度方向偏向x轴下方,便不会回到电场中8.图中是磁聚焦法测比荷的原理图。

高考物理带电粒子在电场中的运动技巧(很有用)及练习题及解析

高考物理带电粒子在电场中的运动技巧(很有用)及练习题及解析

高考物理带电粒子在电场中的运动技巧(很有用)及练习题及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。

已知粒子从O 运动到A 的时间与从A 运动到B 的时间相同,不计粒子重力,已知量为m 、q 、v 0、d .求:(1)粒子从O 到A 运动过程中,电场力所做功W ; (2)匀强电场的场强大小E 1、E 2; (3)粒子到达B 点时的动能E kB .【答案】(1)2032W mv = (2)E 1=2034m qd υ E 2=2033m qdυ (3) E kB =20143m υ【解析】 【分析】(1)对粒子应用动能定理可以求出电场力做的功。

(2)粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。

(3)根据粒子运动过程,应用动能计算公式求出粒子到达B 点时的动能。

【详解】(1) 由题知:粒子在O 点动能为E ko =2012mv 粒子在A 点动能为:E kA =4E ko ,粒子从O 到A 运动过程,由动能定理得:电场力所做功:W=E kA -E ko =2032mv ;(2) 以O 为坐标原点,初速v 0方向为x 轴正向,建立直角坐标系xOy ,如图所示设粒子从O 到A 运动过程,粒子加速度大小为a 1, 历时t 1,A 点坐标为(x ,y ) 粒子做类平抛运动:x=v 0t 1,y=21112a t 由题知:粒子在A 点速度大小v A =2 v 0,v Ay 03v ,v Ay =a 1 t 1 粒子在A 点速度方向与竖直线PQ 夹角为30°。

带电粒子在电场中的运动练习题(经典)

带电粒子在电场中的运动练习题(经典)

带电粒子在电场中的运动专题练习知识点:1.带电粒子经电场加速:处理方法,可用动能定理、牛顿运动定律或用功能关系。

qU =mv t 2/2-mv 02/2 ∴ v t = ,若初速v 0=0,则v = 。

2.带电粒子经电场偏转: 处理方法:灵活应用运动的合成和分解。

带电粒子在匀强电场中作类平抛运动, U 、 d 、 l 、 m 、 q 、 v 0已知。

(1)穿越时间: (2)末速度:(3)侧向位移:(4)偏角:1、如图所示,长为L 、倾角为θ的光滑绝缘斜面处于电场中, 一带电量为+q 、质量为m 的小球,以初速度v 0从斜面底端 A 点开始沿斜面上滑,当到达斜面顶端B 点时,速度仍为v 0,则 ( )A .A 、B 两点间的电压一定等于mgLsin θ/qB .小球在B 点的电势能一定大于在A 点的电势能C .若电场是匀强电场,则该电场的电场强度的最大值一定为mg/qD .如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负 电荷2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放后,分别抵达B 、C 两点,若AB=BC ,则它们带电荷量之比q 1:q 2等于( ) A .1:2 B .2:1C .1:2D .2:13.如图所示,两块长均为L 的平行金属板M 、N 与水平面成α角放置在同一竖直平面,充电后板间有匀强电场。

一个质量为m 、带电量为q 的液滴沿垂直于电场线方向射人电场,并沿虚线通过电场。

下列判断中正确的是( )。

A 、电场强度的大小E =mgcos α/qB 、电场强度的大小E =mgtg α/qC 、液滴离开电场时的动能增量为-mgLtg αD 、液滴离开电场时的动能增量为-mgLsin α4.如图所示,质量为m 、电量为q 的带电微粒,以初速度V 0从A 点竖直向上射入水平方向、电场强度为E 的匀强电场中。

当微粒经过B 点时速率为V B =2V 0,而方向与E 同向。

带电粒子在电场中的运动练习题(含答案)

带电粒子在电场中的运动练习题(含答案)

带电粒子在电场中的活动 【1 】 1.如图所示,A 处有一个静止不动的带电体Q,若在c 处有初速度为零的质子和α粒子,在电场力感化下由c 点向d 点活动,已知质子到达d 时速度为v1,α粒子到达d 时速度为v2,那么v1.v2等于:()A. :1B.2∶1C.2∶1D.1∶22.如图所示,一电子沿等量异种电荷的中垂线由 A→O→B 匀速活动,电子重力不计,则电子除受电场力外,所受的另一个力的大小和偏向变更情形是:( )A .先变大后变小,偏向程度向左B .先变大后变小,偏向程度向右C .先变小后变大,偏向程度向左D .先变小后变大,偏向程度向右3.让. . 的混杂物沿着与电场垂直的偏向进入统一有界匀强电场偏转, 要使它们的偏转角雷同,则这些粒子必须具有雷同的( )4.如图所示,有三个质量相等,分离带正电,负电和不带电的小球,从上.下带电平行金属板间的P 点.以雷同速度垂直电场偏向射入电场,它们分离落到 A.B.C 三点,则 ( )A.A 带正电.B 不带电.C 带负电B.三小球在电场中活动时光相等C.在电场中加快度的关系是aC>aB>aAD.到达正极板时动能关系EA>EB>EC5.如图所示,实线为不知偏向的三条电场线,从电场中M 点以雷同速度垂直于电场线偏向飞出 a.b 两个带电粒子,活动轨迹如图中虚线所示,不计粒子重力及粒子之间的库仑力,则()A .a 必定带正电,b 必定带负电B .a 的速度将减小,b 的速度将增长C .a 的加快度将减小,b 的加快度将增长D .两个粒子的动能,一个增长一个减小2H 11H 21H 316.空间某区域内消失着电场,电场线在竖直平面上的散布如图所示,一个质量为m.电荷量为q 的小球在该电场中活动,小球经由A 点时的速度大小为v1,偏向程度向右,活动至B 点时的速度大小为v2,活动偏向与程度偏向之间的夹角为α,A.B 两点之间的高度差与程度距离均为H,则以下断定中准确的是( )A .若v2>v1,则电场力必定做正功B .A.B 两点间的电势差2221()2m U v v q =-C .小球活动到B 点时所受重力的瞬时功率2P mgv =D .小球由A 点活动到B 点,电场力做的功22211122W mv mv mgH =-- 7.如图所示的真空管中,质量为m,电量为e 的电子从灯丝F发出,经由电压U1加快后沿中间线射入相距为d 的两平行金属板B.C间的匀强电场中,经由过程电场后打到荧光屏上,设B.C间电压为U2,B.C板长为L1,平行金属板右端到荧光屏的距离为L 2,求:(1)电子分开匀强电场时的速度与进入时速度间的夹角.(2)电子打到荧光屏上的地位偏离屏中间距离.8. 在真空中消失空间规模足够大的.程度向右的匀强电场.若将一个质量为m.带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直偏向夹角为︒37的直线活动.现将该小球从电场中某点以初速度0v 竖直向上抛出,求活动进程中(取8.037cos ,6.037sin =︒=︒)(1)小球受到的电场力的大小及偏向;(2)小球活动的抛出点至最高点之间的电势差U .带电粒子在电场中的活动答案7.解析:电子在真空管中的活动过火为三段,从F发出在电压U1感化下的加快活动;进入平行金属板B.C间的匀强电场中做类平抛活动;飞离匀强电场到荧光屏间的匀速直线活动.⑴设电子经电压U1加快后的速度为v1,依据动能定理有:21121mv eU = 电子进入B.C间的匀强电场中,在程度偏向以v1的速度做匀速直线活动,竖直偏向受电场力的感化做初速度为零的加快活动,其加快度为:dm eU m eE a 2==电子经由过程匀强电场的时光11v l t =电子分开匀强电场时竖直偏向的速度vy 为:112mdv l eUat v y ==电子分开电场时速度v2与进入电场时的速度v1夹角为α(如图5)则dU l U mdv l eU v v tg y112211212===α∴dU l U arctg 1122=α⑵电子经由过程匀强电场时偏离中间线的位移dU l U v l dm eU at y 1212212122142121=•== 电子分开电场后,做匀速直线活动射到荧光屏上,竖直偏向的位移d U l l U tg l y 1212222==α∴电子打到荧光屏上时,偏离中间线的距离为)2(22111221l l d U l U y y y +=+=8.解析:(1)依据题设前提,电场力大小mg mg F e 4337tan =︒=①电场力的偏向向右(2)小球沿竖直偏向做初速为0v 的匀减速活动,到最高点的时光为t ,则:图 500=-=gt v v ygv t 0=② 沿程度偏向做初速度为0的匀加快活动,加快度为x a g m F a e x 43==③ 此进程小球沿电场偏向位移为:gv t a s x x 8321202==④ 小球上升到最高点的进程中,电场力做功为: 20329mv S F qU W x e === q mv U 32920=⑤。

