2015年黑龙江省哈尔滨市风华中学九年级上学期数学期中试卷与解析
2015年黑龙江哈尔滨九年级上学期数学期中考试试卷
2015年黑龙江哈尔滨九年级上学期数学期中考试试卷一、选择题(共10小题;共50分)1. 如图,检测个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是A. B.C. D.2. 如图图形中,既是轴对称图形又是中心对称图形的有A. 个B. 个C. 个D. 个3. 下列运算正确的是A. B.C. D.4. 由中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为人,这个数用科学记数法表示为A. B. C. D.5. 下列命题中,真命题是A. 圆周角等于圆心角的一半B. 等弧所对的圆周角相等C. 平分弦的直径垂直于弦D. 过弦的中点的直线必经过圆心6. 如果将抛物线先向下平移个单位,再向左平移个单位,那么所得新抛物线的解析式是A. B.C. D.7. 如图,滑雪场有一坡角为的滑雪道,滑雪道的长为米,则滑雪道的坡顶到坡底的竖直高度的长为A. B. C. D.8. 如图,,分别是的边,上的点,且,若,则的值为A. B. C. D.9. 如图,圆的弦垂直平分半径,则四边形一定是A. 正方形B. 长方形C. 菱形D. 梯形10. 如图是二次函数的图象,下列结论:①二次三项式的最大值为;②;③一元二次方程的两根之和为;④使成立的的取值范围是.其中正确的个数有A. 个B. 个C. 个D. 个二、填空题(共10小题;共50分)11. 计算: ______.12. 函数的自变量的取值范围是______.13. 分解因式: ______.14. 将二次函数化成顶点式的形式______.15. 双曲线,当时,随的增大而减小,则 ______.16. 如图,直径为的经过点和点,是轴右侧圆弧上一点,则______.17. 如图,以点为位似中心,将放大得到,若,则与的面积之比为______.18. 如图,中,,,,将绕点逆时针旋转得到,与相交于点,当时, ______.19. 菱形中,点在直线上,直线交直线于,,,则 ______.20. 如图,正方形的顶点在正方形的边上,顶点在的延长线上,连接,,的平分线过点交于,连接交于,则的值为______.三、解答题(共7小题;共91分)21. 先化简,再求代数式的值,其中.22. 图1,图2均为正方形网络,每个小正方形的面积均为.在这个正方形网格中,各个小正方形的顶点叫做格点.请在下面的网格中按要求画图,使得每个图形的顶点均在格点上.(1)在图1中,画一个边长为整数的矩形,面积等于,周长等于;(2)在图2中,画一个有一个角是钝角的等腰三角形,且面积等于.23. 为推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图两个统计图,请根据相关信息,解答下列问题:(1)求本次抽样调查的学生的人数;(2)通过计算补全条形统计图;(3)若学校计划购买双运动鞋,建议购买号运动鞋约多少双?24. 如图,内接于,且是的直径,于,是弧中点,且交于,连接.(1)求证:平分;(2)若,,求的长.25. 冬季将至,服装城需件羽绒服解决商场货源短缺问题,现由甲、乙两个加工厂生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的倍,且加工生产件羽绒服甲工厂比乙工厂少用天.(1)求甲、乙两个工厂每天分别可加工生产多少件羽绒服?(2)若甲工厂每天的加工生产成本为万元,乙工厂每天的加工生产成本为万元,要使这批羽绒服的加工生产总成本不高于万元,至少应安排甲工厂加工生产多少天?26. 已知,如图1,中,,为上的一点,于,绕点旋转得到,延长至点,使,延长至点,使,连接,.(1)求证:.(2)如图2,连接,取中点,连接,,若,则 ______ .(3)如图3,在(2)的条件下,若,,,求的长.27. 已知:交轴于,两点,对称轴交轴于点,顶点为点,若的面积为.点是轴上方抛物线上一动点,作轴,垂足为,连接,作直线交轴于点.(1)求的值;(2)在点运动过程中,连接,若,求的长度;(3)点关于的对称点为点,若,求点的坐标及的长.答案第一部分1. C2. C3. A4. B5. B6. B7. D8. D9. C 10. B第二部分11.12.13.14.15.16.17.18.19. 或20.第三部分原式21.当时,原式.22. (1)设该长方形的长为,宽为,则,,显然,是关于的一元二次方程的两根,解方程得到,,即,,所以该矩形的长为,宽为,如图1所示的矩形.(2)如图2所示,,,.23. (1)本次接受随机抽样调查的学生人数为(人).(2)(人).补全条形统计图如下:(3)在名学生中,鞋号为的学生人数比例为,由样本数据,估计学校各年级中学生鞋号为的人数比例约为,则计划购买双运动鞋,有双为号.24. (1)是的直径,,,,,,,,,是弧中点,,,即平分.(2)连接,,,,,,,,,,,,,.25. (1)设乙工厂每天可加工生产件,则甲工厂每天可加工生产件,根据题意可得:解得:经检验,是原方程的根,也符合题意,则答:甲工厂每天可加工生产件,乙工厂每天可加工生产件.(2)设甲工厂加工生产天,根据题意得:解得:答:至少应安排甲工厂加工生产天.26. (1)如图1,连接,,,,,,,,,,,,,在和中,,.(2)(3)如图3,过作的垂线,交的延长线于,,,,,,,,,在同一条直线上,且,四边形是矩形,由得,,设,,则,,,,,,,,,在中,,,,,,(舍去).在中,27. (1)令,则,或..,点坐标代入,,.(2)如图1中,由(1)可知抛物线,,设直线为,把,代入得解得直线为,直线,设直线为,把代入得,,,,,,(舍)..(3)设交于点,作于.,,,,,设,则,在中,,解得(或舍弃不合题意),,,,,,,,点坐标,点.又,关于点对称,点坐标,点坐标,.第11页(共11 页)。
2015年九年级数学上册期中检测试题(含答案和解释)
2015年九年级数学上册期中检测试题(含答案和解释)期中检测题本检测题满分:120分,时间:120分钟一、选择题(每小题3分,共36分)1. (2015•广东中考)若关于x的方程 +x-a+ =0有两个不相等的实数根,则实数a的取值范围是( ) A.a≥2 B.a≤2 C.a>2 D.a<2 2.(2015•江苏苏州中考)若二次函数y= +bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程 +bx=5的解为() A. B. C. D. 3.在平面直角坐标系中,将抛物线y=x2 4先向右平移2个单位,再向上平移2个单位,得到的抛物线的表达式是() A.y=(x+2)2+2 B.y=(x 2)2 2 C.y=(x 2)2+2 D.y=(x+2)2 24.一次函数与二次函数在同一平面直角坐标系中的图象可能是()5.已知抛物线的顶点坐标是,则和的值分别是() A.2,4 B. C.2,D. ,0 6.若是关于的一元二次方程,则的值应为() A. B. C.D.无法确定 7.方程的解是() A. B. C. D. 8.若是关于的方程的根,则的值为() A. B. C. D. 9.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. B. C. D.10. (2015•山西中考)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是( ) A. B. C. D. 11.已知点的坐标为,为坐标原点,连接,将线段绕点按逆时针方向旋转90°得线段,则点的坐标为() A. B. C. D. 12.当代数式的值为7时,代数式的值为()二、填空题(每小题3分,共24分) 13.对于二次函数,已知当由1增加到2时,函数值减少3,则常数的值是 .14.将抛物线向右平移2个单位后,再向下平移5个单位,所得抛物线的顶点坐标为_______. 15.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数表达式是y=60x 1.5x2,该型号飞机着陆后需滑行 m才能停下来. 16.如果,那么的关系是________. 17.如果关于的方程没有实数根,那么的取值范围为_____________. 18.方程的解是__________________. 19.如图所示,边长为2的正方形的对角线相交于点,过点的直线分别交于点,则阴影部分的面积是. 20.若(是关于的一元二次方程,则的值是________.三、解答题(共60分) 21.(8分)(2015•江西中考)如图,正方形ABCD与正方形关于某点中心对称.已知A,,D 三点的坐标分别是(0,4),(0,3),(0,2). (1)求对称中心的坐标;(2)写出顶点B,C,, . 第21题图第22题图 22.(8分)(2015•湖北襄阳中考)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m的住房墙,另外三边用25 m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m宽的门.所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m2?23.(8分)把抛物线向左平移2个单位,同时向下平移1个单位后,恰好与抛物线重合.请求出的值,并画出函数的示意图. 24.(8分)(2015•浙江宁波中考)已知抛物线-(x-m),其中m是常数. (1)求证:不论m为何值,该抛物线与x轴一定有两个公共点; (2)若该抛物线的对称轴为直线x= .①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点? 25.(8分)已知抛物线与轴有两个不同的交点. (1)求的取值范围; (2)抛物线与轴的两交点间的距离为2,求的值.26.(8分)若关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2. (1)求实数k的取值范围. (2)是否存在实数k 使得x1•x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由. 27.(12分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O. (1)求证:△BCE≌△B1CF. (2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.期中检测题参考答案 1. C 解析:由题意得一元二次方程根的判别式Δ>0,即12-4×1× >0,整理,得4a-8>0,解得a>2. 2. D 解析:∵ 二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴ - =2,解得b=-4,∴ 关于x的方程x2+bx=5为x2-4x=5,其解为 . 3.B 解析:根据平移规律“左加右减”“上加下减”,将抛物线y=x2-4先向右平移2个单位得y= (x-2)2-4,再向上平移2个单位得y=(x-2)2-4+2=(x-2)2-2. 4.C 解析:当时,二次函数图象开口向下,一次函数图象经过第二、四象限,此时C,D符合. 又由二次函数图象的对称轴在轴左侧,所以,即,只有C 符合. 同理可讨论当时的情况. 5.B 解析: 抛物线的顶点坐标是(),,,解得 . 6.C 解析:由题意,得,解得 .故选C. 7.A 解析:∵ ,∴ ,∴ .故选A. 8.D 解析:将代入方程得,所以. ∵ ,∴ ,∴ .故选D. 9.A 解析:依题意,得联立得,∴ ,∴ .故选. 10. B 解析:在四个图形中,A,C,D三个图形既是中心对称图形又是轴对称图形,只有B是中心对称图形而不是轴对称图形. 11.C 解析:画图可得点的坐标为. 12.A 解析:当时,,所以代数式 .故选 . 13. 解析:因为当时,,当时,,所以 . 14.(5,-2) 15. 600 解析:y=60x 1.5x2= 1.5(x 20)2+600,当x=20时,y最大值=600,则该型号飞机着陆时需滑行600 m才能停下来. 16. 解析:原方程可化为,∴ . 17. 解析:∵ =,∴ . 18. 解析: .方程有两个不等的实数根,即 19.1 解析:△ 绕点旋转180°后与△ ,所以阴影部分的面积等于正方形面积的,即1. 20 解析:由得或. 21. 分析:(1)由D和D1是对称点,可知对称中心是线段DD1的中点,所以对称中心的坐标为(0,). (2)由点A(0,4),D(0,2)得正方形ABCD的边长AD=4-2=2,从而有OA=OD+AD=4,OA1=OD1-A1D1=3-2=1,进而可求出B,C,B1,C1的坐标. 解:(1) ∵ D和是对称点,∴ 对称中心是线段D 的中点. ∴ 对称中心的坐标是(0, ). (2)B(-2,4),C(-2,2), (2,1), (2,3) 22.分析:本题需要利用矩形的面积等于80 m2列方程求解,由于矩形的面积等于长乘宽,因此需要表示矩形的长与宽,设矩形猪舍垂直于住房墙的一边长为x m,利用矩形的长与两个宽的和是(25+1)m,得到矩形的长为(26-2x)m.根据矩形的面积公式列出方程求解.最后利用矩形的长不大于12 m确定矩形的长与宽. 解:设矩形猪舍垂直于住房墙的一边长为x m,则矩形猪舍的另一边长为(26-2x)m. 依题意,得x(26-2x)=80. 化简,得-13x+40=0. 解这个方程,得 =5,=8. 当x=5时,26-2x=16>12(舍去);当x=8时,26-2x=10<12. 答:所建矩形猪舍的长为10 m,宽为8 m. 23.解:将整理得 . 因为抛物线向左平移2个单位,再向下平移1个单位得,所以将向右平移2个单位,再向上平移1个单位即得,故,所以 .示意图如图所示. 24. (1)证明:∵ -(x-m)=(x-m)(x-m-1),∴ 由y=0得 =m, =m+1.∵ m≠m+1,∴ 抛物线与x轴一定有两个交点(m,0),(m+1,0). (2)解:①∵ -(2m+1)x+m(m+1),∴ 抛物线的对称轴为直线x=- = ,解得m=2,∴ 抛物线的函数解析式为-5x+6.②∵ -5x+6= ,∴ 该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点. 25. 解:(1)∵ 抛物线与轴有两个不同的交点,∴ >0,即解得c< . (2)设抛物线与轴的两交点的横坐标为,∵ 两交点间的距离为2,∴ . 由题意,得,解得,∴ ,. 26. 分析:(1)根据已知一元二次方程的根的情况,得到根的判别式Δ≥0,据此列出关于k的不等式[-(2k+1)]2-4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得x1•x2--≥0成立,利用根与系数的关系可以求得x1+x2=2k+1,x1•x2=k2+2k,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式3x1•x2-(x1+x2)2≥0,通过解不等式可以求得k的值. 解:(1)∵ 原方程有两个实数根,∴ [-(2k+1)]2-4(k2+2k)≥0,∴ 4k2+4k+1-4k2-8k≥0,∴ 1-4k≥0,∴ k≤ . ∴ 当k≤ 时,原方程有两个实数根. (2)假设存在实数k使得x1•x2--≥0成立.∵ x1,x2是原方程的两根,∴ x1+x2=2k+1,x1•x2=k2+2k. 由x1•x2--≥0,得3x1•x2-(x1+x2)2≥0. ∴ 3(k2+2k)-(2k+1)2≥0,整理得-(k-1)2≥0,∴ 只有当k=1时,上式才能成立.又由(1)知k≤ ,∴ 不存在实数k使得x1•x2--≥0成立. 27.(1)证明:在△ 和△ 中,∠ ,,∠ ,∴ △ ≌△ .(2)解:当∠ 时,.理由如下:∵ ∠ ,∴ ∠ .∴ ∠ ,∴ ∠ . ∵ ∠ ,∴ ∠ ,。
黑龙江省哈尔滨市2015-2016学年九年级上月考数学试卷(10月份)含答案解析
黑龙江省哈尔滨市2015-2016学年九年级(上)月考数学试卷(10月份)(解析版)一、选择题:1.﹣2的倒数的相反数是()A.B.C.2 D.﹣22.下列运算正确的是()A.(a2)5=a7B.a2?a4=a6C.3a2b﹣3ab2=0 D.()2=3.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.4.已知反比例函数y=的图象的两支分别在第二、四象限内,那么k的取值范围是()A.k>﹣B.k>C.k<﹣D.k<5.下列命题:①圆上任意两点间的部分叫弧②圆心角相等则它们所对的弧相等③等弧的所对的弦相等④直径是圆的对称轴⑤顶点在圆上,两边和圆相交的角是圆周角.其中正确的有()个.A.1 B.2 C.3 D.46.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为()A.1200m B.1200m C.1200m D.2400m7.如图,在平行四边形ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是()A.∠AEF=∠DEC B.FA:CD=AE:BC C.FA:AB=FE:EC D.AB=DC8.小李将1000元钱存入银行,年利率为x,第二年他把本息和全部存入银行,两年后不计利息税,他得到本息共a元,则依题意可列方程为()A.1000(x+x)=a B.1000(1﹣2x)=a C.1000(1+x)2=a D.1000(1+2x)2=a 10.如图,点P沿半圆弧AB从A向B匀速运动,若运动时间为t,扇形OAP的面积为s,则s与t的函数图象大致是()A.B.C.D.二、填空题(共10小题,每小题3分,满分30分)11.将456 000 000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.化简计算:2﹣4=.14.分解因式:ax2﹣a=.15.一个扇形的半径为2cm,面积为πcm 2,则此扇形的圆心角为.16.不等式组的解集为.17.松雷中学举行捐书活动,其中A班和B班共捐书200本,A班捐书数量是B班捐书数量2倍还多14本,则A班捐书有本.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.纸片△ABC中,∠B=60°,AB=8cm,AC=7cm,将它折叠,使A与B重合,则折痕长为cm.20.如图,AB∥CD,∠CBE=∠CAD=90°.AC=AD=6,DE=4,则BD长为.三、解答题:(21、22题各7分,23、24题各8分,25-27题各10分,共计60分)21.先化简,再求值:,其中a=tan60°﹣tan45°.22.如图,在所给网格图(2016?哈尔滨模拟)为迎接2015年中考,某中学对全校九年级学生进行了一次数学期末模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)在这次调查中,样本中表示成绩类别为“中”的人数,并将条形统计图补充完整;(2)若该中学九年级共有l 000人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?24.如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.(1)观察图形,写出图中与△ABM全等三角形;(2)选择(1)中的一对全等三角形加以证明.25.(10分)(2015秋?哈尔滨校级月考)某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.(1)若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元?(2)在(1)的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?26.(10分)(2015秋?哈尔滨校级月考)如图,AB为⊙O直径,CD为弦,弦CD⊥AB 于点M,F为DC延长线上一点,连接CE、AD、AF,AF交⊙O于E,连接ED交AB于N.(1)求证:∠AED=∠CEF;(2)当∠F=45°,且BM=MN时,求证:AD=ED;(3)在(2)的条件下,若MN=1,求FC的长.27.(10分)(2015秋?哈尔滨校级月考)如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,A、D的坐标分别为(5,0)和(3,0).(1)已知抛物线y=2x2+bx+c经过B、D两点,求此抛物线的解析式;(2)点P为线段CE上的动点,连接AP,当△PAE的面积为时,求tan∠APE的值;(3)将抛物线y=2x2+bx+c平移,使其经过点C,设抛物线与直线BC的另一个交点为M,问在该抛物线上是否存在点Q,使得△CMQ为等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;并直接写出满足(2)的P点是否在此时的抛物线上.2015-2016学年黑龙江省哈尔滨市九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题:1.﹣2的倒数的相反数是()A .B .C .2D .﹣2【考点】倒数;相反数.【分析】首先找到:﹣2的倒数是﹣,再找到﹣的相反数即可.【解答】解:﹣2的倒数是﹣,﹣的相反数是,故选:A .【点评】此题主要考查了倒数与相反数的定义,关键是熟练掌握倒数的定义:乘积是1的两数互为倒数;相反数的定义:只有符号不同的两个数叫做互为相反数.2.下列运算正确的是()A .(a 2)5=a 7B .a 2?a 4=a 6C .3a 2b ﹣3ab 2=0D .()2=【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据幂的乘方、同底数幂的乘法和同类项合并计算即可.【解答】解:A 、(a 2)5=a 10,错误;B 、a 2?a 4=a 6,正确;C 、3a 2b 与3ab 2不能合并,错误;D 、()2=,错误;故选B .【点评】此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.3.下列图形既是轴对称图形又是中心对称图形的是()。
黑龙江省哈尔滨市九年级上学期数学期中考试试卷
黑龙江省哈尔滨市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·重庆期中) 方程(x-1)2=16的解是()A . x1=5,x2=-3B . x1=-5,x2=4C . x1=17,x2=-15D . x1=5,x2=-52. (2分)用配方法把代数式x2-4x+5变形,所得结果是()A . (x-2)2+1B . (x-2)2-9C . (x+2)2-1D . (x+2)2-53. (2分)(2018·福田模拟) 下列平面图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A . (1,﹣5)B . (3,﹣13)C . (2,﹣8)D . (4,﹣20)5. (2分) (2016九上·萧山期中) 在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图像可能是()A .B .C .D .6. (2分)(2017·濉溪模拟) 方程x2=3x的解为()A . x=3B . x=0C . x1=0,x2=﹣3D . x1=0,x2=37. (2分) (2017九上·满洲里期末) 如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B 的对应点D恰好落在BC边上.若AB=1,∠B=60°,则CD的长为()A . 0.5B . 1.5C .D . 18. (2分) (2016九上·路南期中) 把方程x2﹣8x+3=0配方成如下的形式,则正确是()A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=199. (2分)近年来,欧债危机严重影响了世界经济,受欧债危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A . 200(1+a%)2=148B . 200(1-a%)2=148C . 200(1-2a%)=148D . 200(1-a2%)=14810. (2分)(2018·巴中) 一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A . 此抛物线的解析式是y=﹣ x2+3.5B . 篮圈中心的坐标是(4,3.05)C . 此抛物线的顶点坐标是(3.5,0)D . 篮球出手时离地面的高度是2m二、填空题 (共6题;共7分)11. (1分) (2019九上·南关期末) 如果关于x的方程x2-x+k=0(k为常数)有两个相等的实数根,那么k=________.12. (1分) (2017九上·柳江期中) 已知方程5x2+kx﹣10=0的一个根是﹣5,则它的另一个根是________.13. (1分) (2016九上·溧水期末) 如图是某拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为________米.14. (1分) (2017七上·瑞安期中) 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是________.15. (2分)(2019·天台模拟) 在矩形ABCD中,AB=3,BC=4,点E、F分别在BC与CD上,且∠EAF=45°.如图甲,若EA=EF,则EF=________;如图乙,若CE=CF,则EF=________.16. (1分) (2017八下·福州期末) 若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=________.三、解答题 (共8题;共95分)17. (10分)解方程:(1) x2﹣2x﹣5=0;(2)(2x+1)2=3(2x+1)18. (10分) (2019七下·丰县月考) 如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图1中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图2,MN与CD相交于点E,求∠CEN 的度数;(2)将图1中的三角尺OMN绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,求在第几秒时,边MN恰好与边CD平行?(友情提醒:先画出符合题意的图形,然后再探究)19. (10分)手机下载一个APP,缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行…最近的网红非“共享单车”莫属.共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、大卸八块等毁坏单车的行为也层出不穷.某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率达到20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为引起了一场国民素质的大讨论,三月份的损坏率下降 a%,三月底可使用的自行车达到7752辆,求a的值.20. (15分) (2017九上·顺义月考) 如图,用一段长30米的篱笆围成一个一边靠墙(墙的长度为20米)的矩形鸡场ABCD,设BC边长为x米,鸡场的面积为y平方米.(1)求y与x的函数关系式;(2)写出其二次项、一次项、常数项;(3)写出自变量x的取值范围.21. (10分) (2016九上·临海期末) 已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2) 0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.22. (10分) (2020八上·长兴期末) 如图,已知AC平分∠BAD,CE⊥AB于点E,CF⊥AD于点F,且BC=CD。
哈尔滨九年级(上)期中数学试卷
A. 1 B. 2 C. 3 D. 4
D.
