人教版九年级数学上册北京市丰台区第一学期初三(新)第24章圆综合练习题学生版无答案

合集下载

人教版数学九年级上册第24章《圆》综合检测题(含祥细答案)

人教版数学九年级上册第24章《圆》综合检测题(含祥细答案)

《圆》综合检测题一.选择题1.如图,在⊙O中,AC为⊙O直径,B为圆上一点,若∠OBC=26°,则∠AOB的度数为()A.26°B.52°C.54°D.56°2.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A.22°B.26°C.32°D.34°3.已知⊙O的半径为5cm,若点A到圆心O的距离为3cm,则点A()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定4.如图,点A,B,P是⊙O上的三点,若∠AOB=40°,则∠APB的度数为()A.80°B.140°C.20°D.50°5.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆6.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是cm,则这个正六边形的周长是()A. cm B.12cm C. cm D.36 cm7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.2πB.πC.D.4π8.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°9.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A.点M B.点N C.点P D.点Q10.如图,AB为半圆O的直径,BC⊥AB且BC=AB,射线BD交半圆O的切线于点E,DF⊥CD交AB于F,若AE=2BF,DF=2,则⊙O的半径长为()A.B.4C.D.二.填空题11.如图,AB是⊙O的直径,CD切⊙O于点C,若∠BCD=26°,则∠ABC的度数为.12.如图所示,AB是⊙O的直径.PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P =40°,则∠B等于.13.如图,在直角坐标系中,点A(0,3)、点B(4,3)、C(0,﹣1),则△ABC外接圆的半径为.14.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为.15.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.16.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.17.已知点A是圆心为坐标原点O且半径为3的圆上的动点,经过点B(4,0)作直线l⊥x 轴,点P是直线l上的动点,若∠OPA=45°,则△BOP的面积的最大值为.18.如图,已知⊙O的半径为m,点C为直径AB延长线上一点,BC=m.过点C任作一直线l,若l上总存在点P,使过P所作的⊙O的两切线互相垂直,则∠ACP的最大值等于.三.解答题19.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B 的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求PA的长度.20.如图,点P是⊙O的直径AB延长线上的一点,点C,D在⊙O上,且PD是⊙O的切线,PC=PD.(1)求证:PC是⊙O的切线;(2)若⊙O的半径为2,DO=PO,求图中阴影部分的面积.21.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O 于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)22.如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交A P的延长线于点D.如果∠D=90°,DP=1,求⊙O 的直径.23.如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.(1)求证:BC是⊙O的切线;(2)求证:DF=DG.24.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.25.【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ是⊙O的直径,PQ ⊥ON.(1)求∠POB的度数;(2)已知OP=6400km,求这两个观测点之间的距离即⊙O上的长.(π取3.1)参考答案一.选择题1.解:∵OB=OC,∴∠C=∠OBC,∵∠OBC=26°,∴∠AOB=2∠C=52°,故选:B.2.解:连接CO,∵∠A=68°,∴∠BOC=136°,∴∠OBC=∠OCB=(180°﹣136°)=22°.故选:A.3.解:∵OA=3cm<5cm,∴点A在⊙O内.故选:A.4.解:∠APB=∠AOB=×40°=20°.故选:C.5.解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.6.解:设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等边三角形,∴AB=OA=2cm,∴正六边形ABCDEF的周长=6AB=12cm.故选:C.7.解:连接OA、OC,如图.∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则劣弧AC的长==2π.故选:A.8.解:在优弧AB上取点D,连接BD,AD,OB,OA,∵∠ACB=110°,∴∠D=180°﹣∠ACB=70°,∴∠AOB=2∠D=140°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠P=360°﹣∠OAP﹣∠AOB﹣∠OBP=40°.故选:D.9.解:连接OM,ON,OQ, OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q再以点O为圆心的圆上,OP与ON的大小不能确定,∴点P不一定在圆上.故选:C.10.解:连接AD,CF,作CH⊥BD于H,如图所示:∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∴△ADF∽△BDC,∴==,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴AE=AF,∵AE=2BF,∴BC=AB=3BF,设BF=x,则AE=2x,AB=BC=3x,∴BE==x,CF==,由切割线定理得:AE2=ED×BE,∴ED===x,∴BD=BE﹣ED=,∵CH⊥BD,∴∠BHC=90°,∠CBH+∠BCH=∠CBH+∠ABE,∴∠CBH=∠ABE,∵∠BAE=90°=∠BHC,∴△BCH∽△EBA,∴==,即==,解得:BH=x,CH=x,∴DH=BD﹣BH=x,∴CD2=CH2+DH2=x2,∵DF⊥CD,∴CD2+DF2=CF2,即x2+(2)2=()2,解得:x=,∴AB=3,∴⊙O的半径长为;故选:A.二.填空题11.解:连接CO,∵CD切⊙O于点C,∴CO⊥CD,∴∠OCD=90°,∵∠BCD=26°,∴∠OCB=90°﹣26°=64°,∵CO=BO,∴∠ABC=∠OCB=64°.故答案为:64°.12.解:∵PA切⊙O于点A,∴∠PAB=90°,∵∠P=40°,∴∠POA=90°﹣40°=50°,∵OC=OB,∴∠B=∠BCO=25°,故答案为:25°.13.解:连接AB,分别作AC、AB的垂直平分线,两直线交于点H,由垂径定理得,点H为△ABC的外接圆的圆心,∵A(0,3)、点B(4,3)、C(0,﹣1),∴点H的坐标为(2,1),则△ABC外接圆的半径==2,故答案为:2.14.解:由题意:BA=BC=1,∠ABC=90°,∴S==.扇形BAC故答案为.15.解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.16.解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.17.解:当PA是⊙O的切线时,OP最长,则PB最长,故△BOP的面积的最大,连接OA,∵PA是⊙O的切线,∴OA⊥PA,∵∠OPA=45°,∴△OPA是等腰直角三角形,∴OA=PA=3,∴OP=3,在Rt△BOP中, PB===,∴△BOP的面积的最大值为×4×=2,故答案为2.18.解:∵PM、PN是过P所作的⊙O的两切线且互相垂直,∴∠MON=90°,∴四边形PMON是正方形,根据勾股定理求得OP=m,∴P点在以O为圆心,以m长为半径作大圆⊙O上,以O为圆心,以m长为半径作大圆⊙O,然后过C点作大⊙O的切线,切点即为P点,此时∠ACP有最大值,如图所示,∵PC是大圆⊙O的切线,∴OP⊥PC,∵OC=2m,OP=m,∴PC==m,∴OP=PC,∴∠ACP=45°,∴∠ACP的最大值等于45°,.故答案为45°.三.解答题19.(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠FAO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠PAE=∠AEB,∠P=∠P,∴△APB∽△CPA,∴,即PA2=PB•PC,∴,解得PA=.20.(1)证明:连接OC,在△PDO与△PCO中,,∴△PDO≌△PCO(SSS),∴∠PCO=∠PDO,∵PD是⊙O的切线,∴∠PDO=90°,∴∠PCO =90°,∴PC 是⊙O 的切线;(2)解:∵∠PDO =90°,DO =PO ,∴∠POD =60°,∴∠DOC =120°,∵⊙O 的半径为2,∴PD =OD =2,∴图中阴影部分的面积=S四边形PDOC ﹣S 扇形DOC =2××2×2﹣=4﹣.21.(1)证明:∵四边形ABCD 是正方形,AB 为⊙O 的直径, ∴∠ABE =∠BCG =∠AFB =90°,∴∠BAF +∠ABF =90°,∠ABF +∠EBF =90°,∴∠EBF =∠BAF ,在△ABE 与△BCG 中,,∴△ABE ≌△BCG (ASA );(2)解:连接OF ,∵∠ABE =∠AFB =90°,∠AEB =55°,∴∠BAE =90°﹣55°=35°,∴∠BOF =2∠BAE =70°,∵OA =3,∴的长==.22.(1)证明:∵A关于OP的对称点C恰好落在⊙O上.∴=∴∠AOP=∠COP,∴∠AOP=∠AOC,又∵∠ABC=∠AOC,∴∠AOP=∠ABC,∴PO∥BC;(2)解:连接PC,∵CD为圆O的切线,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠APO=∠COP,∵∠AOP=∠COP,∴∠APO=∠AOP,∴OA=AP,∵OA=OP,∴△APO为等边三角形,∴∠AOP=60°,又∵OP∥BC,∴∠OBC=∠AOP=60°,又OC=OB,∴△BCO为等边三角形,∴∠COB=60°,∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,∴△POC也为等边三角形,∴∠PCO=60°,PC=OP=OC,又∵∠OCD=90°,∴∠PCD=30°,在Rt△PCD中,PD=PC,又∵PC=OP=AB,∴PD=AB,∴AB=4PD=4.23.证明:(1)∵点D为△BCE的内心,∴BD平分∠EBC.∴∠EBD=∠CBD.又∵∠DBE=∠BAD,∴∠CBD=∠BAD.又∵AB是〇O直径,∴∠BDA=90°.在Rt△BAD中,∠BAD+∠ABD=90°,∴∠CBD+∠ABD=90°,即∠ABC=90°.∴BC⊥AB.又∵AB为直径,∴BC是〇O的切线;(2)连接ED,如图,则ED平分∠BEC,∴∠BED=∠CED.∵∠EFD为△BFD的外角∴∠EFD=∠ADB+∠EBD=90°+∠EBD,又∵四边形ABDG为圆的内接四边形,∴∠EGD=180°﹣∠ABD=180°﹣(90°﹣∠CDB)=90°+∠CDB 又∵∠EBD=∠CBD,∴∠EFD=∠EGD又∵ED=ED,∴△DFE≌△DGE(AAS).∴DF=DG.24.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=AOD=20°.25.解:(1)设点B的切线CB交ON延长线于点E,HD⊥BC于D,CH⊥BH交BC于点C,如图所示:则∠DHC=67°,∵∠HBD+∠BHD=∠BHD+∠DHC=90°,∴∠HBD=∠DHC=67°,∵ON∥BH,∴∠BEO=∠HBD=67°,∴∠BOE=90°﹣67°=23°,∵PQ⊥ON,∴∠POE=90°,∴∠POB=90°﹣23°=67°;(2)同(1)可证∠POA=31°,∴∠AOB=∠POB﹣∠POA=67°﹣31°=36°,∴==3968(km).。

人教版 九年级数学上册 第24章 圆 综合训练

人教版 九年级数学上册 第24章 圆 综合训练
8.在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为________.
9.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12 ,OP=6,则劣弧 的长为________.(结果保留π)
10.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________.
(1)点点同学通过画图和测量得到以下近似数据
α
30°
40°
50°
60°
β
120°
130°
140°
150°
γ
150°
140°
130°
120°
猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;
(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.
人教版九年级数学第24章圆综合训练(含答案)-答案
A. 64°B. 58°C. 72°D. 55°
6.如图,在Rt△ABC中,∠ACB=90°,AC=2 ,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()
A. 2 - πB. 4 - πC. 2 - πD. π
二、填空题(本大题共6道小题)
7.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=________.
(2)若BD=2 ,BF=2,求阴影部分的面积(结果保留π).
15.如图①,在△ABC中,点D在边BC上,∠ABC∶∠ACB∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.
(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.

【初三数学】北京市九年级数学上(人教版)第24章圆单元综合练习卷(含答案)

【初三数学】北京市九年级数学上(人教版)第24章圆单元综合练习卷(含答案)