高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析
解得:
【点睛】
本题的关键是分析小球的受力情况,来确定小球的运动情况.从力和能两个角度研究动力学问题是常用的思路.
9.如图所示,x轴的上方存在方向与x轴成 角的匀强电场,电场强度为E,x轴的下方存在垂直纸面向里的匀强磁场,磁感应强度 有一个质量 ,电荷量 的带正电粒子,该粒子的初速度 ,从坐标原点O沿与x轴成 角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O点出发后第四次经过x轴时刚好又回到O点处,设电场和磁场的区域足够宽,不计粒子重力,求:
(1)电场反向后匀强电场的电场强度大小;
(2)整个过程中电场力所做的功。
【答案】(1) (2)
【解析】(1)设t末和2t末小物块的速度大小分别为 和 ,电场反向后匀强电场的电场强度大小为E1,小金属块由A点运动到B点过程:

小金属块由B点运动到A点过程:
联立解得: ,则: ;
(2)根据动能定理,整个过程中电场力所做的功:
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有 能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小 ,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间.
解得
(2)粒子在电场和磁场中的运动轨迹如图所示,粒子第一次出磁场到第二次进磁场,两点间距为
由类平抛规律 ,
由几何知识可得x=y,解得
两点间的距离为 ,代入数据可得

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。

质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q =1×10﹣5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场。

现用大小F =4.5N 、方向水平向右的恒力推滑块,滑块到达B 点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心。

小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。

取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x ;(3)若小球从P 点飞出后落到水平轨道上的Q 点(图中未画出)后不再反弹,求Q 、C 两点间的距离L 。

【答案】(1)撤去该恒力瞬间滑块的速度大小是6m/s ,匀强电场的电场强度大小是7.5×104N/C ;(2)小球到达P 点时的速度大小是2.5m/s ,B 、C 两点间的距离是0.85m 。

(3)Q 、C 两点间的距离为0.5625m 。

【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:Fd =12m 1v 2, 代入数据解得:v =6m/s小球到达P 点时,受力如图所示,由平衡条件得:qE =m 2g tanθ, 解得:E =7.5×104N/C 。

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W2.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sincos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A =2gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A =2gL在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==-电场力做功W=40 J5.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g,所以()()00tan 22H x x x y y θ=-=-g , 由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =7.能量守恒是自然界基本规律,能量转化通过做功实现。

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)及解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)及解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。

现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。

(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。

【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r '='联立可得所加匀强磁场的磁感应强度大小:4mvB qr '=='T 根据左手定则可知所加磁场方向垂直纸面向外。

【物理】物理带电粒子在电场中的运动练习题20篇.doc

【物理】物理带电粒子在电场中的运动练习题20篇.doc

【物理】物理带电粒子在电场中的运动练习题20 篇一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q=+0.05C、质量 M=lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m=lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L=0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。

整个空间存在电场强度 E=100N/C 的水平向左的匀强电场。

现将物块与平板一起由静止释放,已知重力加速度 g=10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。

求:(1)平板第二次与挡板即将碰撞时的速率;(2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。

【答案】( 1)平板第二次与挡板即将碰撞时的速率为 1.0m/s; (2)平板的最小长度为0.53m; ( 3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N?s【解析】【详解】(1)两者相对静止,在电场力作用下一起向左加速,有 a= qE=2.5m/s 2<μg m故平板 M 与物块 m 一起匀加速,根据动能定理可得:qEL= 1( M+m) v12 2解得 v=2.0m/s平板反弹后,物块加速度大小a1= mg 2,向左做匀减速运动=7.5m/sm平板加速度大小 a qE mg 2,2= m =12.5m/s平板向右做匀减速运动,设经历时间t1木板与木块达到共同速度 v1′,向右为正方向。

-v1 +a1t1=v1-a2t1解得 t1 =0.2s,v 1' =0.5m/s ,方向向左。

此时平板左端距挡板的距离:x=v1t 1 1 a2t12=0.15m 2此后两者一起向左匀加速,设第二次碰撞时速度为v,则由动能定理1(M +m) v22 1 ( M+m)v'12 =qEx12 2解得 v2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。