������������ ������������
������������ = ������������
22. 如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点三角形������������������(
顶点是网格线的交点). (1)先将 △ ������������������竖直向上平移 6 个单位,再水平向右平移 3 个单位得到 △ ������1������1������1, 请画出 △ ������1������1������1; (2)将 △ ������1������1������1绕������1点顺时针旋转90°,得 △ ������2������2������2,请画出 △ ������2������2������2; (3)连接������������2,直接写出������������2的长______.
������������ = ������������
B.
������������ ������������
������������ = ������������
C.
������������ ������������
������������ = ������������
10. 二次函数������ = ������������2 +������������ + ������(������ ≠ 0)的图象如图所示,下
黑龙江省哈尔滨市九年级数学上学期期中试卷(含解析)-人教版初中九年级全册数学试题
2016-2017学年某某省某某156中九年级(上)期中数学试卷一、选择题(每小题3分,共计30分)1.在3,﹣l,0,π 这四个数中,最大的数是()A.3 B.﹣1 C.0 D.π2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x73.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.5.下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等6.反比例函数y=﹣的图象经过点(﹣2,3),则k的值为()A.3 B.﹣6 C.6 D.﹣37.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣18.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.9.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个二、填空题((每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是千米.12.使分式有意义的x的取值X围是.13.计算:﹣=.14.把多项式ax2+2ax+a分解因式的结果是.15.二次函数y=x2+2x﹣7的对称轴是直线.16.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.17.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC=.18.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).19.在矩形ABCD中,AD=10,AB=8,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为G,则∠ABG的正切值是.20.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC为边在△ABC外作等边△ACD,则BD的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.22.如图的方格纸中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图中画出以AB为边的钝角三角形ABC,使点C在格点上,并且在直线AB的上方,满足tan∠BAC=,且△ABC的面积为9;(2)以AC为斜边画Rt△ACD,使D点在AC上方,且满足tan∠ACD=2;(3)直接写出线段CD的长.23.小林初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,每位同学只能报重高、普高、职高中的一种.她通过采集数据绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把条形统计图补充完整;(3)如果小林所在年级共有260名学生,请你估计该年级报考普高的学生人数.24.兴趣小组在一次数学实践活动中,为了测量如图所示的小山顶的塔高,进行了如下的操作,首先在A处测得塔尖D的仰角为30°,然后沿AC方向前进72米到达山脚B处,此时测得塔尖D的仰角为60°,塔底E的仰角为45°,求塔高.(结果保留根号)25.某某市政府大力扶持大学生创业.李民在政府的扶持下投资销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定销售利润率不能超过80%.(1)如果李民想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设李民每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?26.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB 于点F;过D作⊙O的切线,交CA延长线于点E.(1)求证:AB∥DE;(2)写出AC、CD、BC之间的数量关系,并加以证明.(3)若tan∠B=,DF=5,求DE的长.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,与y轴交于点C,过B、C两点的直线解析式为y=﹣x+b.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,过点P作PD⊥BC于点D,垂足为点D.设P 点的横坐标为t,线段PD的长为d,求d与t的函数关系.(3)过A作射线AQ,交抛物线的对称轴于点M,点N是x轴正半轴上B点右侧一点;BN的垂直平分线交射线AQ于点G,点G关于x轴的对称点恰好在抛物线上.若=,求当(2)中的d最大时直线PN与x轴所夹锐角的正切值.2016-2017学年某某省某某156中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.在3,﹣l,0,π 这四个数中,最大的数是()A.3 B.﹣1 C.0 D.π【考点】实数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<3<π,∴在3,﹣1,0,π这四个数中,最大的数是π.故选D.2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x7【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.【解答】解:A、2x2•x3=2x5,故本选项正确;B、应为(x﹣2)2=x2﹣4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.3.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选C.4.在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】首先利用勾股定理求得AB的长,然后利用正弦函数的定义即可求解.【解答】解:AB===10,则sinA===.故选D.5.下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】三角形的内切圆与内心;确定圆的条件;切线的判定.【分析】根据确定圆的条件、三角形内心和外心以及切线的判定定理即可进行判断.【解答】解:A、在同一直线上的三点不能确定一个圆,所以A选项错误;B、经过圆心的直线是圆的对称轴,所以B选项正确;C、经过半径的外端点,且垂直于半径的直线是圆的切线,所以C选项错误;D、三角形的外心到三角形三个顶点距离相等,所以D选项错误.故选B.6.反比例函数y=﹣的图象经过点(﹣2,3),则k的值为()A.3 B.﹣6 C.6 D.﹣3【考点】反比例函数图象上点的坐标特征.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:∵反比例函数y=﹣的图象经过点(﹣2,3),∴﹣2k=﹣2×3=﹣6,∴k=3,故选A.7.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2+2的顶点坐标为(0,2),根据点平移的规律得到点(0,2)平移后得到对应点的坐标为(﹣1,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),把点(0,2)先向下平移1个单位,再向左平移1个单位得到对应点的坐标为(﹣1,1),所以所得新抛物线的解析式为y=(x+1)2+1.故选B.8.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.9.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的应用.【分析】在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题.【解答】解:当x=0时,y=,故柱子OA的高度为m;(1)正确;∵y=﹣x2+2x+=﹣(x﹣1)2+2.25,∴顶点是(1,2.25),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是2.25米;故(2)正确,(3)错误;解方程﹣x2+2x+=0,得x1=﹣,x2=,故水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外,(4)正确.故选:C.二、填空题((每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是×104千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×104,×104.12.使分式有意义的x的取值X围是x≠﹣.【考点】分式有意义的条件.【分析】根据分式有意义的条件可知2x+1≠0,再解不等式即可.【解答】解:由题意得:2x+1≠0,解得:x≠﹣,故答案为:x≠﹣13.计算:﹣=.【考点】实数的运算.【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=﹣2=﹣.故答案为:﹣.14.把多项式ax2+2ax+a分解因式的结果是a(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,再利用完全平方公式分解因式得出答案.【解答】解:ax2+2ax+a=a(x2+2x+1)=a(x+1)2.故答案为:a(x+1)2.15.二次函数y=x2+2x﹣7的对称轴是直线x=﹣1 .【考点】二次函数的性质.【分析】把函数解析式化为顶点式可求得其对称轴.【解答】解:∵y=x2+2x﹣7=(x+1)2﹣8,∴抛物线对称轴为x=﹣1,故答案为:x=﹣1.16.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5 .【考点】概率的意义.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5,故答案为:0.5.17.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC=.【考点】圆周角定理;坐标与图形性质;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,故答案为:.18.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).【考点】扇形面积的计算;弧长的计算.【分析】首先要明确S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF,然后依面积公式计算即可.【解答】解:连接OF,∵∠AOD=45°,四边形CDEF是正方形,∴OD=CD=DE=EF,于是Rt△OFE中,OE=2EF,∵OF=,EF2+OE2=OF2,∴EF2+(2EF)2=5,解得:EF=1,∴EF=OD=CD=1,∴S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF=﹣×1×1﹣1×1=.19.在矩形ABCD中,AD=10,AB=8,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为G,则∠ABG的正切值是或.【考点】解直角三角形;菱形的性质;矩形的性质.【分析】两种情况:①由矩形的性质得出CD=AB=8,BC=AD=10,∠ADB=∠CDF=90°,由菱形的性质得出CF=EF=BE=BC=10,由勾股定理求出DF,得出GF,即可求出AG;②同①得出AE=6,求出GE,即可得出AG的长,然后解直角三角形即可求得.【解答】解:分两种情况:①如图1所示:∵四边形ABCD是矩形,∴CD=AB=8,BC=AD=10,∠ADC=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=10,∴DF==6,∴AF=AD+DF=16,∵G是EF的中点,∴GF=EF=5,∴AG=AF﹣DF=16﹣5=11,∴tan∠ABG==;②如图2所示:同①得:AE=6,∵G是EF的中点,∴GE=5,∴AG=AE﹣GE=1,∴tan∠ABG==;故答案为:或.20.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC为边在△ABC外作等边△ACD,则BD的长为14 .【考点】勾股定理;等边三角形的性质.【分析】以AB为边作等边三角形AEB,连接CE,如图所示,由三角形ABE与三角形ACD都为等边三角形,利用等边三角形的性质得到AE=AB,AD=AC,且∠EAB=∠DAC=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EAC与三角形BAD全等,利用余弦定理求出EC的长就是BD的长.【解答】解:以AB为边作等边三角形AEB,连接CE,如图所示,∵△ABE与△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD(SAS),∴BD=EC,∵∠EBA=60°,∠ABC=60°,∴∠EBC=120°,在△EBC中,BC=10,EB=6,过点E做BC的垂线交BC于点F,则∠EBF=60°,∠FEB=30°,∴EF=3,FB=3,FC=10+3=13,∴EC2=FC2+EF2=196,∴BD=EC=14.故答案为:14.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】分别化简代数式和x的值,代入计算.【解答】解:原式=.∵x=4sin45°﹣2cos60°==2﹣1,∴原式===.22.如图的方格纸中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图中画出以AB为边的钝角三角形ABC,使点C在格点上,并且在直线AB的上方,满足tan∠BAC=,且△ABC的面积为9;(2)以AC为斜边画Rt△ACD,使D点在AC上方,且满足tan∠ACD=2;(3)直接写出线段CD的长.【考点】作图—应用与设计作图;勾股定理.【分析】(1)根据钝角三角形ABC,满足tan∠BAC=,且△ABC的面积为9进行作图;(2)根据Rt△ACD,满足tan∠ACD=2进行画图即可;(3)根据勾股定理求得线段CD的长.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△ADC即为所求;(3)如图所示,CD==.23.小林初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,每位同学只能报重高、普高、职高中的一种.她通过采集数据绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把条形统计图补充完整;(3)如果小林所在年级共有260名学生,请你估计该年级报考普高的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用重高人数除以重高人数所占的百分比即可得到该班人数;(2)用全班人数减去重高和职高的人数,求出普高的人数,然后补全条形统计图;(3)利用样本估计总体,用260乘以普高所占的百分比,即可得出答案.【解答】解:(1)根据题意得:25÷62.5%=40(人),答:该班的总人数是40人;(2)普高的人数是:40﹣25﹣5=10(人);补图如下:(3)根据题意得:260×=65(人),答:该年级报考普高的学生人数有65人.24.兴趣小组在一次数学实践活动中,为了测量如图所示的小山顶的塔高,进行了如下的操作,首先在A处测得塔尖D的仰角为30°,然后沿AC方向前进72米到达山脚B处,此时测得塔尖D的仰角为60°,塔底E的仰角为45°,求塔高.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】先由三角形外角的性质求出∠ADB=∠CBD﹣∠BAD=60°﹣30°=30°=∠BAD,根据等角对等边得出BD=AB=72米,再解Rt△BCD,得出BC=BD•cos60°=36,CD=BD•sin60°=36,解Rt△BCE,得出CE=BC=36,于是塔高DE=CD﹣EC=36﹣36.【解答】解:∵∠ADB=∠CBD﹣∠BAD=60°﹣30°=30°=∠BAD,∴BD=AB=72米.在Rt△BCD中,∵∠BCD=90°,∠DBC=60°,∴BC=BD•cos60°=72×=36,CD=BD•sin60°=72×=36.在Rt△BCE中,∵∠BCE=90°,∠EBC=45°,∴CE=BC=36,∴塔高DE=CD﹣EC=36﹣36.答:塔高DE为(36﹣36)米.25.某某市政府大力扶持大学生创业.李民在政府的扶持下投资销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定销售利润率不能超过80%.(1)如果李民想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设李民每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以得关于x的一元二次方程,从而可以解答本题,注意价部门规定销售利润率不能超过80%;(2)根据题意可以写出w关于x的函数关系式,从而可以求得函数的最大值,本题得以解决.【解答】解:(1)设销售单价定为x元,(x﹣20)(﹣10x+500)=2000,解得,x1=30,x2=40,∵x≤20+20×80%=36,∴x=30,即如果李民想要每月获得2000元的利润,那么销售单价应定为30元;(2)由题意可得,w=(x﹣20)(﹣10x+500)=﹣10(x﹣35)2+2250,∵20≤x≤36,∴当x=35时,w取得最大值,此时w=2250,即当销售单价定为35元时,每月可获得最大利润,最大利润为2250元.26.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB 于点F;过D作⊙O的切线,交CA延长线于点E.(1)求证:AB∥DE;(2)写出AC、CD、BC之间的数量关系AC+BC=CD ,并加以证明.(3)若tan∠B=,DF=5,求DE的长.【考点】圆的综合题.【分析】(1)连接BD.根据直径所对的圆周角是90°,可知:∠ACB=90°,从而可求得∠ABD=∠ACD=∠DCB=45°由弦切角定理可知:∠CDE=∠CBA+45°,由三角形外角的性质可知∠CFA=∠CBA+45°,故此∠AFC=∠EDC,从而可证明AB∥ED,(2)先根据角平分线的性质定理得出DG=DM,CM=CG,进而得出CG=CD再判断出Rt△ADG ≌Rt△BDM,最后等量代换即可;(3)先根据三角函数得出BC=2x,AB=x,再用角平分线定理得出AF和BF,借助(2)结论得出CF,CD,进而用相交弦定理建立方程求出x,最后用平行线分线段成比例定理得出DE.【解答】解:(1)如图1,∵AB是圆O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠DCB=45°.∴∠ABD=∠ACD=45°.由弦切角定理可知:∠CDE=∠CBD=∠CBA+∠ABD=∠CBA+45°.∵∠CFA=∠FCB+∠CBA=∠CBA+45°,∴∠AFC=∠EDC.∴AB∥ED,(2)AC+BC=CD理由:如图2,连接BD,AD,过点D作DG⊥AC,DM⊥BM,∵∠ACD=∠BCD,∴DG=DM,CM=CG由(1)知,AB∥DE,且DE是⊙O的切线,∴点D是半圆的中点,∵AB是直径,∴AD=BD,在Rt△ADG和Rt△BDM中,,∴Rt△ADG≌Rt△BDM,∴AG=BM,在Rt△CDG中,∠DCG=45°,∴CD=CG,∴CG=CD∴AC+BC=AC+CM+BM=AC+CM+AG=CM+CG=2CG=CD;即:AC+BC=CD故答案为:AC+BC=CD(3)设AC=x,∵tan∠B==,∴BC=2x,∴AB=x,∵CD平分∠ACB,∴=,∴AF=x,BF=x,由(2)知,CD=AC+BC=3x,∴CD=x,∵DF=5,∴CF=CD﹣DF=x﹣5,根据相交弦定理得,DF×CF=AF×BF,∴5(x﹣5)=x•x,∴x=6或x=,当x=6时,AF=2,BF=4,CD=9,CF=4,∵AB∥DE,∴,∴,∴DE=,当x=,AF=,CF=,CD=,∵AB∥DE,∴,∴,∴DE=.即:DE的长为.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,与y轴交于点C,过B、C两点的直线解析式为y=﹣x+b.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,过点P作PD⊥BC于点D,垂足为点D.设P 点的横坐标为t,线段PD的长为d,求d与t的函数关系.(3)过A作射线AQ,交抛物线的对称轴于点M,点N是x轴正半轴上B点右侧一点;BN的垂直平分线交射线AQ于点G,点G关于x轴的对称点恰好在抛物线上.若=,求当(2)中的d最大时直线PN与x轴所夹锐角的正切值.【考点】二次函数综合题.【分析】(1)利用抛物线的解析式求出点C坐标,即可求出b,推出点A、B两点坐标,利用待定系数法即可求出a.(2)如图1中,作PE⊥AB于F,交BC于E.设P(t,﹣t2+2t+3),则E(t,﹣t+3).首先证明△PDE是等腰直角三角形,推出PD=PE,由此即可解决问题.(3)如图2中,设BN的垂直平分线交x轴于H,抛物线的对称轴交x轴于D,作ML⊥GH 于L.首先证明cos∠GML=cos∠GAH=,由AH=GH,列出方程即可解决问题.【解答】解:(1)∵抛物线y=ax2﹣2ax+3与y轴交于点C,∴C(0,3)∵直线解析式为y=﹣x+b过B、C.∴C(0,b),B(b,0),∴b=3,∴B(3,0),∵抛物线的对称轴为x=1,A、B关于对称轴对称,∴A(﹣1,0),把A(﹣1,0)代入抛物线的解析式3a+3=0,∴a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1中,作PE⊥AB于F,交BC于E.设P(t,﹣t2+2t+3),则E(t,﹣t+3).∵OC=OB=3,∠COB=90°,∴∠COB=∠EFB=90°,∴∠FEB=∠PED=45°,∴d=PD=PE=(﹣t2+2t+3+t﹣3)=﹣t2+t.(0<t<3).∴d=﹣t2+t.(0<t<3).(3)如图2中,设BN的垂直平分线交x轴于H,抛物线的对称轴交x轴于D,作ML⊥GH 于L.∵GM:AN=5:8,设GM=5k,AN=8k,∵AB=4,BD=2,∴BN=8k﹣4,BH=4k﹣2,DH=DB+BH=4k,∴cos∠GML==,∵ML∥AH,∴∠GML=∠GAH,∴cos∠GAH=,∴AH=GH,设G点横坐标为m,∵点G关于x轴的对称点恰好在抛物线上,∴G(m,m2﹣2m﹣3),∴(m+1)=m2﹣2m﹣3,解得m=或﹣1(舍弃),∴点H(,0),N(,0).∵d=﹣t2+t=﹣(t﹣)2+,∵﹣<0,∴t=时,d有最大值,此时P(,),∴此时直线PN与x轴所夹锐角的正切值==.。