人教版九年级数学上册第二十四章圆单元测试题(含答案)一、选择题(每题4分,共32分)1.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( )A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内2.如图1,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为( )图1A.35°B.45°C.55°D.65°3.已知圆锥的底面积为9π cm2,母线长为6 cm,则圆锥的侧面积是( )A.18π cm2B.27π cm2C.18 cm2D.27 cm24.一元钱硬币的直径约为24 mm,则用它能完全覆盖住的正六边形的边长最大不能超过( )A.12 mm B.12 3 mmC.6 mm D.6 3 mm5.如图2,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是( )图2A.2+πB.2+2π C.4+πD.2+4π6.如图3,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE 的度数为( )图3A .56°B .62°C .68°D .78°7.如图4,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )图4A .6B .8C .5 2D .5 38.如图5,在⊙O 中,AB 是⊙O 的直径,AB =10,AC ︵=CD ︵=DB ︵,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,有下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10.上述结论中正确的个数是( )图5A .1B .2C .3D .4二、填空题(每题5分,共35分)9.已知正方形ABCD 的边长为1,以点A 为圆心,2为半径作⊙A ,则点C 在________(填“圆内”“圆外”或“圆上”).10.如图6所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图611.如图7,PA ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图712.如图8,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连接OD 交BE 于点M ,且MD =2,则BE 的长为________.图813.如图9,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A ,B ,C ,如果AB =1,那么曲线CDEF 的长为________.图914.如图10,Rt △ABC 中,∠ACB =90°,∠CAB =30°,BC =2,O ,H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A 1BC 1的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为________.图1015.如图11,给定一个半径为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:图11(1)当d=3时,m=________;(2)当m=2时,d的取值范围是________.三、解答题(共33分)16.(10分)如图12,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.图1217.(10分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,连接CE交并延长⊙O于点D.(1)如图13①,求∠T和∠CDB的大小;(2)如图13②,当BE=BC时,求∠CDO的大小.图1318.(13分)如图14,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC =6 3,DE=3.求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.图141.D 2.C 3.A 4.A 5.A 6.C 7.B 8.C 9.圆上10.134 11.110°12.8 13.4π 14.π [15.(1)1 (2)1<d <316.解:(1)∵A(0,6),N(0,2),∴AN =4. ∵∠ABN =30°,∠ANB =90°, ∴AB =2AN =8,∴由勾股定理,得NB =AB 2-AN 2=4 3,∴B(4 3,2).(2)证明:连接MC ,NC ,如图. ∵AN 是⊙M 的直径, ∴∠ACN =90°, ∴∠NCB =90°.在Rt △NCB 中,∵D 为NB 的中点, ∴CD =12NB =ND ,∴∠CND =∠NCD.∵MC =MN ,∴∠MCN =∠MNC. 又∵∠MNC +∠CND =90°, ∴∠MCN +∠NCD =90°, 即MC ⊥CD.∴直线CD 是⊙M 的切线.17.解:(1)如图①,连接AC,∵AB是⊙O的直径,AT是⊙O的切线,∴AT⊥AB,即∠TAB=90°.∵∠ABT=50°,∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)∵半径OD⊥BC,∴CE=BE.∵BC=6人教版九年级数学上册第24章圆单元测试题(1)一、选择题(每题4分,共32分)1.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内2.如图1,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()图1A.35°B.45°C.55°D.65°3.已知圆锥的底面积为9π cm2,母线长为6 cm,则圆锥的侧面积是()A.18π cm2B.27π cm2C.18 cm2D.27 cm24.一元钱硬币的直径约为24 mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12 mm B.12 3 mmC.6 mm D.6 3 mm5.如图2,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC =4,则图中阴影部分的面积是()图2A.2+π B.2+2π C.4+π D.2+4π6.如图3,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()图3A .56°B .62°C .68°D .78°7.如图4,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )图4A .6B .8C .5 2D .5 38.如图5,在⊙O 中,AB 是⊙O 的直径,AB =10,AC ︵=CD ︵=DB ︵,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,有下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10.上述结论中正确的个数是( )图5A .1B .2C .3D .4二、填空题(每题5分,共35分)9.已知正方形ABCD 的边长为1,以点A 为圆心,2为半径作⊙A ,则点C 在________(填“圆内”“圆外”或“圆上”).10.如图6所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图611.如图7,PA ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图712.如图8,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连接OD 交BE 于点M ,且MD =2,则BE 的长为________.图813.如图9,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A ,B ,C ,如果AB =1,那么曲线CDEF 的长为________.图914.如图10,Rt △ABC 中,∠ACB =90°,∠CAB =30°,BC =2,O ,H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A 1BC 1的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为________.图1015.如图11,给定一个半径为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:图11(1)当d=3时,m=________;(2)当m=2时,d的取值范围是________.三、解答题(共33分)16.(10分)如图12,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.图1217.(10分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,连接CE交并延长⊙O于点D.(1)如图13①,求∠T和∠CDB的大小;(2)如图13②,当BE=BC时,求∠CDO的大小.图1318.(13分)如图14,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=6 3,DE=3.求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.图141.D 2.C 3.A 4.A 5.A 6.C 7.B 8.C 9.圆上10.134 [11.110° 12.8 13.4π 14.π15.(1)1 (2)1<d <316.解:(1)∵A(0,6),N(0,2),∴AN =4. ∵∠ABN =30°,∠ANB =90°, ∴AB =2AN =8,∴由勾股定理,得NB =AB 2-AN 2=4 3,∴B(4 3,2).(2)证明:连接MC ,NC ,如图. ∵AN 是⊙M 的直径, ∴∠ACN =90°, ∴∠NCB =90°.在Rt △NCB 中,∵D 为NB 的中点, ∴CD =12NB =ND ,∴∠CND =∠NCD.∵MC =MN ,∴∠MCN =∠MNC. 又∵∠MNC +∠CND =90°, ∴∠MCN +∠NCD =90°, 即MC ⊥CD.∴直线CD 是⊙M 的切线.17.解:(1)如图①,连接AC,∵AB是⊙O的直径,AT是⊙O的切线,∴AT⊥AB,即∠TAB=90°.∵∠ABT=50°,∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)∵半径OD⊥BC,∴CE=BE.∵BC=6人教版九年级数学上册第24章圆单元测试题一、选择题(每小题3分,共18分)1.在⊙O中,∠AOB=84°,弦AB所对的圆周角度数为( )A.42°B.138°C.69°D.42°或138°2.如图1,在半径为4的⊙O 中,弦AB ∥OC ,∠BOC =30°,则AB 的长为( ) A .2 B .2 3 C .4 D .4 3图1 图23.如图2,在平面直角坐标系中,⊙A 经过原点O ,并且分别与x 轴、y 轴交于点B ,C ,已知B (8,0),C (0,6),则⊙A 的半径为( )A .3B .4C .5D .84.若100°的圆心角所对的弧长为5π cm ,则该圆的半径R 等于( )A .5 cmB .9 cm C.52 cm D.94cm5.已知OA 平分∠BOC ,点P 在OA 上,如果以点P 为圆心的圆与OC 相离,那么⊙P 与OB 的位置关系是( )A .相离B .相切C .相交D .不能确定6.如图3,以等边三角形ABC 的BC 边为直径画半圆,分别交AB ,AC 于点E ,D ,DF 是半圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为( )A .4B .3 3C .6D .2 3图3 图4二、填空题(每小题4分,共28分)7.如图4,若AB 是⊙O 的直径,AB =10 cm ,∠CAB =30°,则BC =________cm. 8.如图5,在△ABC 中,AB =2,AC =2,以点A 为圆心,1为半径的圆与边BC 相切,则∠BAC 的度数是________.图59.如图6,已知在正方形ABCD 中,AB =2,以点A 为圆心,半径为r 画圆,当点D 在⊙A 内且点C 在⊙A 外时,r 的取值范围是________.10.如图7,某同学用纸板做了一个底面圆直径为10 cm,高为12 cm的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是________cm2(结果保留π).图7 图811.如图8,在⊙O中,AB是⊙O的直径,弦AE的垂直平分线交⊙O于点C,交AE于点F,CD⊥AB于点D,BD=1,AE=4,则AD的长为________.12.半圆形纸片的半径为1 cm,用如图9所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为________cm.图9 图1013.如图10,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为________.三、解答题(共54分)14.(8分)如图11,⊙O是△ABC的外接圆,直径AD=12,∠ABC=∠DAC,求AC的长.图1115.(10分)如图12,BE是⊙O的直径,A,D是⊙O上的两点,过点A作⊙O的切线交BE的延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O的半径.16.(10分)如图13,CD为⊙O的直径,CD⊥AB,垂足为F,AO⊥BC,垂足为E,AO=1.(1)求∠C的度数;(2)求图中阴影部分的面积.图1317.(12分)如图14,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)求证:PA是⊙O的切线;(2)求点B的坐标.图1418.(14分)如图15,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE 上的一点,且CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.详解详析1.D2.D [解析] 如图,过点O 作OD ⊥AB 于点D ,则AD =DB .∵AB ∥OC ,∠BOC =30°, ∴∠B =∠BOC =30°.∵在Rt △DOB 中,∠B =30°,OB =4, ∴OD =2.∴DB =42-22=2 3. ∴AB =2DB =4 3.3.C [解析] 连接BC .∵∠BOC =90°, ∴BC 为⊙A 的直径,即BC 过圆心A . 在Rt △BOC 中,OB =8,OC =6,根据勾股定理,得BC =10,则⊙A 的半径为5. 4.B [解析] 由100πR180=5π,求得R =9.5.A6.B [解析] 连接OD .∵DF 为半圆O 的切线,∴OD ⊥DF . ∵△ABC 为等边三角形,∴AB =BC =AC ,∠A =∠B =∠C =60°. 又∵OD =OC ,∴△OCD 为等边三角形,∴∠CDO =∠A =60°,∠DOC =∠ABC =60°, ∴OD ∥AB ,∴DF ⊥AB .在Rt △AFD 中,∵∠ADF =90°-∠A =30°,AF =2,∴AD =4. ∵O 为BC 的中点,易知D 为AC 的中点, ∴AC =8,∴FB =AB -AF =8-2=6.在Rt △BFG 中,∠BFG =90°-∠B =30°, ∴BG =3,根据勾股定理,得FG =3 3. 故选B.7.5 [解析] ∵AB 是⊙O 的直径, ∴∠ACB =90°.又∵AB =10 cm ,∠CAB =30°, ∴BC =12AB =5 cm.8.105° [解析] 设⊙A 与BC 相切于点D ,连接AD ,则AD ⊥BC . 在Rt △ABD 中,AB =2,AD =1, 所以∠B =30°, 因而∠BAD =60°.同理,在Rt △ACD 中,得到∠CAD =45°, 因而∠BAC 的度数是105°.9.2<r <2 210.65π [解析] 如图,过点P 作PO ⊥AB 于点O ,则O 为AB 的中点,即圆锥底面圆的圆心.在Rt △PAO 中,PA =OP 2+OA 2=122+52=13.由题意,得S 侧面积=12lr =12×底面圆周长×母线长=12×π×10×13=65π,∴做这个玩具所需纸板的面积是65π cm 2.故答案为65π.11.4 [解析] ∵CF 垂直平分AE ,∴AF =12AE =2,∠AFO =90°.∵CD ⊥AB ,∴∠ODC =∠AFO =90°. 又∵OA =OC ,∠AOF =∠COD , ∴△AOF ≌△COD (AAS), ∴CD =AF =2.设⊙O 的半径为r ,则OD =r -1.由勾股定理,得OC 2=OD 2+CD 2,即r 2=(r -1)2+22, 解得r =52,∴AD =AB -1=2×52-1=4.故答案为4.12. 3 [解析] 如图,连接MO 交CD 于点E ,则MO ⊥CD ,连接CO .∵MO ⊥CD ,∴CD =2CE .∵对折后半圆弧的中点M 与圆心O 重合, ∴ME =OE =12OC =12 cm.在Rt △COE 中,CE =12-⎝ ⎛⎭⎪⎫122=32(cm),∴折痕CD 的长为2×32=3(cm). 13.4 [解析] 连接OE ,延长EO 交CD ′于点G ,过点O 作OH ⊥B ′C 于点H ,则∠OEB ′=∠OHB ′=90°.∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′CD ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5,BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5,∴B ′H =OE =2.5,∴CH =B ′C -B ′H =1.5,∴CG =B ′E =OH =OC 2-CH 2=2.52-1.52=2.∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′,∴CF =2CG =4.故答案为4.14.解:连接CD .∵∠ABC =∠DAC ,∴AC ︵=CD ︵,∴AC =CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∴AC 2+CD 2=AD 2,即2AC 2=AD 2.∴AC =22AD =6 2. 15.解:(1)如图,连接OA .∵AC 是⊙O 的切线,OA 是⊙O 的半径,∴OA ⊥AC ,∴∠OAC =90°.∵∠ADE =25°,∴∠AOE =2∠ADE =50°,∴∠C =90°-∠AOE =90°-50°=40°.(2)∵AB =AC ,∴∠B =∠C .∵∠AOC =2∠B ,∴∠AOC =2∠C .∵∠OAC =90°,∴∠AOC +∠C =90°,∴3∠C =90°,∴∠C =30°,∴OA =12OC . 设⊙O 的半径为r .∵CE =2,∴r =12(r +2),解得r =2, ∴⊙O 的半径为216.解:(1)∵CD 是⊙O 的直径,CD ⊥AB ,∴AD ︵=BD ︵,∴∠C =12∠AOD . ∵∠AOD =∠COE ,∴∠C =12∠COE . 又∵AO ⊥BC ,∴∠C +∠COE =90°,∴∠C =30°.(2)连接OB ,由(1)知∠C =30°,∴∠AOD =60°,∴∠AOB =120°.在Rt △AOF 中,AO =1,∠AOF =60°,∴∠A =30°,∴OF =12,∴AF =32,∴AB =2AF = 3. 故S 阴影=S 扇形OAB -S △OAB =13π-34. 17.解:(1)证明:∵⊙O 的半径为2,∴OA =2.又∵P (4,2),∴PA ∥x 轴,即PA ⊥OA ,则PA 是⊙O 的切线.(2)连接OP ,OB ,过点B 作BQ ⊥OC 于点Q .∵PA ,PB 为⊙O 的切线,∴PB =PA =4,可证人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB 是⊙O 直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠A =25°,则∠C 的度数是( )A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC =3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB 的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣ =﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.15.解:作直径AD,连接CD,如图所示:∵AD是圆O的直径,∴∠ACD=90°,∴∠OAC+∠D=90°,∵∠ABC+∠D=180°,∴∠ABC﹣∠OAC=180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;==4π,②S扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.人教版数学九年级上册第二十四章圆的综合单元测试卷一.选择题1.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆2.如图,AB是⊙O的直径,∠BAD=70°,则∠ACD的度数是()A.20°B.15°C.35°D.70°3.如图,点A是量角器直径的一个端点,点B在半圆周上,点P在上,点Q在AB上,且PB=PQ.若点P对应140°(40°),则∠PQB的度数为()A.65°B.70°C.75°D.80°4.如图,点A、B、C在⊙O上,CO的延长线交AB于点D,BD=BO,∠A=50°,则∠B的度数为()A.15°B.20°C.25°D.30°5.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2 B.C.1 D.6.用48m长的篱笆在空地上围成一个正六边形绿地,绿地的面积是()A.m2B.m2C.m2D.m2 7.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.78.如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠BPA=60°,若BC为⊙O的直径,则图中阴影部分的面积为()A.3πB.πC.2πD.9.如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.﹣1≤x≤1 B.﹣≤x≤C.0≤x≤D.x>10.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=20,则AB的长是()A.9B.C.13 D.1611.如图,扇形AOB中,OA=2,C为上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.﹣B.﹣2C.﹣D.﹣2 12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,⊙O的直径AB垂直于弦CD,垂足为E,如果∠B=60°,AO=4,那么CD的长为.14.如图,正六边形ABCDEF中,边长为4,连接对角线AC、CE、AE,则△ACE的周长为.15.如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE ⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.16.如图,四边形ABCD内接于⊙O,∠BOD=120°,则∠DCE=.17.如图,AB,CD是⊙O的直径,且AB⊥CD,P为CD延长线上的一点,PE切⊙O于E.BE 交CD于F.若AB=6,DP=2,则BF=.三.解答题18.在△ABC中,以AB为直径作⊙O,⊙O交BC的中点D,过点D作DE⊥AC,垂足为E.求证:(1)DE是⊙O的切线;(2)AB=AC.19.如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求线段DE和PE的长.20.如图1,已知点A,B,C是⊙O上的三点,以AB,BC为邻边作▱ABCD,延长AD,交⊙O于点E,过点A作CE的平行线,交CD的延长线于F(1)求证:FD=FA;(2)如图2,连接AC,若∠F=40°,且AF恰好是⊙O的切线,求∠CAB的度数.21.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.22.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF =CE,CF交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.23.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC 交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.。

