全国各地2014年中学考试数学真题分类解析汇报总汇编 03整式与因式分解

合集下载

精品 2014年八年级数学上册整式乘除与因式分解03 单项式乘多项式 多项式乘多项式(1)

精品 2014年八年级数学上册整式乘除与因式分解03 单项式乘多项式 多项式乘多项式(1)

2
2
14. ( x 2)( x 3) 2( x 6)( x 5) 3( x 2 7 x 13) ,其中 x= 3
1 2
15.若 ( x 2 ax b)(2 x 2 3 x 1) 的积中, x 3 的系数为 5, x 2 的系数为-6,求 a,b.
第 6 页 共 6 页
D.a+b+2c+(a-c)+(b-c) ) C. 3a 2 b3 2a 3 b 2 36a 2 b 2 ) C.a-b ) C.t -4t+5 ) C.m=-4,n=1 ) C.p=-q ) D.a=2,b=-1,c=2 D.无法确定 D.m=-4,n=-1
2
3. ( ab 2 a 2 b 6ab) (6ab) 的结果为( A. 36a 2 b 2
19.对任意有理数 x、y 定义运算如下: xy ax by cxy ,这里 a、b、c 是给定的数,等式右边是通常数 的加法及乘法运算,如当 a=1,b=2,c=3 时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条 件,1△2=3,2△3=4,并且有一个不为零的数 d 使得对任意有理数 x△d=x,求 a、b、c、d 的值.
2 2 3
。 。 。 。 。
(5) 8m( m 3m 4) m ( m 3)
2 2
(6) ( 2a b) ( ab a b a )
2 2 2 2 3
10.当 t=1 时,代数式 t 3 2 t [2 t 2 3t (2 t 2)] 的值为 11.若 2 x y 0 ,则代数式 4 x 3 2 xy ( x y ) y 3 的值为

安徽省2014年中考数学专题复习课件 第2课时 整式与因式分解

安徽省2014年中考数学专题复习课件 第2课时 整式与因式分解

皖考解读
考点聚焦
皖考探究
当堂检测
第2课时┃ 整式与因式分解
探究五 利用拼图验证乘法公式
命题角度: 1.利用因式分解进行计算与化简; 2.利用几何图形验证因式分解公式.
皖考解读
考点聚焦
皖考探究
当堂检测
第2课时┃ 整式与因式分解
例 6 [2013· 义乌] 如图 2-1①, 从边长为 a 的正方形纸片中 剪去一个边长为 b 的小正方形,再沿着线段 AB 剪开,把剪成的 两张纸片拼成如图②所示的等腰梯形. (1)设图①中阴影部分面积为 S1, 图②中阴影部分面积为 S2, 请直接用含 a,b 的代数式表示 S1,S2; (2)请写出上述过程所揭示的乘法公式.
皖考解读 考点聚焦 皖考探究 当堂检测
整 式 的 乘 法 整 式 的 除 法
第2课时┃ 整式与因式分解
1.①平方差公式:(a+b)(a-b)=______________ ; a2-b2 2 2 ②完全平方公式:(a± b)2=__________________. a ± 2 ab + b 乘法 2.常用的变形有: 公式 (a-b)2+2ab ; ①a2+b2=______________ (a+b)2-2ab =______________ ②(a-b)2=______________. (a+b)2-4ab
字母 也是单项式. 注意:单独的一个数或一个________ 相关概念:①几个单项式的________ 叫做多项式;②一个多 和 项式中,次数__________ 最高项的 次数,叫做这个多项式的次数; 多项 单项式 叫做多项式的项. ③多项式中的每个________ 式 举例:x2y2-4xy-3是四次三项式,其中x2y2是四次项, -4xy是二次项,-3是常数项. 单项式与多项式 统称为整式. 整式 ____________________

2014年河南省中招考试数学试卷及答案解析-推荐下载

2014年河南省中招考试数学试卷及答案解析-推荐下载

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案解析一、选择题(每小题 分,共 分)下列各数中,最小的数是()1313答案:解析:根据有理数的大小比较法则(正数都大于 ,负数都小于 ,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解: ﹣ < 13< <13,最小的数是﹣ ,故选 .据统计, 年河南省旅游业总收入达到 亿元 若将 亿用科学计数法表示为 × ,则 等于()( (答案:解析:科学记数法的表示形式为 的形式,其中 < , 为整数,表示时关键要正确确定 的值以及 的值. 亿 × ,故选 如图,直线 、 相交于 ,射线 平分∠ ⊥若∠ ,则∠ 的度数为()(答案:解析:根据角的平分线的性质及直角的性质,即可求解.∠ 故选下列各式计算正确的是()( ) ( )() · ( )( + )答案:解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;( 计算正确,故选下列说法中,正确的是()( )“打开电视,正在播放河南新闻节目”是必然事件( )某种彩票中奖概率为 %是指买十张一定有一张中奖( )神州飞船发射前需要对零部件进行抽样检查( )了解某种节能灯的使用寿命适合抽样调查答案:解析:根据统计学知识;( )“打开电视,正在播放河南新闻节目”是随机事件,( )错误。