人教版高二物理选修3-1第一章 1.9带电粒子在电场中的运动 课后训练题(含答案解析)

人教版高二物理选修3-1第一章 1.9带电粒子在电场中的运动 课后训练题(含答案解析)

1.9 带电粒子在电场中的运动一、单选题1.如图,一充电后的平行板电容器的两极板相距l.在正极板附近有一质量为M、电荷量为q(q>0)的粒子;在负极板附近有另一质量为m、电荷量为-q的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距l的平面.若两粒子间相互作用力可忽略,不计重力,则M∶m为()A. 3∶2B. 2∶1C. 5∶2D. 3∶12.如图所示,两平行金属板水平放置,板长为L,板间距离为d,板间电压为U,一不计重力、电荷量为q的带电粒子以初速度v0沿两板的中线射入,恰好沿下板的边缘飞出,粒子通过平行金属板的时间为t,则()A.在时间内,电场力对粒子做的功为UqB.在时间内,电场力对粒子做的功为UqC.在粒子下落的前和后过程中,电场力做功之比为1∶1D.在粒子下落的前和后过程中,电场力做功之比为1∶23.如图甲所示,在距离足够大的平行金属板A、B之间有一电子,在A、B之间加上如图乙所示规律变化的电压,在t=0时刻电子静止且A板电势比B板电势高,则()A.电子在A、B两板间做往复运动B.在足够长的时间内,电子一定会碰上A板C.当t=时,电子将回到出发点D.当t=时,电子的位移最大4.如图所示,电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是()A.U1变大、U2变大B.U1变小、U2变大C.U1变大、U2变小D.U1变小、U2变小二、多选题5.(多选)如图所示,电量和质量都相同的带正电粒子以不同的初速度通过A、B两板间的加速电场后飞出,不计重力的作用,则()A.它们通过加速电场所需的时间相等B.它们通过加速电场过程中动能的增量相等C.它们通过加速电场过程中速度的增量相等D.它们通过加速电场过程中电势能的减少量相等6.(多选)带有等量异种电荷的平行金属板M、N水平放置,两个电荷P和Q以相同的速率分别从极板M边缘和两板中间沿水平方向进入板间电场,恰好从极板N边缘射出电场,如图所示.若不考虑电荷的重力和它们之间的相互作用,下列说法正确的是()A.两电荷的电荷量可能相等B.两电荷在电场中运动的时间相等C.两电荷在电场中运动的加速度相等D.两电荷离开电场时的动能相等7.(多选)如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴A、B、C,最后分别落在1、2、3三点,则下列说法正确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间一定相同C.三个液滴落到底板时的速率相同D.液滴C所带电荷量最多8.(多选)如图所示,平行直线表示电场线,但未标明方向,带电量为+10-2C的微粒在电场中只受电场力作用,由A点移到B点,动能损失0.1 J,若A点电势为-10 V,则()A.B点的电势为0 VB.电场线方向从右向左C.微粒的运动轨迹可能是轨迹1D.微粒的运动轨迹可能是轨迹29.(多选)如图所示,一个质量为m、带电荷量为q的粒子(不计重力),从两平行板左侧中点沿垂直场强方向射入,当入射速度为v时,恰好穿过电场而不碰金属板.要使粒子的入射速度变为,仍能恰好穿过电场,则必须再使()A.粒子的电荷量变为原来的B.两板间电压减为原来的C.两板间距离增为原来的4倍D.两板间距离增为原来的2倍10.(多选)如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线垂直电场方向源源不断地射入电场,粒子射入电场时的初动能均为E k0,已知t=0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场.则()A.所有粒子都不会打到两极板上B.所有粒子最终都垂直电场方向射出电场C.运动过程中所有粒子的最大动能不可能超过2E k0D.只有t=n(n=0,1,2…)时刻射入电场的粒子才能垂直电场方向射出电场三、计算题11.一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图所示.AB与电场线夹角θ=30°,已知带电粒子的质量m=1.0×10-7kg,电荷量q=1.0×10-10C,A、B相距L=20 cm.(取g=10 m/s2,结果保留两位有效数字)求:(1)说明微粒在电场中运动的性质,要求说明理由.(2)电场强度的大小和方向.(3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少?12.长为L的平行金属板水平放置,两极板带等量的异种电荷,板间形成匀强电场,一个带电荷量为+q、质量为m的带电粒子,以初速度v0紧贴上极板垂直于电场线方向进入该电场,刚好从下极板边缘射出,射出时速度恰与下极板成30°角,如图所示,不计粒子重力,求:(1)粒子末速度的大小;(2)匀强电场的场强;(3)两板间的距离.13.如图所示,A、B两块带异号电荷的平行金属板间形成匀强电场,一电子以v0=4×106m/s的速度垂直于场强方向沿中心线由O点射入电场,从电场右侧边缘C点飞出时的速度方向与v0方向成30°的夹角.已知电子电荷e=1.6×10-19C,电子质量m=0.91×10-30kg.求:(1)电子在C点时的动能是多少焦?(2)O、C两点间的电势差大小是多少伏?14.如图所示,有一电子(电荷量为e)经电压U0加速后,进入两块间距为d、电压为U的平行金属板间.若电子从两板正中间垂直电场方向射入,且正好能穿过电场,求:(1)金属板AB的长度;(2)电子穿出电场时的动能.答案解析1.【答案】A【解析】因两粒子同时经过一平行于正极板且与其相距l的平面,电荷量为q的粒子通过的位移为l,电荷量为-q的粒子通过的位移为l,由牛顿第二定律知它们的加速度分别为a1=,a2=,由运动学公式有l=a1t2=t2①l=a2t2=t2②得=.B、C、D错,A对.2.【答案】C【解析】由类平抛规律,在时间t内有:L=v0t,=at2,在内有:y=a()2,比较可得y=,则电场力做的功为W=qEy==,所以A、B错误.粒子下落的前和后过程中电场力做的功分别为:W1=qE×,W2=qE×,所以W1:W2=1∶1,所以C正确,D错误.3.【答案】B【解析】粒子先向A板做半个周期的匀加速运动,接着做半个周期的匀减速运动,经历一个周期后速度为零,以后重复以上过程,运动方向不变,选B.4.【答案】B【解析】设电子被加速后获得初速度v0,则由动能定理得:qU1=mv①若极板长为l,则电子在电场中偏转所用时间:t=②设电子在平行板间受电场力作用产生的加速度为a,由牛顿第二定律得:a==③电子射出偏转电场时,平行于电场方向的速度:v y=at④由①②③④可得:v y=又有:tanθ====故U2变大或U1变小都可能使偏转角θ变大,故选项B正确,选项A、C、D错误.5.【答案】BD【解析】由于电量和质量相等,因此产生的加速度相等,初速度越大的带电粒子经过电场所用时间越短,A错误;加速时间越短,则速度的变化量越小,C错误;由于电场力做功W=qU与初速度及时间无关,因此电场力对各带电粒子做功相等,则它们通过加速电场的过程中电势能的减少量相等,动能增加量也相等,B、D正确.6.【答案】AB【解析】两个电荷在电场中做类平抛运动,将它们的运动分解为沿水平方向的匀速直线运动和竖直方向的匀加速直线运动.设板长为L,粒子的初速度为v0,则粒子运动时间为t=,L、v0相同,则时间相同.故B正确.竖直方向的位移为y=at2,a=,则y=t2,E、t相同,y不同,因m的大小关系不清楚,q有可能相等.故A正确.由于位移为y=at2,t相同,y不同,a不等,故C错误.根据动能定理,E k-mv=qEy则E k=mv+qEy,故D错误.7.【答案】BD【解析】三个液滴在水平方向受到电场力作用,水平方向不是匀速直线运动,所以三个液滴在真空盒中不是做平抛运动,选项A错误.由于三个液滴在竖直方向做自由落体运动,三个液滴的运动时间相同,选项B正确.三个液滴落到底板时竖直分速度相等,而水平分速度不相等,所以三个液滴落到底板时的速率不相同,选项C错误.由于液滴C在水平方向位移最大,说明液滴C在水平方向加速度最大,所带电荷量最多,选项D正确.8.【答案】ABC【解析】由动能定理可知WE=ΔE k=-0.1 J;可知粒子受到的电场力做负功,故粒子电势能增加,B点的电势高于A点电势;而电场线由高电势指向低电势,故电场线向左,故B正确;A、B两点的电势差UAB==-10 V,则UA-UB=-10 V.解得UB=0 V;故A正确;若粒子沿轨迹1运动,A点速度沿切线方向向右,受力向左,故粒子将向上偏转,故C正确;若粒子沿轨迹2运动,A点速度沿切线方向向右上,而受力向左,故粒子将向左上偏转,故D错误.9.【答案】AD【解析】粒子恰好穿过电场时,它沿平行板的方向发生位移L所用时间与垂直板方向上发生位移所用时间t相等,设板间电压为U,则有:=··()2,得时间t==.当入射速度变为,它沿平行板的方向发生位移L所用时间变为原来的2倍,由上式可知,粒子的电荷量变为原来的或两板间距离增为原来的2倍时,均使粒子在与垂直板方向上发生位移所用时间增为原来的2倍,从而保证粒子仍恰好穿过电场,因此选项A、D正确.10.【答案】ABC【解析】粒子在平行极板方向不受电场力,做匀速直线运动,故所有粒子的运动时间相同;t=0时刻射入电场的带电粒子沿板间中线垂直电场方向射入电场,沿上板右边缘垂直电场方向射出电场,说明竖直方向分速度变化量为零,故运动时间为周期的整数倍;所有粒子最终都垂直电场方向射出电场;由于t=0时刻射入的粒子在竖直方向始终做单向直线运动,竖直方向的分位移最大,故所有粒子最终都不会打到极板上;故A、B正确,D错误;t=0时刻射入的粒子竖直方向的分位移为;有:=·由于L=d故:v y m=v0故E k′=m(v+v)=2E k0,故C正确.11.【答案】(1)微粒只在重力和电场力作用下沿AB方向运动,在垂直于AB方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B指向A,与初速度v A方向相反,微粒做匀减速运动.(2)E=×104N/C,电场强度的方向水平向左.(3)v A=2m/s.【解析】(1)微粒只在重力和电场力作用下沿AB方向运动,在垂直于AB方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B指向A,与初速度v A方向相反,微粒做匀减速运动.(2)在垂直于AB方向上,有qE sinθ-mg cosθ=0所以电场强度E=×104N/C,电场强度的方向水平向左.(3)微粒由A运动到B时的速度v B=0时,微粒进入电场时的速度最小,由动能定理得,-(mgL sinθ+qEL cosθ)=0-mv,代入数据,解得v A=2m/s.12.【答案】(1)(2)(3)L【解析】(1)粒子离开电场时,合速度与水平方向夹角为30°,由几何关系得合速度:v==.(2)粒子在匀强电场中做类平抛运动,在水平方向上:L=v0t,在竖直方向上:v y=at,v y=v0tan 30°=,由牛顿第二定律得:qE=ma解得:E=.(3)粒子做类平抛运动,在竖直方向上:d=at2,解得:d=L.13.【答案】(1)9.7×10-18J(2)15.2 V【解析】(1)依据几何三角形解得:电子在C点时的速度为:v=①而E k=mv2②联立①②得:E k=m()2≈9.7×10-18J.(2)对电子从O到C,由动能定理,有eU=mv2-mv③联立①③得:U=≈15.2 V.14.【答案】(1)d(2)e(U0+)【解析】(1)设电子飞离加速电场时的速度为v0,由动能定理得eU0=mv①设金属板AB的长度为L,电子偏转时间t=②电子在偏转电场中产生偏转加速度a=③电子在电场中的侧位移y=d=at2④联立①②③④得:L=d.(2)设电子穿出电场时的动能为E k,根据动能定理得E k=eU0+e=e(U0+).。