人教版 九年级数学 第24章 圆 综合训练(含答案)

人教版 九年级数学 第24章 圆 综合训练(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版九年级数学第24章圆综合训练一、选择题1. 把一个圆形纸片至少对折________次,才可以确定圆心()A.1 B.2 C.3 D.无数次2. 下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形3. (2020·云南)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆椎的底面圆的半径是()A.B.1 C.D.4. 一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为()A.6 dm B.5 dm C.4 dm D.3 dm5. 如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与点I重合,则图中阴影部分的周长为()A .4.5B .4C .3D .26.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD =30°,CD =43,则S 阴影=()A . 2πB . 83πC . 43πD . 38π7. 如图,⊙O 的半径为8 cm ,把劣弧AB 沿AB 折叠,使劣弧AB 经过圆心O ,再把劣弧CD 沿CD 折叠,使劣弧CD 经过AB 的中点E ,则折痕CD 的长为( )A .8 cmB .8 3 cmC .27 cmD .47 cm8.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( ) A .π3 B .π2 C .π D .2π二、填空题9.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30厘米,则BC ︵的长为________厘米(结果保留π).10. 如图,C ,D两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.11. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是________cm.12. 如图所示,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是________.13. 如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A.若∠MAB=30°,则∠B=________°.14. (2020·重庆B卷)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,23AB ,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题15. 已知一个圆锥的轴截面△ABC(如图0)是等边三角形,它的表面积为75π cm2,求这个圆锥的底面圆的半径和母线长.16. 如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D =2∠A.(1)求∠D的度数;(2)若CD=2,求BD的长.17.(2020·泰州)如图,在O中,点P为AB的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若O的半径为8,AB的度数为90 ,求线段MN的长.18. 如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2 3,弦BM 平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O的半径;(2)求证:AB+BC=BM.人教版九年级数学第24章圆综合训练-答案一、选择题1. 【答案】B2. 【答案】A[解析] ∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形.故选A.3. 【答案】D.【解析】设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.所以该圆椎的底面圆的半径是.4. 【答案】B[解析] 如图,连接OD,OB,则O,C,D三点在一条直线上.因为CD垂直平分AB,AB=8 dm,所以BD=4 dm,OD=(OC-2)dm.由勾股定理,得42+(OC-2)2=OC2,解得OC=5(dm).故选B.5. 【答案】B[解析] 设CA,CB平移后分别交AB于点M,N,连接AI,BI.由平移可知AC ∥MI ,∴∠CAI =∠AIM.∵∠CAI =∠BAI ,∴∠BAI =∠AIM ,∴AM =MI.同理BN =NI.∴△MNI 的周长=MI +NI +MN =AM +BN +MN =AB =4.故选B.6.【答案】B【解析】如解图,连接OC ,设CD 与OB 交于点E ,∵在⊙O 中,弦CD ⊥AB ,∴CE =DE =23,∵∠BCD =30°,∴∠BOD =2∠BCD =60°,在Rt △EOD 中,O E =DEtan60°=2,∴OD =4,∴BE =OB -OE =4-2=2,在△DOE 和△CBE 中,CE =DE ,∠CEB =∠DEO ,OE =BE ,∴△DOE ≌△CBE ,∴S 阴影=S 扇形OBD =60×π×42360=83π.7. 【答案】D [解析] 如图,作CD 关于AB 对称的弦C ′D ′,连接OE 并延长,交CD 于点F ,交C ′D ′于点F ′.由题意可得OF ′⊥C ′D ′,且OF ′=34×8=6(cm),所以C ′F ′=OC ′2-OF ′2= 2 7 cm ,所以CD =C ′D ′=2C ′F ′=4 7cm.8.【答案】C 【解析】如解图,连接OE 、OF ,∵AB 为⊙O 的直径,AB =12,∴AO =OB =6,∵⊙O 与DC 相切于点E ,∴∠OEC =90°,∵在▱ABCD 中,∠C =60°,AB ∥D C ,∴∠A =∠C =60°,∠AOE =∠OEC =90°,∵在△AOF 中,∠A =60°,AO =FO ,∴△AOF 是等边三角形,即∠AOF =∠A =60°,∴∠EOF =∠AOE -∠AOF =90°-60°=30°,弧EF 的长=30π×6180=π.解图二、填空题9. 【答案】20π【解析】由弧长公式得,l BC ︵的长=120π×30180=20π.10. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.11. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】π-2[解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC =12π×(22)2+12π×(22)2-12×2×2 =π-2.13. 【答案】6014. 【答案】3-π【解析】本题考查了菱形的性质和扇形面积的计算,∵在菱形ABCD 中,∠ABC =120°,∴AC ⊥BD ,∠ABO =12×120°=60°. 在Rt △AOB 中,∠AOB =90°,∠OAB =90°-60°=30°,AB =23,∴OB =3,AO =()()22233-=2,∴S △AOB =12×2×3=3.在△OEB 中,∵OE =OB ,∠ABO =60°,∴△OEB 是等边三角形,∴∠EOB =60°,∠EOF =90°-60°=30°.∵S △OEB =12×3×32=33,S 扇形EOF =4π,∴S 阴影部分=4×(3-334-4π)=3-π.因此本题答案为3-π.三、解答题15. 【答案】解:∵轴截面△ABC 是等边三角形, ∴AC =BC =2OC.由题意,得π·OC·AC +π·OC2=75π, ∴3π·OC2=75π,∴OC2=25. ∵OC>0,∴OC =5 cm , ∴AC =2OC =2×5=10(cm).即这个圆锥的底面圆的半径为5 cm ,母线长为10 cm.16. 【答案】解:(1)连接OC.∵OA =OC ,∴∠A =∠OCA , ∴∠COD =∠A +∠OCA =2∠A. ∵∠D =2∠A ,∴∠COD =∠D. ∵PD 与⊙O 相切于点C , ∴OC ⊥PD ,即∠OCD =90°, ∴∠D =12×(180°-90°)=45°.(2)由(1)可知∠COD =∠D ,∴OC =CD =2. 由勾股定理,得OD =22+22=2 2, ∴BD =OD -OB =2 2-2.17. 【答案】解:(1)连接AC . ∵弧AP=弧PB ,∴∠1=∠2,∠3=∠4∵CP ⊥AD ,∴∠CME =∠CMA =90° ∴∠A =∠5,∵∠A =∠B ,∠5=∠6, ∴∠6=∠B ,∵∠3=∠4,DN =DN , ∴△DNE ≌△DNB∴EN =BN ,∴N 为BE 的中心.(2)∵弧AB 的度数为90° ∴∠AOB =90° ∵OA =OB∴282AB OA == ∵AM =ME ,EN =BN∴1422MN AB ==【解析】(1)可先证DE =DB ,∠ADP =∠BDP ,根据三线合一可证N 为BE 的中点.(2)利用MN 为△ABE 的中位线,可得AB =2MN ,进而求得MN 的长.18. 【答案】解:(1)连接OA,OC,过点O作OH⊥AC于点H,如图①.∵∠ABC=120°,∴∠AMC=180°-∠ABC=60°,∴∠AOC=2∠AMC=120°.∵OH⊥AC,∴AH=CH=12AC=3,∠AOH=12∠AOC=60°,∴∠OAH=30°,∴OH=12OA.在Rt△AOH中,由勾股定理,得OH2+AH2=OA2,即(12OA)2+(3)2=OA2,解得OA=2(负值已舍去),故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图②.∵∠ABC=120°,BM平分∠ABC,∴∠MBC=∠ABM=12∠ABC=60°.又∵BE=BC,∴△EBC是等边三角形,∴EC=BC=BE,∠BCE=60°,∴∠BCD+∠DCE=60°.∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD.初中数学**精品文档**经过大海的一番磨砺,卵石才变得更加美丽光滑。