【5套打包】哈尔滨市初三九年级数学上期中考试单元检测试题(解析版)
新人教版九年级数学上册期中考试试题(含答案)一.选择题(每小题3分,总分36分)1.下列方程中,关于x 的一元二次方程是( )A .(x +1)2=2(x +1)B .C .ax 2+bx +c =0D .x 2+2x =x 2﹣12.若关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实根,则m 的取值范围是( )A .m <3B .m ≤3C .m <3且m ≠2D .m ≤3且m ≠23.方程x (x ﹣1)=x 的根是( )A .x =2B .x =﹣2C .x 1=﹣2,x 2=0D .x 1=2,x 2=04.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D .5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+16.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =19.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( )A.B.C.D.11.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△>0 12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=1035二.填空题(每小题3分,总分18分)13.若关于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是.14.方程x2﹣3x+1=0的解是.15.如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).16.抛物线y=﹣x2+15有最点,其坐标是.17.水稻今年一季度增产a吨,以后每季度比上一季度增产的百分率为x,则第三季度化肥增产的吨数为.18.已知二次函数y=+5x﹣10,设自变量的值分别为x1,x2,x3,且﹣3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系为三.解答题(本大题共8个小题,)19.(6分)解方程x 2﹣4x +1=0x (x ﹣2)=4﹣2x ;20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.22.(8分)已知:抛物线y =﹣x 2+x ﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x 为何值时,y 随x 的增大而增大?23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参考答案一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 【分析】由于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.解:∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,∴m﹣2≠0,并且△=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3且m≠2.故选:D.【点评】本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=0【分析】先将原方程整理为一般形式,然后利用因式分解法解方程.解:由原方程,得x 2﹣2x =0,∴x (x ﹣2)=0,∴x ﹣2=0或x =0,解得,x 1=2,x 2=0;故选:D .【点评】本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D . 【分析】根据因式分解法解方程对A 进行判断;根据方程解的定义对B 进行判断;根据直接开平方法对C 、D 进行判断.解:A 、x +1=0或x ﹣2=0,则x 1=﹣1,x 2=2,所以A 选项错误;B 、x =1或x =﹣2不满足(x ﹣1)(x +2)=1,所以B 选项错误;C 、x +2=±1,则x 1=﹣1,x 2=﹣3,所以C 选项错误;D 、x +=±,则x 1=1,x 2=﹣2,所以D 选项正确.故选:D .【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程,5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+1【分析】变化规律:左加右减,上加下减.解:按照“左加右减,上加下减”的规律,y =3x 2的图象向左平移2个单位,再向上平移1个单位得到y =3(x +2)2+1.故选D .【点评】考查了抛物线的平移以及抛物线解析式的性质.6.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)【分析】先把二次函数化为顶点式的形式,再得出其顶点坐标即可.解:∵原函数解析式可化为:y =﹣(x +2)2+7,∴函数图象的顶点坐标是(﹣2,7).故选:D .【点评】本题考查的是二次函数的性质,根据题意把二次函数的解析式化为顶点式的形式是解答此题的关键.7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标. 解:因为y =(x +2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选:B .【点评】考查顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .要掌握顶点式的性质.8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =1【分析】二次函数的一般形式中的顶点式是:y =a (x ﹣h )2+k (a ≠0,且a ,h ,k 是常数),它的对称轴是x =h ,顶点坐标是(h ,k ).解:y =(x ﹣1)2+2的对称轴是直线x =1.故选:B .【点评】本题主要考查二次函数顶点式中对称轴的求法.9.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .【分析】可以直接利用两根之和得到所求的代数式的值.解:如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2=2.故选:B.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数的关系即韦达定理,两根之和是,两根之积是.10.当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是()A.B.C.D.【分析】根据二次函数的图象与系数的关系可知.解:∵a>0,∴抛物线开口向上;∵b<0,∴对称轴为x=>0,∴抛物线的对称轴位于y轴右侧;∵c>0,∴与y轴的交点为在y轴的正半轴上.故选:A.【点评】本题考查二次函数的图象与系数的关系.11.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△>0【分析】根据二次函数的性质可知,只要抛物线开口向上,且与x轴无交点即可.解:欲保证x取一切实数时,函数值y恒为正,则必须保证抛物线开口向上,且与x轴无交点;则a>0且△<0.故选:B.【点评】当x取一切实数时,函数值y恒为正的条件:抛物线开口向上,且与x轴无交点;当x取一切实数时,函数值y恒为负的条件:抛物线开口向下,且与x轴无交点.12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.二.填空题(每小题3分,总分18分)13.若关于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是m≤.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:在有实数根下必须满足△=b2﹣4ac≥0.解:一元二次方程x2﹣3x+m=0有实数根,△=b2﹣4ac=9﹣4m≥0,解得m.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.方程x2﹣3x+1=0的解是x1=,x2=.【分析】观察原方程,可用公式法求解;首先确定a、b、c的值,在b2﹣4ac≥0的前提条件下,代入求根公式进行计算.解:a=1,b=﹣3,c=1,b2﹣4ac=9﹣4=5>0,x=;∴x1=,x2=.故答案为:x1=,x2=.【点评】在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,用直接开平方法简便.因此,在遇到一道题时,应选择适当的方法去解.15.如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)①③②.【分析】抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.【点评】抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.16.抛物线y=﹣x2+15有最高点,其坐标是(0,15).【分析】根据抛物线的开口方向判断该抛物线的最值情况;根据顶点坐标公式求得顶点坐标.解:∵抛物线y=﹣x2+15的二次项系数a=﹣1<0,∴抛物线y=﹣x2+15的图象的开口方向是向下,∴该抛物线有最大值;当x=0时,y取最大值,即y最大值=15;∴顶点坐标是(0,15).故答案是:高、(0,15).【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 a (1+x )2 .【分析】第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2.关键描述语是:以后每季度比上一季度增产的百分率为x . 解:依题意可知:第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2. 故答案为a (1+x )2.【点评】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系,需注意第三季度是在第二季度的基础上增加的. 18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为 y 1<y 2<y 3【分析】先利用抛物线的对称轴方程得到抛物线的对称轴为直线x =﹣5,而﹣3<x 1<x 2<x 3,然后根据二次函数的性质得到y 1,y 2,y 3的大小关系.解:抛物线的对称轴为直线x =﹣=﹣5,抛物线开口向上,所以当x >﹣5时,y 随x 的增大而增大, 而﹣3<x 1<x 2<x 3, 所以y 1<y 2<y 3. 故答案为y 1<y 2<y 3.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质. 三.解答题(本大题共8个小题,) 19.(6分)解方程x 2﹣4x +1=0 x (x ﹣2)=4﹣2x ;【分析】先移项得x 2﹣4x =﹣1,再把方程两边加上4得到x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,然后利用直接开平方法求解;先移项,然后分解因式得出两个一元一次方程,解一元一次方程即可. 解:x 2﹣4x +1=0x 2﹣4x =﹣1,x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,∴x ﹣2=±, ∴x 1=2+,x 2=2﹣;x (x ﹣2)=4﹣2x x (x ﹣2)+2(x ﹣2)=0,(x ﹣2)(x +2)=0, ∴x ﹣2=0或x +2=0, ∴x 1=2,x 2=﹣2.【点评】本题考查了解一元二次方程﹣配方法:先把方程二次项系数化为1,再把常数项移到方程右边,然后把方程两边加上一次项系数的一半得平方,这样方程左边可写成完全平方式,再利用直接开平方法解方程.也考查了因式分解法解一元二次方程.20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式. 【分析】先设为顶点式,再把顶点坐标和经过的点(1,2)代入即可解决, 解:由抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点, 可设抛物线为:y =a (x ﹣2)2+4,把(1,2)代入得:2=a +4,解得:a =﹣2,所以抛物线为:y =﹣2(x ﹣2)2+4,即y =﹣2x 2+8x ﹣4,【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键. 21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2. (1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.【分析】(1)根据题意可得根的判别式△>0,再代入可得9﹣4m >0,再解即可; (2)根据根与系数的关系可得x 1+x 2=﹣,再代入可得答案. 解:(1)由题意得:△=(﹣3)2﹣4×1×m =9﹣4m >0, 解得:m <;(2)∵x1+x2=﹣=3,x1=1,∴x2=2.【点评】此题主要考查了根与系数的关系,以及根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.22.(8分)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为何值时,y随x的增大而增大?【分析】(1)把二次函数的一般式配成顶点式,然后根据二次函数的性质解决问题;(2)计算自变量为0对应的函数值得到抛物线与y轴的交点坐标,通过判断方程﹣x2+x ﹣=0没有实数得到抛物线与x轴没有交点;(3)利用二次函数的性质确定x的范围.解:(1)y=﹣x2+x﹣=﹣(x﹣1)2﹣2,所以抛物线的开口向下,对称轴为直线x=1,顶点坐标为(1,﹣2);(2)当x=0时,y=﹣x2+x﹣=﹣,则抛物线与y轴的交点坐标为(0,﹣);当y=0时,﹣x2+x﹣=0,△<0,方程没有实数解,则抛物线与x轴没有交点;即抛物线与坐标轴的交点坐标为(0,﹣);(3)当x<1时,y随x的增大而增大.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【分析】利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可;解:设每件童装应降价x 元,根据题意列方程得, (40﹣x )(20+2x )=1200,解得x 1=20,x 2=10(因为尽快减少库存,不合题意,舍去), 答:每件童装降价20元;【点评】本题是一道运用一元二次方程解答的运用题,考查了一元二次方程的解法和基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润的运用.24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元? 【分析】设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,列出面积与x 的二次函数关系式,求最值.解:设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,则其面积S =x •=x (6﹣x )=﹣x 2+6x .∵0<2x <12, ∴0<x <6.∵S =﹣x 2+6x =﹣(x ﹣3)2+9, ∴a =﹣1<0,S 有最大值, 当x =3时,S 最大值=9.∴设计费最多为9×1000=9000(元).【点评】本题主要考查二次函数的应用,由矩形面积等于长乘以宽列出函数关系式,利用函数关系式求最值,运用二次函数解决实际问题,比较简单.25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0) (1)求抛物线的解析式; (2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)【分析】(1)利用待定系数法求抛物线的解析式;(2)由对称性可直接得出B(5,0),当x=0时,代入抛物线的解析式可得与y轴交点C 的坐标;(3)根据90°所对的弦是直径可知:过O,B,C三点的圆的直径是线段BC,利用勾股定理求BC的长,代入圆的面积公式可以求得面积.解:(1)由题意得:,解得:,∴抛物线的解析式为:y=x2﹣4x﹣5;(2)∵对称轴为直线x=2,A(﹣1,0),∴B(5,0),当x=0时,y=﹣5,∴C(0,﹣5),(3)∵∠BOC=90°,∴BC是过O,B,C三点的圆的直径,由题意得:OB=5,OC=5,由勾股定理得;BC==5,S=π•=π,答:过O,B,C三点的圆的面积为π.【点评】本题考查了利用待定系数法求抛物线的解析式和抛物线与两坐标轴的交点,明确令x=0时,求抛物线与y轴的交点;令y=0时,求抛物线与x轴的交点;同时要想求过O,B,C三点的圆的面积就要先求圆的半径可直径,根据圆周角定理可以解决这个问题,从而使问题得以解决.26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.【点评】本题考查二次函数的应用、一次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会构建二次函数解决实际问题中的最值问题,属于中考常考题型.新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y=2x2-1的顶点坐标是(A)A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)2.如果x=-1是方程x2-x+k=0的解,那么常数k的值为(D)A.2 B.1 C.-1 D.-23.将抛物线y=x2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A.y=(x+2)2+1 B.y=(x-2)2+1 C.y=(x+2)2-1 D.y=(x-2)2-1 4.小明在解方程x2-4x-15=0时,他是这样求解的:移项,得x2-4x=15,两边同时加4,得x2-4x+4=19,∴(x-2)2=19.∴x-2=±19.∴x1=2+19,x2=2-19.这种解方程的方法称为(B)A.待定系数法 B.配方法 C.公式法 D.因式分解法5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=-2x2+x经过A(-1,y1)和B(3,y2)两点,那么下列关系式一定正确的是(C)A.0<y2<y1 B.y1<y2<0 C.y2<y1<0 D.y2<0<y17.已知a ,b ,c 分别是三角形的三边长,则方程(a +b)x 2+2cx +(a +b)=0的根的情况是(D)A .有两个不相等的实数根B .有两个相等的实数根C .可能有且只有一个实数根D .没有实数根8.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D) A .68°B .20°C .28°D .22°9.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是(D) A .a >b >c B .c >a >b C .c >b >a D .b >a >c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x=-2时,y的值为11.15.如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH 绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置.若点G恰好在抛物线y=x2(x>0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y =-125x 2.18.(本题7分)如图,在平面直角坐标系中,有一Rt △ABC ,已知△A 1AC 1是由△ABC 绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A 1AC 1顺时针旋转90°,180°后的三角形.解:如图,△B 1A 1C 2,△BB 1C 3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB.∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A.∵∠ABC=90°,∴∠A+∠ACB=90°.∴∠DEB+∠GFE=90°.∴∠FHE=90°.∴FG⊥DE.(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°.∴四边形CBEG是矩形.又∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y =600时,600=-2x 2+20x +400,整理,得x 2-10x +100=0, ∵Δ=(-10)2-4×1×100=-300<0, ∴方程没有实数根.故该专卖店平均每天盈利不可能为600元. 22.(本题12分)综合与实践: 问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB =∠DCE =90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH ⊥FG ; 合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC.∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE. ∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.23.(本题14分)综合与探究:如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y =2x 2-1的顶点坐标是(A)A .(0,-1)B .(0,1)C .(-1,0)D .(1,0) 2.如果x =-1是方程x 2-x +k =0的解,那么常数k 的值为(D) A .2 B .1 C .-1 D .-23.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-1 4.小明在解方程x 2-4x -15=0时,他是这样求解的:移项,得x 2-4x =15,两边同时加4,得x 2-4x +4=19,∴(x -2)2=19.∴x -2=±19.∴x 1=2+19,x 2=2-19.这种解方程的方法称为(B)A .待定系数法B .配方法C .公式法D .因式分解法 5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y =-2x 2+x 经过A(-1,y 1)和B(3,y 2)两点,那么下列关系式一定正确的是(C)。
