优化方案(新课标)2016高考数学一轮复习第七章第2讲知能训练轻松闯关

合集下载

【优化方案】2021-2021学年高中数学 第7章7.2.2知能演练轻松闯关 湘教版选修2-3(1)

【优化方案】2021-2021学年高中数学 第7章7.2.2知能演练轻松闯关 湘教版选修2-3(1)

【优化方案】2021-2021学年高中数学第7章知能演练轻松闯关湘教版选修2-3 1.5A35+4A24=( )A.107 B.323C.320 D.348解析:选D.原式=5×5×4×3+4×4×3=348.2.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有( )A.30个B.36个C.40个D.60个解析:选B.分2步完成:第一步,个位为奇数,有A13种选法;第二步,从余下的4个数中任选2个排在三位数的百位、十位上,有A24种选法.由分步乘法计数原理,共有A13×A24=36(个)无重复数字的三位奇数.3.(2021·南开调研)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,若是将这两个节目插入原节目单中,那么不同插法种数为( )A.42 B.30C.20 D.12解析:选A.分两类:第一类,两个新节目相邻的插法有6A22种;第二类,两个新节目不相邻的插法有A26种.故N=6A22+A26=6×2+6×5=42(种).4.(2021·秀山检测)将红、黄、蓝、白、黑5种颜色的小球,别离放入红、黄、蓝、白、黑5种颜色的小口袋中,假设不允有空袋,且红口袋中不能装入红球,那么有______种不同的放法.解析:先装红球,且每袋一球,因此有A14×A44=96(种).答案:96一、选择题1.(2021·云阳质检)以下各式中与排列数A m n相等的是( )B.n(n-1)(n-2)…(n-m)·A n-1n D.A1n·A m-1n-1解析:选==n!(n-m)!,A1n·A m-1n-1=n·(n-1)![n-1-(m-1)]!=n·(n-1)!(n-m)!=n!(n-m)!.2.设x∈N+,且x<23,那么(23-x)(24-x)…(30-x)可化为( )A.A823-x B.A23-x30-xC.A730-x D.A830-x解析:选D.这是排列数公式的逆用,选确信最大数即n,再确信因式的个数,即=30-x,m=(30-x)-(23-x)+1=8,故(23-x)(24-x)…(30-x)=A830-x.人站成一排,甲、乙、丙3个人不能都站在一路的排法种数为( )A.720 B.684C.576 D.144解析:选C.(间接法)甲、乙、丙三人在一路的排法种数为A44×A33;不考虑任何限制,6人的全排列有A66种.∴符合题意的排法种数为A66-A44×A33=576.4.(2021·高考大纲全国卷)6位选手依次演讲,其当选手甲不在第一个也不在最后一个演讲,那么不同的演讲顺序共有( )A.240种B.360种C.480种D.720种解析:选C.第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法,因此不同的演讲顺序共有A14·A55=480(种).5.用数字1,2,3,4,5能够组成没有重复数字,而且比20000大的五位偶数共有( ) A.48个B.36个C.24个D.18个解析:选B.个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),因此共有36个.6.(2021·永川调研)由1、二、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是( )A.36 B.32C.28 D.24解析:选A.分两类:第一类,假设5在首位或末位,共有2A12×A33=24(个);第二类,假设5在中间三位,共有A13×A22×A22=12(个).故共有24+12=36(个).二、填空题人站成一排,甲必需站在排头或排尾的不同站法有________种.解析:2A44=48.答案:48个人坐8个位置,要求每人的左右都有空位,那么有________种坐法.解析:第一步:摆5个空位置,○○○○○;第二步:3个人带上凳子插入5个位置之间的四个空,有A34=24(种),故有24种不同坐法.答案:249.(2021·南川质检)要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表.要求数学课排在前3节,英语课不排在第6节,那么不同的排法种数为________.(用数字作答)解析:先在前3节课当选一节安排数学,有A13种安排方式;在除数学课与第6节课外的4节课当选一节安排英语课,有A14种安排方式;其余4节课无约束条件,有A44种安排方式.依照分步乘法计数原理,不同的排法种数为A13·A14·A44=288.答案:288三、解答题10.从数字0,1,3,5,7中掏出不同的三个作系数.(1)能够组成多少个不同的一元二次方程ax3+bx+c=0?(2)其中有实根的方程有多少个?解:(1)第一确信a,只能从1,3,5,7当选一个,有A14种,然后从余下的4个数中任选两个作b、c,有A24种.∴由分步乘法计数原理知,共组成的一元二次方程有A14·A24=48(个).(2)方程要有实根,必需知足Δ=b2-4ac≥0.分类讨论如下:当c=0时,a,b可在1,3,5,7中任取两个排列,有A24个;当c≠0时,分析判别式知b只能取5,7.当b取5时,a,c只能取1,3这两个数,有A22种;当b取7时,a,c可取1,3或1,5这两组数,有2A22种.现在共有(A22+2A22)个.由分类加法计数原理知,有实根的一元二次方程共有A24+A22+2A22=18(个).11.用1,2,3,4,5,6,7排成无重复数字的七位数,按下述要求各有多少个?(1)偶数不相邻;(2)偶数必然在奇数位上;(3)1和2之间恰好夹有一个奇数,没有偶数.解:(1)用插空法,共有A44A35=1440(个).(2)先把偶数排在奇数位上有A34种排法,再排奇数有A44种排法.因此共有A34A44=576(个).(3)在1和2间放一个奇数有A13种方式,把1,2和相应奇数看成整体再和其余4个数进行排列有A55种排法,因此共有A13A55A22=720(个).12.(创新题)7名班委中有A、B、C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)假设正、副班长两职只能从A、B、C三人当选两人担任,有多少种分工方案?(2)假设正、副班长两职至少要选A、B、C三人中的一人担任,有多少种分工方案?解:(1)先排正、副班长有A23种方式,再安排其余职务有A55种方式.依照分步乘法计数原理,共有A23A55=720(种)分工方案.(2)7人中任意分工方案有A77种,A、B、C三人中无一人任正、副班长的分工方案有A24A55种,因此A、B、C三人中至少有一人任正、副班长的方案有A77-A24A55=3600(种).。

优化方案(新课标)2016高考数学一轮复习第二章第5讲知能训练轻松闯关

优化方案(新课标)2016高考数学一轮复习第二章第5讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 第二章 第5讲 知能训练轻松闯关1.(2015·福建三明质检)已知幂函数f (x )=x α的图象过点(4,2),若f (m )=3,则实数m 的值为( )A . 3B .± 3C .±9D .9解析:选D .由函数f (x )=x α过点(4,2),可得4α=22α=2,所以α=12,所以f (x )=x 12=x ,故f (m )=m =3⇒m =9.2.二次函数y =-x 2+bx +c 的图象的最高点为(-1,-3),则b 与c 的值是( ) A .b =2,c =4 B .b =2,c =-4 C .b =-2,c =4 D .b =-2,c =-4 解析:选D .根据已知条件得到方程组⎩⎪⎨⎪⎧b 2=-1,-3=-1-b +c ,解得b =-2,c =-4. 3.如果函数f (x )=x 2+bx +c 对任意实数t 都有f (2+t )=f (2-t ),那么( ) A .f (2)<f (1)<f (4) B .f (1)<f (2)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 解析:选A .∵f (2+t )=f (2-t ), ∴f (x )关于x =2对称,又开口向上.∴f (x )在[2,+∞)上单调递增,且f (1)=f (3). ∴f (2)<f (3)<f (4),即f (2)<f (1)<f (4),故选A .4.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若a =c ,则函数f (x )的图象不可能是( )解析:选D .由四个选项知,图象与x 轴均有交点,记两个交点的横坐标分别为x 1,x 2,若只有一个交点,则x 1=x 2,由于a =c ,所以x 1x 2=c a=1,比较四个选项,可知选项D 的x 1<-1,x 2<-1,所以D 不满足.5.(2015·吉林松原调研)设函数f (x )=x 2+x +a (a >0),已知f (m )<0,则( )A .f (m +1)≥0B .f (m +1)≤0C .f (m +1)>0D .f (m +1)<0解析:选C .∵f (x )的对称轴为x =-12,f (0)=a >0,∴f (x )的大致图象如图所示.由f (m )<0,得-1<m <0,∴m +1>0,∴f (m +1)>f (0)>0. 6.二次函数的图象过点(0,1),对称轴为x =2,最小值为-1,则它的解析式为________.解析:依题意可设f (x )=a (x -2)2-1, 又其图象过点(0,1),∴4a -1=1,∴a =12.∴f (x )=12(x -2)2-1.答案:f (x )=12(x -2)2-17.已知(0.71.3)m <(1.30.7)m,则实数m 的取值范围是________.解析:∵0.71.3<0.70=1=1.30<1.30.7,∴0.71.3<1.30.7,∴m >0. 答案:(0,+∞)8.设二次函数f (x )=ax 2+2ax +1在[-3,2]上有最大值4,则实数a 的值为________. 解析:此函数图象的对称轴为x =-1.当a >0时,图象开口向上,x =2时取得最大值,所以f (2)=4a +4a +1=4,解得a =38;当a <0时,图象开口向下,x =-1时取得最大值,所以f (-1)=a -2a +1=4,解得a =-3.答案:-3或389.已知幂函数f (x )=x (m 2 +m )-1(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a-1)的实数a 的取值范围.解:(1)∵m 2+m =m (m +1)(m ∈N *),而m 与m +1中必有一个为偶数,∴m 2+m 为偶数, ∴函数f (x )=x (m 2 +m )-1(m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)∵函数f (x )的图象经过点(2,2),∴2=2(m 2 +m )-1 ,即212=2(m 2 +m )-1, ∴m 2+m =2,解得m =1或m =-2.又∵m ∈N *,∴m =1,f (x )=x 12. 又∵f (2-a )>f (a -1),∴⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )的图象经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为1≤a <32.10.(2015·辽宁五校第二次联考)已知函数f (x )是定义在R上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示,请根据图象:(1)写出函数f (x )(x ∈R )的增区间; (2)写出函数f (x )(x ∈R )的解析式;(3)若函数g (x )=f (x )-2ax +2(x ∈[1,2]),求函数g (x )的最小值.解:(1)f (x )在区间(-1,0),(1,+∞)上单调递增.(2)设x >0,则-x <0,函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x ,∴f (x )=f (-x )=(-x )2+2×(-x )=x 2-2x (x >0),∴f (x )=⎩⎪⎨⎪⎧x 2-2x (x >0),x 2+2x (x ≤0).(3)g (x )=x 2-2x -2ax +2,对称轴方程为x =a +1, 当a +1≤1,即a ≤0时,g (1)=1-2a 为最小值;当1<a +1≤2,即0<a ≤1时,g (a +1)=-a 2-2a +1为最小值; 当a +1>2,即a >1时,g (2)=2-4a 为最小值.综上可得g (x )min =⎩⎪⎨⎪⎧1-2a (a ≤0),-a 2-2a +1(0<a ≤1),2-4a (a >1).1.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫-235,+∞ B .(1,+∞) C .⎣⎢⎡⎦⎥⎤-235,1 D .⎝ ⎛⎭⎪⎫-∞,-235 解析:选C .令f (x )=x 2+ax -2,由题意,知f (x )的图象与x 轴在[1,5]上有交点, 则⎩⎪⎨⎪⎧f (1)≤0,f (5)≥0.解得-235≤a ≤1.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax +1,x ≥1ax 2+x +1,x <1,则“-2≤a ≤0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B .当a =-1时,f (x )=⎩⎪⎨⎪⎧x 2-x +1,x ≥1-x 2+x +1,x <1,作出图象可知(图略),函数f (x )在R 上不是单调递增函数,所以充分性不满足;反之,若函数f (x )在R 上是单调递增函数,则当a =0时满足,当a ≠0时,-a 2≤1,a <0且-12a ≥1,解得-12≤a <0.即-12≤a ≤0,所以能够推出-2≤a ≤0,故“-2≤a ≤0”是“函数f (x )在R 上单调递增”的必要不充分条件.3.已知函数f (x )=x-2m 2+m +3 (m ∈Z )为偶函数,且f (3)<f (5),则m =________. 解析:∵f (x )是偶函数,∴-2m 2+m +3应为偶数.又f (3)<f (5),即3-2m 2+m +3<5-2m 2+m +3,整理得⎝ ⎛⎭⎪⎫35-2m 2+m +3<1,∴-2m 2+m +3>0,解得-1<m <32.又m ∈Z ,∴m =0或1.当m =0时,-2m 2+m +3=3为奇数(舍去);当m =1时,-2m 2+m +3=2为偶数. 故m 的值为1. 答案:1 4.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a ,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数, 设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根, 解方程得x 0=1或x 0=m -1. 所以必有-1<m -1<1, 即0<m <2,所以实数m 的取值范围是0<m <2,即(0,2). 答案:(0,2)5.是否存在实数a ,使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,说明理由.解:f (x )=(x -a )2+a -a 2.当a <-1时,f (x )在[-1,1]上为增函数, ∴⎩⎪⎨⎪⎧f (-1)=1+3a =-2f (1)=1-a =2⇒a =-1(舍去); 当-1≤a ≤0时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2f (1)=1-a =2⇒a =-1;当0<a ≤1时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2f (-1)=1+3a =2⇒a 不存在;当a >1时,f (x )在[-1,1]上为减函数, ∴⎩⎪⎨⎪⎧f (-1)=1+3a =2f (1)=1-a =-2⇒a 不存在. 综上可得,a =-1.∴存在实数a =-1满足题设条件.6.(选做题)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x-x 的最大值为-2.∴-2≤b ≤0.故b 的取值范围是[-2,0].。