最新人教版初中九年级上册数学第24章《圆综合》练习题含答案

最新人教版初中九年级上册数学第24章《圆综合》练习题含答案

F第24章圆综合练习题一、与圆有关的中档题:与圆有关的证明(证切线为主)和计算(线段长、面积、三角函数值、最值等)1.如图,BD为⊙O的直径,AC为弦,AB AC=,AD交BC于E,2AE=,4ED=.(1)求证:ABE ADB△∽△,并求AB的长;(2)延长DB到F,使BF BO=,连接FA,判断直线FA与⊙O的位置关系,并说明理由. 1.解:AB AC=,ABC C∴=∠∠.C D=∠∠,ABC D∴=∠∠.又BAE DAB=∠∠,ABE ADB∴△∽△.AB AEAD AB∴=.()()224212AB AD AE AE ED AE∴==+=+⨯=.AB∴=.(2)直线FA与O 相切.连接OA.BD 为O的直径,90BAD∴=∠.在Rt ABD∆中,由勾股定理,得BD====1122BF BO BD∴===⨯=.2AB=BF BO AB∴==.(或BF BO AB OA∴===,AOB∴∆是等边三角形,F BAF∠=∠.60OBA OAB∴∠=∠=︒,30F BAF∠=∠=︒.)90OAF∴=∠.OA∴⊥AF.又点A在圆上,∴直线FA与O相切.2. 已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.2.(1)证明:连接DO .∵ABC ∆是等边三角形 ,∴∠C =60°,∠A =60°, ∵OA =OD , ∴OAD ∆是等边三角形. ∴∠ADO =60°. ∵DF ⊥BC ,∴∠CDF =30°.∴∠FDO =180°-∠ADO -∠CDF = 90°.∴DF 为⊙O 的切线.(2)∵OAD ∆是等边三角形,∴CD =AD =AO =21AB =2. Rt CDF ∆中,∠CDF =30°,∴CF =21CD =1. ∴DF =322=-CF CD . (3)连接OE ,由(2)同理可知E 为CB 中点,∴2=CE .∵1=CF ,∴1=EF . ∴233)(21=⋅+=DF OD EF S FDOE 直角梯形. ∴ππ323602602=⨯=DOES 扇形.∴π32233-=-DOE FDOE S S 扇形直角梯形.3、如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF AD ⊥. (1)请证明:E 是OB 的中点; (2)若8AB =,求CD 的长.FEDCBOA3、(1)证明:连接AC ,如图CF AD ⊥,AE CD ⊥且CF AE ,过圆心OAC AD ∴=,AC CD =,ACD ∴△是等边三角形. 30FCD ∴∠=在Rt COE △中,12OE OC =,12OE OB ∴=∴点E 为OB 的中点(2)解:在OCE t ∆R 中8AB =,142OC AB ∴==又BE OE =,2OE ∴=3241622=-=-=∴OE OC CE 243CD CE ∴==4.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC = 60︒,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作OC CD ⊥交PQ 于点D . (1)求证:△CDQ 是等腰三角形;(2)如果△CDQ ≌△COB ,求BP :PO 的值.4. (1)证明:由已知得∠ACB =90°,∠ABC =30°,∴∠Q =30°,∠BCO =∠ABC =30°. ∵CD ⊥OC ,∴∠DCQ =∠BCO =30°, ∴∠DCQ =∠Q ,∴△CDQ 是等腰三角形.(2)解:设⊙O 的半径为1,则AB =2,OC =1,AC =121=AB ,BC =3. ∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ =BC =3.∵AQ =AC +CQ =1+3,AP =23121+=AQ , ∴BP =AB -AP =2332312-=+- PO =AP -AO =2131231-=-+, ∴BP ∶PO =3.5. 已知:如图, BD 是半圆O 的直径,A 是BD 延长线上的一点,BC ⊥AE ,交AE 的延长线于点C ,交半圆O 于点E ,且E 为DF 的中点. (1)求证:AC 是半圆O 的切线;(2)若6AD AE ==,BC 的长.5.解:(1)连接OE , ∵E 为DF 的中点,∴DE EF =. ∴ OBE CBE ∠=∠.∵OE OB =,∴OEB OBE ∠=∠.∴ OEB CBE ∠=∠.∴OE ∥BC . ∵BC ⊥AC , ∴∠C=90°. ∴ ∠AEO =∠C =90°. 即OE ⊥AC . 又OE 为半圆O 的半径,∴ AC 是半圆O 的切线. (2)设O 的半径为x ,∵OE AC ⊥,∴222(6)x x +-=. ∴3x =. ∴12AB AD OD OB =++=. ∵OE ∥BC ,∴AOE ABC △∽△.∴AO OE AB BC =. 即9312BC= ∴4BC =.6.如图,ABC △内接于⊙O ,过点A 的直线交⊙O 于点P ,交BC 的延长线于点D ,且AB 2=AP ·AD (1)求证:AB AC =;(2)如果60ABC ∠=,⊙O 的半径为1,且P 为弧AC 的中点,求AD 的长.6.解:(1)证明:联结BP .∵ AB 2=AP·AD ,∴AB AP =AD AB. ∵ ∠BAD=∠PAB ,∴ △ABD ∽△APB , ∴ ∠ABC=∠APB ,∵∠ACB=∠APB , ∴ ∠ABC=∠ACB .∴ AB=AC.(2)由(1)知AB=AC . ∵∠ABC=60°,∴△ABC 是等边三角形.∴∠BAC=60°, ∵P 为弧AC 的中点,∴∠ABP=∠PAC=12 ∠ABC=30°,∴∠BAP=90°, ∴ BP 是⊙O 的直径, ∴ BP =2, ∴ AP =12BP=1,D在Rt △PAB 中,由勾股定理得 AB 2= BP 2-AP 2=3, ∴ AD=AB 2AP=3.7.如图,在△ABC 中,∠C =90°, AD 是∠BAC 的平分线,O 是AB 上一点, 以OA 为半径的⊙O 经过点D .(1)求证: BC 是⊙O 切线; (2)若BD =5, DC =3, 求AC 的长.7.(1)证明: 如图1,连接OD .∵ OA =OD , AD 平分∠BAC ,∴ ∠ODA =∠OAD , ∠OAD =∠CAD . ∴ ∠ODA =∠CAD . ∴ OD //AC . ∴ ∠ODB =∠C =90︒.∴ BC 是⊙O 的切线. 图1(2)解法一: 如图2,过D 作DE ⊥AB 于E .∴ ∠AED =∠C =90︒.又∵ AD =AD , ∠EAD =∠CAD , ∴ △AED ≌△ACD . ∴ AE =AC , DE =DC =3.在Rt △BED 中,∠BED =90︒,由勾股定理,得BE =422=-DE BD . 图2 设AC =x (x >0), 则AE =x .在Rt △ABC 中,∠C =90︒, BC =BD +DC =8, AB =x +4, 由勾股定理,得x 2 +82= (x +4) 2. 解得x =6. 即 AC =6. 解法二: 如图3,延长AC 到E ,使得AE =AB .∵ AD =AD , ∠EAD =∠BAD ,∴ △AED ≌△ABD . ∴ ED =BD=5.在Rt △DCE 中,∠DCE =90︒, 由勾股定理,得CE =422=-DC DE . ………… ……………5分 图3在Rt △ABC 中,∠ACB =90︒, BC =BD +DC =8, 由勾股定理,得 AC 2 +BC 2= AB 2. 即 AC 2 +82=(AC +4) 2.解得 AC =6.8.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC.(1)求证:∠ACO=∠BCD ;(2)若BE=2,CD=8,求AB 和AC 的长.8、证明:(1)连结BD ,∵AB 是⊙O 的直径,CD ⊥AB ,∴. ∴∠A=∠2.又∵OA=OC ,∴∠1=∠A .∴∠1=∠2.即:∠ACO=∠BCD .解:(2)由(1)问可知,∠A=∠2,∠AEC=∠CEB.∴△ACE ∽△CBE . ∴.CEAEBE CE =∴CE 2=BE·AE . 又CD=8,∴CE=DE=4.∴AE=8.∴AB=10.∴AC=.548022==+CE AE9.如图,已知BC 为⊙O 的直径,点A 、F 在⊙O 上,BC AD ⊥,垂足为D ,BF 交AD 于E ,且BE AE =. (1)求证:AF AB =; (2)如果53sin =∠FBC ,54=AB ,求AD 的长.A BCDEO GFO G FHA BC DE9.解:(1)延长AD 与⊙O 交于点G .∵ 直径BC ⊥弦AG 于点D ,∴ . ∴ ∠AFB =∠BAE .∵ AE =BE ,∴ ∠ABE =∠BAE .∴ ∠ABE =∠AFB . ∴ AB =AF . (2)在Rt △EDB 中,sin ∠FBC =53=BE ED . 设ED =3x ,BE =5x ,则AE =5x ,AD =8x ,在Rt △EDB 中,由勾股定理得BD =4x . 在Rt △ADB 中,由勾股定理得BD 2+AD 2=AB 2.∵ AB =45,∴ 222)54()8()4(=+x x .∴ x =1(负舍).∴ AD =8x =8.10.如图,已知直径与等边ABC ∆的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O 与圆O 相交于点F 、G 。

人教版 九年级数学 上册 第24章 圆 综合训练(含答案)

人教版 九年级数学 上册 第24章 圆 综合训练(含答案)

人教版九年级数学上册第24章圆综合训练一、选择题1. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点2. 2019·赤峰如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°3. 如图0,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2 3,则图中阴影部分的面积为()A.4π B.2πC.π D.2π34. 2019·梧州如图,在半径为13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2 6 B.2 10 C.2 11 D.4 35. 2019·滨州如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°6. 小明用图中的扇形纸片作一个圆锥的侧面.已知该扇形的半径是5 cm,弧长是6π cm,那么这个圆锥的高是()A.4 cm B.6 cm C.8 cm D.12 cm7. 在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点C为圆心,以2.5 cm为半径画圆,则⊙C与直线AB的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定8. 改编如图①所示物体由两个圆锥组成,在从正面看到的形状图中(如图②),∠A=90°,∠ABC=105°.若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B. 3 C.32 D. 29. 下列用尺规等分圆周的作法正确的有()①在圆上依次截取等于半径的弦,就可以六等分圆;②作相互垂直的两条直径,就可以四等分圆;③按①的方法将圆六等分,六个等分点中三个不相邻的点三等分圆;④按②的方法将圆四等分,再平分四条弧,就可以八等分圆.A.4个B.3个C.2个D.1个10. 如图,⊙C的半径为1,圆心的坐标为(3,4),P(m,n)是⊙C内或⊙C上的一个动点,则m2+n2的最小值是()A.9 B.16 C.25 D.36二、填空题11. 如图1,已知△ABC的外心为O,BC=10,∠BAC=60°,分别以AB,AC 为腰向三角形外作等腰直角三角形ABD与ACE,连接BE,CD交于点P,则OP长的最小值是________.12. (2019•娄底)如图,C、D两点在以AB为直径的圆上,,,则__________.13. 已知⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是方程x 2-ax +14=0的两个根.若⊙O 1与⊙O 2是等圆,则a 2021的值为________.14. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.15. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.16. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.17. 2019·兴化期中已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与△ABC 的边有且只有两个公共点时,DO 的取值范围为________.18. 如图,在Rt △ABC 中,∠C =90°,BC =3,点O 在AB 上,OB =2,以OB长为半径的⊙O 与AC 相切于点D ,交BC 于点F ,OE ⊥BC 于点E ,则弦BF 的长为________.三、解答题19. 如图,AB 是⊙O的直径,C 为BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF. (1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.20. 如图,以△ABC 的边BC 为直径作⊙O ,点A 在⊙O 上,点D 在线段BC 的延长线上,AD =AB ,∠D =30°, (1)求证:直线AD 是⊙O 的切线;(2)若直径BC =4,求图中阴影部分的面积.21. 2018·牡丹江如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .22. 已知:如图4所示,∠PAC =30°,在射线AC 上顺次截取AD =3 cm ,DB =10 cm ,以DB 为直径作⊙O 交射线AP 于E ,F 两点,求圆心O 到AP 的距离及EF 的长.23. 如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与⊙O 交于点F ,连接DF ,DC.已知OA =OB ,CA =CB. (1)求证:直线AB 是⊙O 的切线; (2)求证:∠CDF =∠EDC ;(3)若DE =10,DF =8,求CD 的长.人教版 九年级数学 上册 第24章 圆 综合训练-答案一、选择题1. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.2. 【答案】D3. 【答案】D[解析] 如图,连接OD.∵CD⊥AB,∴CE=DE=3,∠CEO=∠DEO=90°.又∵OE=OE,∴△COE≌△DOE,故S△COE=S△DOE,即可得阴影部分的面积等于扇形OBD的面积.∵∠CDB=30°,∴∠COB=60°,∴∠OCD=30°,∴OE=12OC.在Rt△COE中,CE=3,由勾股定理可得OC=2,∴OD=2.∵△COE≌△DOE,∴∠DOE=∠COE=60°,∴S扇形OBD=60π·22360=23π,即阴影部分的面积为2π3.故选D.4. 【答案】C5. 【答案】B[解析] 如图,连接AD.∵AB为⊙O的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.6. 【答案】A[解析] 设圆锥的底面圆的半径是r cm ,则2πr =6π,解得r =3,则圆锥的高是52-32=4(cm).7.【答案】A 【解析】如解图,在Rt △ABC 中,AC =4,BC =3,由勾股定理得AB =5.过C 作CD ⊥AB 于D ,则S △ABC =12AC ·BC =12AB ·CD ,解得CD =2.4<2.5,∴直线AB 与⊙C 相交.解图8. 【答案】D[解析] ∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设AB 的长为R ,则BD 的长为2R.∵上面圆锥的侧面积为1,即1=12lR ,∴l =2R ,∴下面圆锥的侧面积为12·2R ·2R = 2.故选D.9. 【答案】A10. 【答案】B[解析] 如图,连接OC 交⊙C 于点P ′.∵圆心C 的坐标为(3,4),点P 的坐标为(m ,n ), ∴OC =5,OP =m2+n2,∴m 2+n 2是点P 到原点的距离的平方,∴当点P 运动到线段OC 上,即点P ′处时,点P 离原点最近,即m 2+n 2取得最小值,此时OP =OC -PC =5-1=4,即m 2+n 2=16.二、填空题11. 【答案】5-533 [解析] ∵∠BAD =∠CAE =90°,∴∠DAC =∠BAE .在△DAC 和△BAE 中,⎩⎨⎧AD =AB ,∠DAC =∠BAE ,AC =AE ,∴△DAC ≌△BAE (SAS), ∴∠ADC =∠ABE ,从而∠PDB +∠PBD =90°, 即∠DPB =90°,从而∠BPC =90°, ∴点P 在以BC 为直径的圆上.如图,过点O 作OH ⊥BC 于点H ,连接OB ,OC . ∵△ABC 的外心为O ,∠BAC =60°, ∴∠BOC =120°.又∵BC =10, ∴OH =53 3,∴OP 长的最小值是5-53 3.12. 【答案】1【解析】∵AB 为直径,∴,∵,∴.故答案为:1.13. 【答案】1[解析] ∵⊙O 1与⊙O 2是等圆,∴r 1=r 2.∵r 1和r 2是方程x 2-ax +14=0的两个根,∴r 1r 2=14,r 1+r 2=a ,∴r 1=r 2=12,从而a =1,∴a 2021=12021=1.14. 【答案】8[解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.15. 【答案】15[解析] ∵OC ⊥OB ,∴∠COB =90°.又∵OC =OB ,∴△COB 是等腰直角三角形, ∴∠OBC =45°.∵OA =AB ,OA =OB ,∴OA =AB =OB , ∴△AOB 是等边三角形,∴∠OBA =60°, ∴∠ABC =∠OBA -∠OBC =15°.16. 【答案】t =2或-1≤t <1 [解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C 或从直线过点A 开始到直线过点B 结束(不包括直线过点A ).直线y =x +t 与x 轴所形成的锐角是45°.当点O 到直线l 的距离OC =1时,直线l 与半圆O 相切,设直线l 与y 轴交于点D ,则OD =2,即t = 2.当直线过点A 时,把A (-1,0)代入直线l 的解析式,得t =y -x =1. 当直线过点B 时,把B (1,0)代入直线l 的解析式,得t =y -x =-1. 即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.17. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO<33时,⊙O与△ABC的BC边有且只有两个公共点,(2)如图②所示,当DO=33时,⊙O与△ABC的边有三个公共点;(3)如图③所示,当⊙O经过△ABC的顶点A时,⊙O与△ABC的边有三个公共点,则当33<DO≤2 33时,⊙O与△ABC的边有四个或三个公共点.(4)如图④所示,当2 33<DO<3时,⊙O与△ABC的边有两个公共点.综上,当0<DO<33或2 33<DO<3时,⊙O与△ABC的边只有两个公共点.故答案为0<DO<33或2 33<DO< 3.18. 【答案】2 [解析] 如图,连接OD.∵OE ⊥BF 于点E ,∴BE =12BF.∵AC 是⊙O 的切线,∴OD ⊥AC ,∴∠ODC =∠C =∠OEC =90°, ∴四边形ODCE 是矩形,∴EC =OD =OB =2.又∵BC =3,∴BE =BC -EC =3-2=1,∴BF =2BE =2.三、解答题19. 【答案】解:(1)证明:∵C 为BD ︵的中点,∴CD ︵=BC ︵.∵AB 是⊙O 的直径,且CF ⊥AB ,∴BC ︵=BF ︵,∴CD ︵=BF ︵,∴CD =BF.在△BFG 和△CDG 中,⎩⎨⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴△BFG ≌△CDG(AAS).(2)解法一:如图①,连接OF.设⊙O 的半径为r.∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,BD2=AB2-AD2,即BD2=(2r)2-22.在Rt △OEF 中,OF2=OE2+EF2,即EF2=r2-(r -2)2.由(1)知CD ︵=BC ︵=BF ︵,∴BD ︵=CF ︵,∴BD =CF ,∴BD2=CF2=(2EF)2=4EF2,即(2r)2-22=4[r2-(r -2)2],解得r =1(不合题意,舍去)或r =3,∴BF2=EF2+BE2=32-(3-2)2+22=12,∴BF =2 3.解法二:如图②,连接OC ,交BD 于点H.∵C 是BD ︵的中点,∴OC ⊥BD ,∴DH =BH.∵OA =OB ,∴OH =12AD =1.∵∠COE =∠BOH ,∠OEC =∠OHB =90°,OC =OB ,∴△COE ≌△BOH(AAS),∴OE=OH=1,∴OC=OB=OE+BE=3.∵CF⊥AB,∴CE=EF=OC2-OE2=32-12=2 2,∴BF=BE2+EF2=22+(2 2)2=2 3.20. 【答案】解:(1)证明:如图,连接OA.∵AD=AB,∠D=30°,∴∠B=∠D=30°,∴∠DAB=120°.∵BC是⊙O的直径,∴∠BAC=90°,∴∠DAC=30°,∴∠BCA=60°.∵AO=CO,∴△ACO是等边三角形,∴∠CAO=60°,∴∠DAO=∠CAO+∠DAC=90°,即AD⊥AO.又∵AO是⊙O的半径,∴直线AD是⊙O的切线.(2)由(1)知Rt△ADO中,AO=2,∠D=30°,∴OD=2AO=4,∴AD=2 3,∴SRt△ADO=12×2 3×2=2 3.∵△ACO 是等边三角形,∴∠AOD =60°,∴S 扇形OAC =60π×22360=2π3,∴S 阴影=SRt △ADO -S 扇形OAC =2 3-2π3.21. 【答案】证明:如图,延长AD 交⊙O 于点E ,∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD .∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD .22. 【答案】解: 如图,过点O 作OG ⊥AP 于点G ,连接OF.∵DB =10 cm ,∴OD =OF =5 cm ,∴AO =AD +OD =3+5=8(cm).∵∠PAC =30°,∴OG =12AO =12×8=4(cm).∵OG ⊥EF ,∴EG =GF =12EF.∵GF =OF2-OG2=52-42=3(cm),∴EF =2GF =6 cm ,∴圆心O 到AP 的距离为4 cm ,EF 的长为6 cm.23. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.。