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==2.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离 【答案】(1)mgq E∆=(2)(635N F mg =+(3)425v gR =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】 【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=-由以上各式解得:4v =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为4V =方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=L v =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t 2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=代入解得 12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得2 21221 L qE nEvn md n B=-⋅++v0=4.00.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3、4)第二种情况:L=n(2v0t+2Rsinα)+v0t+2Rsinα把2mdtqE=、R=mvqB、v1=vsinα、12qEdvm=代入解得2(1)21221L qE n Evn md n B+=-⋅++v0=3.20.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3).3.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P运动到Q点所经历的时间之比.【答案】22B qLEm=;2BEttπ=【解析】【分析】【详解】(1)粒子在磁场中做匀速圆周运动,以v0表示粒子在P点的初速度,R表示圆周的半径,则有2vqv B mR=由于粒子在Q点的速度垂直它在p点时的速度,可知粒子由P点到Q点的轨迹为14圆周,故有2R=以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=4.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bht E= (2)2222225m g m g x q B q B ≤≤ (3)22211528m g y x q B =-+【解析】(1)粒子恰能在xoy 平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv =洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y 轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg =+,()()225qE mg mg v +==则v 在y 方向上分量大小sin 2y qE E mgv v vBqv B qBθ==== 因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x 轴为h 处所用的时间2y h Bh qhB t v E mg===; (2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgE q=,则电场力''F qE mg ==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin 2mqE mg mE m gx R B q q BqE mg θ+====+ 当改变电场时粒子所在处于粒子第一次打在x 轴上的位置之间的距离为2R 时,第一次打在x 轴上的横坐标最大,()()()()()()22222222222222[]25sin mqE mg m qE mg Rm g x qEB q Eq BqE mg θ++====+ 所以从O 点射出的所有粒子第一次打在x 轴上的坐标范围为12x x x ≤≤,即2222225m g m gx q B q B≤≤ (3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x ,y )满足速率'v v =,则根据动能定理有()2211222qEx mgy mv m v --=--,3222231528m g qEx mgy mv q B --=-=-, 所以22211528m gy x q B=-+ 点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.5.图中是磁聚焦法测比荷的原理图。

