3.1.1随机事件的概率(第1课时)

合集下载

高中概率讲义

高中概率讲义

3.1 随机事件的概率3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)1、教学目标:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A 发生的频率f n (A )与事件A 发生的概率P (A )的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题.2、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率(7)似然法与极大似然法:见课本P1113、例题分析:例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“平抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a >b ,那么a -b >0”;(5)“掷一枚硬币,出现正面”;(6)“常温下,铁通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.例2 某射手在同一条件下进行射击,结果如下表所示:(2)这个射手射击一次,击中靶心的概率约是什么?分析:事件A 出现的频数n A 与试验次数n 的比值即为事件A 的频率,当事件A 发生的频率f n (A )稳定在某个常数上时,这个常数即为事件A 的概率。

随机事件的概率

随机事件的概率

教学设计:3.1.1随机事件的概率(第1课时)春晖中学袁海峰一、教学任务分析知识与技能:1.了解必然事件、不可能事件、随机事件的概念以及随机事件发生存在的规律性.2.理解随机事件的概率的定义,同时明确频率与概率的联系与区别.3.形成用试验的方法探究科学规律的方法.过程与方法:通过概率统计定义的形成过程,提高探究问题、分析问题的能力,体会归纳过程,掌握对实验数据进行有效的分析和处理的方式和方法.情感态度与价值观:通过概念的形成过程,渗透试验探究的思想方法,体会“必然性寓于偶然性之中”的辩证唯物主义思想.教学方法:试验分析法,发现式、启发式教学.教学手段与工具:多媒体辅助教学,计算机、幻灯片、表格、三角板等.二、教学重点与难点教学重点:通过试验(抛掷硬币等)的方法,形成概率的定义,明确随机试验的随机性、频率的偶然性以及大量试验频率的稳定规律;同时掌握用大量试验的方法获得科学规律的研究方法. 教学难点:从频率到概率的认识过程,以及通过试验的方法体会从偶然到必然的升华。

三、教学基本流程↓↓↓↓四、教学情景设计几点说明:1.随机事件的概率(第1课时)建立在学生在初中已经接触了概率初步知识的基础上。

学生在高中阶段第一次学习这一内容,在后面还将继续学习概率的其他内容, 因此本节课起到承上启下的作用。

2.要把握课堂的重点,试验研究应该是本节课的重中之重。

新课程标准倡导面向学生进行探究性学习,强调学生在老师的引导下去提出问题,发现问题,重视知识的发现和形成过程。

3.教法上层层设问,以问题为载体使教学条理清楚。

4.学生学习是积极主动建构知识的过程,学习应该与学生熟悉的背景相联系。

在教学中,让学生在问题情境中经历知识的形成和发展,通过试验、观察、归纳、思考、探索、交流、反思来实现学生的主体作用,认识和理解数学知识,学会学习,发展能力。

《3.1.1-随机事件的概率》讲课课件(邢台一中董学全)

《3.1.1-随机事件的概率》讲课课件(邢台一中董学全)

C
A
(3)、下列事件: ① a,b∈R且a<b,则a-b∈R; ②小华将一石块抛出地球; ③掷一枚硬币,正面向上; ④掷一颗骰子出现点8. 其中是不可能事件的是 A、①② B、②③ C、②④

D、①④
C)
(4)、随机事件在n次试验中发生了m次,则( C) (A) (C) 0<m<n 0≤m≤n (B) 0<n<m (D) 0≤n≤m
出生婴儿数 出生男婴数
2011年 21840 11453
2012年 23070 12031
2013年 2014年 20094 19982 10297 10242
(1)试计算男婴各年出生频率(精确到0.001); (2)该市男婴出生的概率约是多少? 11453 0.524. 解题示范: (1)2011年男婴出生的频率为:
历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示
抛掷次数(n)
2048 4040 2048 0.506
蒲丰
12000 6019 0.501
皮尔逊
24000 12012 0.5005
皮尔逊
3000 0 1498 4 0.499
维尼
正面朝上次数(m) 1061 频率(m/n) 频率m/n
1
0.51
6.
(1)事件的分类:必然事件、不可能事件和随机事件; (2)随机事件概率的定义; (3)频率与概率的关系; (4)统计的思想方法—试验、观察、探究、归纳和总结.
作业
1、必做题:
课本113页练习1,2题
2、选做题:
(1)选一个生活背景下的随机事件,设计恰当的数学试 验,估计上述随机事件发生的概率。 (2)查阅有关资料,了解更多关于概率应用的故事及概 率的发展史。