人教版 九年级数学上册 第24章 圆 综合复习(含答案)

人教版 九年级数学上册  第24章 圆 综合复习(含答案)

人教版 九年级数学 第24章 圆 综合复习一、选择题(本大题共10道小题)1. 已知⊙O 的半径为5 cm ,P 是⊙O 内一点,则OP 的长可能是( )A .4 cmB .5 cmC .6 cmD .7 cm2. 在数轴上,点A 所表示的实数为5,点B 所表示的实数为a ,⊙A 的半径为3,要使点B 在⊙A 内,则实数a 的取值范围是( ) A .a >2B .a >8C .2<a <8D .a <2或a >83. 已知半径为10的⊙O 和直线l 上一点A ,且OA =10,则直线l 与⊙O 的位置关系是( ) A .相切 B .相交 C .相离 D .相切或相交4. 如图,在半径为5的⊙O 中,弦AB =6,OP ⊥AB ,垂足为P ,则OP 的长为( )A .3B .2.5C .4D .3.55. 2020·武汉模拟在Rt⊙ABC 中,∠BAC =90°,AB =8,AC =6,以点A 为圆心,4.8为半径的圆与直线BC 的公共点的个数为( ) A .0B .1C .2D .不能确定6. 如图AB 为半圆O 的直径,AB =4,C ,D 为AB ︵上两点,且AC ︵=15BD ︵.若⊙CED =52⊙COD ,则BD ︵的长为( )图A.59πB.78πC.89πD.109π7. 如图是由7个全等的正六边形组成的网格,正六边形的顶点称为格点,⊙ABC的顶点都在格点上,设定AB 边如图所示,则使⊙ABC 是直角三角形的格点有( )A .10个B .8个C .6个D .4个8. 如图,以AD 为直径的半圆O 经过Rt⊙ABC 斜边AB 的两个端点,交直角边AC 于点E.B ,E 是半圆弧的三等分点,BE ︵的长为2π3,则图中阴影部分的面积为( )图A.π9 B.3π9C.3 32-3π2D.3 32-2π39. 运用图形变化的方法研究下列问题:如图,AB是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8.则图中阴影部分的面积是( )A.252π B .10π C .24+4π D .24+5π10.⊙⊙⊙⊙⊙⊙O ⊙⊙⊙⊙5⊙⊙AB ⊙CD ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙AOB ⊙⊙COD ⊙⊙⊙AOB ⊙⊙COD ⊙⊙⊙⊙CD ⊙6⊙⊙⊙AB ⊙⊙⊙( )A⊙6 B⊙8 C⊙5 2 D⊙5 3二、填空题(本大题共7道小题)11. 如图,AB为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.12. 如图,已知扇形OAB 的圆心角为60°,扇形的面积为6π,则该扇形的弧长为________.13. 已知⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是方程x 2-ax +14=0的两个根.若⊙O 1与⊙O 2是等圆,则a 2021的值为________.14. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)15. 一个圆锥形漏斗,某同学用三角尺测得其高度的尺寸(单位:cm)如图所示,则该圆锥形漏斗的侧面积为________cm 2.16. 2019·兴化期中已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与⊙ABC 的边有且只有两个公共点时,DO 的取值范围为________.17. 佳佳对科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折(如图①所示),旋转放置,做成科学方舟模型(如图②所示).图①中正五边形的边心距OB 为2,图②中AC 为科学方舟船头A 到船底的距离,请你计算AC +12AB =________.三、解答题(本大题共4道小题)18. 如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E.求证:AD =BE.19. 定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图2,在损矩形ABCD 中,∠ABC =∠ADC =90°,则该损矩形的直径是线段________.(2)①在损矩形ABCD 内是否存在点O ,使得A ,B ,C ,D 四个点都在以点O 为圆心的同一个圆上?如果有,请指出点O 的具体位置;②如图2,直接写出符合损矩形ABCD 的两个结论(不再添加任何线段或点).20. 已知AB =4 cm ,画图并用文字说明满足下列条件的图形.(1)到点A 和点B 的距离都等于3 cm 的所有点组成的图形; (2)到点A 和点B 的距离都不大于3 cm 的所有点组成的图形;(3)到点A 的距离大于3 cm ,且到点B 的距离小于3 cm 的所有点组成的图形.21. 如图①,在等腰三角形ABC 中,∠BAC =120°,AD 平分∠BAC ,且AD =6,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F. (1)求由EF ︵及线段FC ,CB ,BE 围成的图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠(如图②),求这个圆锥的高h.人教版九年级数学第24章圆综合复习-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】C3. 【答案】D[解析] 若OA⊥l,则圆心O到直线l的距离就是OA的长,等于半径,所以直线l与⊙O相切;若OA与直线l不垂直,根据垂线段最短,可知圆心O到直线l的距离小于10,即小于半径,所以直线l与⊙O相交.4. 【答案】C5. 【答案】B6. 【答案】D7. 【答案】A[解析] 如图,当AB是直角边时,点C共有6个位置,即有6个直角三角形;当AB是斜边时,点C共有4个位置,即有4个直角三角形.综上所述,使⊙ABC是直角三角形的格点有6+4=10(个).故选A.8. 【答案】D9. 【答案】A[解析] 如图,连接OC,OD,OE,OF.∵AB ∥CD ,∴S⊙ACD =S⊙OCD ,∴AB 上方的阴影面积=S 扇形OCD. 同理,AB 下方的阴影面积=S 扇形OEF.延长EO 交⊙O 于点G ,连接FG ,则∠EFG =90°. ∴FG =EG2-EF2=102-82=6. ∵CD =6,∴FG =CD ,∴∠FOG =∠COD ,∴S 扇形OCD =S 扇形OFG ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OFG +S 扇形OEF =S 半圆=12π×52=252π.故选A.10. 【答案】B[解析] 如图,延长AO 交⊙O 于点E ,连接BE ,则⊙AOB +⊙BOE =180°. 又⊙⊙AOB +⊙COD =180°, ⊙⊙BOE =⊙COD , ⊙BE =CD =6.⊙AE 为⊙O 的直径,⊙⊙ABE =90°, ⊙AB =AE 2-BE 2=8.二、填空题(本大题共7道小题)11. 【答案】312. 【答案】2π[解析] 设扇形的半径是R ,则60·π·R2360=6π,解得R =6(负值已舍去).设扇形的弧长是l ,则12lR =6π,即3l =6π,解得l =2π.故答案为2π.13. 【答案】1[解析] ∵⊙O 1与⊙O 2是等圆,∴r 1=r 2.∵r 1和r 2是方程x 2-ax +14=0的两个根, ∴r 1r 2=14,r 1+r 2=a ,∴r 1=r 2=12,从而a =1,∴a 2021=12021=1.14. 【答案】6π[解析] 由题意易知⊙AOB =90°,OA =OB ,⊙⊙ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15. 【答案】15π16. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D 为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO <33时,⊙O 与⊙ABC 的BC 边有且只有两个公共点,(2)如图②所示,当DO =33时, ⊙O 与⊙ABC 的边有三个公共点;(3)如图③所示,当⊙O 经过⊙ABC 的顶点A 时,⊙O 与⊙ABC 的边有三个公共点,则当33<DO ≤2 33时,⊙O 与⊙ABC 的边有四个或三个公共点.(4)如图④所示,当2 33<DO <3时,⊙O 与⊙ABC 的边有两个公共点.综上,当0<DO <33或2 33<DO <3时,⊙O 与⊙ABC 的边只有两个公共点. 故答案为0<DO <33或2 33<DO < 3.17. 【答案】52 2 [解析] 如图①,连接OF ,OE .由题意,知AB ⊥EF ,则S 正五边形AGFED =5×S △OEF =5×(12EF ·OB )=2.5×2EF =5 2BE .如图②,连接AE .S 正五边形AGFED =2×S 四边形ABED =2×(S △ABE +S △ADE )=2×(12AB ·BE +12DE ·AC )=AB ·BE +DE ·AC =AB ·BE +2BE ·AC =BE ·(AB +2AC ),∴5 2BE =BE ·(AB +2AC ). ∴AB +2AC =5 2,∴AC +12AB =52 2.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC.∵AC ︵=CB ︵, ∴∠AOC =∠BOC.∵CD ⊥OA 于点D ,CE ⊥OB 于点E , ∴∠CDO =∠CEO =90°. 在⊙COD 与⊙COE 中,⎩⎨⎧∠AOC =∠BOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS),∴OD =OE. 又∵AO =BO ,∴AO -OD =BO -OE ,即AD =BE.19. 【答案】解:(1)AC(2)①在损矩形ABCD 内存在点O ,使得A ,B ,C ,D 四个点都在以点O 为圆心的同一个圆上,O 是线段AC 的中点.②答案不唯一,如损矩形ABCD 是圆内接四边形,∠ADB =∠ACB 等.20. 【答案】解:(1)如图①中的点C 和点D.(2)如图①中的阴影部分(包括边界).(3)如图②中的阴影部分(不包括边界).21. 【答案】解:(1)∵在等腰三角形ABC 中,∠BAC =120°,∴AB =AC ,∠B =∠C =30°.∵AD 平分∠BAC ,∴AD ⊥BC ,BD =CD.在Rt⊙ABD 中,由∠B =30°,AD =6,可得AB =12,BD =6 3,∴BC =2BD =12 3,∴由EF ︵及线段FC ,CB ,BE 围成的图形(图中阴影部分)的面积=S⊙ABC -S 扇形AEF =12×6×12 3-120·π·62360=36 3-12π.(2)设圆锥的底面圆的半径为r.根据题意,得2πr =120·π·6180,解得r =2,∴这个圆锥的高h =62-22=4 2.。

人教版数学九年级上册第24章圆综合训练(一)

人教版数学九年级上册第24章圆综合训练(一)