【5套打包】哈尔滨市初三九年级数学上期中考试单元检测试卷(解析版)
新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新人教版九年级(上)期中模拟数学试卷(答案)一、选择题(本大题共12小题,共36.0分)1.下列方程中是关于x的一元二次方程的是()A. B. C. D.2.观察下列汽车标志,其中是中心对称图形的是()A. B.C. D.3.x=2不是下列哪一个方程的解()A. B. C. D.4.已知一元二次方程3x2-2x+a=0有实数根,则a的取值范围是()A. B. C. D.5.若一元二次方程x2=m有解,则m的取值为()A. 正数B. 非负数C. 一切实数D. 零6.函数y=(m+2)x+2x+1是二次函数,则m的值为()A. B. 0 C. 或1 D. 17.函数y=ax2与函数y=ax+a,在同一直角坐标系中的图象大致是图中的()A. B.C. D.8.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A. 抛物线开口向上B. 抛物线的对称轴是C. 当时,y的最大值为4D. 抛物线与x轴的交点为,9.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 13B. 16C. 12或13D. 11或1610.如图,△ABC绕点O旋转180°得到△DEF,下列说法错误的是()A. 点B和点E关于点O对称B.C. △ ≌△D. △与△关于点B中心对称11.如图所示,△ABC绕着点A旋转能够与△ADE完全重合,则下列结论成立的有()①AE=AC;②∠EAC=∠BAD;⑧BC∥AD;④若连接BD,则△ABD为等腰三角形A. 1个B. 2个C. 3个D. 4个12.二次函数y=ax2+bx+c中,b=4a,它的图象如图所示,有以下结论:①c>0;②a+b+c>0;③b2-4ac<0;④abc<0;⑤4a>c.其中正确的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)13.已知一元二次方程2x2+x+m=0的一个根是1,则m的值是______.14.在直角坐标系中,点(-3,6)关于原点的对称点是______.15.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.16.若抛物线y=-x2-8x+c的顶点在x轴上,则c的取值是______.17.把二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位,得到的函数图象对应的解析式为______.18.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=______度.三、计算题(本大题共2小题,共20.0分)19.已知抛物线y=ax2+bx-1的图象经过点(-1,2),其对称轴为x=-1.求抛物线的解析式.20.如图,A(-1,0)、B(2,-3)两点在一次函数y2=-x+m与二次函数y1=ax2+bx-3的图象上(1)求一次函数和二次函数的解析式;(2)请直接写出y2>y1时,自变量x的取值范围.四、解答题(本大题共5小题,共46.0分)21.用适当的方法解下列方程(1)(y+3)2-81=0(2)2x(3-x)=4(x-3)(3)x2+10x+16=0(4)x2-x-=022.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?23.已知:关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.24.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.答案和解析1.【答案】C【解析】解:A、2x-y=1,是二元一次方程,故此选项错误;B、x+3xy+y2=2,是二元二次方程,故此选项错误;C、=,是一元二次方程,正确;D、x2+=3,含有分式,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握方程定义是解题关键.2.【答案】C【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.结合中心对称图形的概念求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:A,当x=2时,方程的左边=3×(2-2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22-3×2=2,右边=2,则左边=右边,故x=2是B中方程的解;C,当x=2时,方程的左边=0,右边=0,则左边=右边,故x=2是C中方程的解;D,当x=2时,方程的左边=22-2+2=4,右边=0,则左边≠右边,故x=2不是D中方程的解;故选:D.把x=2分别代入各个方程的两边,根据方程的解的定义判断即可.本题考查的是一元二次方程的解的定义,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.4.【答案】A【解析】解:∵一元二次方程3x2-2x+a=0有实数根,∴△≥0,即22-4×3×a≥0,解得a≤.故选:A.根据△的意义得到△≥0,即22-4×3×a≥0,解不等式即可得a的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.【答案】B【解析】解:当m≥0时,一元二次方程x2=m有解.故选:B.利用平方根的定义可确定m的范围.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6.【答案】D【解析】解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,解得:m=1.故选:D.直接利用二次函数的定义分析得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.7.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A、D错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:把(0,-3)代入y=x2-2x+c中得c=-3,抛物线为y=x2-2x-3=(x-1)2-4=(x+1)(x-3),所以:抛物线开口向上,对称轴是x=1,当x=1时,y的最小值为-4,与x轴的交点为(-1,0),(3,0);C错误.故选:C.把(0,-3)代入抛物线解析式求c的值,然后再求出顶点坐标、与x轴的交点坐标.要求掌握抛物线的性质并对其中的a,b,c熟悉其相关运用.9.【答案】A【解析】解:∵x2-5x+6=0,∴(x-3)(x-2)=0,解得:x1=3,x2=2,∵三角形的两边长分别是4和6,当x=3时,3+4>6,能组成三角形;当x=2时,2+4=6,不能组成三角形.∴这个三角形的第三边长是3,∴这个三角形的周长为:4+6+3=13故选:A.首先利用因式分解法求得一元二次方程x2-5x+6=0的两个根,又由三角形的两边长分别是4和6,利用三角形的三边关系,即可确定这个三角形的第三边长,然后求得周长即可.此题考查了因式分解法解一元二次方程与三角形三边关系的知识.此题难度不大,解题的关键是注意准确应用因式分解法解一元二次方程,注意分类讨论思想的应用.10.【答案】D【解析】解:A、点B和点E关于点O对称,说法正确;B、CE=BF,说法正确;C、△ABC≌△DEF,说法正确;D、△ABC与△DEF关于点B中心对称,说法错误;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可知△ABC≌△DEF,再根据全等的性质可得EC=BF,进而可得答案.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.11.【答案】C【解析】解:∵△ABC绕着点A旋转能够与△ADE完全重合,∴△ABC≌△ADE,∴AE=AC,故正确;∠CAB=∠EAD,AB=AD,∴∠CAB-∠EAB=∠EAD-∠EAB,∴∠EAC=∠BAD,故正确;连接BD,则△ABD为等腰三角形,故正确,故选:C.根据旋转的性质得到△ABC≌△ADE,根据全等三角形的性质即可得到结论.本题考查了旋转的性质,等腰三角形的判定,正确的识别图形是解题的关键.12.【答案】C【解析】解:由图象可得,c>0,a>0,b>0,故正确,当x=1,y=a+b+c>0,故正确,函数图象与x轴两个不同的交点,故b2-4ac>0,故错误,∵b=4a,<0,a>0,解得,4a>c,故正确,∵c>0,a>0,b>0,∴abc>0,故错误,故选:C.根据函数图象可以判断a、b、c的正负,根据b=4a可以得到该函数的对称轴,从而可以判断各个小题是否正确,本题得以解决.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.13.【答案】-3【解析】解:∵一元二次方程2x2+x+m=0的一个根为1,∴2×12+1+m=0,解得m=-3.故答案是:-3.把x=1代入已知方程列出关于m的一元一次方程,通过解该一元一次方程来求m 的值.本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.【答案】(3,-6)【解析】解:点(-3,6)关于原点的对称点为(3,-6).故答案为:(3,-6).根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.【答案】50(1-x)2=32【解析】解:由题意可得,50(1-x)2=32,故答案为:50(1-x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.16.【答案】-16【解析】解:∵抛物线y=-x2-8x+c的顶点在x轴上,∴=0,解得,c=-16,故答案为:-16.根据题意,可知抛物线顶点的纵坐标等于0,从而可以求得c的值.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】y=(x-2)2-3【解析】解;将二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位后,所得图象的函数表达式是y=(x-2)2+2-5,即y=(x-2)2-3,故答案为:y=(x-2)2-3.根据函数图象向右平移减,向下平移减,可得答案.本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.18.【答案】65【解析】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.【答案】解:由题意得,,解得,,则抛物线的解析式为y=-3x2-6x-1.【解析】利用待定系数法求出抛物线的解析式.本题考查的是待定系数法求二次函数解析式,掌握二次函数的性质,待定系数法求解析式的一般步骤是解题的关键.20.【答案】解:(1)把A(-1,0)代入y=-x+m得1+m=0,解得m=-1,∴一次函数解析式为y=-x-1;把A(-1,0)、B(2,-3)代入y=ax2+bx-3得,解得,∴抛物线解析式为y=x2-2x-3;(2)当-1<x<2时,y2>y1.【解析】(1)利用待定系数法求一次函数和抛物线解析式;(2)利用函数图象,写出一次函数图象在二次函数图象上方所对应的自变量的范围即可.本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围或利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.21.【答案】解:(1)(y+3)2-81=0y+3=±9,解得:y1=-12,y2=6;(2)2x(3-x)=4(x-3)2x(3-x)-4(x-3)=0,2(3-x)(x+2)=0,解得:x1=3,x2=-2;(3)x2+10x+16=0(x+2)(x+8)=0,解得:x1=-2,x2=-8;(4)x2-x-=0∵△=b2-4ac=3+1=4,∴x=,解得:x1=,x2=.【解析】(1)利用直接开平方法解方程得出答案;(2)直接利用提取公因式法分解因式进而得出答案;(3)直接利用十字相乘法分解因式解方程即可;(4)利用公因式法解方程得出答案.此题主要考查了一元二次方程的解法,正确掌握相关解方程的方法是解题关键.22.【答案】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=21,即=21,∴x2-x-42=0,∴x=7或x=-6(不合题意,舍去).答:应邀请7个球队参加比赛.【解析】设邀请x个球队参加比赛,那么第一个球队和其他球队打(x-1)场球,第二个球队和其他球队打(x-2)场,以此类推可以知道共打(1+2+3+…+x-1)场球,然后根据计划安排21场比赛即可列出方程求解.此题和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确的列出方程是解决问题的关键.此题还要判断所求的解是否符合题意,舍去不合题意的解.23.【答案】解:(1)∵一元二次方程x2-3x-k=0有两个不相等的实数根,∴△=(-3)2-4×1×(-k)>0,解得k>-;(2)当k=-2时,方程为x2-3x+2=0,因式分解得(x-1)(x-2)=0,解得x1=1,x2=2.【解析】(1)根据方程有两个不相等的实数根根,则根的判别式△=b2-4ac>0,建立关于k 的不等式,求出k的取值范围;(2)k取负整数,再解一元二次方程即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根是解答此题的关键.24.【答案】解:设涨价x元能赚得8000元的利润,即售价定为每个(x+50)元,应进货(500-10x)个,…(1分)依题意得:(50-40+x)(500-10x)=8000,…(5分)解得x1=10 x2=30,当x=10时,x+50=60,500-10x=400;当x=30时,x+50=80,500-10x=200 …(8分)答:售价定为每个60元时应进货400个,或售价定为每个80元时应进货200个.…(9分)【解析】总利润=销售量×每个利润.设涨价x元能赚得8000元的利润,即售价定为每个(x+50)元,应进货(新人教版九年级(上)期中模拟数学试卷(答案)一、选择题(本大题共12小题,共36.0分)26.下列方程中是关于x的一元二次方程的是()A. B. C. D.27.观察下列汽车标志,其中是中心对称图形的是()A. B.C. D.28.x=2不是下列哪一个方程的解()A. B. C. D.29.已知一元二次方程3x2-2x+a=0有实数根,则a的取值范围是()A. B. C. D.30.若一元二次方程x2=m有解,则m的取值为()A. 正数B. 非负数C. 一切实数D. 零31.函数y=(m+2)x+2x+1是二次函数,则m的值为()A. B. 0 C. 或1 D. 132.函数y=ax2与函数y=ax+a,在同一直角坐标系中的图象大致是图中的()A. B.C. D.33.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A. 抛物线开口向上B. 抛物线的对称轴是C. 当时,y的最大值为4D. 抛物线与x轴的交点为,34.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 13B. 16C. 12或13D. 11或1635.如图,△ABC绕点O旋转180°得到△DEF,下列说法错误的是()A. 点B和点E关于点O对称B.C. △ ≌△D. △与△关于点B中心对称36.如图所示,△ABC绕着点A旋转能够与△ADE完全重合,则下列结论成立的有()①AE=AC;②∠EAC=∠BAD;⑧BC∥AD;④若连接BD,则△ABD为等腰三角形A. 1个B. 2个C. 3个D. 4个37.二次函数y=ax2+bx+c中,b=4a,它的图象如图所示,有以下结论:①c>0;②a+b+c>0;③b2-4ac<0;④abc<0;⑤4a>c.其中正确的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)38.已知一元二次方程2x2+x+m=0的一个根是1,则m的值是______.39.在直角坐标系中,点(-3,6)关于原点的对称点是______.40.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.41.若抛物线y=-x2-8x+c的顶点在x轴上,则c的取值是______.42.把二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位,得到的函数图象对应的解析式为______.43.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=______度.三、计算题(本大题共2小题,共20.0分)44.已知抛物线y=ax2+bx-1的图象经过点(-1,2),其对称轴为x=-1.求抛物线的解析式.45.如图,A(-1,0)、B(2,-3)两点在一次函数y2=-x+m与二次函数y1=ax2+bx-3的图象上(1)求一次函数和二次函数的解析式;(2)请直接写出y2>y1时,自变量x的取值范围.四、解答题(本大题共5小题,共46.0分)46.用适当的方法解下列方程(1)(y+3)2-81=0(2)2x(3-x)=4(x-3)(3)x2+10x+16=0(4)x2-x-=047.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?48.已知:关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.49.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?50.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.答案和解析1.【答案】C【解析】解:A、2x-y=1,是二元一次方程,故此选项错误;B、x+3xy+y2=2,是二元二次方程,故此选项错误;C、=,是一元二次方程,正确;D、x2+=3,含有分式,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握方程定义是解题关键.2.【答案】C【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.结合中心对称图形的概念求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:A,当x=2时,方程的左边=3×(2-2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22-3×2=2,右边=2,。
人教版九年级数学上册哈尔滨市风华中学度12月阶段性验收试卷.docx