优化方案(新课标)高考数学一轮复习 第1讲 知能训练轻

优化方案(新课标)高考数学一轮复习 第1讲 知能训练轻

【优化方案】(新课标)2016高考数学一轮复习 第1讲 知能训练轻松闯关(选修4-1)1.如图,AB ∥EM ∥DC ,AE =ED ,EF ∥BC ,EF =12 cm ,求BC 的长.解:⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED⇒E 为AD 的中点,M 为BC 的中点.又EF ∥BC ⇒EF =MC =12 cm ,∴BC =2MC =24 cm .2.(2015·湖南岳阳模拟)如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:AE ·AB =AF ·AC .证明:∵AD ⊥BC ,∴△ADB 为直角三角形. 又∵DE ⊥AB ,由射影定理知,AD 2=AE ·AB .同理可得AD 2=AF ·AC , ∴AE ·AB =AF ·AC .3.(2015·广东广州模拟)如图,在正方形ABCD 中,P 是BC 上的点,且BP =3PC ,Q 是CD 的中点,求证:△ADQ ∽△QCP .证明:在正方形ABCD 中, ∵Q 是CD 的中点,∴AD QC=2.∵BP PC =3,∴BC PC=4. 又∵BC =2DQ ,∴DQ PC=2. 在△ADQ 和△QCP 中,AD QC =DQCP,且∠D =∠C =90°,∴△ADQ ∽△QCP .4.如图,在四边形ABCD 中,E 是AB 上一点,EC ∥AD ,DE ∥BC ,若S △BEC =1,S △ADE =3,求S △CDE 的值.解:∵EC ∥AD ,∴S △DCE ∶S △ADE =EC ∶AD , ∵DE ∥BC ,∴S △BCE ∶S △CDE =BC ∶ED ,又因为∠ECB =∠DEC =∠ADE ,∠BEC =∠EAD , ∴△BEC ∽△EAD ,∴EC ∶AD =BC ∶ED .∴S △DCE ∶S △ADE =S △BCE ∶S △CDE ,于是S △CDE =3.5.如图,在△ABC 中,AB =AC ,AD 是中线,P 为AD 上一点,CF ∥AB ,BP 的延长线交AC 、CF 于E 、F 两点,求证:PB 2=PE ·PF .证明:如图,连接PC .易证PC =PB ,∠ABP =∠ACP . ∵CF ∥AB , ∴∠F =∠ABP . 从而∠F =∠ACP .又∠EPC 为△CPE 与△FPC 的公共角, 从而△CPE ∽△FPC ,∴CP FP =PEPC.∴PC 2=PE ·PF .又PC =PB ,∴PB 2=PE ·PF . 6.如图所示,在△ABC 中,AD 为BC 边上的中线,F 为AB 上任意一点,CF 交AD 于点E .求证:AE ·BF =2DE ·AF .证明:取AC 的中点M ,连接DM 交CF 于点N .在△BCF 中,D 是BC 的中点,DN ∥BF , ∴DN =12BF .∵DN ∥AF ,∴△AFE ∽△DNE , ∴AE AF =DE DN.又∵DN =12BF ,∴AE AF =2DEBF ,即AE ·BF =2DE ·AF .)1.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,DF ⊥AC 于F ,DE ⊥AB 于E .试证明:(1)AB ·AC =BC ·AD ;(2)AD 3=BC ·CF ·BE .证明:(1)在Rt △ABC 中,AD ⊥BC , ∴S △ABC =12AB ·AC =12BC ·AD .∴AB ·AC =BC ·AD .(2)在Rt △ADB 中,DE ⊥AB ,由射影定理可得BD 2=BE ·AB ,同理CD 2=CF ·AC ,∴BD 2·CD 2=BE ·AB ·CF ·AC . 又在Rt △BAC 中,AD ⊥BC ,∴AD 2=BD ·DC ,∴AD 4=BE ·AB ·CF ·AC . 又AB ·AC =BC ·AD ,即AD 3=BC ·CF ·BE .2.如图所示,在平行四边形ABCD 中,E 是CD 的延长线上一点,DE =12CD ,BE 与AD 交于点F .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求平行四边形ABCD 的面积. 解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠BAF =∠BCD ,∵AB ∥CD ,∴∠ABF =∠CEB , ∴△ABF ∽△CEB .(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴△DEF ∽△CEB ,△DEF ∽△ABF . ∴S △DEF S △CEB =(DE CE )2,S △DEF S △ABF =(DE AB)2. 又DE =12CD =12AB ,∴CE =DE +CD =DE +2DE =3DE . ∴S △DEF S △CEB =(DE CE )2=19,S △DEF S △ABF =(DE AB )2=14. ∵S △DEF =2,∴S △CEB =18,S △ABF =8.∴S 四边形ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3.已知在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.解:(1)证明:因为DE ⊥BC ,D 是BC 的中点,所以EB =EC ,所以∠B =∠1.又因为AD =AC ,所以∠2=∠ACB .所以△ABC ∽△FCD .(2)如图,过点A 作AM ⊥BC ,垂足为点M .因为△ABC ∽△FCD ,BC =2CD ,所以S △ABC S △FCD =(BC CD)2=4.又因为S △FCD =5,所以S △ABC =20.因为S △ABC=12BC ·AM ,BC =10,所以20=12×10×AM ,所以AM =4. 因为DE ∥AM ,所以DE AM =BD BM .因为DM =12DC =52,BM =BD +DM ,BD =12BC =5,所以DE 4=55+52,解得DE =83.4.如图,在梯形ABCD 中,点E ,F 分别在AB ,CD 上,EF ∥AD ,假设EF 做上下平行移动.(1)若AE EB =12,求证:3EF =BC +2AD ;(2)若AE EB =23,试判断EF 与BC ,AD 之间的关系,并说明理由;(3)请你探究一般结论,即若AE EB =mn,那么你可以得到什么结论?解:过点A 作AH ∥CD 分别交EF ,BC 于点G ,H (图略).(1)证明:因为AE EB =12,所以AE AB =13,又EG ∥BH ,所以EG BH =AE AB =13,即3EG =BH .又EG +GF =EG +AD =EF ,从而EF =13(BC -HC )+AD ,所以EF =13BC +23AD ,即3EF =BC +2AD .(2)EF 与BC ,AD 的关系式为5EF =2BC +3AD ,理由和(1)类似. (3)因为AE EB =m n ,所以AE AB =m n +m .又EG ∥BH ,所以EG BH =AE AB ,即EG =mm +nBH .所以EF =EG+GF =EG +AD =mm +n(BC -AD )+AD ,所以EF =mm +n BC +nm +n ·AD ,即(m +n )EF =mBC +nAD .。

【优化方案】(新课标)高考数学一轮复习 第一章 第1讲 知能训练轻松闯关

【优化方案】(新课标)高考数学一轮复习 第一章 第1讲 知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 第一章 第1讲 知能训练轻松闯关1.(2015·河南省洛阳市统一考试)已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( )A .3B .6C .8D .9解析:选D .集合B 中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.2.已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( )A .AB B .B AC .A ⊆BD .B ⊆A解析:选B .由题意知A ={x |y =1-x 2,x ∈R },∴A ={x |-1≤x ≤1},∴B ={x |x =m 2,m ∈A }={x |0≤x ≤1},∴B A ,故选B .3.(2014·高考江西卷)设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁R B )=( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3)解析:选C .由题意知,A ={x |x 2-9<0}={x |-3<x <3}, ∵B ={x |-1<x ≤5},∴∁R B ={x |x ≤-1或x >5}.∴A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1或x >5}={x |-3<x ≤-1}.4.(2015·福建南安一中期末)全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R },则图中阴影部分表示的集合为( )A .{x |x <-1或x >2}B .{x |-1≤x ≤2}C .{x |x ≤1}D .{x |0≤x ≤1}解析:选D .阴影部分表示的集合是A ∩B .依题意知,A ={x |0≤x ≤2},B ={y |-1≤y ≤1},∴A ∩B ={x |0≤x ≤1},故选D .5.(2015·山东临沂期中)已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞)解析:选D .∵x 2-3x +2>0,∴x >2或x <1. ∴A ={x |x >2或x <1},∵B ={x |x ≤a }, ∴∁U B ={x |x >a }.∵∁U B ⊆A ,借助数轴可知a ≥2,故选D .6.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________.解析:∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1. 答案:(-∞,1]7.(2015·江西八校联考)已知R 是实数集,集合M ={x |3x<1},N ={y |y =t -2t -3,t ≥3},则N ∩∁R M =________.解析:解不等式3x<1,得x <0或x >3,所以∁R M =[0,3].令t -3=x ,x ≥0,则t =x 2+3,所以y =x 2-2x +3≥2,即N =[2,+∞).所以N ∩∁R M =[2,3].答案:[2,3]8.已知全集U ={-2,-1,0,1,2},集合A =⎩⎨⎧⎭⎬⎫x |x =2n -1,x ,n ∈Z ,则∁U A =________. 解析:因为A =⎩⎨⎧⎭⎬⎫x |x =2n -1,x ,n ∈Z , 当n =0时,x =-2;n =1时不合题意; n =2时,x =2;n =3时,x =1; n ≥4时,x ∉Z ;n =-1时,x =-1; n ≤-2时,x ∉Z .故A ={-2,2,1,-1},又U ={-2,-1,0,1,2},所以∁U A ={0}. 答案:{0}9.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B ); (2){9}=A ∩B .解:(1)∵9∈(A ∩B ),∴2a -1=9或a 2=9,∴a =5或a =3或a =-3. 当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性; 当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3.(2)由(1)可知,当a =5时, A ∩B ={-4,9},不合题意, 当a =-3时,A ∩B ={9}. 所以a =-3.10.(2015·河北衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若A ∪B =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2}, ∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2}, ∵A ∪B =A ,∴B ⊆A , ∴B =∅或B ={2},当B =∅时,a -1>5-a ,得a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=25-a =2,解得a =3,综上所述,所求a 的取值范围为{a |a ≥3}.1.(2015·河南郑州模拟)已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|x2+y 2=1,x ,y ∈R },则集合A ∩B 的元素个数是( )A .0B .1C .2D .3解析:选C .法一:(解方程组)集合A ∩B 的元素个数即为方程组⎩⎪⎨⎪⎧x +y -1=0x 2+y 2=1解的个数,解方程组得⎩⎪⎨⎪⎧x =0,y =1或⎩⎪⎨⎪⎧x =1,y =0,有两组解,故选C .法二:(数形结合)在同一坐标系下画出直线x +y -1=0和圆x 2+y 2=1的图象,如图,直线与圆有两个交点.即A ∩B 的元素个数是2,故选C .2.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中可以有元素0D .“权集”中一定有元素1解析:选B .由于3×4与43均不属于数集{1,3,4},故A 不正确;由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确;由“权集”的定义可知a j a i需有意义,故不能有0,同时不一定有1,C ,D 错误,选B .3.已知集合A ={x |x 2-2x -8≤0},B ={x |x 2-(2m -3)x +m (m -3)≤0,m ∈R },若A ∩B =[2,4],则实数m =________.解析:由题知A =[-2,4],B =[m -3,m ],因为A ∩B =[2,4],故⎩⎪⎨⎪⎧m -3=2m ≥4,则m =5.答案:54.某校田径队共30人,主要专练100 m ,200 m 与400 m .其中练100 m 的有12人,练200 m 的有15人,只练400 m 的有8人.则参加100 m 的专练人数为________.解析:用Venn 图表示A 代表练100 m 的人员集合,B 代表练200 m 的人员集合,C 代表练400 m 的人员集合, U 代表田径队共30人的集合,设既练100 m 又练200 m 的人数为x ,则专练100 m 的人数为12-x . ∴12-x +15+8=30, 解得x =5.所以专练100 m 的人数为12-5=7. 答案:75.(2015·福建三明模拟)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.解:(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0即实数m 的取值范围为[0,+∞).6.(选做题)(2015·浙江金丽衢十二校第一次联考)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”.判断下列四个集合是否为“垂直对点集”.①M =⎩⎨⎧⎭⎬⎫(x ,y )|y =1x ;②M ={(x ,y )|y =sin x +1};③M ={(x ,y )|y =log 2x };④M ={(x ,y )|y =e x-2}.解:依题意, 要使得x 1x 2+y 1y 2=0成立,只需过原点任作一直线l 1与该函数的图象相交,再过原点作与l 1垂直的直线l 2也与该函数的图象相交即可.对于①,取l 1:y =x ,则l 2:y =-x 与函数y =1x图象没有交点,①中M 不是“垂直对点集”;③中取l 1:y =0,则l 2:x =0与函数y =log 2x 图象没有交点,③中M 不是“垂直对点集”;如图所示,作出②④中两个函数的图象知:过原点任作一直线l 1与该函数的图象相交,再过原点作与l 1垂直的直线l 2也与该函数的图象相交.故②④中的集合M 是“垂直对点集”.。