九年级上册第24章综合训练(一)1.如图,点B为⊙O外一点,点A为⊙O上一点,点P为OB上一点且BP=BA,连接AP 并延长交⊙O于点C,连接OC,OC⊥OB.(1)求证:AB是⊙O的切线;(2)若OB=10,⊙O的半径为8.求AP的长.2.如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,连接CD;(1)若∠CAD=23°,求∠BAC的度数;(2)若∠ACD=45°,AC=13,BC=10,求CD的长.3.如图,AB为⊙O的直径,C,D为⊙O上的两点,∠BAC=∠DAC,过点C作直线EF ⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若∠BAC=∠DAC=30°,BC=2,求劣弧的长l.4.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=10.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为6,求线段BP的长.5.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求⊙O的半径.6.如图,在等腰△ABC中,AB=BC,∠A=30°,O为线段AC上一点,以O为圆心,线段OC的长为半径画圆恰好经过点B,与AC的另一个交点为D.(1)求证:AB是圆O的切线;(2)若⊙O的半径为1,求图中阴影部分的面积.7.如图,在△ABC中,AB=CB,AB是⊙O的直径,D为⊙O上一点,且弧AD=弧BD,直线l经过点C、D,连接AD,交BC于点E,若∠CAD=∠CBA.(1)求证:直线l是⊙O的切线;(2)求的值.8.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.9.如图,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.10.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.参考答案1.(1)证明:∵BP=BA,OA=OC,∴∠BAP=∠BP A,∠P AO=∠C,∵OC⊥OB,∴∠COP=90°,∴∠OPC+∠C=90°,∵∠OPC=∠BP A,∴∠BAP=∠OPC,∴∠BAP+∠OAP=90°,即∠BAO=90°,∴AB⊥OA,又∵OA为⊙O的半径,∴AB是⊙O的切线;(2)解:如图,作BD⊥AP于点D,∵⊙O的半径为8,∴CO=OA=8,由(1)得:∠BAO=90°,∴AB===6,∴BP=BA=6,∴OP=OB﹣BP=4,在Rt△CPO中,OP=4,CO=8,∴CP===4,∵BA=BP,BD⊥AP,∴AD=PD,∠BDP=90°=∠COP,∵∠BPD=∠CPO,∴△BPD∽△CPO,∴=,即=,解得:PD=,∴AP=2PD=.2.解:(1)∵AC⊥BD,∴∠BEC=90°,∵∠CAD=∠CBE=23°,∴∠ACB=90°﹣23°=67°,∵AB=AC,∴∠ABC=∠ACB=67°,∴∠BAC=180°﹣67°﹣67°=46°.(2)∵AC⊥BD,∴∠AEB=∠CED=90°,∵∠ACD=∠ABD=45°,∴△ABE,△CED都是等腰直角三角形,∵AC=AB=13,∴AE=AB=,∴EC=AC﹣AE=13﹣,∴CD=EC=13﹣13.3.(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=∠DAC=30°,BC=2,∴∠BOC=60°,AB=2BC=4,∴OB=AB=2,∴的长==π.4.(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CP A,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CP A=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=10,OB=OP=6,由勾股定理,得:AB=8,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CP A,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=8,AP=OA﹣OP=4,∴PC==4,∴PD==,∴BP=2PD=.5.解:(1)线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+2)2=(2)2+R2,解得:R=4,即⊙O的半径是4.6.解:(1)连接OB,∵AB=BC,∴∠C=∠A=30°,∠CBA=120°,∵OC=OB,∴∠OBC=∠C=30°,∵OB是⊙O的半径,∴AB是圆O的切线.(2)∵∠A=30°,OB=1,∴AB=,∴S△ABO=×1×=,∵S扇形OBD==,∴S阴影=S△ABO﹣S扇形OBD=.7.解:(1)如图1,连接BD,连接OD,过点C作CF⊥AB于点F,∵,∴∠DAB=∠ABD,∵AB为⊙O的直径,∴∠DAB=∠DBA=45°,设∠ABC=α,∵BA=BC,∴∠BAC=∠BCA=,∵∠CAD=∠CBA=α,∴∠BAC=∠BAD+∠CAD=45°+α,∴,∴α=30°,∴CF=,∵,∴OD=CF,∵,∴AD=BD,∵OA=OB,∴OD⊥AB,∵DP⊥AB,∴CF∥OD∴四边形ODCF是矩形,∴∠ODC=90°,∴直线l是⊙O的切线;(2)如图2,过点E作EG⊥AB于点G,由(1)知,∠CAD=∠ABE=30°,CD∥AB,∴∠ADC=∠EAB=45°,则△ACD∽△BEA,∴,∴AE=CD,∵∠DAB=45°、∠ABC=30°,∴BE=2EG=2×AE=AE=CD=2CD,∴.8.(1)证明:连接OF,如图1所示:∵CD⊥AB,∴∠DBC+∠C=90°,∵OB=OF,∴∠DBC=∠OFB,∵EF=EC,∴∠C=∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣90°=90°,∴OF⊥EF,∵OF为⊙O的半径,∴EF是⊙O的切线;(2)解:连接AF,如图2所示:∵AB是⊙O的直径,∴∠AFB=90°,∵D是OA的中点,∴OD=DA=OA=AB=×4=1,∴BD=3OD=3,∵CD⊥AB,CD=AB=4,∴∠CDB=90°,由勾股定理得:BC===5,∵∠AFB=∠CDB=90°,∠FBA=∠DBC,∴△FBA∽△DBC,∴=,∴BF===,∴CF=BC﹣BF=5﹣=.9.解:(1)证明:连接OC,如下图所示:∵CD为圆O的切线,∴∠OCD=90°,∴∠D+∠OCD=180°,∴OC∥AD,∴∠DAC=∠ACO,又OC=OA,∴∠ACO=∠OAC,∴∠DAC=∠OAC,∴AC平分∠DAB.(2)四边形EAOC为菱形,理由如下:连接EC、BC、EO,过C点作CH⊥AB于H点,如下图所示,由圆内接四边形对角互补可知,∠B+∠AEC=180°,又∠AEC+∠DEC=180°,∴∠DEC=∠B,又∠B+∠CAB=90°,∠DEC+∠DCE=90°,∴∠CAB=∠DCE,又∠CAB=∠CAE,∴∠DCE=∠CAE,且∠D=∠D,∴△DCE∽△DAC,设DE=x,则AE=2x,AD=AE+DE=3x,∴,∴CD2=AD•DE=3x2,∴,在Rt△ACD中,,∴∠DAC=30°,∴∠DAO=2∠DAC=60°,且OA=OE,∴△OAE为等边三角形,由同弧所对的圆周角等于圆心角的一半可知:∠EOC=2∠EAC=60°,∴△EOC为等边三角形,∴EA=AO=OE=EC=CO,即EA=AO=OC=CE,∴四边形EAOC为菱形.另解:连接EC,过点O作OF⊥AD于点F,∴AF=EF=AE=DE,∵∠OCD=∠CDF=∠OFD=90°,∴四边形OCDF是矩形,∴OC=DF=DE+EF=2DE,∴OC∥AE,OC=AE,∴四边形OCEA是平行四边形,∵OA=OC,∴四边形OCEA是菱形.10.(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36=54,∴矩形PBQE的面积与正六边形ABCDEF的面积之比=.。

人教版 九年级数学上册 第24章 圆 综合训练(含答案)

人教版 九年级数学上册  第24章 圆 综合训练(含答案)

人教版九年级数学第24章圆综合训练一、选择题(本大题共10道小题)1. 如图,在边长为4的正方形ABCD中,以点B为圆心,AB长为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8-πB.16-2πC.8-2πD.8-π2. 下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,它们所对的弦也相等D.等弦所对的圆心角相等3. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线4. 在半径为6 cm的圆中,长为2π cm的弧所对的圆周角的度数为() A.30°B.45°C.60°D.90°5. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A .PA=PB B .∠BPD=∠APDC .AB ⊥PD D .AB 平分PD6. 2019·安徽月考如图,正五边形ABCDE 内接于⊙O ,过点A 作⊙O 的切线交对角线DB 的延长线于点F ,则下列结论不成立的是( )A .AE ∥BFB .AF ∥CDC .DF =3AFD .AB =BF7. 已知A ,B ,C 为平面上的三点,AB =2,BC =3,AC =5,则( )A .可以画一个圆,使A ,B ,C 都在圆周上 B .可以画一个圆,使A ,B 在圆周上,C 在圆内 C .可以画一个圆,使A ,C 在圆周上,B 在圆外D .可以画一个圆,使A ,C 在圆周上,B 在圆内8. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶99. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160 mm,直角顶点A到轮胎与地面接触点B的距离AB为320 mm,请帮小名同学计算轮胎的直径为()A.350 mm B.700 mmC.800 mm D.400 mm10. 如图,△ABC的内心为I,连接AI并延长交△ABC的外接圆于点D,则线段DI与DB的关系是()A.DI=DB B.DI>DBC.DI<DB D.不确定二、填空题(本大题共6道小题)11. 如图,点A,B,C在☉O上,BC=6,∠BAC=30°,则☉O的半径为.12. 若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是________.13. 如图,⊙O的半径为3,P是CB延长线上一点,OP=5,PA切⊙O于点A,则PA=________.14. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.15. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.16. 如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形的边长为 6 cm,则该莱洛三角形的周长为________ cm.三、解答题(本大题共5道小题)17. 如图,已知AB是半圆O的直径,弦CD∥AB,点P,Q分别在线段OC,CD上,且DQ=OP.求证:AP=OQ.18. 一个圆锥的高为3 3,侧面展开图半圆,求:(1)圆锥的母线长与底面圆半径的比;(2)圆锥的全面积.19.如图,AB为⊙O的直径,C,D是半圆O的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.20.如图,已知等腰直角三角形ABC,∠ACB=90°,D是斜边AB的中点,且AC=BC=16分米,以点B为圆心,BD长为半径画弧,交BC于点F,以点C为圆心,CD长为半径画弧,与AC,BC分别交于点E,G.求阴影部分的面积.21. 如图,△ABC是等边三角形,AO⊥BC,垂足为O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G,F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长.人教版九年级数学第24章圆综合训练-答案一、选择题(本大题共10道小题)1. 【答案】C[解析]在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=·AD·AB=8,S扇形ABE==2π,∴S阴影=S△ABD-S扇形ABE=8-2π.故选C.2. 【答案】B3. 【答案】B4. 【答案】A[解析] 设长为2π cm的弧所对的圆心角的度数为n°,则nπR180=2π,解得n=60.∴这条弧所对的圆心角是60°,即所对的圆周角是30°.故选A.5. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.6. 【答案】C7. 【答案】D[解析] 由题意可知A,B,C三点在同一直线上,且点B在点A,C之间,因此过点A,C可以画一个圆,且点B在圆内.8. 【答案】D9. 【答案】C10. 【答案】A[解析] 连接BI,如图.∵△ABC的内心为I,∴∠1=∠2,∠5=∠6.∵∠3=∠1,∴∠3=∠2.∵∠4=∠2+∠6,∠DBI=∠3+∠5,∴∠4=∠DBI,∴DI=DB.故选A.二、填空题(本大题共6道小题)11. 【答案】6[解析]连接OB,OC.∵∠BOC=2∠BAC=60°,OB=OC,∴△BOC 是等边三角形,∴OB=BC=6,故答案为6.12. 【答案】3[解析] 设该圆锥底面圆的半径是r,则πr×5=15π,解得r=3.13. 【答案】4[解析] ∵PA切⊙O于点A,∴OA⊥PA.∵在Rt△OPA中,OP=5,OA=3,∴PA=OP2-OA2=4.14. 【答案】10或70[解析]作OD⊥AB于C,OD交☉O于点D,连接OB.由垂径定理得:BC=AB=30 cm.在Rt△OBC中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm时,圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm时,水面上升的高度为:40+30=70(cm).综上可得,水面上升的高度为10 cm或70 cm.故答案为10或70.15. 【答案】2π-4[解析] 如图所示,由题意,得阴影部分的面积=2(S扇形OAB-S△OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.16. 【答案】6π[解析] 以边长为半径画弧,这三段弧的半径为正三角形的边长,即6 cm,圆心角为正三角形的内角度数,即60°,所以每段弧的长度为60·π·6 180=2π(cm),所以该莱洛三角形的周长为2π×3=6π(cm).三、解答题(本大题共5道小题)17. 【答案】证明:连接OD.∵OC=OD,∴∠C=∠D.∵CD ∥AB ,∴∠C =∠AOP , ∴∠D =∠AOP.又∵OP =DQ ,OA =OD , ∴△AOP ≌△ODQ , ∴AP =OQ.18. 【答案】解:(1)设圆锥的母线长为l ,底面圆的半径为r , 根据题意得2πr =180πl180, 所以l =2r ,即圆锥的母线长与底面圆半径的比为2∶1. (2)因为r 2+(3 3)2=l 2,即r 2+(3 3)2=4r 2,解得r =3(负值已舍去), 所以l =6,所以圆锥的全面积=π·32+12·2π·3·6=27π.19. 【答案】解:(1)证明:连接OC . ∵C ,D 为半圆O 的三等分点, ∴AD ︵=CD ︵=BC ︵, ∴∠DAC =∠BAC . ∵OA =OC , ∴∠BAC =∠ACO , ∴∠DAC =∠ACO , ∴OC ∥AD . ∵CE ⊥AD ,∴CE ⊥OC ,∴CE 为⊙O 的切线. (2)连接OD . ∵AD ︵=CD ︵=BC ︵,∴∠AOD =∠COD =∠BOC =13×180°=60°. 又∵OC =OD ,∴△COD 为等边三角形, ∴∠CDO =60°=∠AOD , ∴CD ∥AB , ∴S △ACD =S △COD ,∴图中阴影部分的面积=S 扇形COD =60×π×22360=2π3.20. 【答案】解:连接CD .∵△ABC 是等腰直角三角形,D 是斜边AB 的中点, ∴CD ⊥AB .由已知,得AB =16 2,∠DBF =45°, ∴BF =BD =12AB =CD =8 2,∴阴影部分的面积是16×162-45π×(8 2)2360-[12×16×162-45π×(8 2)2360]=64(分米2).答:阴影部分的面积是64平方分米.21. 【答案】解:(1)证明:如图,过点O 作OM ⊥AB ,垂足为M. ∵⊙O 与AC 相切于点D ,∴OD ⊥AC.∵△ABC 是等边三角形,∴AB =AC. 又∵AO ⊥BC , ∴∠DAO =∠MAO. 又∵OM ⊥AB ,OD ⊥AC , ∴OM =OD ,∴AB 与⊙O 相切.(2)如图,过点O 作ON ⊥BE ,垂足为N ,连接OF.依题意得O是BC的中点,∴OB=2.∵在Rt△OBM中,∠ABC=60°,OB=2,∴BM=1,OM= 3.∵BE⊥AB,OM⊥AB,ON⊥BE,∴四边形OMBN是矩形,∴ON=BM=1,BN=OM= 3.在Rt△NOF中,∵OF=OM=3,ON=1,∴由勾股定理得NF=2,∴BF=BN+NF=3+ 2.11。