【物理】物理带电粒子在电场中的运动专题练习(及答案)及解析

【物理】物理带电粒子在电场中的运动专题练习(及答案)及解析

【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析⼀、⾼考物理精讲专题带电粒⼦在电场中的运动1.如图甲所⽰,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续⽆初速地释放质量为m 、电荷量为+q 的粒⼦,经电场加速后,沿极板C 、D 的中⼼线射向荧光屏(荧光屏⾜够⼤且与中⼼线垂直),当C 、D 板间未加电压时,粒⼦通过两板间的时间为t 0;当C 、D 板间加上图⼄所⽰电压(图中电压U 1已知)时,粒⼦均能从C 、D 两板间飞出,不计粒⼦的重⼒及相互间的作⽤.求:(1)C 、D 板的长度L ;(2)粒⼦从C 、D 板间飞出时垂直于极板⽅向偏移的最⼤距离;(3)粒⼦打在荧光屏上区域的长度.【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md== 【解析】试题分析:(1)粒⼦在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒⼦从nt 0(n=0、2、4……)时刻进⼊C 、D 间,偏移距离最⼤粒⼦做类平抛运动偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒⼦在C 、D 间偏转距离最⼤时打在荧光屏上距中⼼线最远ZXXK] 出C 、D 板偏转⾓0tan y v v θ=0y v at =打在荧光屏上距中⼼线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md==考点:带电粒⼦在匀强电场中的运动【名师点睛】此题是带电粒⼦在匀强电场中的运动问题;关键是知道粒⼦在⽔平及竖直⽅向的运动规律和特点,结合平抛运动的规律解答.2.如图1所⽰,光滑绝缘斜⾯的倾⾓θ=30°,整个空间处在电场中,取沿斜⾯向上的⽅向为电场的正⽅向,电场随时间的变化规律如图2所⽰.⼀个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重⼒加速度g=10m/s 2,求:(1)0~4s 内滑块的最⼤速度为多少? (2)0~4s 内电场⼒做了多少功? 【答案】(1)20m/s (2)40J 【解析】【分析】对滑块受⼒分析,由⽜顿运动定律计算加速度计算各速度.【详解】【解】(l)在0~2 s 内,滑块的受⼒分析如图甲所⽰,电场⼒F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受⼒分析如图⼄所⽰22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速,在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最⼤由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场⼒做正功1160W F x J == - 在2~4 s 内,电场⼒做负功2220W F x J ==- 电场⼒做功W=40 J 3.在⽔平桌⾯上有⼀个边长为L 的正⽅形框架,内嵌⼀个表⾯光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.⼀带电⼩球从圆盘上的P 点(P 为正⽅形框架对⾓线AC 与圆盘的交点)以初速度v 0⽔平射⼊磁场区,⼩球刚好以平⾏于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所⽰.现撤去磁场,⼩球仍从P 点以相同的初速度v 0⽔平⼊射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起⼀定⾼度,如图⼄所⽰,忽略⼩球运动过程中的空⽓阻⼒,已知重⼒加速度为g .求:(1)⼩球两次在圆盘上运动的时间之⽐;(2)框架以CD 为轴抬起后,AB 边距桌⾯的⾼度.【答案】(1)⼩球两次在圆盘上运动的时间之⽐为:π:2;(2)框架以CD 为轴抬起后,AB边距桌⾯的⾼度为222vg.【解析】【分析】【详解】(1)⼩球在磁场中做匀速圆周运动,由⼏何知识得:r2+r2=L2,解得:r=22L,⼩球在磁场中做圆周运的周期:T=2rvπ,⼩球在磁场中的运动时间:t1=14T=2Lπ,⼩球在斜⾯上做类平抛运动,⽔平⽅向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)⼩球在斜⾯上做类平抛运动,沿斜⾯⽅向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对⼩球,由⽜顿第⼆定律得:a=mgsinmθ=g sinθ,AB 边距离桌⾯的⾼度:h =L sinθ=222v g;4.⼀电路如图所⽰,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平⾏板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有⼀未知的、待研究的带电粒⼦沿虚线⽅向以v0=2.0m/s 的初速度射⼊MN 的电场中,已知该带电粒⼦刚好从极板的右侧下边缘穿出电场,求该带电粒⼦的⽐荷q/m (不计粒⼦的重⼒,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -? (2)46.2510/C kg -?【解析】【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===?=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==??=?(2)粒⼦在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联⽴解得46.2510/qC kg m-=?5.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN ⼀侧有电场强度为E 的匀强电场(垂直于MN ),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,⾝边有多个质量均为m 、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN ⽅向抛出各⼩球.其中第1个⼩球恰能通过MN 上的C 点第⼀次进⼊磁场,通过O 点第⼀次离开磁场,OC=2h .求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B ;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q E=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2q vB mR=得1mvRq B=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q ,磁感应强度B '①⼩球作平抛运动过程002hmx v tv qE== 2y qE v h m= ②⼩球穿过磁场⼀次能够⾃⾏回到A ,满⾜要求:sin R x θ=,变形得:sin mvx qB θ'= 解得:0E B v '=.6.竖直平⾯内存在着如图甲所⽰管道,虚线左侧管道⽔平,虚线右侧管道是半径R=1m 的半圆形,管道截⾯是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度E=4×103V/m .⼩球a 、b 、c 的半径略⼩于管道内径,b 、c 球⽤长2m L =的绝缘细轻杆连接,开始时c 静⽌于管道⽔平部分右端P 点处,在M 点处的a 球在⽔平推⼒F 的作⽤下由静⽌向右运动,当F 减到零时恰好与b 发⽣了弹性碰撞,F-t 的变化图像如图⼄所⽰,且满⾜224F t π+=.已知三个⼩球均可看做质点且m a =0.25kg ,m b =0.2kg ,m c =0.05kg ,⼩球c 带q=5×10-4C 的正电荷,其他⼩球不带电,不计⼀切摩擦,g =10m/s 2,求(1)⼩球a 与b 发⽣碰撞时的速度v 0; (2)⼩球c 运动到Q 点时的速度v ;(3)从⼩球c 开始运动到速度减为零的过程中,⼩球c 电势能的增加量.【答案】(1)04m/s v = (2)v =2m/s (3) 3.2J P E ?=【分析】对⼩球a ,由动量定理可得⼩球a 与b 发⽣碰撞时的速度;⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞由动量守恒和机械能守恒可列式,⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理可得⼩球c 运动到Q 点时的速度;由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得;解:(1)对⼩球a ,由动量定理可得00a I m v =-由题意可知,F-图像所围的图形为四分之⼀圆弧,⾯积为拉⼒F 的冲量,由圆⽅程可知21S m = 代⼊数据可得:04/v m s =(2)⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞,由动量守恒可得012()a a b c m v m v m m v =++ 由机械能守恒可得222012111()222a abc m v m v m m v =++ 解得120,4/v v m s ==⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理22211()()22c b c b c m gR qER m m v m m v -=+-+ 代⼊数据可得2/v m s =(3)由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直⽅向的夹⾓为θ从c 球运动到Q 点到减速到零的过程列能量守恒可得:21(1cos )sin ()sin 2b c b c m gR m gR m m v qER θθθ-+++=解得sin 0.6,37θθ==?因此⼩球c 电势能的增加量:(1sin ) 3.2P E qER J θ?=+=7.如图所⽰,在竖直⾯内有两平⾏⾦属导轨AB 、CD .导轨间距为L ,电阻不计.⼀根电阻不计的⾦属棒ab 可在导轨上⽆摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸⾯向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有⼀⽔平放置的电容为C 的平⾏板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。