课件3:3.1.1 随机事件的概率

课件3:3.1.1 随机事件的概率

频率
频数
4.概率 (1)定义:对于给定的随机事件 A,如果随着试验次数 的增加,事件 A 发生的频率 fn(A)会稳定在某个常数上, 把这个常数记为 P(A),称它为事件 A 的概__率__. (2)由概率的定义可知,事件 A 的概率可以通过大量 的重复试验后,用频率值估计概率. (3)必然事件的概率为_1_,不可能事件的概率为_0_, 因此概率的取值范围是[_0_,_1_] .
【变式与拓展】 3.某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 n/次 8 10 15 20 30 40 50 进球次数 m/次 6 8 12 17 25 32 38
(1)填写表中的进球频率; (2)这位运动员投篮一次,进球的概率大约是多少? 解:(1)从左到右依次填:0.75,0.8,0.8,0.85,0.83,0.8,0.76. (2)由于进球频率都在 0.8 左右摆动,故这位运动员投篮一次,进球 的概率约是 0.8.
第三章 概率
3.1 随机事件的概率
3.1.1 随机事件的概率
1.事件的分类 (1)确定事件: ①必然事件:在条件 S 下,_一__定__会__发__生_的事件; ②不可能事件:在条件 S 下,_一__定__不__会__发__生_的事件. 必然事件与不可能事件统称为相对于条件 S 的确定事件. (2)随机事件: 在条件 S 下,_可__能__发__生__也__可__能__不_发__生__的事件. 确定事件和随机事件统称为事件,一般用大写字母 A,B, C…表示.
(B ) A.3 个都是男生
B.至少有 1 个男生
C.3 个都是女生
D.至少有 1 个女生
2.抛掷一枚骰子两次,请就这个试验写出一个随机事件: 两__次__的__点__数__都__是__奇__数__,一个必然事件:_两__次__点__数__之__和__不__小__于__2_, 一个不可能事件:_两__次__点__数__之__差__的__绝__对__值__等__于___6__.

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

3.1.1 随机事件的概率 课件

3.1.1 随机事件的概率 课件

m≤n
0.4948 0.50105 0.501 0.49876
随机事件及其概率
很多 当抛掷硬币的次数很多时,出现正面 常数 的频率值是稳定的,接近于常数0.5,在它 稳定
附近摆动.
随机事件及其概率
某种油菜籽在相同条件下的发芽试验结果 表:
很多 当试验的油菜籽的粒数很多时,油菜籽 m 常数 发芽的频率 接近于常数0.9,在它附近摆 n 动。
不可能事件
事件B:抛一石块,下落
必然事件
事件C:打开电视机,正在播放新闻
随机事件
事件D:在下届亚洲杯上,中国足球队以2:0 战胜日本足球队
随机事件
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;
必然事件 (4)发射1枚炮弹,命中目标. 随机事件
活动与探究:
投掷一枚硬币,出现正面 的可能性有多大?
探究:投掷一枚硬币,出现正面可能性有多大?
活动 与 探究
——抛硬币试验
出现正面的次 出现正面的频 试验次数(n) m 数(m) 率 n 2 0.2 10 54 0.54 100 0.552 276 500 0.5114 5000 2557 10000 20000 50000 100000 4948 10021 25050 49876
(5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
确 定 事 件
随机事件
在一定条件下可能发生也可 能不发生的事件叫随机事件。