初中数学试卷桑水出品哈尔滨市风华中学2014-2015年度九年级12月阶段性验收数学试卷一、选择题(每小题3分,共计30分)1、下面的图案中,是轴对称图形而不是中心对称图形的是()A B C D2、下列事件中,必然事件的为()A.我市冬季比秋季的平均气温低B.走到车站公共汽车正好开过来C.打开电视机正在播广告D.掷一枚均匀硬币正面一定朝上3、在平面直角坐标系中,点P(2,—3)关于原点对称的点的坐标是()A.(2,3)B.(—2,3)C.(—2,—3)D.(—3,2)4、已知α为锐角,tan(90°—α)=3,则α的度数为()A.30°B.45°C.60°D.75°5、已知,如图所示,小明在打网球时,要使球恰好能打过网,而且落在离网5m的位置上,则球拍击的高度h应该是()A.2.7mB.1.8mC.0.9mD.6m6、如图,A、B、C是⊙O上的点,∠ACB=32°,则∠AOB等于()A.16°B.64°C.148°D.32°7、把二次函数122-=x y 的图像向上平移3个单位所得二次函数图像的函数关系式为( ) A.1)3(22+-=x y B.1)3(22++=x y C.222+=x y D.422-=x y8、如图,AB 是半圆的直径,点O 为圆心,OA=5,弦AC=8,OD ⊥AC ,垂足为E ,交⊙O 于D ,连接BE.设∠BEC=α,则tan α的值为( ) A.23 B.32C.13133D.131349、如图,若0,0,0<><c b a ,则抛物线c bx ax y ++=2的图象大致为( )A. B. C. D.10、一辆货车和一辆轿车先后从甲地出发向终点乙地行驶.如图,线段OA 表示货车离甲地距离y (km )与时间x (h )之间的函数关系,折线BCDE 表示轿车离甲地距离y (km )与时间x (h )之间的函数关系.根据图象,有下列说法:①甲乙两地相距300千米;②货车是匀速行驶,速度为60千米/小时; 3200千米③轿车中途休息了0.5小时,休息后的速度为/小时;④轿车从甲地出发后经过2.9小时追上货车; 以上说法中正确的有( )个。
黑龙江省哈尔滨市风华中学九年级数学2月月考试题(无答案)
黑龙江省哈尔滨市风华中学九年级数学2月月考试题(无答案)一、选择题〔每题3分,共30分〕1.在以下图形中,既是中心对称图形又是轴对称图形的是( ).2.假定正比例函数y=x k 的图象经过点(-1,2),那么这个正比例函数的图象还经过点( ). A.(2,-1) B.〔-21,1〕 C.〔-2,-1〕 D.〔21,2〕 3.如图,在综合实际活动中,小明在学校门口的点C 处测得树的顶端A 仰角为37°,同时测得AC=20米,那么树的高AB(单位:米)为( ).A.︒37sin 20B. 20tan 37°C.︒37tan 20 D. 20sin37° 4.如下图的几何体是由7个大小相反的小正方体组合而成的平面图形,那么它的主视图是( ).5.在平面直角坐标系中,将抛物线y=3x 2 +2先向左平移2个单位,再向上平移6个单位后所失掉的抛物线的顶点坐标是〔 〕.A.〔-2,6〕B.〔-2,-8〕C.〔-2,8〕D.〔2,-8〕6.如图,A 、D 是⊙O 上的两个点,BC 是直径,假定∠OAC = 55°,那么∠D 的度数是〔 〕.A. 35°B. 55°C. 65°D. 70°7.如图,在△ABC 中,点D ,E ,F 区分在边AB ,AC ,BC 上,假定DE ∥BC ,EF ∥AB ,那么下面所列比例式中正确的选项是( ). A.BC DE BD AD = B. CF BF EC AE = C.AD EF BC BF = D.BC DE AB EF = 8. 如图,将△ABC 绕点A 逆时针旋转失掉△AB ′C ′,假定B ′落到BC 边上,∠B=50°,那么∠CB ′C ′的度数为〔 〕.A. 50°B. 60°C.70°D. 80°9.在正比例函数y=xm 21-的图象上有两点A 〔x 1,y 1〕,B 〔x 2,y 2〕,当x 1<0<x 2时,有y 1>y 2,那么m 的取值范围是( ). A.m <0 B.m >0 C.m <21 D.m >21 10.某市路桥公司决议对A 、B 两地之间的公路停止改造,并由O B A D 3题图 6题图 7题图 8题图甲工程队从A 地向B 中央向修筑,乙工程队从B 地向A 中央向修筑.甲工程队先施工2天,乙工程队再末尾施工,乙工程队施工几天后因另有义务提早分开,余下的义务由甲工程队独自完成,直到公路修通.甲、乙两个工程队修公路的长度y 〔米〕与施工时间x 〔天〕之间的函数关系如下图.以下说法:①乙工程队每天修公路240米;②甲工程队每天修公路120米;③甲比乙多任务6天;④A 、B 两地之间的公路总长是1680米.其中正确的说法有( )A .4个B .3个C .2个 D.1个二、填空题〔每题3分,共30分〕11.函数3-x 21x y +=中,自变量x 的取值范围是_________. 12.计算313-48的结果是__________. 13.在△ABC 中,AB=AC ,BC=8,当S △ABC =20时,tanB 的值为__________.14. 正六边形的边长为2,那么该正六边形的边心距是 .15.一个扇形的半径为24cm ,弧长为16πcm ,那么该扇形的圆心角为___________.16. 如图,点P 是△ABC 外接⊙O 上的劣弧BC 上的一点,衔接PB 、PC ,假定AB=BC ,AC 为直径,那么∠P=______度.17. 一个不透明的袋子中有3个区分标有数字2,-4,-1的球,这些球除所标的数字不同外其它都相反.假定从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球,那么这两个球上的两个数字之积为正数的概率是______. 18. 如图,正方形ABCD 的对角线AC 、BD 相交于点O ,∠CAB 的平分线交BD 于点E ,交BC 于点F .假定OE=2,那么CF=_____________.19.在△ABC 中,∠C=90°,AC=BC ,点D 在边BC 上〔不与点B 、C 重合〕,衔接AD ,将线段AD 绕点D 旋转90°失掉线段DE ,衔接BE.作DF ⊥BC 交AB 于点F ,假定AC=8,DF=2,那么线段BE 的长为______________.20.如图,在等腰△ABC 中,AD 平分∠BAC ,点E 在BA 的延伸线上,ED=EC, DE 交AC 于点K ,假定EC=10,tan ∠AED=12,那么AK=_________. 三、解答题〔21、22题每题7分,23、24题每题8分,25-27题每题10分,共60分〕21.〔此题7分〕先化简,再求代数式1441112-+-÷⎪⎭⎫ ⎝⎛-+a a a a 的值,其中 60cos 430tan 3+=a22.〔此题7分〕如图,方格纸中的每个小正方形边长都是1个单位长度,Rt △ABC 的顶点均在格点上.树立平面直角坐标系后,点A 的坐标为〔1,1〕,点B 的坐标为〔4,1〕,点C 的坐标为16题图18题图 KEA20题图〔4,3〕.(1)先将Rt △ABC 向左平移5个单位长度,再向下平移1个单位长度失掉Rt △A 1B 1C 1(点A,B,C 的对应点区分为A 1,B 1,C 1),试在图中画出Rt △A 1B 1C 1,并直接写出点A 1的坐标;(2)再将Rt △A 1B 1C 1绕点A 1顺时针旋转90°后失掉Rt △A 1B 2C 2(点B 1,C 1的对应点区分为B 2,C 2),试在图中画出Rt △A 1B 2C 2,衔接AC 2,并直接写出线段AC 2的长.23.〔此题8分〕 为评价九年级先生的学习效果状况,以应对行将到来的中考做好教学调整,某中学抽取了局部参与考试的先生的效果,绘制成了如下两幅不完整的统计图,请依据图中提供的信息解答以下效果:〔1〕本次调查共抽取了多少名先生?〔2〕经过计算补全条形统计图;〔3〕该校九年级共有1000人参与了这次考试,请估量该校九年级共有多少名先生的学习效果到达优秀.24.〔此题8分〕:在平行四边ABCD 中,点O 是边AD 的中点,衔接CO 并延伸交BA 延伸线于点E ,衔接ED 、AC.(1)如图1,求证:四边形AEDC 是平行四边形;(2)如图2,假定四边形AEDC 是矩形,请探求∠COD 与∠B 的数量关系,写出你的探求结论,并加以证明.25.〔此题10分〕项工程少用10天. (1)(2)26.〔此题10分〕如图,△ABC 内接于⊙O ,∠C=45°,BC 与直径AD 交于点E.(1)如图1,假定∠BAC=60°,求证:BE=2OE ;(2)如图2,在BC 上取点G ,使BG=BA ,衔接AG 并延伸交⊙O 于点F ,求证:AF 平分∠CAD ;(3)如图3,在(2)的条件下,AD=10,AF AC ,求线段EG 的长. 27.〔此题10分〕如图,抛物线y=-x 2+bx+c 交x 轴负半轴于点A ,交x 轴正半轴于点B ,交y 轴正半轴于点C ,直线BC 的解析式为y=kx+3〔k ≠0〕,∠ABC=45°.(1)如图1,求b 、c 的值;(2)如图2,点P 为第一象限抛物线上一动点,衔接PC 、PB ,设点P 的横坐标为t ,△PBC 的面积为S ,求S 与t 之间的函数关系式〔不要求写出自变量t 的取值范围〕;(3)如图3,在(2)的条件下,点D 为第四象限抛物线上一点,衔接PA 交y 轴于点E ,过点C 作CF ⊥CP ,且EF ∥x 轴,假定点D 的横坐标为72,且2∠CFE ﹣∠PCD=90°,求点P 的坐标. D D。
【精品】2015年黑龙江省哈尔滨市香坊区风华中学九年级上学期期中数学试卷带解析答案
2014-2015学年黑龙江省哈尔滨市香坊区风华中学九年级(上)期中数学试卷(五四学制)一.选择题(1~10题,每题3分,共30分)1.(3分)下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.2.(3分)如图,△AOB是正三角形,OC⊥OB,OC=OB,将△AOB绕点O按逆时针方向旋转,使得OA与OC重合,得到△COD,则旋转角度是()A.150°B.120°C.90°D.60°3.(3分)在⊙O中,弦AB的长为8cm,圆心O到AB的距离OC为3cm,则⊙O的半径为()cm.A.2 B.3 C.4 D.54.(3分)二次函数y=x2+2x﹣7的对称轴是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣25.(3分)在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.6.(3分)把抛物线y=(x﹣1)2向左平移2个单位,再向下平移1个单位,所得到的抛物线解析式是()A.y=(x﹣3)2﹣1 B.y=(x﹣3)2+1 C.y=(x+1)2+1 D.y=(x+1)2﹣17.(3分)如图,利用标杆BC测量旗杆EF的高度,标杆BC长为1.2米,tanA=,BF=8.4米,则楼高EF是()米.A.6.3 B.7.5 C.8 D.6.58.(3分)已知二次函数y=ax2+bx图象的开口向下,对称轴在y轴的右侧,则正确的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<09.(3分)如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF的长为()A.1.5 B.C.2 D.310.(3分)下列命题中①平分弦的直径垂直于弦;②二次函数y=x2+bx﹣2 与x轴有两个交点;③如果两条弧相等那么它们所对的弦相等;④有一个角是80°的两个等腰三角形相似;真命题有()个.A.1 B.2 C.3 D.4二.填空题(每小题3分,共30分)11.(3分)函数y=中,自变量x的取值范围为.12.(3分)若sin(x﹣20°)=,则锐角x为度.13.(3分)点P(﹣2,1)关于原点对称的点P′的坐标是.14.(3分)若抛物线y=﹣x2+2x+k﹣1经过原点,则k=.15.(3分)在平面直角坐标系中,抛物线y=x2+1与x轴的交点的个数是个.16.(3分)由地面沿着坡度i=1:2的坡面AP向上前进了AB=m,此时距离地面的高度BC为m.17.(3分)若∠ADE=∠B,AD=6,AB=12,DE=5,则BC的长为.18.(3分)如图,在平行四边形ABCD中,E为AD的中点,BD=15,则BF=.19.(3分)半径为5cm的圆内两条平行弦分别长为8cm和6cm,则两弦之间的距离是.20.(3分)如图,在等腰△ABC中,∠BAC=120°,AB=AC,D为AB的中点,BE ⊥BC,BE=AD,AE分别交CD于F,交BC于K.若DF=1,则KC的长为.三、解答题:(21-24每题6分;25、26每题8分;27、28每题10分共60分)21.(6分)先化简,再求值:(﹣)÷,其中x=2sin60°+tan45°.22.(6分)如图,△ABC三个顶点均在格点上,根据要求画图.(1)将△ABC绕点O顺时针旋转90°;(2)作△ABC关于点O的中心对称得到△A'B'C'图形△A'B'C'.23.(6分)如图,AB是⊙O的一条弦,线段OC、OD交弦AB于点C、D,且AC=BD.求证:OC=OD.24.(6分)某学校农场要盖一间长方形牛棚,打算一面用一堵旧墙(墙长10米),其余各面用19米长木料围成栅栏,AD边留有1米宽的门.设与墙垂直的栅栏AD长x米,(1)设围成的牛棚的面积y米2,试求y与x的函数关系式并直接写出自变量x 的取值范围.(2)请计算,当x为多少时,牛棚的面积最大?并求出最大面积.25.(8分)在四边形ABCD中,AD⊥DC,∠DAC=∠DCA=∠DBC(1)求证:AE•EC=BE•ED;(2)若AC=8,AE=2,求BE的长.26.(8分)某批发商场用8800元同时购进A、B两种型号的水杯各400只,购进A型水杯30只比购进B型水杯15只多用120元.(1)求A、B两种水杯的进货单价各是多少元?(2)若商场把A、B两种水杯均按每只20元零售,同时为了扩大销售,拿出A 水杯的一部分按零售价的七折进行批发销售.商场在这批杯子全部售完后,总获利不低于6000元,则商场用于批发A水杯的数量最多为多少只?27.(10分)如图,△ABC是等边三角形,BE⊥AC于E,点F、G在BE上(BF <BG),连接AF,CG,CG2=GF•GB,(1)求证:∠AFE=∠BCG;(2)过点F作直线CG的垂线,垂足为H,M为AB的中点,连接MH,探究MH 与BF之间的数量关系,并证明你的结论.28.(10分)已知:如图直线y=﹣x+6与x轴、y轴分别交于A、B两点.抛物线y=x2+bx+c过A、B两点,与x轴的另一个交点为C点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,设点P的横坐标为m,△PAC的面积为S,求S 与m的函数关系式,直接写出m的取值范围;(3)在(2)的条件下,是否存在一点P,使得∠PCA=∠ABC?若存在,求出点P坐标;若不存在,请说明理由?2014-2015学年黑龙江省哈尔滨市香坊区风华中学九年级(上)期中数学试卷(五四学制)参考答案与试题解析一.选择题(1~10题,每题3分,共30分)1.(3分)下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.【解答】解:A.旋转180°,与原图形能够完全重合是中心对称图形;故此选项正确;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;故选:A.2.(3分)如图,△AOB是正三角形,OC⊥OB,OC=OB,将△AOB绕点O按逆时针方向旋转,使得OA与OC重合,得到△COD,则旋转角度是()A.150°B.120°C.90°D.60°【解答】解:∵△AOB是正三角形,OC⊥OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,∴∠AOB=60°,∠BOC=90°,∴旋转的角度是:∠AOB+∠BOC=60°+90°=150°.故选:A.3.(3分)在⊙O中,弦AB的长为8cm,圆心O到AB的距离OC为3cm,则⊙O的半径为()cm.A.2 B.3 C.4 D.5【解答】解:连接AO,∵弦AB的长为8cm,圆心O到AB的距离OC为3cm,∴AC=BC=4cm,∠ACO=90°,由勾股定理得:OA===5(cm),故选:D.4.(3分)二次函数y=x2+2x﹣7的对称轴是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【解答】解:∵﹣=﹣=﹣1∴x=﹣1.故选:B.5.(3分)在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.【解答】解:AB===10,则sinA===.故选:D.6.(3分)把抛物线y=(x﹣1)2向左平移2个单位,再向下平移1个单位,所得到的抛物线解析式是()A.y=(x﹣3)2﹣1 B.y=(x﹣3)2+1 C.y=(x+1)2+1 D.y=(x+1)2﹣1【解答】解:∵抛物线y=(x﹣1)2的顶点坐标为(1,0),∴向左平移2个单位,再向下平移1个单位后,顶点坐标为(﹣1,﹣1),∴平移后抛物线解析式为y=(x+1)2﹣1.故选:D.7.(3分)如图,利用标杆BC测量旗杆EF的高度,标杆BC长为1.2米,tanA=,BF=8.4米,则楼高EF是()米.A.6.3 B.7.5 C.8 D.6.5【解答】解:如图,∵在△ACB中,∠ABC=90°,BC=1.2米,tanA=,∴AB===1.6(米).又∵BF=8.4米,∴AF=AB+BF=10米.又∵在直角△AFE中,∠F=90°,tanA=,∴EF=AF•tanA=10×=7.5(米)故选:B.8.(3分)已知二次函数y=ax2+bx图象的开口向下,对称轴在y轴的右侧,则正确的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0【解答】解:∵二次函数y=ax2+bx图象的开口向下,∴a<0,∵对称轴在y轴的右侧,∴﹣>0,∴b>0.故选:C.9.(3分)如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF的长为()A.1.5 B.C.2 D.3【解答】解:由题意得:△ADE≌△FDE,∴AE=FE,DF=AD,又∵F为CE的中点,∴CF=FE;∴CF=FE=AE;∵∠C=90°,∠A=30°,BC=3,∴tan30°=,∴AC=,∴∵cos30°=,∴AD=2,∴DF=AD=2.故选:C.10.(3分)下列命题中①平分弦的直径垂直于弦;②二次函数y=x2+bx﹣2 与x轴有两个交点;③如果两条弧相等那么它们所对的弦相等;④有一个角是80°的两个等腰三角形相似;真命题有()个.A.1 B.2 C.3 D.4【解答】解:①平分弦的直径垂直于弦,错误,是假命题;②二次函数y=x2+bx﹣2 与x轴有两个交点,正确,是真命题;③如果两条弧相等那么它们所对的弦相等,正确,是真命题;④有一个角是80°的两个等腰三角形相似,错误,是假命题,故选:B.二.填空题(每小题3分,共30分)11.(3分)函数y=中,自变量x的取值范围为x≠1.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.12.(3分)若sin(x﹣20°)=,则锐角x为50度.【解答】解:∵sin(x﹣20°)=,∴x﹣20°=30°,解得x=50°.故答案为:50.13.(3分)点P(﹣2,1)关于原点对称的点P′的坐标是(2,﹣1).【解答】解:点P(﹣2,1)关于原点对称的点的坐标是(2,﹣1),故答案为:(2,﹣1).14.(3分)若抛物线y=﹣x2+2x+k﹣1经过原点,则k=1.【解答】解:把(0,0)代入y=﹣x2+2x+k﹣1得k﹣1=0,解得k=1.故答案为1.15.(3分)在平面直角坐标系中,抛物线y=x2+1与x轴的交点的个数是0个.【解答】解:令x2+1=0,∵△=﹣4<0,∴抛物线y=x2+1与x轴没有交点.故答案为:0.16.(3分)由地面沿着坡度i=1:2的坡面AP向上前进了AB=m,此时距离地面的高度BC为1m.【解答】解:∵i=1:2,∴AC=2BC,直角三角形ABC中,AB2=BC2+AC2=5BC2,解得BC=1.故答案为1.17.(3分)若∠ADE=∠B,AD=6,AB=12,DE=5,则BC的长为10.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△ABC∽△ADE,∴=,即=,解得:BC=10.故答案是:10.18.(3分)如图,在平行四边形ABCD中,E为AD的中点,BD=15,则BF=10.【解答】解:∵E为AD的中点,∴AD=2DE,∵四边形BACD是平行四边形,∴BC=AD=2DE,AD∥BC,∴△DEF∽△BCF,∴=,∵BD=15,BC=2DE,∴=,∴BF=10,故答案为:10.19.(3分)半径为5cm的圆内两条平行弦分别长为8cm和6cm,则两弦之间的距离是1cm或7cm.【解答】解:AB∥CD,AB=8cm,CD=6cm,连结OA、OC,作OE⊥CD于E,交AB于F,如图,∵OE⊥CD,CD∥AB,∴OF⊥AB,∴CE=DE=CD=3,AF=BF=AB=4,在Rt△OCE中,∵OC=5,CE=3,∴OE==4,在Rt△OAF中,∵OA=5,AF=4,∴OF==3,当圆心O在AB与CD之间时,EF=OE+OF=4+3=7,当圆心O不在AB与CD之间时,EF=OE﹣OF=4﹣3=1,∴两弦之间的距离为1cm或7cm.故答案为1cm或7cm.20.(3分)如图,在等腰△ABC中,∠BAC=120°,AB=AC,D为AB的中点,BE⊥BC,BE=AD,AE分别交CD于F,交BC于K.若DF=1,则KC的长为.【解答】解:作AM⊥BC于点M,连接DK,作BN∥DF,∵AM⊥BC,∠BAC=120°,AB=AC,∴∠AMB=90°,∠ABM=∠ACM=30°,点M为BC的中点,∴AM=,又∵D为AB的中点,BE⊥BC,BE=AD,∴∠EBK=90°,AD==BE,∴AM=BE,∵∠BKE=∠MKA,∴△BEK≌△MAK(AAS),∴BK=MK,∴BK=KC,点K为BM的中点,∴DK∥AM,∠DKB=∠AMB=90°,∵点D为AB的中点,DF∥BN,DF=1,∴BN=2DF=2,△CFK∽△BNK,∴,即,得CF=6,∵DF=1,∴DC=7,设BK=a,则KC=3a,∵∠DKB=90°,∠DBK=30°,BK=a,∴DK=BK•tan30°=,∵∠DKC=90°,∴CD2=DK2+KC2,即,解得,a=,∴3a=,即KC=,故答案为:.三、解答题:(21-24每题6分;25、26每题8分;27、28每题10分共60分)21.(6分)先化简,再求值:(﹣)÷,其中x=2sin60°+tan45°.【解答】解:(﹣)÷=•(x+1)﹣•(x+1)=1﹣=∵x=2sin60°+45°,∴x=+1,∴原式==.22.(6分)如图,△ABC三个顶点均在格点上,根据要求画图.(1)将△ABC绕点O顺时针旋转90°;(2)作△ABC关于点O的中心对称得到△A'B'C'图形△A'B'C'.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示,△A'B'C'即为所求.23.(6分)如图,AB是⊙O的一条弦,线段OC、OD交弦AB于点C、D,且AC=BD.求证:OC=OD.【解答】证明:过点O作OE⊥AB于点E,∵OE⊥AB,∴AE=BE.