优化方案(新课标)2016高考数学一轮复习第二章第14讲知能训练轻松闯关

优化方案(新课标)2016高考数学一轮复习第二章第14讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 第二章 第14讲 知能训练轻松闯关1.从边长为10 cm ×16 cm 的矩形纸板的四角上截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为( )A .12 cm 3B .72 cm 3C .144 cm 3D .160 cm 3解析:选C.设盒子容积为y cm 3,盒子的高为x cm ,则y =(10-2x )(16-2x )x =4x 3-52x 2+160x (0<x <5),∴y ′=12x 2-104x +160.令y ′=0,得x =2或203(舍去), ∴y max =6×12×2=144(cm 3).2.(2015·湛江模拟)若函数f (x )=x +b x (b ∈R )的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D.由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +b x (b ∈R )的导函数在区间(1,2)上有零点,∴当1-bx 2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4),令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意,故选D.3.(2015·上海闸北调研)对于R 上可导的任意函数f (x ),若满足1-x f ′(x )≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A.当x <1时,f ′(x )<0,此时函数f (x )递减,当x >1时,f ′(x )>0,此时函数f (x )递增,即当x =1时,函数f (x )取得极小值同时也取得最小值f (1),所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1),故选A.4.(2013·高考课标全国卷Ⅱ)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( )A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0解析:选C.A 项,因为函数f (x )的值域为R ,所以一定存在x 0∈R ,使f (x 0)=0.A 正确;B 项,假设函数f (x )=x 3+ax 2+bx +c 的对称中心为(m ,n ),按向量a =(-m ,-n )将函数的图象平移,则所得函数y =f (x +m )-n 是奇函数.所以f (x +m )+f (-x +m )-2n =0,化简得(3m +a )x 2+m 3+am 2+bm +c -n =0.上式对x ∈R 恒成立,故3m +a =0,得m =-a 3,n =m 3+am 2+bm +c =f (-a 3),所以函数f (x )=x 3+ax 2+bx +c 的对称中心为(-a 3,f (-a 3)),故y =f (x )的图象是中心对称图形.B 正确;C 项,由于f ′(x )=3x 2+2ax +b 是二次函数,f (x )有极小值点x 0,必定有一个极大值点x 1,若x 1<x 0,则f (x )在区间(-∞,x 0)上不单调递减.C 错误;D 项,若x 0是极值点,则一定有f ′(x 0)=0.故选C.5.若函数f (x )=2x 3-9x 2+12x -a 恰好有两个不同的零点,则a 的值为________.解析:由题意得f ′(x )=6x 2-18x +12=6(x -1)(x -2),由f ′(x )>0,得x <1或x >2,由f ′(x )<0,得1<x <2,所以函数f (x )在(-∞,1),(2,+∞)上单调递增,在(1,2)上单调递减,从而可知f (x )的极大值和极小值分别为f (1),f (2),若欲使函数f (x )恰好有两个不同的零点,则需使f (1)=0或f (2)=0,解得a =5或a =4.答案:5或46.(2015·广东广州模拟)设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________.解析:(构造法)若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0时,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3. 设g (x )=3x 2-1x 3, 则g ′(x )=3(1-2x )x 4, 所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎣⎢⎡⎦⎥⎤12,1上单调递减, 因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4. 当x <0时,即x ∈[-1,0)时,同理a ≤3x 2-1x 3. g (x )在区间[-1,0)上单调递增,∴g (x )min =g (-1)=4,从而a ≤4,综上可知a =4.答案:47.已知函数f (x )=ax 2+x -x ln x .(1)若a =0,求函数f (x )的单调区间;(2)若f (1)=2,且在定义域内f (x )≥bx 2+2x 恒成立,求实数b 的取值范围.解:(1)当a =0时,f (x )=x -x ln x ,函数定义域为(0,+∞).f ′(x )=-ln x ,由-ln x =0,得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )在(0,1)上是增函数;当x ∈(1,+∞)时,f ′(x )<0,f (x )在(1,+∞)上是减函数.(2)由f (1)=2,得a +1=2,∴a =1,∴f (x )=x 2+x -x ln x ,由f (x )≥bx 2+2x ,得(1-b )x -1≥ln x .又∵x >0,∴b ≤1-1x -ln x x 恒成立.令g (x )=1-1x -ln x x ,可得g ′(x )=ln xx 2,∴g (x )在(0,1]上单调递减,在[1,+∞)上单调递增, ∴g (x )min =g (1)=0,∴实数b 的取值范围是(-∞,0].8.(2015·唐山市高三年级第一次模拟)已知f (x )=(1-x )e x -1.(1)求函数f (x )的最大值;(2)设g (x )=f (x )x ,x >-1,且x ≠0,证明:g (x )<1.解:(1)f ′(x )=-x e x .当x ∈(-∞,0)时,f ′(x )>0,f (x )单调递增;当x ∈(0,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )的最大值为f (0)=0.(2)证明:由(1)知,当x >0时,f (x )<0,g (x )<0<1.当-1<x <0时,g (x )<1等价于f (x )>x .设h (x )=f (x )-x ,则h ′(x )=-x e x -1.当x ∈(-1,0)时,0<-x <1,1e <e x <1,则0<-x e x <1,从而当x ∈(-1,0)时,h ′(x )<0,h (x )在(-1,0]上单调递减. 当-1<x <0时,h (x )>h (0)=0,即g (x )<1.综上,总有g (x )<1成立.。

优化方案(新课标)2016高考数学一轮复习第二章第7讲知能训练轻松闯关

优化方案(新课标)2016高考数学一轮复习第二章第7讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 第二章 第7讲 知能训练轻松闯关1.(2014·洛阳市高三年级统一考试)函数f (x )=ln (x +3)1-2x的定义域是( ) A .(-3,0) B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)解析:选A .∵f (x )=ln (x +3)1-2x,∴要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x +3>01-2x >0,即-3<x <0. 2.若函数y =f (x )是函数y =a x(a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2xB .12xC .log 12x D .2x -2解析:选A .f (x )=log a x ,∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x .3.(2014·高考山东卷)已知函数y =loga (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:选D .由对数函数的图象和性质及函数图象的平移变换知0<a <1,0<c <1.4.(2014·高考天津卷)设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a解析:选C .因为π>2,所以a =log 2π>1.因为π>1,所以b =log 12π<0.因为π>1,所以0<π-2<1,即0<c <1.所以a >c >b .5.已知函数f (x )=ln e x -e-x 2,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减解析:选A .要使函数有意义,则e x >e -x,解得x >0,即函数的定义域是(0,+∞),故函数是非奇非偶函数.又y =e x -e-x 2在(0,+∞)上递增,所以f (x )在(0,+∞)上递增,故选A .6.函数y =log 3(x 2-2x )的单调减区间是________.解析:令u =x 2-2x ,则y =log 3u .∵y =log 3u 是增函数,u =x 2-2x (u >0)的减区间是(-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0). 答案:(-∞,0)7.(2014·高考重庆卷)函数f (x )=log 2x ·log 2(2x )的最小值为________.解析:f (x )=log 2x ·log 2(2x )=12log 2x ·2log 2(2x )=log 2x (1+log 2x ).设t =log 2x (t ∈R ),则原函数可以化为y =t (t +1)=⎝ ⎛⎭⎪⎫t +122-14(t ∈R ),故该函数的最小值为-14.故f (x )的最小值为-14. 答案:-148.计算下列各题: (1)12lg 3249-43lg 8+lg 245; (2)log 34273·log 5[412log 210-(33)23-7log 72].解:(1)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg (2×5)=12. (2)原式=log 33343·log 5[2log 210-(332)23-7log72]=⎝ ⎛⎭⎪⎫34log 33-log 33·log 5(10-3-2) =⎝ ⎛⎭⎪⎫34-1·log 55=-14. 9.已知f (x )=log a (a x-1)(a >0且a ≠1). (1)求f (x )的定义域;(2)判断函数f (x )的单调性.解:(1)由a x -1>0,得a x>1,当a >1时,x >0; 当0<a <1时,x <0.∴当a >1时,f (x )的定义域为(0,+∞); 当0<a <1时,f (x )的定义域为(-∞,0). (2)当a >1时,设0<x 1<x 2,则1<ax 1<ax 2,故0<a x 1-1<a x2-1, ∴log a (a x1-1)<log a (a x2-1).∴f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数.类似地,当0<a <1时,f (x )在(-∞,0)上为增函数. 综上知,函数f (x )在定义域上单调递增.1.已知lg a +lg b =0,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是( )解析:选B .∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除A . 若a >1,则0<b <1,此时f (x )=a x是增函数, g (x )=-log b x 是增函数, 结合图象知选B .2.已知函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,1B .⎣⎢⎡⎭⎪⎫13,1C .⎝ ⎛⎭⎪⎫23,1D .⎣⎢⎡⎭⎪⎫23,1 解析:选A .当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数,所以log a ⎝ ⎛⎭⎪⎫43-a >0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1. 3.设2a =5b=m ,且1a +1b=2,则m =________.解析:由2a=5b=m ,得a =log 2m ,b =log 5m ,又1a +1b =2,即1log 2m +1log 5m =2, ∴1lg m=2,即m =10. 答案:104.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则n +m =________.解析:根据已知函数f (x )=|log 2x |的图象知,0<m <1<n ,所以0<m 2<m <1,根据函数图象易知,当x =m 2时取得最大值,所以f (m 2)=|log 2m 2|=2,又0<m <1,解得m =12.再结合f (m )=f (n )求得n =2,所以n +m =52.答案:525.(2015·辽宁沈阳模拟)设f (x )=|lg x |,a ,b 为实数,且0<a <b . (1)求方程f (x )=1的解;(2)若a ,b 满足f (a )=f (b )=2f ⎝ ⎛⎭⎪⎫a +b 2,求证:a ·b =1,a +b 2>1.解:(1)由f (x )=1,得lg x =±1,所以x =10或110.(2)证明:结合函数图象,由f (a )=f (b )可判断a ∈(0,1),b ∈(1,+∞),从而-lg a =lg b ,从而ab =1.又a +b 2=1b +b2,令φ(b )=1b+b (b ∈(1,+∞)),任取1<b 1<b 2,∵φ(b 1)-φ(b 2)=(b 1-b 2)·⎝⎛⎭⎪⎫1-1b 1b 2<0,∴φ(b 1)<φ(b 2),∴φ(b )在(1,+∞)上为增函数.∴φ(b )>φ(1)=2.∴a +b2>1.6.(选做题)已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.解:(1)∵f (1)=1, ∴log 4(a +5)=1,因此a +5=4,a =-1,这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3, 即函数f (x )的定义域为(-1,3).令g (x )=-x 2+2x +3,则g (x )在(-1,1)上递增,在(1,3)上递减. 又y =log 4x 在(0,+∞)上递增,所以f (x )的单调递增区间是(-1,1),递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.。