人教课标版高中数学必修三《随机事件的概率(第1课时)》教案-新版

人教课标版高中数学必修三《随机事件的概率(第1课时)》教案-新版

第三章概率3.1 随机事件的概率第1课时一、教学目标1.核心素养通过随机事件概率的学习.初步形成数据分析能力与抽象概括的能力.2.学习目标(1)了解随机事件发生的不确定性.(2)理解随机事件的规律性.(3)进一步理解概率的意义.(4)利用概率的意义解释生活中的事例.3.学习重点频率与概率的关系,对概率含义正确理解.4.学习难点频率与概率的关系,对概率含义正确理解.二、教学设计(一)课前设计1.预习任务任务1阅读教材P108,思考:如何判定一个事件是必然事件、不可能事件还是随机事件?随机事件说法中“同样的条件下”能否去掉?请举例说明.任务2阅读教材P113—118. 明白概率的意义及其在生活中的指导性作用!2.预习自测1.指出下列事件哪些是必然事件.A.某地1月1日刮西北风;B.当x是实数时,x2≥0;C.手电筒的电池没电,灯泡发亮;D.一个电影院某天的上座率超过50%.解:B2.某种新药在使用的患者中进行调查的结果如下表:请填写表中有效频率一栏,则该药的有效概率是多少?A.84% B.87%C.88% D.90%解:C(二)课堂设计1.知识回顾(1)必然事件:有些事件我们事先能肯定其一定会发生;(2)不可能事件:有些事件我们事先能肯定其一定不会发生;(3)随机事件:有些事件我们事先无法肯定其会不会发生;(4)举出现实生活中随机事件,必然事件,不可能事件的案例.2.问题探究问题探究一创设情景,体会随机事件发生的不确定性(★▲)●活动一“麦蒂的35秒奇迹”在火箭队与马刺队的篮球比赛中,麦蒂在最后几十秒已经连续投进了三个三分球,并且在最后关头抢断成功,推进到前场,在距离比赛结束还有1.7秒时再次投出三分球! 为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进?●活动二“石头,剪刀,布”再看看我们身边的实例,两名同学想看同一本好书,于是采用“石头,剪刀,步”的方式来决定谁先看,那么能预测这两名同学认赢吗?问题探究二重复实验,体会随机事件的规律性.(★▲)●活动一抛掷硬币试验抛掷硬币试验结果表:当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动●活动二某批乒乓球产品质量检查试验:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动.●活动三某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,并在它附近摆动●活动四反思活动,感知随机事件的规律性.通过上述三个大量重复性实验,你能发现随机事件具有什么规律性吗?一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率.问题探究三创设生活实例,深化概率意义的理解.(▲)●活动一彩票中奖问题若某种彩票准备发行1000万张,其中1万张可以中奖,则买一张这种彩票的中奖的概率是多少?买1000张的话是否会中奖?分析:中奖的概率为1/ 1000;不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖,买彩票中奖概率为1/1000是指试验次数相当大,即随着购买彩票的数量增加,大约有1/1000的彩票中奖.●活动二游戏的公平性问题某中学在高一年级的二、三班中任选一个班参加社区服务活动,有人提议用如下方法选班:掷两枚硬币,正面朝上的记作2点,反面向上记作1点,两枚硬币的点数和是几,就选几班,你认为这种方法公平吗?分析:不公平,记(x,y)中的x,y分别代表两枚硬币的点数,则有(1,1),(1,2),(2,1), (2,2)。

高中数学(人教版A版必修三)配套课件:3.1.1随机事件的概率

高中数学(人教版A版必修三)配套课件:3.1.1随机事件的概率

答案
返回
题型探究
重点难点 个个击破
类型一 必然事件、不可能事件和随机事件的判定
例1 在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机 事件?
(1)如果a,b都是实数,那么a+b=b+a; (2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签; (3)铁球浮在水中; (4)某电话总机在60秒内接到至少15次传呼; (5)在标准大气压下,水的温度达到50 ℃时沸腾; (6)同性电荷,相互排斥.
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
答案
不可能事件:在条件S下,一定不会发生的
事件,叫做相对于条件S的不可能事件.
事件确定事件必叫 然事 做件 相: 对在 于条 条件 件SS下 的, 必然一事定件会.发生 的事件,
随机事件:在条件S下, 可能发生也可能不发生
的事件,叫做相对于条件S的随机事件.
答案
知识点二 频数与频率 思考 抛掷一枚硬币10次,正面向上出现了3次,则在这10次试验中, 正面向上的频数与频率分别是多少? 答案 频数为3,频率为130. 在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中 事件A出现的次数nA 为事件A出现的频数,称事件A出现的比例fn(A)=nnA为 事件A出现的频率.
第三章 § 3.1 随机事件的概率
3.1.1 随机事件的概率

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件(共25张PPT)
3.抛掷一枚硬币出现正面朝上的概率是 0.5, 所以将一枚硬币投掷10000次,出现正面 朝上的次数很有可能接近于5000次。
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。