人教版 九年级数学上册 第24章 圆 综合训练

人教版 九年级数学上册 第24章 圆 综合训练

人教版九年级数学第24章圆综合训练一、选择题1. 下列直线中,一定是圆的切线的是()A.与圆有公共点的直线B.垂直于圆的半径的直线C.到圆心的距离等于半径的直线D.经过圆的直径一端的直线2. 2019·葫芦岛如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°3. 如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.36°B.30°C.18°D.24°4. (2020·达州)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的弧AB恰好与OA、OB相切,则劣弧AB的长为()A. B. C. D.5. 如图,⊙O的直径AB垂直于弦CD,垂足是E,∠CAO=22.5°,OC=6,则CD的长为()A.6 2 B.3 2 C.6 D.126. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定7. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 38. 如图,△ABC的内心为I,连接AI并延长交△ABC的外接圆于点D,则线段DI与DB的关系是()A.DI=DB B.DI>DBC.DI<DB D.不确定二、填空题9. 如图,C,D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=________.。

人教版数学九年级上《第24章圆》单元综合测试试题(含答案)

人教版数学九年级上《第24章圆》单元综合测试试题(含答案)

圆单元综合测试试题一.选择题1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2 B.4 C.8 D.162.如图,AB是⊙O的直径, BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC=30°,AC=4,则⊙O的半径为()A.4 B.8 C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm长为半径作圆.则图中阴影部分的面积为()A.(2﹣π)cm2B.(π﹣)cm2C.(4﹣2π)cm2D.(2π﹣2)cm2 6.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°7.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外8.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为()A.相离B.相切C.相交D.相切、相交均有可能9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.1010.如图,在矩形AB CD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4 B.C.5 D.二.填空题11.若四边形ABCD是⊙O的内接四边形,∠A=120°,则∠C的度数是.12.如图,四边形ABCD内接于⊙O,∠C=130°,则∠BOD的度数是.13.如图,四边形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半径为1,圆心角为60°,则图中阴影部分的面积是.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.15.如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF⊥AB 于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为.16.如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P 到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三.解答题17.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE于点D,AC平分∠DAB.(1)求证:直线CE是⊙O的切线;(2)若AB=10,CD=4,求BC的长.18.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D,连接AD,BD,求四边形ACBD的面积.19.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=6,求BE的长.21.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O 分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.22.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2,求DM的长.23.如图,AB是⊙O的直径,C为AB延长线上一点,过点C作⊙O的切线CD,D为切点,点F是的中点,连接OF并延长交CD于点E,连接BD,BF.(1)求证:BD∥OE;(2)若OE=3,tan C=,求⊙O的半径.参考答案一.选择题1.解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.2.解:∵=,∴∠ABC=∠AOC=×80°=40°,故选:C.3.解:∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选:A.4.解:连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°.故选:B.5.解:连接AD,∵△ABC是正三角形,BD=DC,∴∠B=60°,AD⊥BC,∴AD=AB=2,∴图中阴影部分的面积=×4×2﹣×3=(4﹣2π)cm2故选:C.6.解:由题意得,∠AOB=60°,则∠APB=∠AOB=30°.故选:C.7.解:∵点P的坐标是(3,4),∴OP==5,而⊙O的半径为5,∴OP等于圆的半径,∴点P在⊙O上.故选:C.8.解:∵若直线L与⊙O只有一个交点,即为点P,则直线L与⊙O的位置关系为:相切;若直线L与⊙O有两个交点,其中一个为点P,则直线L与⊙O的位置关系为:相交;∴直线L与⊙O的位置关系为:相交或相切.故选:D.9.解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.10.解:如图,连结EO并延长交AD于F,连接AO,∵⊙O与BC边相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,∴BC∥AD,∴OF⊥AD,∴AF=DF=AD=6,∵∠B=∠DAB=90°,OE⊥BC,∴四边形ABEF为矩形,∴EF=AB=8,设⊙O的半径为r,则OA=r,OF=8﹣r,在Rt△AOF中,∵OF2+AF2=OA2,∴(8﹣r)2+62=r2,解得r=,故选:D.二.填空题(共6小题)11.解:四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为:60°.12.解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.解:连接AC .∵四边形ABCD 是菱形,∴∠B =∠D =60°,AB =AD =DC =BC =1, ∴∠BCD =∠DAB =120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形, ∴AC =AD =1,∵AB =1,∴△ADC 的高为,AC =1,∵扇形BEF 的半径为1,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G , 在△ADH 和△ACG 中,,∴△ADH ≌△ACG (ASA ),∴四边形AGCH 的面积等于△ADC 的面积,∴图中阴影部分的面积是:S 扇形AEF ﹣S △ACD =﹣×1×=﹣.故答案为﹣. 14.解:∵AB 是直径,∴∠ACB =90°,∵∠A =∠CDB =30°,∴BC =AB =1,故答案为1.15.解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x2+10x﹣24=0,解得x=2或﹣12(舍弃),经检验x=2是分式方程的解,∴BF=2.故答案为2.16.解:如图,∵AB是直径,∴∠C=90°.又∵BC=6cm,AC=8cm,∴根据勾股定理得到AB==10cm.则AP=(10﹣2t)cm,AQ=t.∵当点P到达点A时,点Q也随之停止运动,∴0<t≤2.5.①如图1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ABC.故=,即=,解得t=.②如图2,当PQ⊥AB时,△APQ∽△ACB,则=,即=,解得t=.综上所述,当t=s或t=时,△APQ为直角三角形.故答案是: s或s.三.解答题(共7小题)17.(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)解:∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∴BC•AC=40,∵BC2+AC2=100,∴BC+AC=6,AC﹣BC=2或BC﹣AC=2,∴BC=2或4.18.解:∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴=,∴AD=BD,∵直角△ABD中,AD=BD,则AD=BD=AB=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC===6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).19.(1)证明:连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长==π;(3)解:当∠F的度数是36°时,BF与⊙O相切.理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.20.(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD.∴∠A=∠BCD;(2)连接OC∵直径AB⊥弦CD,CD=6,∴CE=ED=3.∵直径AB=10,∴CO=OB=5.在Rt△COE中,∵OC=5,CE=3,∴OE==4,∴BE=OB﹣OE=5﹣4=1.21.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O与AB相切于点M,与CD相切于点N,∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,∴OM=OE,∴AC是⊙O的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.(2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3﹣x,在Rt△BDC中,∵BC2=BD2+CD2,∴20=(3﹣x)2+(3+x)2,∴x=1或﹣1(舍弃)∴DM=1.23.(1)证明:∵OB=OF,∴∠1=∠3,∵点F是的中点,∴∠1=∠2.∴∠2=∠3,∴BD∥OE;(2)解:连接OD,如图,∵直线CD是⊙O的切线,∴OD⊥CD,在Rt△OCD中,∵tan C==,∴设OD=3k,CD=4k.∴OC=5k,BO=3k,∴BC=2k.∵BD∥OE,∴.即.∴DE=6k,在Rt△ODE中,∵OE2=OD2+DE2,∴(3)2=(3k)2+(6k)2,解得k=∴OB=3,即⊙O的半径的长.。

人教版九年级数学上册北京市丰台区第一学期初三(新)第24章圆综合练习题学生版无答案.docx

人教版九年级数学上册北京市丰台区第一学期初三(新)第24章圆综合练习题学生版无答案.docx

鑫达捷OF A B C DEFEDCBOA CEF初中数学试卷桑水出品北京市丰台区2015-2016学年度第一学期 初三数学第24章 圆 综合练习题一、与圆有关的中档题:与圆有关的证明(证切线为主)和计算(线段长、面积、三角函数值、最值等)1. 如图,BD 为⊙O 的直径,AC 为弦,AB AC =,AD 交BC 于E ,2AE =,4ED =.(1)求证:ABE ADB △∽△,并求AB 的长; (2)延长DB 到F ,使BF BO =,连接FA ,判断直线FA 与⊙O 的位置关系,并说明理由.2. 已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.3、如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF AD ⊥.(1)请证明:E 是OB 的中点; (2)若8AB =,求CD 的长.4.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC = 60︒,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作OC CD ⊥交PQ 于点D .(1)求证:△CDQ 是等腰三角形; (2)如果△CDQ ≌△COB ,求BP :PO 的值.5. 已知:如图, BD 是半圆O 的直径,A 是BD 延长线上的一点,BC ⊥AE ,交AE 的延长线于点C , 交半圆O于点E ,且E 为»DF的中点. (1)求证:AC 是半圆O 的切线;(2)若662AD AE ==,,求BC 的长.6.如图,ABC △内接于⊙O ,过点A 的直线交⊙O 于点P ,交BC 的延长线于点D ,且AB 2=AP ·AD(1)求证:AB AC =;(2)如果60ABC ∠=o,⊙O 的半径为1,且P 为弧AC 的中点, 求AD 的长.7.如图,在△ABC 中,∠C =90°, AD 是∠BAC 的平分线,O 是AB 上一点, 以OA 为半径的⊙O 经过点D .(1)求证: BC 是⊙O 切线; (2)若BD =5, DC =3, 求AC 的长.8.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC.OPDC BOAB鑫达捷A BCDEOGF OQPCBAG F ED C OB A第13题图 (1)求证:∠ACO=∠BCD ;(2)若BE=2,CD=8,求AB 和AC 的长.9.如图,已知BC 为⊙O 的直径,点A 、F 在⊙O 上,BC AD ⊥,垂足为D ,BF 交AD 于E ,且BE AE =.(1)求证:AF AB =;(2)如果53sin =∠FBC ,54=AB ,求AD 的长. 10.如图,已知直径与等边ABC ∆的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O 与圆O 相交于点F 、G 。