高考物理复习专题七 电场及带电粒子(带电体)在电场中的运动单元练习题(含详细答案)

高考物理复习专题七 电场及带电粒子(带电体)在电场中的运动单元练习题(含详细答案)

高考物理复习专题七电场及带电粒子(带电体)在电场中的运动一、单选题1.如图甲所示,Q1,Q2为两个被固定的点电荷,其中Q1带负电,a,b两点在它们连线的延长线上.现有一带负电的粒子以一定的初速度沿直线从a点开始经b点向远处运动(粒子只受电场力作用),粒子经过a,b两点时的速度分别为va,vb,其速度图象如图乙所示.以下说法中正确的是()A.Q2一定带负电B.Q2的电量一定大于Q1的电量C.b点的电场强度一定为零D.整个运动过程中,粒子的电势能先减小后增大2.如图所示,在一个真空环境里,有一个空心导体球,半径为a,另有一个半径为b的细圆环,环心与球心连线长为L(L>a),连线与环面垂直,已知环上均匀带电,总电荷量为Q.当导体球接地时(取无穷远处电势为零,与带电量为q的点电荷相距r处电势为φ=k,k为静电力恒量),下列说法正确的是()A.球面上感应电荷量为q感=-B.球面上感应电荷量为q感=-C.感应电荷在O点的场强为E感=kD.感应电荷在O点的场强为E感=k3.如图所示,Q1和Q2是两个电荷量大小相等的点电荷,MN是两电荷的连线,HG是两电荷连线的中垂线,O是垂足。