3.1.1 用树状图或表格求概率 教学课件

3.1.1 用树状图或表格求概率 教学课件
解:(1)列表如下:
第一次 第二次
白1
白2

白1
——
(白2,白1) (红,白1)
2
白2
(白1,白2)
——
(红,白2)
1

(白1,红) (白2,红)
——
当小球摸出后不放入箱子时, 共有6种结果,每种结果的可能性相同,故摸 出两个白球的概率为
强化训练
(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出 一个球,求两次摸出的球都是白球的概率.
注意
① 弄清试验涉及试验因素个数或试 验步骤分几步;
② 在摸球试验一定要弄清“放回” 还是“不放回”
由于硬币质地是均匀的,因此抛掷第一枚硬币时出现“正面 朝上”和“反面朝上”的概率相同.无论抛掷第一枚硬币出现怎 样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上” 的概率都是相同的.
我们可以用树状图或表格列出所有可能出现的结果.
树状图
开始
第一枚硬币


第二枚硬币

反 正 反
所有可能出现的结果
(正,正) (正,反) (反,正) (反,反)
知识讲解
议一议:在上面抛掷硬币的实验中, (1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否 一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否 一样? (3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些 结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?
知识讲解
知识讲解
解法二:将可能出现的结果列表如下:
上衣
裤子
白色
红色
黑色 (白,黑) (红,黑)
白色 (白,白) (红,白)

《随机事件的概率》(第一课时)教学设计-北师大版数学必修3

《随机事件的概率》(第一课时)教学设计-北师大版数学必修3
(2)概率计算方法的掌握:学生对于如何准确计算随机事件的概率存在困难,特别是独立事件的概率计算。
(3)概率在实际问题中的应用:学生难以将概率知识运用到实际问题的解决中,对于如何从实际问题中抽象出随机事件及其概率计算存在困惑。
举例说明:
对于随机事件的定义与分类,可以通过具体实例来帮助学生理解。比如,抛硬币实验中,正面朝上和反面朝上都是随机事件,而抛出Heads则是一个必然事件。通过这种实例,学生可以更好地理解必然事件、不可能事件和不确定事件的概念。
至少有两个人生日相同的概率是1减去所有人生日都不同的概率:
P(至少有两个人生日相同) = 1 - P(所有人的生日都不同)
= 1 - (365/365) × (364/365) × ... × (362/365)
= 1 - (362/365)^9
≈ 0.970
所以,至少有两个人生日相同的概率大约是0.970。
接着,我们考虑第三个人与前两个人生日不同的概率。第三个人不能与前两个人的生日相同,所以他的生日有364种选择。
因此,第三个人与前两个人生日不同的概率是364/365。
以此类推,对于第四个人,他与前三个人的生日都不同的概率是363/365。
对于第10个人,他与前9个人的生日都不同的概率是362/365。
准备教学用具和多媒体资源,确保随机事件的概率教学过程的顺利进行。
设计课堂互动环节,提高学生学习随机事件的概率的积极性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入随机事件的概率学习状态。
回顾旧知:
简要回顾上节课学习的随机事件的定义和分类,帮助学生建立知识之间的联系。
2.数据分析:让学生掌握随机事件概率的计算方法,培养学生从大量数据中获取有价值信息的能力,提高数据分析的素养。