优化方案(新课标)2016高考数学一轮复习第七章第4讲知能训练轻松闯关

优化方案(新课标)2016高考数学一轮复习第七章第4讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习第七章第4讲知能训练轻松闯关1.(2015·惠州模拟)已知两条不同的直线l,m,两个不同的平面α,β,则下列条件能推出α∥β的是( )A.l⊂α,m⊂α,且l∥β,m∥βB.l⊂α,m⊂β,且l∥mC.l⊥α,m⊥β,且l∥mD.l∥α,m∥β,且l∥m解析:选C.借助正方体模型进行判断.易排除选项A,B,D,故选C.2.(2015·济南模拟)平面α∥平面β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.3.(2015·大连市双基测试)在空间中,a,b是两条不同的直线,α,β是两个不同的平面,则真命题是( )A.若a∥α,b∥α,则a∥bB.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,a∥b,则b∥αD.若α∥β,a⊂α,则a∥β解析:选D.对于A,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,因此选项A不正确;对于B,分别位于两个相互垂直的平面内的两条直线可能是平行的或异面的或相交的,因此选项B不正确;对于C,直线b可能位于平面α内,此时结论不正确;对于D,直线a与平面β没有公共点,因此a∥β,选项D正确.4.如图,在正方体ABCD­A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )A.不存在B.有1条C.有2条D.有无数条解析:选D.由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的线有无数条,且它们都不在平面D1EF 内,由线面平行的判定定理知它们都与平面D1EF平行.5.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:选B .由AE ∶EB =AF ∶FD =1∶4知EF 綊15BD ,∴EF ∥平面BCD .又H ,G 分别为BC ,CD 的中点,∴HG 綊12BD ,∴EF ∥HG 且EF ≠HG .∴四边形EFGH 是梯形.6. 如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =AN ND,则直线MN 与平面BDC 的位置关系是__________.解析:在平面ABD 中,AM MB =ANND,∴MN ∥BD .又MN ⊄平面BCD ,BD ⊂平面BCD , ∴MN ∥平面BCD . 答案:平行7.(2015·汕头质检)若m ,n 为两条不重合的直线,α,β为两个不重合的平面,则下列命题中真命题的序号是________.①若m ,n 都平行于平面α,则m ,n 一定不是相交直线; ②若m ,n 都垂直于平面α,则m ,n 一定是平行直线;③已知α,β互相平行,m ,n 互相平行,若m ∥α,则n ∥β; ④若m ,n 在平面α内的射影互相平行,则m ,n 互相平行.解析:①为假命题;②为真命题;在③中,n 可以平行于β,也可以在β内,故是假命题;在④中,m ,n 也可能异面,故为假命题.答案:②8.(2015·湖南长沙一中高考模拟)如图所示,正方体ABCD ­A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1、D 1、P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ=________.解析:∵平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =PQ ,平面B 1D 1P ∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥PQ .又∵B 1D 1∥BD ,∴BD ∥PQ , 设PQ ∩AB =M ,∵AB ∥CD , ∴△APM ∽△DPQ .∴PQ PM =PD AP=2,即PQ =2PM .又知△APM ∽△ADB ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .答案:223a9. 如图,在长方体ABCD ­A 1B 1C 1D 1中,E ,H 分别为棱A 1B 1,D 1C 1上的点,且EH ∥A 1D 1,过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G ,求证:FG ∥平面ADD 1A 1.证明:因为EH ∥A 1D 1,A 1D 1∥B 1C 1, EH ⊄平面BCC 1B 1,B 1C 1⊂平面BCC 1B 1, 所以EH ∥平面BCC 1B 1.又平面FGHE ∩平面BCC 1B 1=FG , 所以EH ∥FG ,即FG ∥A 1D 1.又FG ⊄平面ADD 1A 1,A 1D 1⊂平面ADD 1A 1, 所以FG ∥平面ADD 1A 1.10. 如图,已知四棱锥P ­ABCD 的底面为直角梯形,AB ∥CD ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)求证:AM =CM ;(2)若N 是PC 的中点,求证:DN ∥平面AMC .证明:(1)在直角梯形ABCD 中,AD =DC =12AB =1,∴AC =2,BC =2,∴BC ⊥AC . 又PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴BC ⊥PA ,∴BC ⊥平面PAC ,∴BC ⊥PC .在Rt △PAB 中,M 为PB 的中点,则AM =12PB ,在Rt △PBC 中,M 为PB 的中点,则CM =12PB ,∴AM =CM .(2)连接DB 交AC 于点F ,∵DC 綊12AB ,∴DF =12FB .取PM 的中点G ,连接DG ,FM ,则DG ∥FM . 又DG ⊄平面AMC ,FM ⊂平面AMC , ∴DG ∥平面AMC . 连接GN ,则GN ∥MC , ∴GN ∥平面AMC .又GN ∩DG =G ,∴平面DNG ∥平面AMC . ∵DN ⊂平面DNG , ∴DN ∥平面AMC .1.在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是对角线AB 1,BC 1上两点,且B 1M MA =C 1NNB,求证:MN ∥平面A 1B 1C 1D 1.证明:如图所示,在平面AA1B 1B 内,作MK ∥A 1B 1交BB 1于点K ,因为A 1B 1⊂平面A 1B 1C 1D 1,MK ⊄平面A 1B 1C 1D 1,所以MK ∥平面A 1B 1C 1D 1连接KN ,由MK ∥A 1B 1可知B 1M MA =B 1K KB, 又B 1M MA =C 1N NB ,所以B 1K KB =C 1NNB,所以KN ∥B 1C 1, 因为B 1C 1⊂平面A 1B 1C 1D 1,KN ⊄平面A 1B 1C 1D 1,所以KN ∥平面A 1B 1C 1D 1.又MK ,KN 是平面MNK 内两条相交的直线,所以平面MNK ∥平面A 1B 1C 1D 1, 因为MN ⊂平面MNK ,所以MN ∥平面A 1B 1C 1D 1.2. 如图,斜三棱柱ABC ­A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1?(2)若平面BC 1D ∥平面AB 1D 1,求ADDC的值.解:(1)如图,取D1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1. 连接A 1B 交AB 1于点O ,连接OD 1. 由棱柱的性质,知四边形A 1ABB 1为平行四边形,∴点O 为A 1B 的中点. 在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1.∴A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由已知,平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BDC 1=BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O . 因此BC 1∥D 1O ,同理AD 1∥DC 1. ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD . 又∵A 1OOB =1,∴DC AD =1,即ADDC=1.3.在正方体ABCD ­A 1B 1C 1D 1中,如图. (1)求证:平面AB 1D 1∥平面C 1BD ;(2)试找出体对角线A 1C 与平面AB 1D 1和平面C 1BD 的交点E ,F ,并证明A 1E =EF =FC .解:(1)证明:因为在正方体ABCD ­A 1B 1C 1D 1中,AD綊B1C1,所以四边形AB1C1D是平行四边形,所以AB1∥C1D.又因为C1D⊂平面C1BD,AB1⊄平面C1BD,所以AB1∥平面C1BD.同理B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.(2)如图,连接A1C1,交B1D1于点O1,连接AO1,与A1C交于点E.又因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点.连接AC,交BD于点O,连接C1O,与A1C交于点F,则点F就是A1C与平面C1BD的交点.下面证明A1E=EF=FC.因为平面A1C1C∩平面AB1D1=EO1,平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO1∥C1F.在△A1C1F中,O1是A1C1的中点,所以E是A1F的中点,即A1E=EF.同理可证OF∥AE,所以F是CE的中点,即FC=EF,所以A1E=EF=FC.。

优化方案(新课标)高考数学一轮复习 第2讲 知能训练轻松闯关(选修44)

优化方案(新课标)高考数学一轮复习 第2讲 知能训练轻松闯关(选修44)

【优化方案】(新课标)2016高考数学一轮复习 第2讲 知能训练轻松闯关(选修4-4)1.(2014·高考江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长. 解:将直线l的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝⎛⎭⎪⎫2+22t 2=4⎝ ⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-82. 所以AB =|t 1-t 2|=82.2.在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,求|AB |的最小值.解:曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)的直角坐标方程为(x -3)2+(y -4)2=1,知C 1是以(3,4)为圆心,1为半径的圆;曲线C 2:ρ=1的直角坐标方程是x 2+y 2=1,可知C 2是以原点为圆心,1为半径的圆,题意就是求分别在两个圆C 1和C 2上的两点A ,B 的最短距离.由圆的方程知,这两个圆相离,所以|AB |min =(3-0)2+(4-0)2-1-1=5-1-1=3.3.(2015·东北三校联合模拟)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 1的极坐标方程为ρ2=21+sin 2θ,直线l 的极坐标方程为ρ=42sin θ+cos θ.(1)写出曲线C 1与直线l 的直角坐标方程;(2)设Q 为曲线C 1上一动点,求Q 点到直线l 距离的最小值. 解:(1)C 1:x 2+2y 2=2,l :2y +x =4.(2)设Q (2cos θ,sin θ),则点Q 到直线l 的距离d =|2sin θ+2cos θ-4|3=|2sin (θ+π4)-4|3≥23=233,当且仅当θ+π4=2k π+π2(k ∈Z ),即θ=2k π+π4(k ∈Z )时取等号.4.(2015·山西省忻州市第一次联考)在直角坐标平面内,直线l 过点P (1,1),且倾斜角α=π4.以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知圆C 的极坐标方程为ρ=4sin θ.(1)求圆C 的直角坐标方程;(2)设直线l 与圆C 交于A 、B 两点,求|PA |·|PB |的值.解:(1)∵ρ=4sin θ,∴ρ2=4ρsin θ,则x 2+y 2-4y =0,即圆C 的直角坐标方程为x 2+y 2-4y =0. (2)由题意,得直线l 的参数方程为⎩⎪⎨⎪⎧x =1+22t y =1+22t (t 为参数).将该方程代入圆C 方程x 2+y 2-4y =0, 得(1+22t )2+(1+22t )2-4(1+22t )=0, 即t 2=2,∴t 1=2,t 2=-2.即|PA |·|PB |=|t 1t 2|=2.5.(2015·石家庄第一次模拟)在直角坐标系中,曲线C 1的参数方程为:⎩⎨⎧x =2cos αy =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2的极坐标方程为:ρ=cos θ.(1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求|PQ |的最小值. 解:(1)∵ρ=cos θ, ∴x 2+y 2=x ,即(x -12)2+y 2=14.(2)设P (2cos α,2sin α),易知C 2(12,0),∴|PC 2|= (2cos α-12)2+(2sin α)2=4cos 2α-2cos α+14+2sin 2α=2cos 2α-2cos α+94,当cos α=12时,|PC 2|取得最小值,|PC 2|min =72,∴|PQ |min =7-12. 6.(2015·河北唐山模拟)极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,已知曲线C 的极坐标方程为ρ=2(cos θ+sin θ).(1)求C 的直角坐标方程;(2)直线l :⎩⎪⎨⎪⎧x =12t ,y =1+32t (t 为参数)与曲线C 交于A ,B 两点,与y 轴交于E ,求|EA |+|EB |的值.解:(1)在ρ=2(cos θ+sin θ)中,两边同乘ρ,得ρ2=2(ρcos θ+ρsin θ),则C 的直角坐标方程为x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2.(2)将l 的参数方程代入曲线C 的直角坐标方程,化简得t 2-t -1=0, 点E 对应的参数t =0,设点A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=1,t 1t 2=-1,所以|EA |+|EB |=|t 1|+|t 2|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=5.1.(2015·新乡许昌平顶山第二次调研)已知直线l :⎩⎪⎨⎪⎧x =1+12t y =32t (t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数). (1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12,纵坐标压缩为原来的32,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离的最小值.解:(1)l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1. 联立方程⎩⎨⎧y =3(x -1)x 2+y 2=1,解得l 与C 1的交点为A (1,0),B ⎝ ⎛⎭⎪⎫12,-32, 则|AB |=1.(2)C 2的参数方程为⎩⎪⎨⎪⎧x =12cos θy =32sin θ(θ为参数).故点P 的坐标是⎝ ⎛⎭⎪⎫12cos θ,32sin θ.从而点P 到直线l 的距离d =⎪⎪⎪⎪⎪⎪32cos θ-32sin θ-32=34⎪⎪⎪⎪⎪⎪2sin (θ-π4)+2, 当sin ⎝⎛⎭⎪⎫θ-π4=-1时,d 取得最小值,且最小值为64(2-1).2.(2013·高考辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos (θ-π4)=22.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为(4,π2),(22,π4).注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1.所以⎩⎪⎨⎪⎧b2=1,-ab 2+1=2,解得⎩⎪⎨⎪⎧a =-1,b =2.3.(2015·贵州省六校联考)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l :⎩⎪⎨⎪⎧x =-2+22t y =-4+22t (t 为参数)与曲线C 相交于M ,N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)把⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入ρsin 2θ=2a cos θ,得y 2=2ax (a >0),由⎩⎪⎨⎪⎧x =-2+22t y =-4+22t (t 为参数),消去t 得x -y -2=0,∴曲线C 的直角坐标方程和直线l 的普通方程分别是y 2=2ax (a >0),x -y -2=0. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t (t 为参数)代入y 2=2ax ,整理得t 2-22(4+a )t +8(4+a )=0.设t 1,t 2是该方程的两根,则t 1+t 2=22(4+a ),t 1·t 2=8(4+a ),∵|MN |2=|PM |·|PN |,∴(t 1-t 2)2=(t 1+t 2)2-4t 1·t 2=t 1·t 2,∴8(4+a )2-4×8(4+a )=8(4+a ),∴a =1.4.(2015·吉林长春调研)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-3t2,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎪⎫θ-π6.(1)求圆C 的直角坐标方程;(2)点P (x ,y )是直线l 与圆面ρ≤4sin ⎝ ⎛⎭⎪⎫θ-π6的公共点,求3x +y 的取值范围.解:(1)因为圆C 的极坐标方程为ρ=4sin ⎝ ⎛⎭⎪⎫θ-π6, 所以ρ2=4ρsin ⎝ ⎛⎭⎪⎫θ-π6=4ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ.又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,所以x 2+y 2=23y -2x ,所以圆C 的直角坐标方程为x 2+y 2+2x -23y =0. (2)设z =3x +y ,由圆C 的方程x 2+y 2+2x -23y =0,得(x +1)2+(y -3)2=4, 所以圆C 的圆心是(-1,3),半径是2.将⎩⎪⎨⎪⎧x =-1-32t ,y =3+12t代入z =3x +y ,得z =-t ,又直线l 过C (-1,3),圆C 的半径是2,所以-2≤t ≤2, 所以-2≤-t ≤2,即3x +y 的取值范围是[-2,2].。