下列说法正确的是()A.若两电荷是异种电荷,则OM的中点与ON的中点电势一定相等B.若两电荷是异种电荷,则O点的电场强度大小,与MN上各点相比是最小的,而与HG上各点相比是最大的C.若两电荷是同种电荷,则OM中点与ON中点处的电场强度一定相同D.若两电荷是同种电荷,则O点的电场强度大小,与MN上各点相比是最小的,与HG上各点相比是最大的4.如图所示,实线为电场线,虚线为等势面,两相邻等势面间电势差相等.A,B,C为电场中的三个点,且AB=BC,一个带正电的粒子从A点开始运动,先后经过B,C两点,若带电粒子只受电场力作用,则下列说法正确的是()A.粒子在A,B,C三点的加速度大小关系aA>aB>aCB.粒子在A,B,C三点的动能大小关系E kC>E kB>E kAC.粒子在A,B,C三点的电势能大小关系E pC>E pB>E pAD.粒子由A运动至B和由B运动至C电场力做的功相等5.如图实线为电场中一条竖直的电场线,有一质量为,电量为的小球,由该直线上A点静止释放,小球向下运动到达B点减速为零后返回A点,则下列判断正确的是()A.该电场可能是竖直向上的匀强电场,且B. A点的电势高于B点电势C. A点的场强小于B点场强D.向下运动的过程中,重力势能的减少量总是等于电势能的增加量6.如图a所示,光滑绝缘水平面上有甲,乙两个带电小球.t=0时,乙球以6 m/s的初速度向静止的甲球运动.之后,它们仅在电场力的作用下沿同一直线运动(整个运动过程中没有接触).它们运动的v-t图象分别如图b中甲,乙两曲线所示.由图线可知()A.甲,乙两球一定带异种电荷B.t1时刻两球的电势能最小C. 0~t2时间内,两球间的电场力先增大后减小D. 0~t3时间内,甲球的动能一直增大,乙球的动能一直减小7.如图所示,a,b,c,d分别是一个菱形的四个顶点,∠abc=120°.现将三个等量的正点电荷+Q分别固定在a,b,c三个顶点上,则下列判断正确的是()A.d点电场强度的方向由d指向OB.O点处的电场强度是d点处的电场强度的2倍C.bd连线为一等势线D.引入一个电量为+q的点电荷,依次置于O点和d点,则在d点所具有的电势能大于在O点所具有的电势能8.如图所示,真空中同一平面内MN直线上固定电荷量分别为-9Q和+Q的两个点电荷,两者相距为L,以+Q电荷为圆心,半径为画圆,a,b,c,d是圆周上四点,其中a,b在MN直线上,c,d两点连线垂直于MN,一电荷量为+q的试探电荷在圆周上运动,则下列判断错误的是()A.电荷+q在a处所受到的电场力最大B.电荷+q在a处的电势能最大C.电荷+q在b处的电势能最大D.电荷+q在c,d两处的电势能相等9.在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定初速度水平抛小球,从B点进入电场,到达C点时速度方向恰好水平,A,B,C三点在同一直线上,且AB=2BC,如图6所示.由此可知()A.小球带正电B.电场力大小为3mgC.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化相等10.某区域的电场线分布如图所示,其中间一根电场线是直线,一带正电的粒子从直线上的O点由静止开始在电场力作用下运动到A点.取O点为坐标原点,沿直线向右为x轴正方向,粒子的重力忽略不计.在O到A运动过程中,下列关于粒子运动速度v和加速度a随时间t的变化,粒子的动能E k和运动径迹上电势φ随位移x的变化图线可能正确的是()A.选项AB.选项BC.选项CD.选项D二、多选题11.如图所示,两对金属板A,B和C,D分别竖直和水平放置,A,B接在电路中,C,D板间电压为U.A板上O处发出的电子经加速后,水平射入C,D板间,电子最终都能打在光屏M上.关于电子的运动,下列说法正确的是()A.S闭合,只向右移动滑片P.P越靠近b端,电子打在M上的位置越高B.S闭合,只改变A,B板间的距离.改变前后,电子由O至M经历的时间相同C.S闭合,只改变A,B板间的距离,改变前后,电子到达M前瞬间的动能相同D.S闭合后再断开,只向左平移B,B越靠近A板,电子打在M上的位置越高12.等量异号点电荷+Q和-Q处在真空中,O为两点电荷连线上偏向+Q方向的一点,以O点为圆心画一圆,圆平面与两点电荷的连线垂直,P点为圆上一点,则下列说法正确的是()A.圆上各点的电场强度相同B.圆上各点的电势相等C.将试探电荷+q由P点移至O点电场力做正功D.将试探电荷+q由P点移至O点,它的电势能变大13.如图所示,在真空中固定两个等量异号点电荷+Q和-Q,图中O点为两点电荷连线的中点,P点为连线上靠近-Q的一点,MN为过O点的一条线段,且M点与N点关于O点对称.则下列说法正确的是()A.M,N两点的电势相等B.M,N两点的电场强度相同C.将带正电的试探电荷从M点沿直线移到N点的过程中,电荷的电势能先增大后减小D.只将-Q移到P点,其他点在空间的位置不变,则O点的电场强度变大14.如图所示,两面积较大,正对着的平行极板A,B水平放置,极板上带有等量异种电荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理带电粒子在电场中的运动技巧 ( 很有用 ) 及练习题一、高考物理精讲专题带电粒子在电场中的运动1. 如图所示,竖直面内有水平线MN 与竖直线 PQ 交于 P 点, O 在水平线 MN 上, OP 间距为 d ,一质量为 m 、电量为 q 的带正电粒子,从 O 处以大小为 v 0、方向与水平线夹角为 θ= 60o 的速度,进入大小为 E 1 的匀强电场中,电场方向与竖直方向夹角为θ= 60o ,粒子到达 PQ 线上的 A 点时,其动能为在 O 处时动能的 4 倍.当粒子到达 A 点时,突然将电场改为大小为 E 2,方向与竖直方向夹角也为 θ= 60o 的匀强电场,然后粒子能到达 PQ 线上的B 点.电场方向均平行于MN 、 PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。

已知粒子从 O 运动到 A 的时间与从 A 运动到 B 的时间相同,不计粒子重力,已知量为m 、 q 、 v 0、 d .求:(1)粒子从 O 到 A 运动过程中 ,电场力所做功 W ;(2)匀强电场的场强大小E 1、 E 2;(3)粒子到达 B 点时的动能 E kB .3 2(2)E 1 =3m 02 3m214m 02【答案】 (1)Wmv 04qdE 2 =(3) E kB =23qd3【解析】 【分析】(1) 对粒子应用动能定理可以求出电场力做的功。

(2) 粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。

(3) 根据粒子运动过程,应用动能计算公式求出粒子到达 B 点时的动能。

【详解】(1) 由题知:粒子在 O 点动能为 E= mv 0 粒子在 A 点动能为: E =4Eko ,粒子从 O 到 Ako12kA2运动过程,由动能定理得:电场力所做功:W=E kA -E ko = 3mv 02;2(2) 以 O 为坐标原点,初速 v 0 方向为 x 轴正向,建立直角坐标系 xOy ,如图所示设粒子从 O 到 A 运动过程,粒子加速度大小为 a 1,历时 t 1 ,A 点坐标为( x ,y )粒子做类平抛运动: x=v 0t 1, y= 1a 1t 122由题知:粒子在 A 点速度大小 v A =2 v 0, v Ay = 3v 0 , v Ay =a 1 t 1粒子在 A 点速度方向与竖直线 PQ 夹角为 30°。

解得: x3v 02 3v 02, y2a 1a 1由几何关系得: ysin60 °-xcos60 °=d ,2,t14d解得: a 1 3v 0 v 04d由牛顿第二定律得: qE 1=ma 1, 解得:E 13mv 02 4qd设粒子从 A 到 B 运动过程中,加速度大小为 a 2,历时 t 2,水平方向上有: v At 2 2,° t 2t 14d , qE 2 2sin30 =°a sin60v 0 =ma ,2解得: a 2v 023mv 2, E 20 ;3d3qd(3) 分析知:粒子过 A 点后,速度方向恰与电场 E 2 方向垂直,再做类平抛运动,粒子到达 B 点时动能: E kB = 1mv 2 , v B 2=( 2v 0 )2+( a 2t 2) 2, B214 mv解得: E KB。