3.1.1随机事件及其概率

3.1.1随机事件及其概率

3.已知随机事件A发生的频率是0.02,事件A出现了10次, 那么共进行了 500 次试验
4.抛掷一个质地均匀的正方体骰子(每个面上分别 标有 数字1,2,3,4,5,6),落地时向上的点数为5的概率是( D )
A.
5:某篮球运动员在同一条件下进行投篮练习,结果如下表:
1 3
B.
1 4
C.
1 5
D.
自学检测
1、指出下列事件是必然事件,不可能事 件还是随机事件?
事件A:抛一颗骰子两次,向上的面的数字之和 大于12. 不可能事件 事件E:抛一颗骰子三次,向上的面的数字之和 事件B:方程x2+2x-1=0有解 大于12. 随机事件 必然事件 事件C:在下届亚洲杯上,中国足球队以2:0 战胜日本足球队。
3.1.1随机事件的概率
学习目标
• 1.了解事件的分类。 • 2.在具体情境中,了解随机事件发生的不确 定性和概率的稳定性。 • 3.理解频率与概率的关系。
自学引导
同学们用3分钟时间阅读课本108页内容: 1.了解事件的三种分类。 2.理解必然事件,不可能事件,随机事件的 定义并会对所给事件作出判断。 3.了解事件的表示方法。
nA n
必然事件与不可能事件可看作随机事件的两种特殊情况, 其概率分别为1与0,即0≤P(A)≤1
频率与概率的关系
(1)频率本身是随机变化的,具有随机性,在试验前不能 确定. (2)概率是一个确定的数,具有稳定性,是客观存在的,与 试验次数无关. (3)频率是概率的近似值,随着试验次数的增加,频率会 越来越接近概率,并在其附近摆动. (4)概率是频率的稳定值,而频率是概率的近似值;
随机事件
事件D:明天会下大雨
随机事件

“随机事件的概率(第一课时)”教案

“随机事件的概率(第一课时)”教案

课题:随机事件的概率(第一课时)一、教学目标分析:1、知识与技能:⑴理解随机事件、必然事件、不可能事件的概念;⑵通过试验理解随机事件发生的不确定性和频率的稳定性;2、过程与方法:⑴创设情境,引出课题,激发学生的学习兴趣和求知欲;⑵发现式教学,通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中持续提升;⑶明确概率与频率的区别和联系,理解利用频率估计概率的思想方法.3、情感态度与价值观:⑴通过学生自己动手、动脑和亲自试验来理解知识,体会数学知识与现实世界的联系;⑵培养学生的辩证唯物主义观点,增强学生的科学意识,并通过数学史实渗透,培育学生刻苦严谨的科学精神.二、重点与难点:⑴重点:通过抛掷硬币理解概率的定义、明确其与频率的区别和联系;⑵难点:利用频率估计概率,体会随机事件发生的随机性和规律性;三、学法与教学用具:⑴指导学生通过实验,发现随机事件随机性中的规律性,更深刻的理解事件的分类,理解频率,区分概率;⑵教学用具:硬币数十枚,表格,幻灯片,计算机及多媒体教学.四、教学基本流程:第1页(共4页)五、教学情境设计:(第一课时)1、创设情境,引出课题通过生活中图片反应有的事情的发生是偶然的,有些事情的发生是必然的,而且偶然与必然之间往往有某种内在联系。

2、温故知新、承前启后——温习随机事件概念:⑴必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的~; ⑵不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的~; ⑶随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于S 的~; ⑷确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件. 讨论:在生活中,有很多必然事件、不可能事件及随机事件.你能举出现实生活中随机事件、必然事件、不可能事件的实例吗?例1:判断以下事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? ⑴“导体通电后,发热”;⑵“抛出一块石块,自由下落”;⑶“某人射击一次,中靶”;⑷“在标准大气压下且温度低于0℃时,冰自然融化”;⑸“方程210x +=有实数根”;⑹“假如a >b ,那么a -b >0”;⑺“从标号分别为1,2,3,4,5的5张标签中,得到1号签”。