优化方案(新课标)高考数学一轮复习 专题讲座二 知能训练轻松闯关

优化方案(新课标)高考数学一轮复习 专题讲座二 知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 专题讲座二 知能训练轻松闯关1.(2015·吉林长春调研)对于非空实数集A ,记A *={y |∀x ∈A ,y ≥x }.设非空实数集合M ,P 满足:M ⊆P ,且若x >1,则x ∉P .现给出以下命题:①对于任意给定符合题设条件的集合M ,P ,必有P *⊆M *;②对于任意给定符合题设条件的集合M ,P ,必有M *∩P ≠∅;③对于任意给定符合题设条件的集合M ,P ,必有M ∩P *=∅;④对于任意给定符合题设条件的集合M ,P ,必存在常数a ,使得对任意的b ∈M *,恒有a +b ∈P *,其中正确的命题是( )A .①③B .③④C .①④D .②③解析:选C.对于②,假设M =P =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫0<x <12,则M *=⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≥12,则M *∩P =∅,因此②错误;对于③,假设M =P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x ≤12,则12∈M ,又12∈P *,则M ∩P *≠∅,因此③也错误;而①和④都是正确的.2.(2015·贵州省六校联考)给出定义:若x ∈⎝ ⎛⎦⎥⎤m -12,m +12(其中m 为整数),则m 叫做与实数x “亲密的整数”,记作{x }=m ,在此基础上给出下列关于函数f (x )=|x -{x }|的四个命题:①函数y =f (x )在x ∈(0,1)上是增函数;②函数y =f (x )的图象关于直线x =k2(k ∈Z )对称;③函数y =f (x )是周期函数,最小正周期为1;④当x ∈(0,2]时,函数g (x )=f (x )-ln x 有两个零点.其中正确命题的序号是( )A .②③④B .①③C .①②D .②④解析:选A.由函数定义可知当x ∈⎝ ⎛⎦⎥⎤-12,12时,f (x )=|x -{x }|=|x -0|;当x ∈⎝ ⎛⎦⎥⎤12,32时,f (x )=|x -{x }|=|x -1|;当x ∈⎝ ⎛⎦⎥⎤32,52时,f (x )=|x -{x }||x -2|;….可以作出函数的图象(如图),根据函数的图象可以判断①错误,②③是正确的,④由函数的图象再作出函数y =ln x ,x ∈(0,2]的图象,可判断有两个交点,故④也正确.3.若有穷数列a 1,a 2,…,a n (n 是正整数)满足a 1=a n ,a 2=a n -1,…,a n =a 1,即a i =a n -i +1(i 是正整数,且1≤i ≤n ),就称该数列为“对称数列”.已知数列{b n }是项数为7的“对称数列”,且b 1,b 2,b 3,b 4成等差数列,b 1=2,b 4=11,则{b n }的项为________. 解析:设数列b 1,b 2,b 3,b 4的公差为d ,则b 4=b 1+3d =2+3d =11,解得d =3,所以数列{b n }的项为2,5,8,11,8,5,2.答案:2,5,8,11,8,5,24.(2015·海淀区第二学期期中练习)已知向量序列:a 1,a 2,a 3,…,a n ,…满足如下条件:|a 1|=4|d |=2,2a 1·d =-1且a n -a n -1=d (n =2,3,4,…).若a 1·a k =0,则k =________;|a 1|,|a 2|,|a 3|,…,|a n |,…中第________项最小.解析:因为a n -a n -1=d ,所以a 2-a 1=d ,a 3-a 2=d ,…,a n -a n -1=d ,利用叠加法可得a n =a 1+(n -1)d .因为a 1·a k =0,所以a 1·[a 1+(k -1)d ]=0,a 21+(k -1)a 1·d =0,即4+(k -1)⎝ ⎛⎭⎪⎫-12=0,k =9.又a 2n =a 21+(n -1)2d 2+2(n -1)a 1·d =(n -1)24-(n -1)+4=14(n -3)2+3,所以当n =3时,a 2n 取最小值,即|a n |取最小值.答案:9 35.(2015·海淀区第二学期期中练习)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横、纵坐标都是整数的点)A (n ):A 1,A 2,A 3,…,A n 与B (n ):B 1,B 2,B 3,…,B n ,其中n ≥3,若同时满足:①两点列的起点和终点分别相同;②线段A i A i +1⊥B i B i +1,其中i =1,2,3,…,n -1,则称A (n )与B (n )互为正交点列.(1)求A (3):A 1(0,2),A 2(3,0),A 3(5,2)的正交点列B (3);(2)判断A (4):A 1(0,0),A 2(3,1),A 3(6,0),A 4(9,1)是否存在正交点列B (4)?并说明理由;(3)∀n ≥5,n ∈N ,是否都存在无正交点列的有序整点列A (n )?并证明你的结论. 解:(1)设点列A 1(0,2),A 2(3,0),A 3(5,2)的正交点列是B 1,B 2,B 3,由正交点列的定义可知B 1(0,2),B 3(5,2),设B 2(x ,y ),由A 1A 2→=(3,-2),A 2A 3→=(2,2),B 1B 2→=(x ,y -2),B 2B 3→=(5-x ,2-y ),由正交点列的定义可知A 1A 2→·B 1B 2→=0,A 2A 3→·B 2B 3→=0,即⎩⎪⎨⎪⎧3x -2(y -2)=02(5-x )+2(2-y )=0,解得⎩⎪⎨⎪⎧x =2y =5, 所以点列A 1(0,2),A 2(3,0),A 3(5,2)的正交点列是B 1(0,2),B 2(2,5),B 3(5,2).(2)由题可得A 1A 2→=(3,1),A 2A 3→=(3,-1),A 3A 4→=(3,1),设点列B 1,B 2,B 3,B 4是点列A 1,A 2,A 3,A 4的正交点列,则可设B 1B 2→=λ1(-1,3),B 2B 3→=λ2(1,3),B 3B 4→=λ3(-1,3),λ1,λ2,λ3∈Z ,因为A 1与B 1,A 4与B 4相同,所以有-λ1+λ2-λ3=9,①3λ1+3λ2+3λ3=1,②因为λ1,λ2,λ3∈Z ,方程②显然不成立,所以有序整点列A 1(0,0),A 2(3,1),A 3(6,0),A 4(9,1)不存在正交点列.(3)∀n ≥5,n ∈N ,都存在整点列A (n )无正交点列.∀n ≥5,n ∈N ,设A i A i +1――→=(a i ,b i ),其中a i ,b i 是一对互质整数,i =1,2,3,…,n-1,若有序整点列B 1,B 2,B 3,…,B n 是点列A 1,A 2,A 3,…,A n 的正交点列,则B i B i +1――→=λi (-b i ,a i ),i =1,2,3,…,n -1,则有∑n -1i =1 (-λi b i )=∑n -1i =1a i , (*) ∑n -1i =1 λi a i , = ∑n -1i =1b i (**) ①当n 为偶数时,取A 1(0,0),a i =3,b i =⎩⎪⎨⎪⎧1,i 为奇数-1,i 为偶数, i =1,2,3,…,n -1.由于B 1,B 2,B 3,…,B n 是整点列,所以有λi ∈Z ,i =1,2,3,…,n -1.等式(**)中左边是3的倍数,右边等于1,等式不成立,所以该点列A 1,A 2,A 3,…,A n 无正交点列;②当n 为奇数时,取A 1(0,0),a 1=3,b 1=2,a i =3,b i =⎩⎪⎨⎪⎧1,i 为奇数-1,i 为偶数,i =2,3,…,n -1, 由于B 1,B 2,B 3,…,B n 是整点列,所以有λi ∈Z ,i =1,2,3,…,n -1. 等式(**)中左边是3的倍数,右边等于1,等式不成立, 所以该点列A 1,A 2,A 3,…,A n 无正交点列.综上所述,∀n ≥5,n ∈N ,都存在无正交点列的有序整点列A (n ).。

优化方案(新课标)2016高考数学一轮复习第2讲知能训练轻松闯关(选修4_1)

优化方案(新课标)2016高考数学一轮复习第2讲知能训练轻松闯关(选修4_1)

【优化方案】(新课标)2016高考数学一轮复习 第2讲 知能训练轻松闯关(选修4-1)1.如图,四边形ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E .(1)求证:E 是AB 的中点; (2)求线段BF 的长.解:(1)证明:由题意知,AB 与圆D 和圆O 相切,切点分别为A 和B ,由切割线定理有:EA 2=EF ·EC =EB 2,∴EA =EB ,即E 为AB 的中点.(2)由BC 为圆O 的直径,易得BF ⊥CE ,∴S △BEC =12BF ·CE =12CB ·BE ,∴BF BE =CB CE ,∴BF =55a . 2.(2015·郑州市质量预测) 如图,AB 为圆O 的直径,CD 为垂直于AB 的一条弦,垂足为E ,弦BM 与CD 交于点F .(1)证明:A 、E 、F 、M 四点共圆; (2)若MF =4BF =4,求线段BC 的长.解:(1)证明:如图,连接AM ,由AB 为直径可知∠AMB =90°,又CD ⊥AB ,所以∠AEF =∠AMB =90°, 因此A 、E 、F 、M 四点共圆.(2)连接AC ,由A 、E 、F 、M 四点共圆, 可知BF ·BM =BE ·BA ,在Rt △ABC 中,BC 2=BE ·BA ,又由MF =4BF =4,知BF =1,BM =5,所以BC 2=5,BC =5.3.(2015·山西省四校联考) 如图所示,PA 为圆O 的切线,A 为切点,PO 交圆O 于B ,C 两点,PA =10,PB =5,∠BAC 的角平分线与BC 和圆O 分别交于点D 和E .(1)求证:AB AC =PA PC;(2)求AD ·AE 的值.解:(1)证明:∵PA 为圆O 的切线,∴∠PAB =∠ACP ,又∠P 为公共角, ∴△PAB ∽△PCA ,∴AB AC =PA PC.(2)∵PA 为圆O 的切线,PC 是过点O 的割线,∴PA 2=PB ·PC , ∴PC =20,BC =15,又∵∠CAB =90°,∴AC 2+AB 2=BC 2=225,又由(1)知AB AC =PA PC =12,∴AC =65, AB =35,连接EC (图略),则∠CAE =∠EAB , ∴△ACE ∽△ADB ,AB AE =ADAC,∴AD ·AE =AB ·AC =35×65=90.4.(2015·河北石家庄质量检测)如图,已知AB 为圆O 的一条直径,以端点B 为圆心的圆交直线AB 于C ,D 两点,交圆O 于E ,F 两点,过点D 作垂直于AD 的直线,交直线AF 于H 点.(1)求证:B ,D ,H ,F 四点共圆;(2)若AC =2,AF =22,求△BDF 外接圆的半径. 解:(1)证明:因为AB 为圆O 的一条直径, 所以BF ⊥FH .又DH ⊥BD ,故B ,D ,F ,H 四点在以BH 为直径的圆上. 所以,B ,D ,F ,H 四点共圆.(2)由题意得AH 与圆B 相切于点F ,由切割线定理得AF 2=AC ·AD , 即(22)2=2·AD ,AD =4,所以BD =12(AD -AC )=1,BF =BD =1.又△AFB ∽△ADH ,则DH BF =AD AF,得DH =2.连接BH (图略),由(1)可知BH 为△BDF 外接圆的直径.BH =BD 2+DH 2=3, 故△BDF 的外接圆半径为32. 5.(2014·高考辽宁卷) 如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .证明:(1)因为PD =PG ,所以∠PDG =∠PGD . 由于PD 为切线,故∠PDA =∠DBA .又由于∠PGD =∠EGA ,故∠DBA =∠EGA , 所以∠DBA +∠BAD =∠EGA +∠BAD , 从而∠BDA =∠PFA .由于AF ⊥EP ,所以∠PFA =90°,于是∠BDA =90°, 故AB 是直径. (2)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB . 于是∠DAB =∠CBA . 又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .由于AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角. 于是ED 为直径.由(1)得ED =AB .6.(2015·山西省忻州市联考)如图,直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB ,⊙O 交直线OB 于E 、D ,连接EC 、CD .(1)求证:直线AB 是⊙O 的切线;(2)若tan ∠CED =12,⊙O 的半径为3,求OA 的长.解:(1)证明:如图,连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB .∵OC 是⊙O 的半径,∴AB 是⊙O 的切线.(2)∵ED 是直径,∴∠ECD =90°,∴∠E +∠EDC =90°,又∠BCD +∠OCD =90°,∠OCD =∠EDC ,∴∠BCD =∠E ,又∠CBD =∠EBC , ∴△BCD ∽△BEC ,∴BC BE =BD BC,BC 2=BD ·BE .∵tan ∠CED =CD EC =12,△BCD ∽△BEC ,∴BD BC =CD EC =12, 设BD =x ,则BC =2x ,∵BC 2=BD ·BE ,∴(2x )2=x (x +6),∴BD =2, ∴OA =OB =BD +OD =2+3=5.)}1.(2015·兰州市、张掖市联考)如图,△ABC 是直角三角形,∠ABC =90°,以AB 为直径的圆O 交AC 于点E ,点D 是BC 边的中点,连接OD 交圆O 于点M .(1)求证:O 、B 、D 、E 四点共圆;(2)求证:2DE 2=DM ·AC +DM ·AB .证明:(1)连接BE 、OE (图略),则BE ⊥EC . 又D 是BC 的中点,所以DE =BD , 又OE =OB ,OD =OD , 所以△ODE ≌△ODB .所以∠OED =∠OBD =90°, 所以O 、B 、D 、E 四点共圆.(2)延长DO 交圆O 于点H (图略).因为DE 2=DM ·DH =DM ·(DO +OH )=DM ·DO +DM ·OH , 所以DE 2=DM ·(12AC )+DM ·(12AB ),所以2DE 2=DM ·AC +DM ·AB .2.(2015·云南省第一次统一检测)已知:如图,P 是⊙O 的直径AB 延长线上的一点,割线PCD 交⊙O 于C 、D 两点,弦DF 与直径AB 垂直,H 为垂足,CF 与AB 交于点E .(1)求证:PA ·PB =PO ·PE ;(2)若DE ⊥CF ,∠P =15°,⊙O 的半径等于2,求弦CF 的长. 解:(1)证明:连接OD .∵AB 是⊙O 的直径,弦DF 与直径AB 垂直,H 为垂足,C 在⊙O 上, ∴∠DOA =∠DCF ,∴∠POD =∠PCE .又∵∠DPO=∠EPC,∴△PDO∽△PEC,∴PDPE=POPC,即PD·PC=PO·PE.由割线定理得PA·PB=PD·PC,∴PA·PB=PO·PE.(2)由已知,直线AB是弦DF的垂直平分线,∴ED=EF,∴∠DEH=∠FEH.∵DE⊥CF,∴∠DEH=∠FEH=45°.由∠PEC=∠FEH=45°,∠P=15°,得∠DCF=60°.由∠DOA=∠DCF,得∠DOA=60°.在Rt△DHO中,OD=2,DH=OD sin∠DOH=3,∴DE=EF=DHsin∠DEH=6,CE=DEtan∠DCE=2,∴CF=CE+EF=2+6.3.(2015·沈阳市教学质量监测)如图,已知圆O1与圆O2外切于点P,直线AB是两圆的外公切线,分别与两圆相切于A、B两点,AC是圆O1的直径,过C作圆O2的切线,切点为D.(1)求证:C、P、B三点共线;(2)求证:CD=CA.证明:(1)连接PC,PA,PB,BO2,∵AC是圆O1的直径,∴∠APC=90°.连接O1O2必过点P,∵AB是两圆的外公切线,A,B为切点,∴∠BAP=∠ACP=α,∴∠AO1P=2α.由于O1A⊥AB,O2B⊥AB,∴∠BO2P=π-2α,∴∠O2BP=α.又∠ABP+∠O2BP=90°,∴∠ABP+∠BAP=90°,∴C、P、B三点共线.(2)∵CD切圆O2于点D,∴CD2=CP·CB.在△ABC中,∠CAB=90°,又∵AP⊥BC,∴CA2=CP·CB,故CD=CA.4.如图,点A是以线段BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,连接AF 并延长与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是⊙O的切线.证明:(1)∵BE是⊙O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可以得知△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,又∵G是AD的中点,∴DG=AG.∴BF=EF.(2)如图,连接AO,AB.∵BC是⊙O的直径,∴∠BAC=90°.在Rt△BAE中,由(1)得知F是斜边BE的中点,∴AF=FB=EF.∴∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是⊙O的切线,∴∠EBO=90°.∴∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA是⊙O的切线.。