∵AC=BD,∴AE﹣AC=BE﹣BD,即CE=DE,在△OAE与△ODE中,∵,∴△OAE≌△ODE(SAS),∴OC=OD.24.(6分)某学校农场要盖一间长方形牛棚,打算一面用一堵旧墙(墙长10米),其余各面用19米长木料围成栅栏,AD边留有1米宽的门.设与墙垂直的栅栏AD长x米,(1)设围成的牛棚的面积y米2,试求y与x的函数关系式并直接写出自变量x 的取值范围.(2)请计算,当x为多少时,牛棚的面积最大?并求出最大面积.【解答】解:(1)设与墙垂直的栅栏AD的长为x米,AB=(20﹣2x)米,根据题意得:y=x(20﹣x)=﹣2x2+20x(5≤x<10);(2)y=﹣2x2+20x=﹣2(x﹣5)2+50,∴当x=5时,最大面积为50平方米.25.(8分)在四边形ABCD中,AD⊥DC,∠DAC=∠DCA=∠DBC (1)求证:AE•EC=BE•ED;(2)若AC=8,AE=2,求BE的长.【解答】解:(1)∵∠DAC=∠DBC,∠AED=∠BEC,∴△AED∽△BEC,∴=,即AE•EC=BE•ED;(2)过点D作DF⊥AC于点F,∵AD⊥DC,∠DAC=∠DCA,∴△ACD是等腰直角三角形,∵AC=8,∴AF=DF=AC=4.∵AE=2,∴EF=AF﹣AE=4﹣2=2,CE=AC﹣AE=8﹣2=6,∴DE===2.由(1)可得=,∴=,解得BE=.26.(8分)某批发商场用8800元同时购进A、B两种型号的水杯各400只,购进A型水杯30只比购进B型水杯15只多用120元.(1)求A、B两种水杯的进货单价各是多少元?(2)若商场把A、B两种水杯均按每只20元零售,同时为了扩大销售,拿出A 水杯的一部分按零售价的七折进行批发销售.商场在这批杯子全部售完后,总获利不低于6000元,则商场用于批发A水杯的数量最多为多少只?【解答】解:(1)设A种水杯的进货单价为x元,B种水杯的进货价为y元,由题意得,,解得:.答:A种水杯的进货单价为10元,B种水杯的进货价为12元;(2)设商场用于批发的A水杯数量为a个,由题意得,20×(800﹣a)+20×0.7a﹣8800≥6000,解得:a≤200.答:商场用于批发A水杯的数量最多为200只.27.(10分)如图,△ABC是等边三角形,BE⊥AC于E,点F、G在BE上(BF <BG),连接AF,CG,CG2=GF•GB,(1)求证:∠AFE=∠BCG;(2)过点F作直线CG的垂线,垂足为H,M为AB的中点,连接MH,探究MH 与BF之间的数量关系,并证明你的结论.【解答】(1)证明:如图1,连结CF,∵CG2=GF•GB,即=,而∠CGF=∠BGC,∴△CGF∽△BGC,∴∠GFC=∠BCG,∵△ABC是等边三角形,BE⊥AC,∴AE=CE,∴FE平分∠AFC,∴∠AFE=∠GFC,∴∠AFE=∠BCG;(2)解:MH=BF.理由如下:连结ME,HE,CM,如图2,∵△ABC是等边三角形,M点为中点,BE⊥AC,∴∠2=∠EBC=∠BCM=30°,∵△CGF∽△BGC,∴∠GCF=∠GBC=30°,∴∠1=∠MCH,∵FH⊥CG,∴∠FGC=90°,而∠FEC=90°,∴H、E点在以FC为直径的圆上,∴∠3=∠HCF=30°,∴HE∥BC,∵ME为△ABC的中位线,∴ME∥BC,∴点H在ME上,∴MH∥BC,∴∠HMC=∠MCB=30°,∴∠2=∠HMC,∴△ABF∽△CMH,∴BF:MH=AB:CM,在Rt△BCM中,BM=BC,CM=BM=BC,∴CM=AB,∴MH=BF.28.(10分)已知:如图直线y=﹣x+6与x轴、y轴分别交于A、B两点.抛物线y=x2+bx+c过A、B两点,与x轴的另一个交点为C点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,设点P的横坐标为m,△PAC的面积为S,求S 与m的函数关系式,直接写出m的取值范围;(3)在(2)的条件下,是否存在一点P,使得∠PCA=∠ABC?若存在,求出点P坐标;若不存在,请说明理由?【解答】解:(1)∵直线y=﹣x+6与x轴、y轴分别交于A、B两点,∴A(6,0),B(0,6),∵抛物线y=x2+bx+c过A、B两点,∴,解得,∴抛物线的解析式为y=x2﹣4x+6;(2)令y=0,则x2﹣4x+6=0,解得x1=2,x2=6,∴C(2,0),∴AC=6﹣2=4,∵点P是抛物线上的一动点,设点P的横坐标为m,∴点P的纵坐标为m2﹣4m+6,∴S=×4×|m2﹣4m+6|,∴当m≤2或m≥6时,S=2(m2﹣4m+6)=m2﹣8m+12,当2<m<6时,S=﹣2(m2﹣4m+6)=﹣m2+8m﹣12;(3)如图,作CD⊥AB于D,PE⊥x轴于E,∵OA=OB=6,∠AOB=90°,∴∠OAB=45°,∴∠DCA=45°,∴AD=CD=AC=×4=2,∵A(6,0),B(0,6),∴AB=6,∴BD=AB﹣AD=4,∵∠PCA=∠ABC,∠PEC=∠CDB=90°,∴△BCD∽△CPE,∴=,∵P(m,m2﹣4m+6),∴PE=|m2﹣4m+6|,CE=m﹣2,∴=,∴2|m2﹣4m+6|=m﹣2,当m<2或m>6时,2(m2﹣4m+6)=m﹣2,整理得,m2﹣9m+14=0解得m1=2(舍去),m2=7,此时,P(7,);当2<m<6时,﹣2(m2﹣4m+6)=m﹣2,整理得,m2﹣7m+10=0,解得m1=5,m2=2(舍去),此时P(5,﹣);综上,存在一点P,使得∠PCA=∠ABC,点P坐标为(7,)或(5,﹣).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
【5套打包】哈尔滨市初三九年级数学上期中考试单元综合练习题(含答案解析)
新九年级(上)期中考试数学试题及答案一、选择题(本大题共10小题,每小题4分,满分40分)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2 2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3 3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.54.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣27.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.二、填空题(本大题共4大题,每小题5分,满分20分)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是.14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE =.三、(本大题共2小题,每小题8分,满分16分)15.已知,求的值.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.四、(本大题共2小题,每小题8分,满分16分)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.六、(本题满分12分)21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x (吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?七、(本题满分12分)22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.八、(本题满分14分)23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.参考答案与试题解析一.选择题(共10小题)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选:C.2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3【分析】按照“左加右减”的规律即可求得.【解答】解:将抛物线y=2x2向左平移3个单位,得y=2(x+3)2;故所得抛物线的解析式为y=2(x+3)2.故选:A.3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.5【分析】根据比例线段计算即可.【解答】解:因为a=5cm,b=10mm,所以的值=,故选:D.4.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限【分析】根据反比例函数的图象和性质,k=﹣2<0,函数位于二、四象限.【解答】解:y=﹣中k=﹣2<0,根据反比例函数的性质,图象位于第二、四象限.故选:D.5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【解答】解:A:形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A选项不符合要求;B:形状相同,符合相似形的定义,故B选项不符合要求;C:形状相同,符合相似形的定义,故C选项不符合要求;D:两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣2【分析】根据二次函数的图象性质即可判断.【解答】解:由二次函数y=x2﹣2x﹣1=(x﹣1)2﹣2可知a=﹣2<0,∴二次函数开口向下,顶点为(1,﹣2),对称轴为:直线x=1,当x=1时,函数y的最小值是﹣2,当x>1时,y随x的增大而增大,故选:D.7.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=【分析】根据相似三角形的判定和性质,以及平行线分线段成比例定理即可得到结论.【解答】解:∵PF∥CD,PE∥BC,∴△APF∽△ACD,△AEP∽△ABC,∴=,=,∴;=,故A、D正确;∵PE∥BC,PF∥CD,∴四边形AEPF是平行四边形,∴PF=AE,∵=,∴;故B正确;同理,故C错误;故选:C.8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.【分析】首先根据反比例函数所在象限确定k的符号,再根据k的符号确定抛物线的开口方向和对称轴,即可选出答案.【解答】解:A、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,与所示图象不符,故本选项错误;B、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,﹣k<0,与y轴交于负半轴,与所示图象相符,故本选项正确;C、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时函数y=x2+kx﹣k的对称轴为y=﹣>0,对称轴在y轴的右侧,与所示图象不符,故本选项错误;D、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时,﹣k>0,函数y=x2+kx﹣k的与y轴交于正半轴,与所示图象不符,故本选项错误;故选:B.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.【分析】首先利用勾股定理计算出AC的长,进而得到CO的长,然后证明△DAC∽△OFC,根据相似三角形的性质可得,然后代入具体数值可得FO的长,进而得到答案.【解答】解:∵将矩形纸片ABCD折叠,使点C与点A重合,∴AC⊥EF,AO=CO,在矩形ABCD,∠D=90°,∴△ACD是Rt△,由勾股定理得AC==2,∴CO=,∵∠EOC=∠D=90°,∠ECO=∠DCA,∴△DAC∽△OFC,∴,∴,∴EO=,∴EF=2×=.故选:B.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.【分析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【解答】解:点M从点A到点D的过程中,y==x,(x≤3),故选项A、B、C错误,当点M从D点使点N到点B的过程中,y=4,(3<x≤5),点M到C的过程中,y=4﹣=﹣x+,(x>5),故选项D正确,故选:D.二.填空题(共4小题)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:∠AED=∠B(答案不唯一),使△ABC∽△AED.【分析】根据∠AED=∠B和∠A=∠A可以求证△AED∽△ABC,故添加条件∠AED=∠B 即可以求证△AED∽△ABC.【解答】解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ABC,故添加条件∠AED=∠B即可以使得△AED∽△ABC,故答案为:∠AED=∠B(答案不唯一).12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为 4 .【分析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x ﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是(2,).【分析】根据题意可以求得点A的坐标,从而可以求得点F的坐标,本题得以解决.【解答】解:设点P的坐标为(a,),∵a=,得a=1或a=﹣1(舍去),∴点P的坐标为(1,1),∵点E是AP的中点,四边形ADFE是矩形,∴AE=DF,AE=,∴DF=,当y=时,,得x=2,∴点F的坐标为(2,).14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE =1或.【分析】分两种情况,根据相似三角形的判定和性质以及翻折的性质解答即可.【解答】解:①如图1所示,∠GA'C=90°,∵四边形ABCD是矩形,∴∠BAE=∠D=90°,CD=AB=3,∵∠AA'G=90°,∴点A、A'、C在同一直线上,∠BAE=∠ADC=90°,∠ABE=∠DAC,∴△ABE∽△DAC,∴=,即=,解得:x=1;②如图2所示,∠A'GC=90°,∴∠DGC=∠GAA'=∠ABE,∴△ABE∽△DGC,∴=,设AE=EA'=EG=x,∴=,解得:x=,或x=3(舍去),∴AE=;综上所述,x=1或;故答案为:1或.三.解答题(共2小题)15.已知,求的值.【分析】设=k,得到a=3k.b=4k,c=6k,代入即可得到结论.【解答】解:设=k,则a=3k.b=4k,c=6k,∴==.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.【分析】(1)根据配方法的要求把一般式转化为顶点式,根据顶点式的坐标特点,写出顶点坐标;(2)当a>0时,抛物线开口向上,根据二次函数的性质求解即可.【解答】解:(1)∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标(﹣1,﹣4);(2)∵函数图象开口向上,其对称轴是直线x=﹣1,∴当x>﹣1时,y随x的增大而增大,当x<﹣1时,y随x的增大而减小.四.解答题(共7小题)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.【分析】(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;(2)根据△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标后即可求得直线FB的解析式.【解答】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=∴点E的坐标为(2,);(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2∵△FBC∽△DEB,∴即:∴FC=∴点F的坐标为(0,)设直线FB的解析式y=kx+b(k≠0)则解得:k=,b=∴直线FB的解析式y=18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.【分析】依据格点△ABC的三边长分别为,2、,将该三角形的各边扩大一定倍数,即可画出与△ABC相似但不全等的格点三角形,进而得出与△ABC相似的格点三角形的最大面积.【解答】解:如图所示:如图所示,格点三角形的面积最大,S=2×8﹣×2×3﹣×1×5﹣×1×8=6.519.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.【分析】(1)先把抛物线解析式化为一般式,再计算△的值,得到△=1>0,于是根据△=b2﹣4ac决定抛物线与x轴的交点个数即可判断不论m为何值,该抛物线与x轴一定有两个公共点;(2)①根据对称轴方程得到=﹣=,然后解出m的值即可得到抛物线解析式;②根据抛物线的平移规律,设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,再利用抛物线与x轴的只有一个交点得到△=52﹣4(6+k)=0,然后解关于k的方程即可.【解答】(1)证明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,∵△=(2m+1)2﹣4(m2+m)=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=﹣=,∴m=2,∴抛物线解析式为y=x2﹣5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52﹣4(6+k)=0,∴k=,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.【分析】(1)证明△ACB∽△ADC,根据相似三角形的性质证明结论;(2)证明△ACB∽△CDB,得到BC2=BD•AB,与(1)中两式相加,得到答案.【解答】证明(1)∵∠A=∠A,∠ACB=∠ADC=90°,∴△ACB∽△ADC,∴=,∴AC2=AD•AB;(2)∵∠B=∠B,∠ACB=∠ADC=90°,∴△ACB∽△CDB,∴=,∴BC2=BD•AB,∴AC2+BC2=AD•AB+BD•AB=AB×(AD+BD)=AB2.21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x (吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【分析】(1)利用待定系数法即可解决问题;(2)销售利润之和W=甲种水果的利润+乙种水果的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣x2+x.(2)w=(8﹣t)﹣t2+t=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是y=(x﹣2)2+3 ;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.【分析】(1)根据“反簇二次函数”定义写出所求即可;(2)把A坐标代入y1,求出m的值,进而表示出y1+y2,根据y1+y2与y1互为“反簇二次函数”,求出a,b,c的值,确定出y2,写出满足题意的范围即可.【解答】解:(1)y=(x﹣2)2+3;故答案为:y=(x﹣2)2+3;(2)∵y1的图象经过点A(1,1),∴2﹣2m+m+2=2,解得:m=2,∴y1=2x2﹣4x+3=2(x﹣1)2+1,∴y1+y2=2x2﹣4x+3+ax2+bx+c=(a+2)x2+(b﹣4)x+c+3,∵y1+y2与y1为“反簇二次函数”,∴y1+y2=﹣2(x﹣1)2+1=﹣2x2+4x﹣1,∴,解得:,∴函数y2的表达式为:y2=﹣4x2+8x﹣4,当0≤x≤3时,y2的最小值为﹣16.23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【分析】方法一:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.方法二:(1)略.(2)求出点M,N的参数坐标,并得到MN的长度表达式,从而求出MN的最大值.(3)因为BM与NC相互垂直平分,所以四边形BCMN为菱形,因为MN∥BC,所以只需MN =BC可得出四边形BCMN为平行四边形,再利用NC⊥BM进行求解.【解答】方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).新九年级(上)期中考试数学试题及答案一、选择题(本大题共10小题,每小题4分,满分40分)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2 2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3 3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.54.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣27.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.二、填空题(本大题共4大题,每小题5分,满分20分)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是.14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE =.三、(本大题共2小题,每小题8分,满分16分)15.已知,求的值.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.四、(本大题共2小题,每小题8分,满分16分)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.六、(本题满分12分)21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x (吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?七、(本题满分12分)22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.八、(本题满分14分)23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.参考答案与试题解析一.