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版九年级数学上册第24章圆训练题(精练)一、单选题(本大题10题,每小题3分,共30分)1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2 B.4 C.8 D.162.(本题3分)如图,AB是⊙O的直径,BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC=30°,AC=4,则⊙O的半径为()A.4 B.8 C.23D.434.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm 为半径作圆.则图中阴影部分面积为( )A .(23-π)cm 2B .(π-3)cm 2C .(43-2π)cm 2D .(2π-23)cm 26.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .27如图,在一个圆内有AB 、CD 、EF ,若AB +CD =EF ,则AB +CD 与EF 的大小关系是( )A .AB +CD =EFB .AB +CD <EFC .AB +CD ≤EF D .AB +CD >EF8.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .33C .6D .639.如图,在ABC 的外接圆上,,,AB BC CA 所对的圆心角的度数比为12:13:11.在BC 上取一点D ,过D 分别作直线,AC AB 的平行线,交BC 于,E F 两点,则EDF ∠的度数为( )A .55°B .60°C .65°D .70°10.如图,在Rt ABC 中,90,30∠=︒∠=︒C A ,在AC 边上取点O 为圆心画圆,使O 经过,A B 两点,下列结论:①2AO CO =;②AO BC =;③以O 圆心,OC 为半径的圆与AB 相切;④延长BC 交O 于点D ,则,,A B D 是O 的三等分点.其中正确结论的序号是( )A .①②③④B .①②③C .②③④D .①③④二、填空题(本大题7题,每小题4分,共28分)11.(本题4分)若四边形ABCD 是⊙O 的内接四边形,∠A=120°,则∠C 的度数是___.12.(本题4分)如图,四边形ABCD 内接于⊙O ,∠C =130°,则∠BOD 的度数是______.13.(本题4分)如图,四边形ABCD 是菱形,∠B =60°,AB =1,扇形AEF 的半径为1,圆心角为60°,则图中阴影部分的面积是______.14.(本题4分)如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A OB '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)15.(本题4分)如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 是AB 的中点,以CD 为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____.16.(本题4分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC 平分AB)可以求解.现已知弦8AB=米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.17.(本题4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边 BC 相交于点E,过点E作EF⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF 的长为_____.三、解答题(本大题7题,18-23每小题7分,24题20分,共62分)18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD⊥CE 于点D,AC 平分∠DAB.(1)求证:直线CE 是⊙O 的切线;(2)若AB=10,CD=4,求BC 的长.19.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.20.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B 作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.21.如图,在圆O 中,弦AB =8,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD ⊥AC ,OE ⊥BC ,垂足分别是点D 、E(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.22.如图1,AB 为半圆的直径,点O 为圆心,AF 为半圆的切线,过半圆上的点C 作//CD AB 交AF 于点D ,连接BC .(1)连接DO ,若//BC OD ,求证:CD 是半圆的切线;(2)如图2,当线段CD 与半圆交于点E 时,连接AE ,AC ,判断AED ∠和ACD ∠的数量关系,并证明你的结论.23.如图,已知AB是⊙P的直径,点C在⊙P上,D为⊙P外一点,且∠ADC=90°,直线CD为⊙P的切线.⑴试说明:2∠B+∠DAB=180°⑵若∠B=30°,AD=2,求⊙P的半径.24.若一个四边形的两条对角线互相垂直且相等,则称这个四边形为奇妙四边形.如图1,四边形ABCD 中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据奇妙四边形对角线互相垂直的特征可得奇妙四边形的一个重要性质:奇妙四边形的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形奇妙四边形(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是奇妙四边形,若⊙O的半径为6,∠ BCD=60°.求奇妙四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是奇妙四边形作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论参考答案1.B【详解】∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选B.2.C【详解】∵AC AC,∴∠ABC=12∠AOC=12×80°=40°,故选C.3.A【详解】∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选A.4.B【详解】连接OC ,如图,∵CD 为⊙O 的切线,∴OC ⊥CD ,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°,故选B .5.C【详解】连接AD ,∵△ABC 是正三角形, ∴AB=BC=AC=4,∠BAC=∠B=∠C=60°, ∵BD=CD ,∴AD ⊥BC ,∴22AB BD -224223-=∴S 阴影=S △ABC -3S 扇形AEF =12×4×3﹣26023360π⨯⨯3﹣2π)cm 2, 故选C .6.D【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD2,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD2AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,2×12.故选D.7.D【详解】如图,在弧EF上取一点M,使EM CD=,则FM AB=,所以AB=FM,CD=EM,在△MEF中,FM+EM>EF,所以AB+CD>EF,故选:D.8.D【详解】如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:22-=3,OA AB则光盘的直径为3,故选D.9.C【详解】 解:,,AB BC CA 所对的圆心角的度数比为12:13:11,BC ∴所对的圆心角的度数为13360130,121311⨯︒=︒++ 65BAC ︒∴∠=//,//,AC ED AB DF,FED ACB EFD ABC ∴∠=∠∠=∠18018065EDF FED EFD ACB ABC BAC ∴∠=︒-∠-∠=︒-∠-∠=∠=︒.故选C .10.D【详解】①如图,连接OB ,则OA OB =.90,30C OAB ︒︒∠=∠=,30,60ABO OAB ABC ︒︒∴∠=∠=∠=,30,2CBO OB OC ︒∴∠=∴=.2AO CO ∴=,故①正确;②在Rt OCB △中,90,,C OB BC AO OB ︒∠=>=,AO BC ∴>,故②错误;③如图,过点O 作OE AB ⊥于点E ,90,30ACB ABO CBO ︒︒∠=∠=∠=,OC OE ∴=,∴以O 圆心,OC 为半径的圆与AB 相切,故③正确;④如图,延长BC ,交O 于点D ,连接AD .90,ACB DC BC ︒∠=∴=.AD AB ∴=,60ABC ︒∠=,ADB ∴是等边三角形.,AD AB BD AD AB BD ∴==∴==,,,A B D ∴是O 的三等分点,故④正确;故正确的有①③④.11.60°.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为60°.12.100°.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.3 6π-【详解】连接AC ,∵四边形ABCD 是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=1,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形,∴AC=AD=1,∵AB=1, ∴△ADC 的高为32,AC=1, ∵扇形BEF 的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G ,在△ADH 和△ACG 中,34160AD ACD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADH ≌△ACG(ASA),∴四边形AGCH的面积等于△ADC的面积,∴图中阴影部分的面积是:S扇形AEF﹣S△ACD=26011313602π⨯⨯-⨯⨯=36π-,故答案为3 64π-.14.4π.【详解】解:根据题意,知OA=OB.又∠AOB=36°,∴∠OBA=72°.∴点O旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm.故答案是:4π.【点睛】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O的运动轨迹是弧形,然后根据弧长的计算公式求解.15.125.【详解】如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=12AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=12BC=4,∴,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=12DF×BF=12BD×FG,∴FG=3412==55 DF BFBD⨯⨯,故答案为125. 16.10 【详解】解:∵弦8AB =米,半径OC ⊥弦AB ,∴4=AD ,∴223OD OA AD =-=,∴2OA OD -=,∴弧田面积12=(弦×矢+矢2)()21822102=⨯⨯+=, 故答案为1017.2【详解】连接AE,作CM⊥FD, ∵AB=AC,AE⊥BC, ∴BE=EC,AB∥CM, ∴CM=BF,∴666sin ,sin 446410CM CM AF D D CD AD AC CM CM ∠==∠====++++ , ∴6410CM CM=+ , ∴CM=2或CM=-12(舍去),∴BF=2.18.【详解】(1)如图,连接OC∵AC平分∠DAB,∴∠DAC=∠CAB,∵OA=OC,∴∠OCA=∠CAB,∴∠OCA=∠DAC,∴AD∥CO,∵CD⊥AD,∴OC⊥CD,∵OC是⊙O直径且C在半径外端,∴CD为⊙O的切线;(2)∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴DC AC BC AB,∴BC•AC=DC•AB=4×10=40,∵BC 2+AC 2=100,∴(BC+AC)2=BC 2+AC 2+2BC •AC=180,(BC-AC)2= BC 2+AC 2-2BC •AC=20,∴AC ﹣BC ﹣∴19.S 四边形ADBC =49(cm 2).【详解】∵AB 为直径,∴∠ADB=90°,又∵CD 平分∠ACB ,即∠ACD=∠BCD ,∴AD BD =,∴AD=BD ,∵直角△ABD 中,AD=BD ,AD 2+BD 2=AB 2=102,则,则S △ABD =12AD•BD=12××=25(cm 2),在直角△ABC 中,=6(cm),则S △ABC =12AC•BC=12×6×8=24(cm 2), 则S 四边形ADBC =S △ABD +S △ABC =25+24=49(cm 2).20.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=12∠BAC=12×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=5439 18010ππ⨯⨯=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.21.(1)【详解】(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=12 AB,∵AB=8,∴DE=4;(2)过点O作OH⊥AB,垂足为点H,则OH=3,连接OA,∵OH经过圆心O,∴AH=BH=12 AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.【详解】(1)证明:连接OC ,AF 为半圆的切线,AB 为半圆的直径,AB AD ∴⊥,//CD AB ,//BC OD , ∴四边形BODC 是平行四边形,OB CD ∴=,OA OB =,CD OA ∴=,∴四边形ADCO 是平行四边形,//OC AD ∴,//CD BA ,CD AD ∴⊥,//OC AD ,OC CD ∴⊥,CD ∴是半圆的切线;(2)解:90AED ACD ∠+∠=︒,理由:如图2,连接BE ,AB 为半圆的直径,90AEB ∴∠=︒,90EBA BAE ∴∠+∠=︒,90DAE BAE ∠+∠=︒,ABE DAE ∴∠=∠,ACE ABE ∠=∠,ACE DAE ∴∠=∠,90ADE ∠=︒,90DAE AED AED ACD ∴∠+∠=∠+∠=︒. 23.【详解】解:⑴ 连接CP∵PC =PB ,∴∠B =∠PCB ,∴∠APC=∠PCB+∠B=2∠B∵CD是⊙OP的切线,∴∠DCP=90°∵∠ADC=90°,∴∠DAB+∠APC=180°∴2∠B+∠DAB=180°⑵连接AC∵∠B=30°,∴∠APC=60°,∵PC=P A,∴△ACP是等边三角形,∴AC=P A,∠ACP=60°∴∠ACD=30°,∴AC=2AD=4,∴P A=4答:⊙P的半径为4.24.【详解】解:(1)矩形的对角线相等但不垂直,所以矩形不是奇妙四边形;故答案为不是;(2)连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,∵∠BOD=2∠BCD=2×60°=120°,∴在等腰△OBD中,∠OBD=30°,在Rt △OBH 中,∵∠OBH=30°, ∴132126OH OB ==⨯=, ∴333BH OH == ∴263BD BH ==∵四边形ABCD 是奇妙四边形,∴63AC BD ==,AC BD ⊥∴6361125423ABCD BD A S C =⨯⨯==四边形; (3)12OM AD =. 理由如下:连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图3, ∵OE ⊥AD ,∴在等腰△AOD 中,12AE DE AD ==, 又∵22BOC BAC BOM ∠=∠=∠,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°, ∵∠BOM+∠OBM=90°, ∴∠OBM=∠AOE , 在△BOM 和△OAE 中 90BMO OEA OBM AOEOB AO ⎧∠∠=⎪∠∠⎨⎪⎩=== ∴()BOM OAE AAS ≌, ∴OM=AE , ∴12OM AD =.1。

【初三数学】北京市九年级数学上(人教版)第24章圆检测试卷及答案

【初三数学】北京市九年级数学上(人教版)第24章圆检测试卷及答案

人教版九年级上册第24章数学圆单元测试卷(含答案)(2)一、选择题1.已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8 cm ,则AC 的长为( )A .2 5cmB .4 5cmC .2 5cm 或4 5cmD .2 3cm 或4 3cm2.在△ABC 中,若O 为BC 边的中点,则必有AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图1,在矩形DEFG 中,已知DE =4,EF =3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为( )A.10B.192C .34D .10图1 图23.如图2,在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 逆时针旋转40°得到△ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积为( )A.143π-6 B.259π C.338π-3 D.33+π 4.如图3,在平面直角坐标系xOy 中,已知A (4,0),B (0,3),C (4,3),I 是△ABC 的内心,将△ABC 绕原点逆时针旋转90°后,点I 的对应点I ′的坐标为( )图3A .(-2,3)B .(-3,2)C .(3,-2)D .(2,-3) 5.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =3x +2 3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2 C.3 D. 26.如图4,在矩形ABCD 中,G 是BC 的中点,过A ,D ,G 三点的⊙O 与边AB ,CD 分别交于点E,F,给出下列说法:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O 的圆心;(3)BC与⊙O相切,其中正确说法的个数是( )图4A.0 B.1 C.2 D.3二、填空题7.如图5,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=________°.图5 图68.如图6,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为________.9.如图7,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.图7 图810.如图8,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为________.三.解答题11.如图9,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD 与⊙O 有怎样的位置关系?请说明理由; (2)若∠CDB =60°,AB =6,求AD ︵的长.图912.如图10,在△ABC 中,AB =AC ,以AB 为直径的半圆交AC 于点D ,交BC 于点E ,延长AE 至点F ,使EF =AE ,连接FB ,FC .(1)求证:四边形ABFC 是菱形;(2)若AD =7,BE =2,求半圆和菱形ABFC 的面积.图1013.如图11,在△ABC 中,AB =AC ,AO ⊥BC 于点O ,OE ⊥AB 于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F .(1)求证:AC 是半圆O 的切线;(2)若F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.图1114.如图12,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形;(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.图12答案1.[解析]C 如图,连接AC ,AO .∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm , ∴AM =12AB =12×8=4 cm ,OD =OC =5 cm.当点C 位置如图①所示时, ∵OA =5 cm ,AM =4 cm ,CD ⊥AB , ∴OM =OA 2-AM 2=52-42=3(cm), ∴CM =OC +OM =5+3=8(cm),∴AC =AM 2+CM 2=42+82=4 5(cm);人教版九年级上册第24章数学圆单元测试卷(含答案)(5)一、填空题(每题5分,计40分)1、已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°2.点P 在⊙O 内,OP =2cm ,若⊙O 的半径是3cm ,则过点P 的最短弦的长度为( ) A .1cmB .2cmCD .3.已知A 为⊙O上的点,⊙O 的半径为1,该平面上另有一点P ,P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定4.如图,为的四等分点,动点从圆心出发,沿路线作匀速运动,设运动时间为(s ).,则下列图象中表示与之间函数关系最恰当的是( )PA =A B C D ,,,O P O O C D O ---t ()APB y =∠y t 第4题图A B C D O PB .D .A .C .5. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与轴相离、与轴相切 B .与轴、轴都相离 C .与轴相切、与轴相离 D .与轴、轴都相切6 如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D,且⊙O 的半径为2,则CD 的长为 ( )A.B.C.2D. 47.如图,△PQR 是⊙O 的内接三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR,则∠DOR 的度数是 ( )A.60B.65C.72D. 758.如图,、、、、相互外离,它们的半径都是1,顺次连结五个圆心得到五边形,则图中五个扇形(阴影部分)的面积之和是( )A .B .C .D . 二 选择题(每题5分,计30分) 9.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为 .10. 如图,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发x y x y x y x y A ⊙B ⊙C ⊙D ⊙E ⊙ABCDE π 1.5π2π 2.5π第9题图 第6题图A B D C 第10题 ABCDE第8题图O P Q D B AC 第7题图 R现.小明在研究垂直于直径的弦的性质过程中(如图,直径弦于),设,,他用含的式子表示图中的弦的长度,通过比较运动的弦和与之垂直的直径的大小关系,发现了一个关于正数的不等式,你也能发现这个不等式吗?写出你发现的不等式 .(12题图)12.如图,∠AOB=300,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________.13.如图,△㎝,则AC 的长等于_______㎝。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
F A B
C D
E
F
E
D
C
B
O
A
C
E
B
O
D
F A
北京市丰台区2015-2016学年度第一学期 初三数学
第24章 圆 综合练习题
一、与圆有关的中档题:与圆有关的证明(证切线为主)和计算(线段长、面积、三角函数值、最值等)
1. 如图,BD 为⊙O 的直径,AC 为弦,AB AC =,AD 交BC 于E ,2AE =,4ED =.
(1)求证:ABE ADB △∽△,并求AB 的长; (2)延长DB 到F ,使BF BO =,连接FA ,判断直线FA 与⊙O 的位置关系,并说明理由.
2. 已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .
(1)求证:DF 为⊙O 的切线;
(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.
3、如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF AD ⊥.
(1)请证明:E 是OB 的中点; (2)若8AB =,求CD 的长.
4.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC = 60︒,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作OC CD ⊥交PQ 于点D . (1)求证:△CDQ 是等腰三角形;
(2)如果△CDQ ≌△COB ,求BP :PO 的值.
5. 已知:如图, BD 是半圆O 的直径,A 是BD 延长线上的一点,BC ⊥AE ,交AE 的延长线于点C , 交半圆O 于点E ,且E 为DF 的中点. (1)求证:AC 是半圆O 的切线;。

相关文档
最新文档