优化方案(新课标)2016高考数学一轮复习 第七章 第1讲

优化方案(新课标)2016高考数学一轮复习 第七章 第1讲

[规律方法] (1)由实物图画三视图或判断、选择三视图, 此时需要注意“长对正、高平齐、宽相等”的原则; (2)由三视图还原实物图,解题时首先对柱、锥、台、球的 三视图要熟悉,再复杂的几何体也是由这些简单的几何体 组合而成的;其次,要遵循以下三步:①看视图,明关系; ②分部分,想整体;③综合起来,定整体.
4.如图所示的直观图,其表示的平面图形是( D )
A.正三角形 C.钝角三角形
B.锐角三角形 D.直角三角形
考点一 考点二 考点三
空间几何体的结构特征 空间几何体的三视图(高频考点)
空间几何体的直观图
考点一 空间几何体的结构特征
给出下列几个命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连
1.给出下列四个命题: ①有两个侧面是矩形的棱柱是直棱柱; ②侧面都是等腰三角形的棱锥是正棱锥; ③侧面都是矩形的直四棱柱是长方体; ④若有两个侧面垂直于底面,则该四棱柱为直四棱柱. 其中错误的命题的序号是__①__②__③__④____.
解析:认识棱柱一般要从侧棱与底面的垂直与否和底面多 边形的形状两方面去分析,故①③都不准确,②中对等腰 三角形的腰是否为侧棱未作说明,故也不正确,④平行六 面体的两个相对侧面也可能与底面垂直且互相平行,故④ 也不正确.
(2014·高考课标全国卷Ⅰ)如图,网格纸的各小格都 是正方形,粗实线画出的是一个几何体的三视图,则这个 几何体是( B )
A.三棱锥 C.四棱锥 [解析] 如图,几何体为三棱柱.
B.三棱柱 D.四棱柱
[考题溯源] 本考题是由教材人教 A 版必修 2P15 练习题第 4 题“如图是一个几何体的三视图,想象它的几何结构特 征,并说出它的名称.”演变而来.
线是圆柱的母线;

优化方案(新课标)高考数学一轮复习第一章第2讲知能训练轻松闯关

优化方案(新课标)高考数学一轮复习第一章第2讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 第一章 第2讲 知能训练轻松闯关1.不等式(x -1)(3-x )<0的解集是( ) A .(1,3) B .[1,3] C .(-∞,1)∪(3,+∞) D .{x |x ≠1且x ≠3} 解析:选C .根据题意,(x -1)(3-x )<0⇔(x -1)(x -3)>0,所以其解集为(-∞,1)∪(3,+∞).故选C .2.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c =( ) A .1∶2∶3 B .2∶1∶3 C .3∶1∶2 D .3∶2∶1 解析:选B .∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -b a.∵不等式的解集为{x |-2<x <1},∴⎩⎪⎨⎪⎧-b +c a =-2,c -b a =1,∴⎩⎪⎨⎪⎧b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.3.(2015·湖北八校联考)“0<a <1”是“ax 2+2ax +1>0的解集是实数集R ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .当a =0时,1>0,显然成立;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a <0.故ax 2+2ax +1>0的解集是实数集R 等价于0≤a <1.因此,“0<a <1”是“ax 2+2ax +1>0的解集是实数集R ”的充分而不必要条件.4.(2015·上海八校联合调研)已知关于x 的不等式x +1x +a<2的解集为P .若1∉P ,则实数a 的取值范围为( )A .(-∞,0]∪[1,+∞)B .[-1,0]C .(-∞,-1)∪(0,+∞)D .(-1,0]解析:选B .1∉P 有两种情形,一种是1+11+a≥2,另一种是x =1使分母为0,即1+a =0,解得-1≤a ≤0.5.定义区间长度m 为这样的一个量:m 的大小为区间右端点的值减去左端点的值.若关于x 的不等式x 2-x -6a <0有解,且解集的区间长度不超过5个单位长度,则实数a 的取值范围是( )A .(-124,1]B .(-∞,-124]∪[1,+∞)C .(0,1]D .[-24,1)解析:选A .因为关于x 的不等式x 2-x -6a <0有解,所以Δ=1+24a >0,则a >-124.设方程x 2-x -6a =0的两根为x 1,x 2,则x 1+x 2=1,x 1x 2=-6a ,又|x 1-x 2|≤5,即(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1+24a ≤5,解得a ≤1,故选A .6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}7.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________.解析:原不等式即(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a . 答案:⎩⎨⎧⎭⎬⎫x |a <x <1a8.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7 000万元,则x 的最小值是__________.解析:七月份:500(1+x %),八月份:500(1+x %)2. 所以一至十月份的销售总额为:3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000, 解得1+x %≤-2.2(舍)或1+x %≥1.2, ∴x min =20. 答案:209.若不等式ax 2+5x -2>0的解集是{x |12<x <2}.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0,即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为(-3,12).10.某同学要把自己的计算机接入因特网,现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP 公司较省钱?解:假设一次上网x (x <17)小时,则公司A 收取的费用为1.5x 元,公司B 收取的费用为1.7+(1.7-0.1)+(1.7-0.2)+…+[1.7-(x -1)×0.1]=x (35-x )20(元).由x (35-x )20>1.5x (0<x <17),整理得x 2-5x <0,解得0<x <5, 故当0<x <5时,A 公司收费低于B 公司收费,当x =5时,A ,B 两公司收费相等,当5<x <17时,B 公司收费低,所以当一次上网时间在5小时以内时,选择公司A 的费用少;为5小时时,选择公司A 与公司B 费用一样多;超过5小时小于17小时,选择公司B 的费用少.1.(2015·陕西西安质检)在R 上定义运算: =ad -bc .若不等式≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C .13D .32解析:选D .原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,-12≤a ≤32.故选D .2.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5] D .[-3,-2)∪(4,5]解析:选D .原不等式可化为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5].3.(2014·高考课标全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1x <1,x 13 x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:当x <1时,x -1<0,e x -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,∴1≤x ≤8. 综上可知x ∈(-∞,8]. 答案:(-∞,8]4.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2;若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为________.解析:当x <0时,-x >0,f (x )=f (-x )=(x +1)2,∵x ∈⎣⎢⎡⎦⎥⎤-2,-12, ∴f (x )min =f (-1)=0, f (x )max =f (-2)=1,∴m =1,n =0,m -n =1. 答案:15.已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围;(2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解:(1)由题意可得m =0或⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0. 故m 的取值范围是(-4,0].(2)法一:要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述:m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67. 法二:∵f (x )<-m +5⇔m (x 2-x +1)<6,∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数,则g (x )在[1,3]上为减函数,∴[g (x )]min =g (3)=67,∴m <67.所以m 的取值范围是⎝⎛⎭⎪⎫-∞,67. 6.(选做题)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .。

优化方案(新课标)2016高考数学一轮复习第三章第7讲知能训练轻松闯关

优化方案(新课标)2016高考数学一轮复习第三章第7讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 第三章 第7讲 知能训练轻松闯关1.(2015·安庆模拟)在△ABC 中,A ∶B =1∶2,sin C =1,则a ∶b ∶c 等于( ) A .1∶2∶3 B .3∶2∶1 C .1∶3∶2D .2∶3∶1解析:选C.∵sin C =1,∴C =π2,由于A ∶B =1∶2,故A +B =3A =π2,得A =π6,B =π3,由正弦定理得,a ∶b ∶c =sinA ∶sinB ∶sinC =12∶32∶1=1∶3∶2. 2.在△ABC 中,a =33,b =3,A =π3,则C =( )A.π6B.π4C.π2D.2π3解析:选C.由正弦定理得3sin B =33sinπ3,∴sin B =12,∵a >b ,∴0<B <π3,∴B =π6.∴C =π-(A +B )=π-(π3+π6)=π2.3.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形 解析:选C.因为a =2b cos C ,所以由余弦定理得a =2b ×a 2+b 2-c 22ab,整理得b 2=c 2,所以b =c .所以此三角形一定是等腰三角形.4.(2015·东北三校高三模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =13,sin C =3sin B ,且S △ABC =2,则b =( )A .1B .2 3C .3 2D .3解析:选A.∵cos A =13,∴sin A =223.又S △ABC =12bc sin A =2,∴bc =3.又sin C =3sin B ,∴c =3b ,∴b =1,c =3,故选A.5.(2015·河北石家庄质检)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,sin A 、sin B 、sin C 成等比数列,且c =2a ,则cos B 的值为( )A.14B.34C.24D.23解析:选B.因为sin A 、sin B 、sin C 成等比数列,所以sin 2B =sin A sinC ,由正弦定理得b 2=ac .又c =2a ,故cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34. 6.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:在△ABC 中,由b 2=a 2+c 2-2ac cos B 及b +c =7知,b 2=4+(7-b )2-2×2×(7-b )×⎝ ⎛⎭⎪⎫-14,整理得15b -60=0,∴b =4. 答案:47.(2015·龙岩质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =2a ,C =π3,则△ABC 的周长是________.解析:由22=a 2+(2a )2-2a ·2a cos π3,得a =233,∴△ABC 的周长为a +2a +2=3×233+2=2+2 3.答案:2+2 38.(2014·高考广东卷)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cosC +c cos B =2b ,则ab=________.解析:法一:因为b cos C +c cos B =2b ,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=2b ,化简可得a b=2.法二:因为b cos C +c cos B =2b ,所以sin B cos C +sin C cos B =2sin B , 故sin(B +C )=2sin B ,故sin A =2sin B ,则a =2b ,即a b=2. 答案:29.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.解:(1)由b sin A =3a cos B 及正弦定理a sin A =bsin B ,得sin B =3cos B .所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac .所以a =3,c =2 3.10.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解:(1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C ,得a 2+b 2-ab =4. 又∵△ABC 的面积为3, ∴12ab sin C =3,ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4.解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A ) =2sin A cos A ,即2sin B cos A =2sin A cos A , ∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.1.如图所示,在四边形ABCD 中,已知AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,则BC 的长为( )A .8 2B .9 2C .14 2D .8 3解析:选A.在△ABD 中,设BD =x ,则BA 2=BD 2+AD 2-2BD ·AD ·cos ∠BDA ,即142=x 2+102-2·10x ·cos 60°,整理得x 2-10x -96=0,解得x 1=16,x 2=-6(舍去).在△BCD 中,由正弦定理得BD sin ∠BCD =BCsin ∠BDC,∴BC =16sin 135°·sin 30°=8 2.2.(2015·衡水中学第二学期调研)设锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2) 解析:选A.∵B =2A ,∴sin B =sin 2A , ∴sin B =2sin A cos A ,∴b =2a cos A , 又∵a =1,∴b =2cos A . ∵△ABC 为锐角三角形, ∴0<A <π2,0<B <π2,0<C <π2,即 0<A <π2,0<2A <π2,0<π-A -2A <π2,∴π6<A <π4,∴22<cos A <32, ∴2<2cos A <3,∴b ∈(2,3).3.在△ABC 中,b =c cos A +3a sin C ,则角C 的大小为________. 解析:∵b =c cos A +3a sin C ,由余弦定理得b =c ·b 2+c 2-a 22bc +3a sin C .即b 2+a 2-c 2=23ab sin C . ∴2ab cos C =23ab sin C , 即tan C =33.又0<C <π,∴C =π6. 答案:π64.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =π3,a =3,若给定一个b 的值使满足条件的三角形有且只有一个,则b 的取值范围为____________.解析:如图1所示,当a =b sin A ,即3=b sin π3,b =2时,△ABC 为直角三角形,只有一个解;如图2所示,当a ≥b 时,即0<b ≤3时,三角形有且只有一个.所以b 的取值范围为(0,3]∪{2}.答案:(0,3]∪{2}5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴2sin B cos A -sin(A +C )=0, sin B (2cos A -1)=0.∵0<B <π,∴sin B ≠0,∴cos A =12.∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3.(2)△ABC 为等边三角形. ∵S △ABC =12bc sin A =334,即12bc sin π3=334, ∴bc =3, ① ∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6, ②由①②得b =c =3,∴△ABC 为等边三角形.6.(选做题)△ABC 中,A 、B 、C 的对边分别为a ,b ,c ,面积为S .满足S =34(a 2+b 2-c 2).(1)求C 的值;(2)若a +b =4,求周长的范围与面积S 的最大值. 解:(1)∵S =34(a 2+b 2-c 2), ∴12ab sin C =34·2ab cos C , 即tan C =3,又0<C <π,∴C =π3.(2)由余弦定理得c 2=a 2+b 2-ab , 又a +b =4. ∴c 2=a 2+(4-a )2-a (4-a )=3a 2-12a +16=3(a -2)2+4,由a +b =4,a >0,b >0知0<a <4.∴4≤c 2<16,∴2≤c <4. ∴周长a +b +c ∈[6,8). 又由a +b =4,知4≥2ab , 当且仅当a =b 时取等号. ∴ab ≤4,∴S =12ab sin C ≤12×4×32=3,即当a =b =2时,S max = 3.。