【点睛】本题考查了带电粒子在电场中的运动,根据题意分析清楚粒子运动过程与运动性质是解题的前提与关键,应用动能定理、类平抛运动规律可以解题。

2 MN与 x 轴垂直放置,与 x 轴相交于 Q 点, Q 点的横坐标.如图所示,荧光屏x0 6cm ,在第一象限y 轴和 MN 之间有沿 y 轴负方向的匀强电场,电场强度E 1.6 105N / C,在第二象限有半径R 5cm 的圆形磁场,磁感应强度 B 0.8T ,方向垂直 xOy 平面向外.磁场的边界和x 轴相切于P点.在P点有一个粒子源,可以向x 轴上方 180°范围内的各个方向发射比荷为q 1.0 108 C / kg 的带正电的粒子,已知粒子的m发射速率 v0 4.0106 m / s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径;(2)粒子从y轴正半轴上射入电场的纵坐标范围;(3)带电粒子打到荧光屏上的位置与Q点间的最远距离.【答案】( 1)5cm( 2)0 y 10cm( 3)9cm【解析】【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动qv0 B m v2rmv05cm解得: rqB(2)由( 1)问中可知r R,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形 PO FO1为菱形,所以 FO1 / /O P ,又O P垂直于 x 轴,粒子出射的速度方向与轨迹半径FO1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从 y 轴正半轴上射入电场的纵坐标范围为0 y10cm .(3)假设粒子没有射出电场就打到荧光屏上,有x0v0 t0h1at 022qEam 解得: h 18cm 2R10cm ,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x轴方向的位移为x ,则x vt 0y 1 at 22代入数据解得 x2 y设粒子最终到达荧光屏的位置与 Q 点的最远距离为 H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为,v yqE g xtanm v 0 ,v 0v 02 y所以 Hx 0 x tanx 0 2 y g 2 y ,由数学知识可知,当 x 02y2 y 时,即 y 4.5cm 时 H 有最大值,所以 H max 9cm3. 如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P ( -d , 0)点沿与x 轴正方向成 α=60°角平行 xOy 平面入射,经第二象限后恰好由y 轴上的 Q 点(图中未画出)垂直 y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到 P 点时速度方向与入射方时相同,不计粒子重力,求:( 1)粒子从 P 点入射时的速度 v 0;( 2)第三、四象限磁感应强度的大小B / ;【答案】( 1) E( 2) 2.4B3B【解析】试题分析:(1)粒子从 P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: d d 2 3drsin 603sin根据 qv 0Bmv 02 得 v 0 2 3qBdr3m粒子在第一象限中做类平抛运动,则有(r1 qEt 2v y qEt cos60 ); tanmv 02mv 0E 联立解得 v 03B(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和 y ,根据粒子在第 三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与 x 轴正方向的夹角等于α .则有: x=v 0t , yvyt2 得y v y tan 3x2v 022由几何知识可得 y=r-rcos α=1r3 d23则得 x2 d31 d2 d 5 3所以粒子在第三、四象限圆周运动的半径为R2 3dsin9粒子进入第三、四象限运动的速度v 04 3qBdv2v 03mcos根据qvB 'm 得: B′=2. 4B v2 R考点:带电粒子在电场及磁场中的运动4.如图所示,虚线OL 与 y 轴的夹角θ=450,在OL上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q( q> 0)的粒子以速率v0从y 轴上的 M( OM=d)点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。

(1)求此电场的场强大小E;(2)若粒子能在OL 与 x 轴所围区间内返回到虚线OL 上,求粒子从M 点出发到第二次经过 OL 所需要的最长时间。

【答案】( 1);( 2).【解析】试题分析:根据粒子只受电场力作用,沿电场线方向和垂直电场线方向建立坐标系,利用类平抛运动;根据横向位移及纵向速度建立方程组,即可求解;由(1)求出在电场中运动的时间及离开电场时的位置;再根据粒子在磁场中做圆周运动,由圆周运动规律及几何关系得到最大半径,进而得到最长时间;(1)粒子在电场中运动,不计粒子重力,只受电场力作用,;沿垂直电场线方向X 和电场线方向Y 建立坐标系,则在 X 方向位移关系有:,所以;该粒子恰好能够垂直于OL 进入匀强磁场,所以在Y 方向上,速度关系有,所以,,则有.(2)根据( 1)可知粒子在电场中运动的时间;粒子在磁场中只受洛伦兹力的作用,在洛伦兹力作用下做圆周运动,设圆周运动的周期为T粒子能在OL 与 x 轴所围区间内返回到虚线OL 上,则粒子从M 点出发到第二次经过OL 在磁场中运动了半个圆周,所以,在磁场中运动时间为;粒子在磁场运动,洛伦兹力作为向心力,所以有,;根据( 1)可知,粒子恰好能够垂直于OL 进入匀强磁场,速度v 就是初速度v0在 X 方向上的分量,即;粒子在电场中运动,在Y 方向上的位移,所以,粒子进入磁场的位置在OL 上距离 O 点;根据几何关系,可得,即;所以;所以,粒子从 M 点出发到第二次经过OL 所需要的最长时间.5. 如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、 PQ ,其交点为O . MN 一侧有电场强度为 E 的匀强电场(垂直于 MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距 O 点为 h 的 A 点处,身边有多个质量均为m 、电量不等的带负电小球.他先后以相同速度 v0、沿平行于 MN 方向抛出各小球.其中第 1 个小球恰能通过 MN 上的 C 点第一次进入磁场,通过O 点第一次离开磁场,OC=2h .求:( 1)第 1 个小球的带电量大小; ( 2)磁场的磁感强度的大小 B ;( 3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.22E E 【答案】 (1) q 1mv0 ;(2) B; (3)存在, B2Ehv 0v 0【解析】【详解】(1)设第 1 球的电量为 q 1 ,研究 A 到 C 的运动:h1 q 1Et 22 m2h v 0t2解得:q 1mv;(2)研究第 1 球从 A 到 C 的运动:v y2q 1Ehm解得: v y v 0tanv y1 ,45o , v2v 0 ;v 0研究第 1 球从 C 作圆周运动到达 O 的运动,设磁感应强度为 Bmv 2得 Rmv由 q 1vBq 1 BR由几何关系得: 2Rsin h 2解得: B2E v 0 ;(3)后面抛出的小球电量为q ,磁感应强度 B①小球作平抛运动过程xv 0t 2hmv 0qEv y2 qE hm②小球穿过磁场一次能够自行回到A ,满足要求: Rsinx ,变形得:mvsinxqB解得: BE .v 06.在竖直平面内,一根长为L 的绝缘细线,一端固定在O 点,另一端拴着质量为m、电荷量为+q 的小球。

相关文档
最新文档