选择题(共10小题)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选:C.2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3【分析】按照“左加右减”的规律即可求得.【解答】解:将抛物线y=2x2向左平移3个单位,得y=2(x+3)2;故所得抛物线的解析式为y=2(x+3)2.故选:A.3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.5【分析】根据比例线段计算即可.【解答】解:因为a=5cm,b=10mm,所以的值=,故选:D.4.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限【分析】根据反比例函数的图象和性质,k=﹣2<0,函数位于二、四象限.【解答】解:y=﹣中k=﹣2<0,根据反比例函数的性质,图象位于第二、四象限.故选:D.5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【解答】解:A:形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A选项不符合要求;B:形状相同,符合相似形的定义,故B选项不符合要求;C:形状相同,符合相似形的定义,故C选项不符合要求;D:两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣2【分析】根据二次函数的图象性质即可判断.【解答】解:由二次函数y=x2﹣2x﹣1=(x﹣1)2﹣2可知a=﹣2<0,∴二次函数开口向下,顶点为(1,﹣2),对称轴为:直线x=1,当x=1时,函数y的最小值是﹣2,当x>1时,y随x的增大而增大,故选:D.7.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=【分析】根据相似三角形的判定和性质,以及平行线分线段成比例定理即可得到结论.【解答】解:∵PF∥CD,PE∥BC,∴△APF∽△ACD,△AEP∽△ABC,∴=,=,∴;=,故A、D正确;∵PE∥BC,PF∥CD,∴四边形AEPF是平行四边形,∴PF=AE,∵=,∴;故B正确;同理,故C错误;故选:C.8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.【分析】首先根据反比例函数所在象限确定k的符号,再根据k的符号确定抛物线的开口方向和对称轴,即可选出答案.【解答】解:A、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,与所示图象不符,故本选项错误;B、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,﹣k<0,与y轴交于负半轴,与所示图象相符,故本选项正确;C、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时函数y=x2+kx﹣k的对称轴为y=﹣>0,对称轴在y轴的右侧,与所示图象不符,故本选项错误;D、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时,﹣k>0,函数y=x2+kx﹣k的与y轴交于正半轴,与所示图象不符,故本选项错误;故选:B.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.【分析】首先利用勾股定理计算出AC的长,进而得到CO的长,然后证明△DAC∽△OFC,根据相似三角形的性质可得,然后代入具体数值可得FO的长,进而得到答案.【解答】解:∵将矩形纸片ABCD折叠,使点C与点A重合,。
哈尔滨市九年级上学期期中数学试卷
哈尔滨市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列方程中,是关于x的一元二次方程的是()A . 3(x+1)2=2(x+1)B . + ﹣2=0C . ax2+bx+c=0D . 2x+1=02. (2分)(2018·拱墅模拟) 四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A .B .C .D .3. (2分)对于任意实数,代数式x2-4x+5的值是一个()A . 非负数B . 正数C . 负数D . 无法确定4. (2分)(2019·渝中模拟) 在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=5,BD=4,有下列结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△ADE 的周长是9.其中正确的个数是()A . 4B . 3C . 2D . 15. (2分) (2016九上·桐乡期中) 在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A . y=﹣(x﹣1)2﹣2B . y=﹣(x+1)2﹣2C . y=﹣(x﹣1)2+2D . y=﹣(x+1)2+26. (2分)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M ,连接OP , OM .若⊙O 的半径为2,OP=4,则线段OM的最小值是()A . 0B . 1C . 2D . 37. (2分)如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则弧AE 的弧长为()A . πB . πC . πD . 38. (2分) (2018九上·阆中期中) 一元二次方程的解是()A . ,B . ,C .D .9. (2分) (2017九上·忻城期中) 方程:2 =8的解是()A . ,B . ,C . ,D . ,10. (2分)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…Bn (n,yn)(n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1 , 0),A2(x2 ,0),A3(x3 , 0),…An+1(xn+1 , 0)(n为正整数).若x1=d(0<d<1),当d为()时,这组抛物线中存在美丽抛物线.A . 或B . 或C . 或D .二、填空题 (共6题;共7分)11. (1分)一元二次方程x(x﹣2)=0的解是________ .12. (2分) (2016九上·平凉期中) 已知y= (x+1)2﹣2,图象的顶点坐标为________,当x________时,函数值随x的增大而减小.13. (1分)如图,⊙C过原点,且与两坐标轴分别交于点A、B,点A的坐标为(0,2),M为第三象限内弧上一点,∠BMO=120°,则⊙C的半径为________.14. (1分) (2016九上·博白期中) 如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是________.15. (1分)(2017·古田模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为________ cm.16. (1分) (2017八上·西安期末) 已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是________三、解答题 (共13题;共116分)17. (10分) (2020九上·遂宁期末) 解方程:(1),(2) .18. (5分) (2018九上·封开期中) 已知二次函数y=﹣x2﹣2x,指出函数图象的对称轴和顶点坐标.19. (5分)已知:如图,在⊙O中,弦AB,CD交于点E,AD=CB.求证:AE=CE.20. (5分)已知:关于x的方程(a-1)x2-(a+1)x+2=0.(1)当a取何值时,方程(a-1)x2-(a+1)x+2=0有两个不相等的实数根;(2)当整数a取何值时,方程(a-1)x2-(a+1)x+2=0的根都是正整数.21. (12分)如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是________,∠AOB1的度数是________;(3)连接AA1,求证:四边形OAA1B1是平行四边形.22. (5分)用纸折出黄金分割点:裁一张正方形的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB,类似地,在AB上折出点B″使AB″=AB′,这时B″就是AB的黄金分割点,请你证明这个结论.23. (5分)如图,已知四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连结AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,DE=6,求△AEF的面积.24. (15分)(2013·镇江) 如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).(1)写出抛物线的对称轴与x轴的交点坐标;(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.25. (10分)(2017·柘城模拟) 如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以 cm/s 的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)当P异于A、C时,请说明PQ∥BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?26. (10分) (2019九上·南岸期末) 如图,抛物线y= 与x轴交于A,B(点A在点B的左侧)与y轴交于点C,连接AC、BC.过点A作AD∥BC交抛物线于点D(8 ,10),点P为线段BC下方抛物线上的任意一点,过点P作PE∥y轴交线段AD于点E.(1)如图1.当PE+AE最大时,分别取线段AE,AC上动点G,H,使GH=5,若点M为GH的中点,点N为线段CB上一动点,连接EN、MN,求EN+MN的最小值;(2)如图2,点F在线段AD上,且AF:DF=7:3,连接CF,点Q,R分别是PE与线段CF,BC的交点,以RQ 为边,在RQ的右侧作矩形RQTS,其中RS=2,作∠ACB的角平分线CK交AD于点K,将△ACK绕点C顺时针旋转75°得到△A′CK′,当矩形RQTS与△A′CK′重叠部分(面积不为0)为轴对称图形时,请直接写出点P横坐标的取值范围.27. (9分)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1 ,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于________ ,线段CE1的长等于________ ;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)①设BC的中点为M,则线段PM的长为________ ;②点P到AB所在直线的距离的最大值为________ .(直接填写结果)28. (10分)如图,已知中,,把绕A点沿顺时针方向旋转得到,连接BD,CE交于点F.(1)求证:≌ ;(2)若,,当四边形ADFC是菱形时,求BF的长.29. (15分)(2017·濉溪模拟) 如图,在等腰直角△ABC中,∠ACB=90°,点D为三角形内一点,且∠ACD=∠DAB=∠DBC.(1)求∠CDB的度数;(2)求证:△DCA∽△DAB;(3)若CD的长为1,求AB的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共116分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、21-3、22-1、23-1、24-1、24-2、24-3、25-1、25-2、27-1、27-2、27-3、28-1、28-2、29-1、29-2、29-3、。
黑龙江省哈尔滨市九年级上学期期中数学试卷
黑龙江省哈尔滨市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) 25的平方根是()A . 5B . ﹣5C . ±D . ±52. (2分)下列图形中,是中心对称图形,但不是轴对称图形是()A . 正方形B . 矩形C . 菱形D . 平行四边形3. (2分)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A . AD=ABB . ∠BOC=2∠DC . ∠D+∠BOC=90°D . ∠D=∠B4. (2分)(2017·湖州模拟) 在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(,0)、B(3 ,0)、C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD的长的最小值是()A . 2 ﹣2B . 2C . 2D . 25. (2分)抛物线y=(x+1)2+2的对称轴为()A . 直线x=1B . 直线x=-1C . 直线x=2D . 直线x=-26. (2分) (2019九上·港口期中) 抛物线y=-x 2+2x+3的顶点坐标为()A . (1,3)B . (-1,4)C . (-1,3)D . (1,4)7. (2分)制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本率为()A . 10%B . 9%C . 9.5%D . 8.5%8. (2分)二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是()A . y=x2B . y=(x-2)2C . y=x2+2D . y=(x+2)29. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:其中正确的结论有()①abc>0;②8a+2b=-1;③4a+3b+c>0;④4ac+24c<b2A . 1B . 2C . 3D . 410. (2分)如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A . 12个单位B . 10个单位C . 4个单位D . 15个单位11. (2分)已知RtΔABC中,∠ACB=90°,AC= 4,BC=3,以AB边所在的直线为轴,将ΔABC旋转一周,则所得几何体的表面积是()A .B . 24C .D .12. (2分)(2018·凉州) 如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是 .对于下列说法:① ;② ;③ ;④ (为实数);⑤当时,,其中正确的是()A . ①②④B . ①②⑤C . ②③④D . ③④⑤二、填空题: (共6题;共7分)13. (1分) (2016九上·仙游期末) 已知点M的坐标为(-2,-3),则点M关于原点对称的坐标为________.14. (1分)(2018·张家界) 关于x的一元二次方程x2﹣kx+1=0有两个相等的实数根,则k=________.15. (1分) (2016八上·吴江期中) 如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=________.16. (1分)一块△ABC余料,已知AB=8cm,BC=15cm,AC=17cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是________ .17. (1分) (2018九上·抚顺期末) 如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C 顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为________度.18. (2分) (2016七上·江阴期中) 用同样规格的黑白两种颜色的正方形瓷砖,按如图的方式铺地板,第四个图形中有黑色瓷砖________块;第n个图形中有黑色瓷砖________块.三、解答题: (共8题;共92分)19. (20分) (2016九上·伊宁期中) 解下列方程:(1) 2x2+3=7x;(2)(x+4)2=5(x+4);(3) x2﹣5x+1=0(用配方法);(4) 2x2﹣2 x﹣5=0.20. (10分)已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1 , x2 .(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.21. (5分)某公司市场营销部的某营销员的个人月收入与该营销员每月的销售量成一次函数关系,其图象如图所示,根据图象提供的信息,解答下列问题:(1)求营销员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式;(2)若两个月内该营销员的销售量从2万件猛增到5万件,月收入两个月大幅度增长,且连续两个月的月收入的增长率是相同的,试求这个增长率(保留到百分位).22. (10分) (2016九上·柳江期中) 已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度).(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并直接写出C1点的坐标;(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出B2的坐标.23. (12分)(2017·薛城模拟) 已知二次函数y=﹣ x2+3x﹣.(1)配成形如“y=a(x+b)2+c”的形式,(2)在坐标系中画出它的图象.(3)此抛物线的对称轴是________,抛物线与x轴的两个交点分别为A、B,与y轴的交点为C,则△ABC的面积是________.24. (10分)已知:如图A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,∠B=30°.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.25. (10分) (2019九下·深圳月考) 农场有100棵果树,每一棵树平均结600个果子.现准备多种一些果树以提高产量,根据经验估计,每多种一棵果树,平均每棵树就会少结5个果子.假设果园增种x棵果树,果子总产量为y个.(1)增种多少棵果树,可以使果园的总产量最多?最多为多少?(2)增种多少棵果树,可以使果子的总产量在60400个以上?26. (15分)(2016·眉山) 已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共8题;共92分)19-1、19-2、19-3、19-4、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
黑龙江哈尔滨风华中学~学年度上学期期中考试九年级数学试卷(无答案)
风华中学2019~2019学年度上学期期中考试九年级数学试卷2019-11一.选择题(每题3分,共30分)1.下列运算中,正确的是 ( )A .2x+2y=2xyB .(x 2y 3)2=x 4y 5C .(xy)4÷(xy) =(xy)3D .2xy -3yx=xy2.下列图形中,既是轴对称图形,又是中心对称轴图形的是 ( )3.下列判断中不正确的是 ( )A .半圆是弧,但弧不一定是半圆B .平分弦的直径垂直于弦C .在平面内,到圆心的距离等于半径的点都在圆上D .在同圆或等圆中,相等的圆心角所对的弦相等4. 二次函数y=2(x-1)2+2的图象,可由y=2x 2的图象 ( )A .向右平移1个单位,再向上平移2个单位得到B .向左平移1个单位,再向上平移2个单位得到C .向右平移1个单位,再向下平移2个单位得到D .向左平移1个单位,再向下平移2个单位得到5.反比例函数y =-2k x 的图象,当x >0时,y 随x 的增大而减小,则k 的取值范围( ) A . k <2 B .k >2 C .k ≤2 D . k ≥26.如图,点A ,B 是⊙O 上两点,AB=10,点P 是⊙O 上的动点(P 与A ,B 不重合),连接AP ,PB ,过点O 分别作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 ( )A .3B . 4C .5D .67.已知正方形ABCD 的边长为2,点P 是直线CD 上一点,若DP=1,连接BP ,则tan ∠ BPC 的值是 ( )A .322或B .32C .231或D .2 8.如图,AB 为⊙O 直径,已知为∠DCB=20o ,则∠DBA 为 ( )A .500B .200C .600D .7009.如图,在△ABC 中,点D 为AB 上一点,过点D 作BC 的平行线交AC 于点E,过点E 作AB 的平行线交BC 于点F,连接CD 交EF 于点K ,则下列说法不正确的是 ( )A.FC BF FK BD =B.AC AE BC DE =C.AC AE AB AD =D.ABAD BC BF = 10.甲、乙两人相约登山,甲、乙两人距地面的高度与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息,下列说法正确的个数为 ( ) ①甲登山上升的速度是每分钟10米;②乙在A 地时距地面的高度b 为30米;③乙提速后,乙的登山上升速度是甲登山上升速度的3倍,乙登山一分钟时,距地面的高度是15米; ④登山时间为9分钟时,甲、乙两人距地面的高度差为50米.A.1个B.2个C.3个D.4个 二.填空题(每题3分,共30分)11.函数3-x 21y =中,自变量x 的取值范围是 . 10题图12.在平面直角坐标系中,已知点A( a,-2 )和点B(3,b)关于原点对称,则a+b=____________.13.如图,△COD 是△AOB 绕点O 顺时针方向旋转40°后所得的图形,∠AOD =90°,则∠BOC 的度数是___________.14.一名运动员推铅球,铅球进行高度y(单位:米)与水平距离x (单位:米)之间的关系式为35321212++-=x x y .则铅球在飞行过程中距地面的最大高度为__________. 15.若函数y=x 2﹣4x+2a 的图象与x 轴有且只有一个交点,则a 的值为 .16.如图,河堤横断面迎水坡AB 的斜坡坡度i=1:3是指坡面的铅直高度BC 与水平宽度AC 的比,若堤高BC=5米,则坡面AB 的长度是___________米.17.