优化方案(新课标)高考数学一轮复习第六章第2讲知能训练轻松闯关

优化方案(新课标)高考数学一轮复习第六章第2讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 第六章 第2讲 知能训练轻松闯关1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解析:选 B.根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24.2.在平面直角坐标系xOy 中,满足不等式组⎩⎪⎨⎪⎧|x |≤|y ||x |<1的点(x ,y )的集合用阴影表示为下列图中的()解析:选C.|x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域;|x |<1表示x =±1所夹含y 轴的带状区域.3.(2014·高考湖北卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0,则2x +y 的最大值是( )A .2B .4C .7D .8解析:选C.根据约束条件画出可行域如图所示,设z =2x +y , 即y =-2x +z ,作直线y =-2x 并向右上方平移,显然,当直线过x +y =4与x -y =2的交点M (3,1)时,2x +y 取得最大值,即z max =6+1=7.4.某所学校计划招聘男教师x 名,女教师y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧2x -y ≥5x -y ≤2x ≤6x ∈N ,y ∈N,则该校招聘的教师最多为( )A .10名B .11名C .12名D .13名解析:选D.设z =x +y ,作出可行域如图阴影部分中的整点,可知当直线z =x +y 过A 点时z 最大,由⎩⎪⎨⎪⎧x =62x -y =5,得⎩⎪⎨⎪⎧x =6y =7, 故z 的最大值为7+6=13.5.曲线f (x )=e x(其中e 为自然对数的底数)在点(0,1)处的切线与直线y =-x +3和x 轴所围成的区域为D (包含边界),点P (x ,y )为区域D 内的动点,则z =x -3y 的最大值为( )A .3B .4C .-1D .1解析:选A .∵f ′(x )=e x,∴f ′(0)=1,∴曲线f (x )=e x在点(0,1)处的切线方程为y =x +1,其与直线y =-x +3及x 轴围成的平面区域如图阴影部分所示,当直线z =x -3y 过点A (3,0)时,目标函数z =x -3y 取得最大值3,故选A.6.满足不等式组⎩⎪⎨⎪⎧x +y -3≥0x -y +1≤02≤y ≤3的点(x ,y )构成的区域的面积为________.解析:画出不等式组表示的平面区域如图中阴影部分所示(包括边界).易知A 点的坐标为(2,3),B 点的坐标为(1,2),从而可知图中阴影部分的面积为12×2×1=1.答案:17.(2014·高考湖南卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解析:作出不等式组表示的平面区域,如图中阴影部分所示,z =2x +y ,则y =-2x +z .易知当直线y =-2x +z 过点A (k ,k )时,z =2x +y 取得最小值,即3k =-6,所以k =-2.答案:-28.(2015·长春调研)若实数x ,y 满足⎩⎪⎨⎪⎧12≤x ≤1,y ≥-x +1,y ≤x +1,则y +1x 的取值范围是________.解析:由题可知y +1x =y -(-1)x -0,即为求不等式所表示的平面区域内的点与(0,-1)的连线斜率k 的取值范围,由图可知k ∈[1,5].答案:[1,5]9.已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).如图所示.(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围. 解:(1)直线AB 、AC 、BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为:⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ][4×(-3)-3×2-a ]<0, 即(14-a )(-18-a )<0, 得a 的取值范围是-18<a <14.10.(2014·高考陕西卷)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.解:(1)法一:∵PA →+PB →+PC →=0, 又PA →+PB →+PC →=(1-x ,1-y)+(2-x ,3-y)+(3-x ,2-y)=(6-3x ,6-3y), ∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2.法二:∵PA →+PB →+PC →=0, 则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →,∴(x ,y)=(m +2n ,2m +n),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n , 两式相减得,m -n =y -x.令y -x =t ,由图知,当直线y =x +t 过点B(2,3)时,t 取得最大值1,故m -n 的最大值为1.1.(2015·东北三校联合模拟)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≥-1x -y≥23x +y≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}解析:选B .作出不等式组所表示的平面区域,如图阴影部分所示. 易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,所以a =-1或a =3.故选B .2.(2015·东北三校联考)已知二元一次不等式组⎩⎪⎨⎪⎧x +y -4≥0x -y -2≤0x -3y +4≥0所表示的平面区域为M.若M 与圆(x -4)2+(y -1)2=a(a>0)至少有两个公共点,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,5B .(1,5)C .⎝ ⎛⎦⎥⎤12,5 D .(1,5]解析:选C .如图,若使以(4,1)为圆心的圆与阴影部分区域至少有两个交点,结合图形,当圆与直线x -y -2=0相切时,恰有一个公共点,此时a =⎝ ⎛⎭⎪⎫122=12,当圆的半径增大到恰好过点A(2,2)时,圆与阴影部分至少有两个公共点,此时a =5,故实数a 的取值范围是12<a ≤5. 3.给定区域D :⎩⎪⎨⎪⎧x +4y≥4,x +y≤4,x ≥0,令点集T ={(x 0,y 0)∈D|x 0,y 0∈Z ,(x 0,y 0)是z =x +y在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.解析:画出平面区域D ,如图中阴影部分所示.作出z =x +y 的基本直线l 0:x +y =0.经平移可知目标函数z =x +y 在点A (0,1)处取得最小值,在线段BC 处取得最大值,而集合T 表示z =x +y 取得最大值或最小值时的整点坐标,在取最大值时线段BC 上共有5个整点,分别为(0,4),(1,3),(2,2),(3,1),(4,0),故T 中的点共确定6条不同的直线.答案:64.(2015·宁德质检)设P 是不等式组⎩⎪⎨⎪⎧y ≥0x -2y ≥-1x +y ≤3表示的平面区域内的任意一点,向量m =(1,1),n =(2,1).若OP →=λm +μn (λ,μ∈R ),则μ的最大值为________.解析:设P 的坐标为(x ,y ),因为OP →=λm +μn ,所以⎩⎪⎨⎪⎧x =λ+2μy =λ+μ,解得μ=x -y .题中不等式组表示的可行域是如图所示的阴影部分,由图可知,当目标函数μ=x -y 过点G (3,0)时,μ取得最大值为3-0=3.答案:35.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).6.(选做题)某小型工厂安排甲、乙两种产品的生产,已知工厂生产甲、乙两种产品每工厂每周才可获得最大利润?解:设工厂一周内安排生产甲产品x 吨、乙产品y 吨,所获周利润为z 元.依据题意,得目标函数为z =300x +200y ,约束条件为⎩⎪⎨⎪⎧x +y ≤504x ≤1602x +5y ≤200y ≥0x ≥0.欲求目标函数z =300x +200y =100(3x +2y )的最大值,先画出约束条件表示的可行域,如图中阴影部分所示,则点A (40,0),B (40,10),C (503,1003),D (0,40).作直线3x +2y =0,当移动该直线过点B (40,10)时,3x +2y 取得最大值,则z =300x +200y 取得最大值(也可通过代入凸多边形端点进行计算,比较大小求得).故z max =300×40+200×10=14 000.所以工厂每周生产甲产品40吨,乙产品10吨时,才可获得最大周利润,为14 000元.。

优化方案(新课标)2016高考数学一轮复习第1讲知能训练轻松闯关(选修4_4)

优化方案(新课标)2016高考数学一轮复习第1讲知能训练轻松闯关(选修4_4)

【优化方案】(新课标)2016高考数学一轮复习 第1讲 知能训练轻松闯关(选修4-4)1.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x y ′=13y后,曲线C :x 2+y 2=36变为何种曲线,并求曲线的焦点坐标.解:设圆x 2+y 2=36上任一点为P (x ,y ),伸缩变换后对应的点的坐标为P ′(x ′,y ′),则⎩⎪⎨⎪⎧x =2x ′y =3y ′, ∴4x ′2+9y ′2=36, 即x ′29+y ′24=1.∴曲线C 在伸缩变换后得椭圆x 29+y 24=1,其焦点坐标为(±5,0).2.(2015·江苏扬州质检)求经过极点O (0,0),A ⎝ ⎛⎭⎪⎫6,π2,B ⎝ ⎛⎭⎪⎫62,9π4三点的圆的极坐标方程.解:将点的极坐标化为直角坐标,点O ,A ,B 的直角坐标分别为(0,0),(0,6),(6,6), 故△OAB 是以OB 为斜边的等腰直角三角形,圆心为(3,3),半径为32,圆的直角坐标方程为(x -3)2+(y -3)2=18,即x 2+y 2-6x -6y =0,将x =ρcos θ,y =ρsin θ代入上述方程,得ρ2-6ρ(cos θ+sin θ)=0, 即ρ=62cos ⎝⎛⎭⎪⎫θ-π4. 3.(2014·高考重庆卷改编)已知直线l的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),求直线l 与曲线C 的公共点的极径ρ.解:参数方程⎩⎪⎨⎪⎧x =2+t ,y =3+t 化为普通方程为y =x +1.由ρsin 2θ-4cos θ=0,得ρ2sin2θ-4ρcos θ=0,其对应的直角坐标方程为y 2-4x =0,即y2=4x .由⎩⎪⎨⎪⎧y =x +1,y 2=4x 可得⎩⎪⎨⎪⎧x =1,y =2,故直线和抛物线的交点坐标为(1,2),故交点的极径为12+22=5. 4.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .(1)求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得的点A ′的坐标;(2)点B 经过φ变换得到点B ′⎝⎛⎭⎪⎫-3,12,求点B 的坐标;(3)求直线l :y =6x 经过φ变换后所得到的直线l ′的方程.解:(1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1,∴A ′(1,-1)即为所求.(2)设B (x ,y ),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎪⎨⎪⎧x =13x ′,y =2y ′.由于点B ′的坐标为⎝ ⎛⎭⎪⎫-3,12, 于是x =13×(-3)=-1,y =2×12=1,∴B (-1,1)即为所求.(3)由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x =x ′3,y =2y ′.代入直线l :y =6x ,得到经过伸缩变换后的方程y ′=x ′,因此直线l ′的方程为y=x .5.(2015·福建泉州质检)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎪⎫θ+π4=22. 6.求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数.证明:建立如图所示的极坐标系,设抛物线的极坐标方程为ρ=p1-cos θ(p >0).PQ 是抛物线的弦,若点P 的极角为θ, 则点Q 的极角为π+θ,因此有|FP |=p1-cos θ,|FQ |=p 1-cos (π+θ)=p1+cos θ.所以1|FP |+1|FQ |=1-cos θp +1+cos θp=2p(常数).原命题得证.1.(2015·唐山市统一考试)已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 的方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.解:(1)将x =ρcos θ,y =ρsin θ代入圆C 和直线l 的直角坐标方程得其极坐标方程为C :ρ=2,l :ρ(cos θ+sin θ)=2.(2)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2,得ρρ1=ρ22.又ρ2=2,ρ1=2cos θ+sin θ,所以2ρcos θ+sin θ=4,故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).2.(2013·高考课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,代入x 2+y 2-8x -10y +16=0,得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为(2,π4),(2,π2). 3.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求点M ,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1, 从而曲线C 的直角坐标方程为12x +32y =1,即x +3y =2.θ=0时,ρ=2,所以M (2,0).θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)由(1)得点M 的直角坐标为(2,0),点N 的直角坐标为⎝⎛⎭⎪⎫0,233.所以点P 的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则点P 的极坐标为⎝⎛⎭⎪⎫233,π6, 所以直线OP 的极坐标方程为θ=π6,ρ∈(-∞,+∞).4.(2015·太原市模拟试题)在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(a >b >0,φ为参数),且曲线C 1上的点M (2,3)对应的参数φ=π3.以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π4与曲线C 2交于点D (2,π4).(1)求曲线C 1的普通方程,C 2的极坐标方程;(2)若A (ρ1,θ),B (ρ2,θ+π2)是曲线C 1上的两点,求1ρ21+1ρ22的值.解:(1)将M (2,3)及对应的参数φ=π3代入⎩⎪⎨⎪⎧x =a cos φy =b sin φ(a >b >0,φ为参数), 得⎩⎪⎨⎪⎧2=a cos π33=b sin π3,解得⎩⎪⎨⎪⎧a =4b =2,∴曲线C 1的普通方程为x 216+y 24=1,设圆C 2的半径为R ,则圆C 2的方程为ρ=2R cos θ,将点D (2,π4)代入得2=2R ·22,解得R =1,∴圆C 2的极坐标方程为ρ=2cos θ.(2)曲线C 1的极坐标方程为ρ2cos 2θ16+ρ2sin 2θ4=1,将A (ρ1,θ),B (ρ2,θ+π2)代入得ρ21cos 2θ16+ρ21sin 2θ4=1,ρ22sin 2θ16+ρ22cos 2θ4=1,∴1ρ21+1ρ22=⎝ ⎛⎭⎪⎫cos 2θ16+sin 2θ4+⎝ ⎛⎭⎪⎫sin 2θ16+cos 2θ4=516.。