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42

因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

事件的表示:以后我们用A、B、C等大写字母表示随 机事件,简称事件.
数学运用
例1.判断哪些事件是随机事件,哪些是必然事件, 哪些是不可能事件? 事件A:抛一颗骰子两次,向上的面的数字之和 大于12. 不可能事件 事件B:抛一石块,下落
必然事件 随机事件
事件C:打开电视机,正在播放新闻
事件D:在下届亚洲杯上,中国足球队以2:0 战胜日本足球队 随机事件
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事
不可能事件
随机事件
数学理论
在一定条件下 必然事件:在一定条件下必然要发生的事件叫必然事件。
木柴燃烧,产生热量
在一定条件下 不可能事件:在一定条件下不可能发生的事件叫不可 能事件。
实心铁块丢入水中,铁块浮起
在一定条件下 随机事件:在一定条件下可能发生也可能不发生的事 件叫随机事件。
两人各买1张彩票,均中奖
的概率约是0.52.
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;
必然事件 (4)发射1枚炮弹,命中目标. 随机事件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习巩固
例1:判断下列事件哪些是必然事件?哪 些是不可能事件?哪些是随机事件?
⑸方程x2+1=0有实数根; 不可能事件 ⑹如果a>b,那么a-b>0; 必然事件 ⑺姚明十投十中; 随机事件
⑻从标号分别为1,2,3,4,5的5张标签中任取一张, 得到1号签。 随机事件
概念拓展
在相同的条件 S 下重复 n 次试验,观察某一事 件 A 是否出现,称 n 次试验中事件 A 出现的次数 nA 为事件 A 出现的频数,称事件 A 出现的比例
温故知新
必然事件 确定事件 不可能事件 随机事件 一般用大写字 母A,B,C,…表示 事件
练习巩固
例1:判断下列事件哪些是必然事件?哪 些是不可能事件?哪些是随机事件?
⑴导体通电时,发热; 必然事件
⑵人在地面,抛出一块石头,自由下落; 必然事件
⑶某人射击一次,中靶;
随机事件
⑷在标准大气压下,当温度低于 0℃ 时,冰自然融 不可能事件 化;
答:这种说法是错误的,抛掷一枚硬币出现正面的概率为0.5, 它是大量试验得出的一种规律性结果,对具体的几次试验来讲 不一定能体现出这种规律性,在连续抛掷一枚硬币两次的试验 中,可能两次均正面向上,也可能两次均反面向上,也可能 一次正面向上,一次反面向上
课堂小结
1.随机事件、必然事件、不可能事件;
2.概率的定义及其与频率的区别和联系。
nA f n ( A) n
为事件 A 出现的频率。
随机试验
抛掷硬币试验 全班分成八小组,每组试验10次,小组 长统计本组所掷硬币“正面朝上”的频数及 频率,填入黑板表格。
随机试验
历史上一些抛掷硬币试验结果
抛掷次 正面向上的 m 试验者 数(n) 次数(频数 m) 频率( n ) 棣莫弗 2048 1061 0.5181 布丰 4040 2048 0.5069 费勒 10000 4979 0.4979 皮尔逊 12000 6019 0.5016 皮尔逊 24000 12012 0.5005
概念拓展
◆概率:对于给定的随机事件A,如果随着 试验次数的增加,事件A发生的频率fn(A)稳 定在某个常数上,则把这个常数记作P(A), 称为事件A的概率。
问题:随机事件A发生的概率 P(A)是一个常数,请问概率P(A)的 取值范围是多少? 频率与概率有何区别和联系?
讨论探究
频率和概率有何区别和联系?
随机事件的概率
(第1课时)
温故知新
• 定义:1.在条件S下可能发生也可能不发生的事 件,叫做相对于条件S的随机事件; • 2.在条件S下,一定能发生的事件,叫做相对于 条件S的必然事件; • 3.在条件S下,一定不可能发生的事件,叫做相 对于条件S的不可能事件. • 4.确定事件:必然事件和不可能事件统称为相 对于条件S的确定事件.
通过重复试验,利用频率估计概率。
课后任务
作业布置:
P113练习1,2,3.
1.概率的正确理解:
问题2:若某种彩票准备发行1000万张,其中有1万张可以
中奖,则买一张这种彩票的中奖概率是多少?买1000张的 话是否一定会中奖?
答:不一定中奖,因为买彩票是随机的,每张彩票都可能中奖 也可能不中奖。买彩票中奖的概率为1/1000,是指试验次数相当 大,即随着购买彩票的张数的增加,大约有1/1000的彩票中奖
1.频率是概率的近似值,随着试验次数的增加, 频率会稳定在概率附近; 2.频率本身是随机的,在试验前不能确定; 3.概率是一个确定的数,是客观存在的,与每 次试验无关。
讨论探究
频率和概率有何区别和联系?
任何事件的概率是0~1之间的一个确定的 数,它度量该事情发生的可能性。知道随机 事件的概率有利于我们作出正确的决策。
概率在实际问题中的应用:
问题1、 若某地气象局预报说两个解释哪一个能代表气象局的观点? (1)明天本地有70%的区域下雨,30%的区域不下雨; (2)明天本地有70%的机会下雨。
问题2:有人说,既然抛掷一枚硬币出现正面的概率为0.5, 那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面 朝上,一次反面朝上,你认为这种想法正确吗?
问题:必然事件发生的频率为多少?不可 能事件的频率为多少?随机事件呢?
相关文档
最新文档