如图,正比例函数)0(>=k kx y 与反比例函数xy 1=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,若△ABC 的面积等于 .18.如图,在平行四边形ABCD 中,∠B=120°,AB 与CD 之间的距离是34, AB=28,在AB 上取一点E(AE <BE),使得∠DEC=120°.则AE=____________.19.在△ABC 中,AB=22,∠ABC=45°,AC=5,将射线AC 绕点A 逆时针旋转45°与直线BC 交于点E ,则线段CE 的长为___________. 20.如图,△ABC 为等腰直角三角形,∠A BC =90°,过点B 作BQ ∥AC,在BQ 上取一点D ,连接CD 、AD,若2∠ADB-∠ACD=180°,BD=6,则AD= .三.解答题(21、22题每题7分;23、24题每题8分,25、26、27每题10分) 21.(7分) 先化简,再求代数式aa 1+÷(a a a 3212+-)的值,其中=a 2cos30°+ tan45°.22.(7分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(-3, 2).(1)画出将△ABC 向右平移3个单位的△A 1B 1C 1 .(2)画出△A 1B 1C 1关于原点O 的中心对称图形△A 2B 2C 2,并写出A 2的坐标___________. 23.(8分) 如图,BC 是⊙O 的直径,AB 是⊙O 的弦,半径OF ∥AC 交AB 于点E.(1)求证:(2)若AB=36,EF=3.求半径OB 的长.DAQ20题图 y xB C A O24. (8分)某小区为美化环境要建造一个圆形喷水池,在水池正中央垂直于地面的柱子OC 顶端安装喷头,水在各个方向上沿形状相同的抛物线路径落下,已知OC=3米,喷出的水流距柱子1米处时达到最大高度4米,如图,在过OC 的某平面内建立平面直角坐标系.(1)求水流所在抛物线解析式.(2)求水流落地处离水池中心O 的距离是多少米?25.(10分)某超市用1200元购进甲乙两种文具,甲种文具进价12元/个,售价为15元/个.乙种文具进价10元/个,售价为12元/个.全部售完后获利270元.(1)求该超市购进甲乙两种文具各多少个?(2)若该超市以原价再次购进这两种文具,且购进甲种文具数量不变,乙种文具购进数量是第一次的2倍,乙种文具按原售价出售,甲种文具降价销售,当两种文具销售完毕后,要使再次购进的文具获利不少于340元,甲种文具每个最低售价应为多少元?26.(10分)已知四边形ABCD 中,∠BCD=90º,连接BD ,过点A 作AE ⊥BD 于点E. AE=CD,∠ABD=2∠DAE.(1)如图1,求证:BD 平分∠ABC.(2)如图2,把AD 沿AE 翻折并延长交AC 于F ,连接CE ,求证:AF CE 21= (3)如图3,BD 与AF 交于点M.延长AE 交CD 于点G,连接BG 交AF 于点H ,连接EH.若EG=4,EH=2103求BD 的长. 27.(10分)抛物线3522-+=bx ax y 经过点A (-1, 0)和B (2,0),直线m x y +=3经过点A 和抛物线的另一个交点为C.(1)求抛物线的解析式.(2)动点P 、Q 从点A 出发,分别沿线段AC 和射线AO 运动,运动的速度分别是每秒4个单位长度和3个单位长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年黑龙江省哈尔滨市风华中学九年级(上)期中数学试卷一.选择题(1~10题,每题3分,共30分)1.(3分)下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.2.(3分)如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O 按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°3.(3分)在⊙O中,弦AB的长为8cm,圆心O到AB的距离OC为3cm,则⊙O的半径为()cm.A.2 B.3 C.4 D.54.(3分)二次函数y=x2+2x﹣7的对称轴是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣25.(3分)在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.6.(3分)把抛物线y=(x﹣1)2向左平移2个单位,再向下平移1个单位,所得到的抛物线解析式是()A.y=(x﹣3)2﹣1 B.y=(x﹣3)2+1 C.y=(x+1)2+1 D.y=(x+1)2﹣17.(3分)如图,利用标杆BC测量旗杆EF的高度,标杆BC长为1.2米,tanA=,BF=8.4米,则楼高EF是()米.A.6.3 B.7.5 C.8 D.6.58.(3分)已知二次函数y=ax2+bx图象的开口向下,对称轴在y轴的右侧,则正确的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<09.(3分)如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF的长为()A.1.5 B.C.2 D.310.(3分)下列命题中①平分弦的直径垂直于弦;②二次函数y=x2+bx﹣2 与x轴有两个交点;③如果两条弧相等那么它们所对的弦相等;④有一个角是80°的两个等腰三角形相似;真命题有()个.A.1 B.2 C.3 D.4二.填空题(每小题3分,共30分)11.(3分)函数中,自变量x的取值范围是.12.(3分)若sin(x﹣20°)=,则锐角x为度.13.(3分)点P(﹣2,1)关于原点对称的点P′的坐标是.14.(3分)若抛物线y=﹣x2+2x+k﹣1经过原点,则k=.15.(3分)在平面直角坐标系中,抛物线y=x2+1与x轴的交点的个数是个.16.(3分)由地面沿着坡度i=1:2的坡面AP向上前进了AB=m,此时距离地面的高度BC为m.17.(3分)若∠ADE=∠B,AD=6,AB=12,DE=5,则BC的长为.18.(3分)如图,在平行四边形ABCD中,E为AD的中点,BD=15,则BF=.19.(3分)半径为5cm的圆内两条平行弦分别长为8cm和6cm,则两弦之间的距离是.20.(3分)如图,在等腰△ABC中,∠BAC=120°,AB=AC,D为AB的中点,BE ⊥BC,BE=AD,AE分别交CD于F,交BC于K.若DF=1,则KC的长为.三、解答题:(21-24每题6分;25、26每题8分;27、28每题10分共60分)21.(6分)先化简,再求值:(﹣)÷,其中x=2sin60°+tan45°.22.(6分)如图,△ABC三个顶点均在格点上,根据要求画图.(1)在图1中△ABC绕点O顺时针旋转90°得到△A′B′C′;(2)在图2作△ABC关于点O的中心对称图形△A1B1C1.23.(6分)如图,AB是⊙O的一条弦,线段OC、OD交弦AB于点C、D,且AC=BD.求证:OC=OD.24.(6分)某学校农场要盖一间长方形牛棚,打算一面用一堵旧墙(墙长10米),其余各面用19米长木料围成栅栏,AD边留有1米宽的门.设与墙垂直的栅栏AD长x米,(1)设围成的牛棚的面积y米2,试求y与x的函数关系式并直接写出自变量x 的取值范围.(2)请计算,当x为多少时,牛棚的面积最大?并求出最大面积.25.(8分)在四边形ABCD中,AD⊥DC,∠DAC=∠DCA=∠DBC(1)求证:AE•EC=BE•ED;(2)若AC=8,AE=2,求BE的长.26.(8分)某批发商场用8800元同时购进A、B两种型号的水杯各400只,购进A型水杯30只比购进B型水杯15只多用120元.(1)求A、B两种水杯的进货单价各是多少元?(2)若商场把A、B两种水杯均按每只20元零售,同时为了扩大销售,拿出A 水杯的一部分按零售价的七折进行批发销售.商场在这批杯子全部售完后,总获利不低于6000元,则商场用于批发A水杯的数量最多为多少只?27.(10分)如图,△ABC是等边三角形,BE⊥AC于E,点F、G在BE上(BF <BG),连接AF,CG,CG2=GF•GB,(1)求证:∠AFE=∠BCG;(2)过点F作直线CG的垂线,垂足为H,M为AB的中点,连接MH,探究MH 与BF之间的数量关系,并证明你的结论.28.(10分)已知:如图直线y=﹣x+6与x轴、y轴分别交于A、B两点.抛物线y=x2+bx+c过A、B两点,与x轴的另一个交点为C点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,设点P的横坐标为m,△PAC的面积为S,求S 与m的函数关系式,直接写出m的取值范围;(3)在(2)的条件下,是否存在一点P,使得∠PCA=∠ABC?若存在,求出点P坐标;若不存在,请说明理由?2014-2015学年黑龙江省哈尔滨市风华中学九年级(上)期中数学试卷参考答案与试题解析一.选择题(1~10题,每题3分,共30分)1.(3分)下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.【解答】解:A.旋转180°,与原图形能够完全重合是中心对称图形;故此选项正确;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;故选:A.2.(3分)如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O 按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°【解答】解:旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°.故选:A.3.(3分)在⊙O中,弦AB的长为8cm,圆心O到AB的距离OC为3cm,则⊙O的半径为()cm.A.2 B.3 C.4 D.5【解答】解:连接AO,∵弦AB的长为8cm,圆心O到AB的距离OC为3cm,∴AC=BC=4cm,∠ACO=90°,由勾股定理得:OA===5(cm),故选:D.4.(3分)二次函数y=x2+2x﹣7的对称轴是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【解答】解:∵﹣=﹣=﹣1∴x=﹣1.故选:B.5.(3分)在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.【解答】解:AB===10,则sinA===.故选:D.6.(3分)把抛物线y=(x﹣1)2向左平移2个单位,再向下平移1个单位,所得到的抛物线解析式是()A.y=(x﹣3)2﹣1 B.y=(x﹣3)2+1 C.y=(x+1)2+1 D.y=(x+1)2﹣1【解答】解:∵抛物线y=(x﹣1)2的顶点坐标为(1,0),∴向左平移2个单位,再向下平移1个单位后,顶点坐标为(﹣1,﹣1),∴平移后抛物线解析式为y=(x+1)2﹣1.故选:D.7.(3分)如图,利用标杆BC测量旗杆EF的高度,标杆BC长为1.2米,tanA=,BF=8.4米,则楼高EF是()米.A.6.3 B.7.5 C.8 D.6.5【解答】解:如图,∵在△ACB中,∠ABC=90°,BC=1.2米,tanA=,∴AB===1.6(米).又∵BF=8.4米,∴AF=AB+BF=10米.又∵在直角△AFE中,∠F=90°,tanA=,∴EF=AF•tanA=10×=7.5(米)故选:B.8.(3分)已知二次函数y=ax2+bx图象的开口向下,对称轴在y轴的右侧,则正确的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0【解答】解:∵二次函数y=ax2+bx图象的开口向下,∴a<0,∵对称轴在y轴的右侧,∴﹣>0,∴b>0.故选:C.9.(3分)如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF的长为()A.1.5 B.C.2 D.3【解答】解:由题意得:△ADE≌△FDE,∴AE=FE,DF=AD,又∵F为CE的中点,∴CF=FE;∴CF=FE=AE;∵∠C=90°,∠A=30°,BC=3,∴tan30°=,∴AC=,∴∵cos30°=,∴AD=2,∴DF=AD=2.故选:C.10.(3分)下列命题中①平分弦的直径垂直于弦;②二次函数y=x2+bx﹣2 与x轴有两个交点;③如果两条弧相等那么它们所对的弦相等;④有一个角是80°的两个等腰三角形相似;真命题有()个.A.1 B.2 C.3 D.4【解答】解:①平分弦的直径垂直于弦,错误,是假命题;②二次函数y=x2+bx﹣2 与x轴有两个交点,正确,是真命题;③如果两条弧相等那么它们所对的弦相等,正确,是真命题;④有一个角是80°的两个等腰三角形相似,错误,是假命题,故选:B.二.填空题(每小题3分,共30分)11.(3分)函数中,自变量x的取值范围是x≠1.【解答】解:根据题意可得x﹣1≠0;解得x≠1;故答案为:x≠1.12.(3分)若sin(x﹣20°)=,则锐角x为50度.【解答】解:∵sin(x﹣20°)=,∴x﹣20°=30°,解得x=50°.故答案为:50.13.(3分)点P(﹣2,1)关于原点对称的点P′的坐标是(2,﹣1).【解答】解:点P(﹣2,1)关于原点对称的点的坐标是(2,﹣1),故答案为:(2,﹣1).14.(3分)若抛物线y=﹣x2+2x+k﹣1经过原点,则k=1.【解答】解:把(0,0)代入y=﹣x2+2x+k﹣1得k﹣1=0,解得k=1.故答案为1.15.(3分)在平面直角坐标系中,抛物线y=x2+1与x轴的交点的个数是0个.【解答】解:令x2+1=0,∵△=﹣4<0,∴抛物线y=x2+1与x轴没有交点.故答案为:0.16.(3分)由地面沿着坡度i=1:2的坡面AP向上前进了AB=m,此时距离地面的高度BC为1m.【解答】解:∵i=1:2,∴AC=2BC,直角三角形ABC中,AB2=BC2+AC2=5BC2,解得BC=1.故答案为1.17.(3分)若∠ADE=∠B,AD=6,AB=12,DE=5,则BC的长为10.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△ABC∽△ADE,∴=,即=,解得:BC=10.故答案是:10.18.(3分)如图,在平行四边形ABCD中,E为AD的中点,BD=15,则BF=10.【解答】解:∵E为AD的中点,∴AD=2DE,∵四边形BACD是平行四边形,∴BC=AD=2DE,AD∥BC,∴△DEF∽△BCF,∴=,∵BD=15,BC=2DE,∴=,∴BF=10,故答案为:10.19.(3分)半径为5cm的圆内两条平行弦分别长为8cm和6cm,则两弦之间的距离是1cm或7cm.【解答】解:AB∥CD,AB=8cm,CD=6cm,连结OA、OC,作OE⊥CD于E,交AB于F,如图,∵OE⊥CD,CD∥AB,∴OF⊥AB,∴CE=DE=CD=3,AF=BF=AB=4,在Rt△OCE中,∵OC=5,CE=3,∴OE==4,在Rt△OAF中,∵OA=5,AF=4,∴OF==3,当圆心O在AB与CD之间时,EF=OE+OF=4+3=7,当圆心O不在AB与CD之间时,EF=OE﹣OF=4﹣3=1,∴两弦之间的距离为1cm或7cm.故答案为1cm或7cm.20.(3分)如图,在等腰△ABC中,∠BAC=120°,AB=AC,D为AB的中点,BE⊥BC,BE=AD,AE分别交CD于F,交BC于K.若DF=1,则KC的长为.【解答】解:作AM⊥BC于点M,连接DK,作BN∥DF,∵AM⊥BC,∠BAC=120°,AB=AC,∴∠AMB=90°,∠ABM=∠ACM=30°,点M为BC的中点,∴AM=,又∵D为AB的中点,BE⊥BC,BE=AD,∴∠EBK=90°,AD==BE,∴AM=BE,∵∠BKE=∠MKA,∴△BEK≌△MAK(AAS),∴BK=MK,∴BK=KC,点K为BM的中点,∴DK∥AM,∠DKB=∠AMB=90°,∵点D为AB的中点,DF∥BN,DF=1,∴BN=2DF=2,△CFK∽△BNK,∴,即,得CF=6,∵DF=1,∴DC=7,设BK=a,则KC=3a,∵∠DKB=90°,∠DBK=30°,BK=a,∴DK=BK•tan30°=,∵∠DKC=90°,∴CD2=DK2+KC2,即,解得,a=,∴3a=,即KC=,故答案为:.三、解答题:(21-24每题6分;25、26每题8分;27、28每题10分共60分)21.(6分)先化简,再求值:(﹣)÷,其中x=2sin60°+tan45°.【解答】解:原式=(﹣)•(x+1)=1﹣==,当x=2sin60°+tan45°=2×+1=+1,当x=+1时,原式==.22.(6分)如图,△ABC三个顶点均在格点上,根据要求画图.(1)在图1中△ABC绕点O顺时针旋转90°得到△A′B′C′;(2)在图2作△ABC关于点O的中心对称图形△A1B1C1.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:△A1B1C1即为所求.23.(6分)如图,AB是⊙O的一条弦,线段OC、OD交弦AB于点C、D,且AC=BD.求证:OC=OD.【解答】证明:过点O作OE⊥AB于点E,∵OE⊥AB,∴AE=BE.∵AC=BD,∴AE﹣AC=BE﹣BD,即CE=DE,在△OAE与△ODE中,∵,∴△OAE≌△ODE(SAS),∴OC=OD.24.(6分)某学校农场要盖一间长方形牛棚,打算一面用一堵旧墙(墙长10米),其余各面用19米长木料围成栅栏,AD边留有1米宽的门.设与墙垂直的栅栏AD长x米,(1)设围成的牛棚的面积y米2,试求y与x的函数关系式并直接写出自变量x 的取值范围.(2)请计算,当x为多少时,牛棚的面积最大?并求出最大面积.【解答】解:(1)设与墙垂直的栅栏AD的长为x米,AB=(20﹣2x)米,根据题意得:y=x(20﹣x)=﹣2x2+20x(5≤x<10);(2)y=﹣2x2+20x=﹣2(x﹣5)2+50,∴当x=5时,最大面积为50平方米.25.(8分)在四边形ABCD中,AD⊥DC,∠DAC=∠DCA=∠DBC(1)求证:AE•EC=BE•ED;(2)若AC=8,AE=2,求BE的长.【解答】(1)证明:∵∠DAC=∠DBC,∠AED=∠BEC,∴△AED∽△BEC,∴=,即AE•EC=BE•ED;(2)过点D作DF⊥AC于点F,∵AD⊥DC,∠DAC=∠DCA,∴△ACD是等腰直角三角形,∵AC=8,∴AF=DF=AC=4.∵AE=2,∴EF=AF﹣AE=4﹣2=2,CE=AC﹣AE=8﹣2=6,∴DE===2.∵由(1)知,=,∴=,解得BE=.26.(8分)某批发商场用8800元同时购进A、B两种型号的水杯各400只,购进A型水杯30只比购进B型水杯15只多用120元.(1)求A、B两种水杯的进货单价各是多少元?(2)若商场把A、B两种水杯均按每只20元零售,同时为了扩大销售,拿出A 水杯的一部分按零售价的七折进行批发销售.商场在这批杯子全部售完后,总获利不低于6000元,则商场用于批发A水杯的数量最多为多少只?【解答】解:(1)设A种水杯的进货单价为x元,B种水杯的进货价为y元,由题意得,,解得:.答:A种水杯的进货单价为10元,B种水杯的进货价为12元;(2)设商场用于批发的A水杯数量为a个,由题意得,20×(800﹣a)+20×0.7a﹣8800≥6000,解得:a≤200.答:商场用于批发A水杯的数量最多为200只.27.(10分)如图,△ABC是等边三角形,BE⊥AC于E,点F、G在BE上(BF <BG),连接AF,CG,CG2=GF•GB,(1)求证:∠AFE=∠BCG;(2)过点F作直线CG的垂线,垂足为H,M为AB的中点,连接MH,探究MH 与BF之间的数量关系,并证明你的结论.【解答】(1)证明:如图1,连结CF,∵CG2=GF•GB,即=,而∠CGF=∠BGC,∴△CGF∽△BGC,∴∠GFC=∠BCG,∵△ABC是等边三角形,BE⊥AC,∴AE=CE,∴FE平分∠AFC,∴∠AFE=∠GFC,∴∠AFE=∠BCG;(2)解:MH=BF.理由如下:连结ME,HE,CM,如图2,∵△ABC是等边三角形,M点为中点,BE⊥AC,∴∠2=∠EBC=∠BCM=30°,∵△CGF∽△BGC,∴∠GCF=∠GBC=30°,∴∠1=∠MCH,∵FH⊥CG,∴∠FGC=90°,而∠FEC=90°,∴H、E点在以FC为直径的圆上,∴∠3=∠HCF=30°,∴HE∥BC,∵ME为△ABC的中位线,∴ME∥BC,∴点H在ME上,∴MH∥BC,∴∠HMC=∠MCB=30°,∴∠2=∠HMC,∴△ABF∽△CMH,∴BF:MH=AB:CM,在Rt△BCM中,BM=BC,CM=BM=BC,∴CM=AB,∴MH=BF.28.(10分)已知:如图直线y=﹣x+6与x轴、y轴分别交于A、B两点.抛物线y=x2+bx+c过A、B两点,与x轴的另一个交点为C点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,设点P的横坐标为m,△PAC的面积为S,求S 与m的函数关系式,直接写出m的取值范围;(3)在(2)的条件下,是否存在一点P,使得∠PCA=∠ABC?若存在,求出点P坐标;若不存在,请说明理由?【解答】解:(1)∵直线y=﹣x+6与x轴、y轴分别交于A、B两点,∴A(6,0),B(0,6),∵抛物线y=x2+bx+c过A、B两点,∴,解得,∴抛物线的解析式为y=x2﹣4x+6;(2)令y=0,则x2﹣4x+6=0,解得x1=2,x2=6,∴C(2,0),∴AC=6﹣2=4,∵点P是抛物线上的一动点,设点P的横坐标为m,∴点P的纵坐标为m2﹣4m+6,∴S=×4×|m2﹣4m+6|,∴当m≤2或m≥6时,S=2(m2﹣4m+6)=m2﹣8m+12,当2<m<6时,S=﹣2(m2﹣4m+6)=﹣m2+8m﹣12;(3)如图,作CD⊥AB于D,PE⊥x轴于E,∵OA=OB=6,∠AOB=90°,∴∠OAB=45°,∴∠DCA=45°,∴AD=CD=AC=×4=2,∵A(6,0),B(0,6),∴AB=6,∴BD=AB﹣AD=4,∵∠PCA=∠ABC,∠PEC=∠CDB=90°,∴△BCD∽△CPE,∴=,∵P(m,m2﹣4m+6),∴PE=|m2﹣4m+6|,CE=m﹣2,∴=,∴2|m2﹣4m+6|=m﹣2,当m<2或m>6时,2(m2﹣4m+6)=m﹣2,整理得,m2﹣9m+14=0解得m1=2(舍去),m2=7,此时,P(7,);当2<m<6时,﹣2(m2﹣4m+6)=m﹣2,整理得,m2﹣7m+10=0,解得m1=5,m2=2(舍去),此时P(5,﹣);综上,存在一点P,使得∠PCA=∠ABC,点P坐标为(7,)或(5,﹣).赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。