优化方案(新课标)高考数学一轮复习第二章第2讲知能训练轻松闯关

优化方案(新课标)高考数学一轮复习第二章第2讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习 第二章 第2讲 知能训练轻松闯关1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( )A .f (x )=x 2+aB .f (x )=ax 2+1C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C .当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R .2.函数f (x )=10+9x -x 2lg (x -1)的定义域为( ) A .[1,10] B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D .要使函数有意义,则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得-1≤x ≤10.所以不等式组的解集为(1,2)∪(2,10].故选D .3.函数y =2--x 2+4x 的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2,2]解析:选C .-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0,0≤2--x 2+4x ≤2,所以0≤y ≤2.4.若函数y =f (x )的定义域是[0,2 016],则函数g (x )=f (x +1)x -1的定义域是( ) A .[-1,2 015] B .[-1,1)∪(1,2 015]C .[0,2 016]D .[-1,1)∪(1,2 016]解析:选B .令t =x +1,则由已知函数y =f (x )的定义域为[0,2 016]可知f (t )中0≤t ≤2 016,故要使函数f (x +1)有意义,则0≤x +1≤2 016,解得-1≤x ≤2 015,故函数f (x +1)的定义域为[-1,2 015].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 015,x -1≠0解得-1≤x <1或1<x ≤2 015.故函数g (x )的定义域为[-1,1)∪(1,2 015].5.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).,则f (x )的值域是( )A .[-94,0]∪(1,+∞) B .[0,+∞) C .[-94,+∞) D .[-94,0]∪(2,+∞) 解析:选D .令x <g (x ),即x 2-x -2>0,解得x <-1或x >2.令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2.故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2(x <-1或x >2),x 2-x -2(-1≤x ≤2).当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f (12)≤f (x )≤f (-1),即-94≤f (x )≤0.故函数f (x )的值域是[-94,0]∪(2,+∞). 6答案:{2,3,4,5}7.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是__________. 解析:根据题意可得f [f (x )]=11x +1+1, 要使函数有意义,只需⎩⎪⎨⎪⎧x +1≠0,1x +1+1≠0, 解得x ≠-1且x ≠-2,故函数f [f (x )]的定义域为{x |x ≠-1且x ≠-2}.答案:{x |x ≠-1且x ≠-2}8.(2015·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ],∴a >1.则f (x )=1x -1在[a ,b ]上为减函数, 则f (a )=1a -1=1且f (b )=1b -1=13, ∴a =2,b =4,a +b =6.答案:6 9.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值. 解:∵f (x )=12(x -1)2+a -12, ∴其对称轴为x =1.即函数f (x )在[1,b ]上单调递增. ∴f (x )min =f (1)=a -12=1,① f (x )max =f (b )=12b 2-b +a =b .② 又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.∴a ,b 的值分别为32,3. 10.已知函数f (x )的值域为[38,49],求函数g (x )=f (x )+1-2f (x )的值域. 解:∵38≤f (x )≤49,∴13≤1-2f (x )≤12, 令t =1-2f (x ),则f (x )=12(1-t 2), 令y =g (x ),∴y =-12(t 2-1)+t . ∴当t =13时,y 有最小值79,当t =12时,y 有最大值78.∴g (x )的值域为⎣⎢⎡⎦⎥⎤79,78.。

优化方案(新课标)高考数学一轮复习第七章第3讲知能训练轻松闯关

优化方案(新课标)高考数学一轮复习第七章第3讲知能训练轻松闯关

【优化方案】(新课标)2016高考数学一轮复习第七章第3讲知能训练轻松闯关1.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线( )A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内解析:选C.由直线l与点P可确定一个平面β,则平面α,β有公共点,因此它们有一条公共直线,设该公共直线为m,因为l∥α,所以l∥m,故过点P且平行于直线l的直线只有一条,且在平面α内.2.已知A、B、C、D是空间四个点,甲:A、B、C、D四点不共面,乙:直线AB和直线CD不相交,则甲是乙成立的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A.因为A、B、C、D四点不共面,则直线AB和直线CD不相交,反之,直线AB和直线CD不相交,A、B、C、D四点不一定不共面.故甲是乙成立的充分不必要条件.3.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点AB.点BC.点C但不过点MD.点C和点M解析:选D.∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.4.如图所示,ABCD­A1B1C1D1是正方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:选A.连接A1C1,AC(图略),则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1.又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.∴A,M,O三点共线.5.如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为( )A .36B .-36C .33D .-33解析:选A .延长CD 至H .使DH =1,连接HG 、HF ,则HF ∥AD . HF =DA =22,GF =6,HG =10.∴cos ∠HFG =8+6-102×6×22=36.6.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定__________个平面.解析:如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个.答案:1或47. 如图所示,在三棱锥A ­BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则当AC ,BD 满足条件________时,四边形EFGH 为菱形,当AC ,BD 满足条件________时,四边形EFGH 是正方形.解析:易知EH ∥BD ∥FG ,且EH =12BD =FG ,同理EF ∥AC ∥HG ,且EF =12AC =HG ,显然四边形EFGH 为平行四边形.要使平行四边形EFGH 为菱形需满足EF =EH ,即AC =BD ;要使四边形EFGH 为正方形需满足EF =EH 且EF ⊥EH ,即AC =BD 且AC ⊥BD .答案:AC =BD AC =BD 且AC ⊥BD8. 如图所示,正方体的棱长为1,B ′C ∩BC ′=O ,则AO 与A ′C ′所成角的度数为________.解析:∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵OC ⊥OB ,AB ⊥平面BB ′C ′C , ∴OC ⊥AB .又AB ∩BO =B , ∴OC ⊥平面ABO .又OA ⊂平面ABO ,∴OC ⊥OA .在Rt △AOC 中,OC =22,AC =2,sin ∠OAC =OC AC =12,∴∠OAC =30°.即AO 与A ′C ′所成角的度数为30°. 答案:30°9. 如图所示,在三棱锥P ­ABC 中,PA ⊥平面ABC ,∠BAC =60°,PA =AB =AC =2,E 是PC 的中点.(1)求证AE 与PB 是异面直线;(2)求异面直线AE 和PB 所成角的余弦值.解:(1)证明:假设AE 与PB 共面,设平面为α. ∵A ∈α,B ∈α,E ∈α, ∴平面α即为平面ABE , ∴P ∈平面ABE ,这与P ∉平面ABE 矛盾, 所以AE 与PB 是异面直线.(2)取BC 的中点F , 连接EF 、AF , 则EF ∥PB ,所以∠AEF (或其补角)就是异面直线AE 和PB 所成的角. ∵∠BAC =60°,PA =AB =AC =2,PA ⊥平面ABC , ∴AF =3,AE =2,EF =2,cos ∠AEF =AE 2+EF 2-AF 22·AE ·EF=2+2-32×2×2=14, 所以异面直线AE 和PB 所成角的余弦值为14.10. 如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD=∠FAB =90°,BC 綊12AD ,BE 綊12FA ,G ,H 分别为FA ,FD 的中点.(1)求证:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:由题设知,FG =GA ,FH =HD ,所以GH 綊12AD .又BC 綊12AD ,故GH 綊BC .所以四边形BCHG 是平行四边形. (2)C ,D ,F ,E 四点共面. 理由如下:由BE 綊12FA ,G 是FA 的中点知,BE 綊GF ,所以EF 綊BG . 由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面. 又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【优化方案】(新课标)2016高考数学一轮复习 第七章 第2讲 知能训练轻松闯关1.(2015·安徽合肥模拟)某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D .由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D .2. 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图所示,侧视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2D . 3解析:选B .设底面边长为x ,则V =34x 3=23,∴x =2.由题意知这个正三棱柱的侧视图为长为2,宽为3的矩形,其面积为23.3.(2015·广东广州模拟)设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A .2πB .6πC .π6D .π2解析:选D .设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝ ⎛⎭⎪⎫233R 2=π2.4.(2015·浙江嘉兴市高三模拟)某几何体的三视图如图所示,则该几何体的体积等于( )A .2B .4C .8D .12解析:选B .由三视图可得该几何体是一个底面是边长分别为3和2的矩形、高为2的四棱锥,所以该几何体的体积是13×2×3×2=4,故选B .5.(2015·湖北荆州质检)某几何体的三视图如图所示,则该几何体的体积为( )A .2π3B .πC .4π3D .2π解析:选A .由三视图可知,该几何体是在一个圆柱中挖去两个半球而形成的,且圆柱的底面圆半径为1,母线长为2,则圆柱的体积V 柱=π×12×2=2π,挖去的两个半球的半径均为1,因此挖去部分的体积为V 球=2×12×43π×13=43π,因此,几何体的体积为V =V柱-V 球=2π-4π3=2π3,故选A . 6.(2015·福建福州一中月考)一个六棱柱的底面是正六边形,其侧棱垂直于底面,且该六棱柱的体积为98,底面周长为3,则棱柱的高h =________.解析:底面周长为3,所以正六边形的边长为12.则六边形的面积为338.又因为六棱柱的体积为98,即338h =98,∴h =3.答案: 37.(2014·高考山东卷)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.解析:设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.答案:128.(2014·高考江苏卷)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.解析:设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32.由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,则h 1h 2=23,所以V 1V 2=πr 21h 1πr 22h 2=32. 答案:329. (2015·浙江杭州模拟)如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得:CE =2,DE =2,CB =5,S表面=S圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V 圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π. 10.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ; (2)求该几何体的表面积S .解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3.所以V =1×1×3=3.(2)由三视图可知,该平行六面体中,A 1D ⊥平面ABCD ,CD ⊥平面BCC 1B 1,所以AA 1=2,侧面ABB 1A 1,CDD 1C 1均为矩形.S =2×(1×1+1×3+1×2)=6+23.1.(2014·高考大纲全国卷)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .81π4B .16πC .9πD .27π4解析:选A .如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,∴该球的表面积为4πr 2=4π×⎝ ⎛⎭⎪⎫942=814π.2.(2015·成都模拟)已知某几何体的三视图如图所示,该几何体的体积为92,则a =( )A .52B .3C .72D .4 解析:选C .由三视图可知此几何体是一个底面边长分别为a +2和3,高为6的长方体截去一个三棱锥,且截去的三棱锥的三条侧棱长分别为3,4,a ,故该几何体的体积为6×(a+2)×3-13×3×12×4×a =92,解得a =72.3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF =1,则四面体A -EFB 的体积等于________.解析:连接BD 交AC 于点O ,则OA 为四面体A -EFB 的高,且OA =22,又S △EFB =12×1×1=12,所以V A -EFB =13×12×22=212.答案:2124.(2013·高考课标全国卷Ⅰ)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.解析:如图,设球O 的半径为R ,则由AH ∶HB =1∶2,得HA =13·2R =23R ,∴OH =R3. ∵截面面积为π=π·(HM )2, ∴HM =1.在Rt △HMO 中,OM 2=OH 2+HM 2,∴R 2=19R 2+HM 2=19R 2+1,∴R =324.∴S 球=4πR 2=4π·(324)2=92π.答案:92π5.如图所示,从三棱锥P ­ABC 的顶点P 沿着三条侧棱PA ,PB ,PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P ­ABC 中,求证:PA ⊥BC ;(2)若P 1P 2=26,P 1P 3=20,求三棱锥P ­ABC 的体积. 解:(1)证明:由题设知A ,B ,C 分别是P 1P 3, P 1P 2,P 2P 3的中点, 且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连接AD ,PD (图略), 则AD ⊥BC ,PD ⊥BC . 又AD ∩PD =D , ∴BC ⊥平面PAD . 又PA ⊂平面PAD , 故PA ⊥BC . (2)由题设有AB =AC =12P 1P 2=13,PA =P 1A =BC =10,PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12. 在等腰三角形DPA 中,底边PA 上的高h = AD 2-(12PA )2=119,∴S △DPA =12PA ·h =5119.又BC ⊥平面PAD , ∴V P ­ABC =V B ­PDA +V C ­PDA =13BD ·S △DPA +13DC ·S △PDA=13BC ·S △PDA =13×10×5 119 =503119.6.(选做题)如图,在平行四边形ABCD 中,BC =2,BD ⊥CD ,四边形ADEF 为正方形,平面ADEF ⊥平面ABCD .记CD =x ,V (x )表示四棱锥F -ABCD 的体积.(1)求V (x )的表达式; (2)求V (x )的最大值.解:(1)∵平面ADEF ⊥平面ABCD ,交线为AD 且FA ⊥AD ,∴FA ⊥平面ABCD . ∵BD ⊥CD ,BC =2,CD =x ,∴FA =2,BD =4-x 2(0<x <2), S ▱ABCD =CD ·BD =x 4-x 2,∴V (x )=13S ▱ABCD ·FA =23x 4-x 2(0<x <2).(2)V (x )=23x 4-x 2=23-x 4+4x 2=23-(x 2-2)2+4. ∵0<x <2,∴0<x 2<4,∴当x 2=2,即x =2时,V (x )取得最大值,且V (x )max =43.。

相关文档
最新文档