( )某种彩票中奖概率为 %是指买十张一定有一张中奖是随机事件,( )错误。

( )神州飞船发射前需要对零部件进行抽样检查要全面检查。

( )了解某种节能灯的使用寿命适合抽样调查,( )正确。

故选将两个长方体如图放置,到所构成的几何体的左视图可能是()答案:解析:根据三视图可知, 正确。

如图, 的对角线 与 相交于点 ⊥ 若 则的长是()( ) 答案:解析:根据平行四边形的性质勾股定理可得, △ 1212×∴ 又 × 故 正确。

如图,在 △ 中,∠ , , ,点 从 出发,以 的速沿折线 运动,最终回到 点。

2014年全国各地中考数学解析版试卷分类汇编总汇:方案设计

2014年全国各地中考数学解析版试卷分类汇编总汇:方案设计

新世纪教育网单位租用个人充值客服:方案设计1.( 2014?浙江宁波,第26 题 14 分)木工黄师傅用长AB=3 ,宽 BC=2 的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、 O2分别在 CD 、AB 上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC 将矩形锯成两个三角形,适合平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF 拼到矩形AFED 下边,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)经过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设 CE=x( 0< x<1),圆的半径为 y.①求 y 对于 x 的函数分析式;②当 x 取何值时圆的半径最大,最大部分径为多少?并说明四种方案中哪一个圆形桌面的半径最大.考点:圆的综合题剖析:( 1)察看图易知,截圆的直径需不超出长方形长、宽中最短的边,由已知长宽分别为3, 2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是惯例的利用勾股定理或三角形相像中对应边长成比率等性质解直角三角形求边长的题目.一般都先设出所求边长,尔后利用关系代入表示其余有关边长,方案二中可利用△O1O2E为直角三角形,则知足勾股定理整理方程,方案三可利用△AOM ∽△ OFN新世纪教育网单位租用个人充值客服:后对应边成比率整理方程,从而可求r 的值.(3)①近似( 1)截圆的直径需不超出长方形长、宽中最短的边,固然方案四中新拼的图象不必定为矩形,但直径也不得超出横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC 为 x,则新拼图形水平方向跨度为3﹣ x,竖直方向跨度为2+ x,则需要先判断大小,尔后分别议论结论.②已有关系表达式,则直接依据不等式性质易得方案四中的最大部分径.另与前三方案比较,即得最后结论.解答:解:( 1)方案一中的最大部分径为1.剖析以下:由于长方形的长宽分别为3, 2,那么直接取圆直径最大为2,则半径最大为 1.(2)如图 1,方案二中连结O1, O2,过 O1作 O1E⊥ AB 于 E,方案三中,过点O 分别作 AB, BF 的垂线,交于M, N,此时 M ,N 恰为⊙ O 与 AB, BF 的切点.方案二:设半径为r,在 Rt△ O1O2E 中,∵O1O2=2 r,O1E=BC=2, O2E=AB﹣ AO1﹣ CO2=3﹣ 2r,∴(2 2 2 2r)=2 +( 3﹣2r ),解得r= .方案三:设半径为r,在△ AOM 和△ OFN 中,,∴△ AOM ∽△OFN,∴,∴,解得 r= .比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣ x,竖直方向跨度为 2+ x.近似( 1),所截出圆的直径最大为3﹣ x 或 2+x 较小的.1.当 3﹣ x< 2+x 时,即当x>时,r=(3﹣x);2.当 3﹣ x=2+ x 时,即当x=时,r=(3﹣)=;3.当 3﹣ x> 2+x 时,即当x<时,r=(2+x).②当 x>时,r =(3﹣x)<(3﹣)=;当 x=时,r =(3﹣)=;当 x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.评论:本题考察了圆的基天性质及经过勾股定理、三角形相像等性质求解边长及分段函数的表示与性质议论等内容,题目虽看似新奇不易找到思路,但认真察看每一小问都是惯例的基础考点,因此整体来说是一道质量很高的题目,值得认真练习.2.( 2014?湘潭,第 21 题)某公司新增了一个化工项目,为了节俭资源,保护环境,该企业决定购置A、 B 两种型号的污水办理设施共8 台,详细状况以下表:新世纪教育网单位租用个人充值客服:新世纪教育网单位租用个人充值客服:A 型B 型价钱(万元 /台)12 10月污水办理能力(吨/月) 200 160经估算,公司最多支出89 万元购置设施,且要求月办理污水能力不低于1380 吨.(1)该公司有几种购置方案?(2)哪一种方案更省钱,说明原因.考点:一元一次不等式组的应用剖析:( 1)设购置污水办理设施 A 型号 x 台,则购置 B 型号( 8﹣ x)台,依据公司最多支出 89 万元购置设施,要求月办理污水能力不低于 1380 吨,列出不等式组,而后找出最适合的方案即可.( 2)计算出每一方案的花销,经过比较即可获得答案.解答:解:设购置污水办理设施A 型号 x 台,则购置 B 型号( 8﹣x)台,依据题意,得,解这个不等式组,得: 2.5 ≤x≤4.5.∵x 是整数,∴x=3 或 x=4.当 x=3 时, 8﹣ x=5;当 x=4 时, 8﹣ x=4.答:有 2 种购置方案:第一种是购置 3 台 A 型污水办理设施, 5 台 B 型污水办理设施;第二种是购置 4 台 A 型污水办理设施, 4 台 B 型污水办理设施;(2)当 x=3 时,购置资本为 12×1+10×5=62(万元),当 x=4 时,购置资本为 12×4+10×4=88(万元).由于 88> 62,因此为了节俭资本,应购污水办理设施A型号 3台,B型号 5台.答:购置 3 台 A 型污水办理设施, 5 台 B 型污水办理设施更省钱.评论:本题考察了一元一次不等式组的应用,本题是“方案设计”问题,一般可把它转变为求不等式组的整数解问题,经过表格获得有关信息,在实质问题中抽象出不等式组是解新世纪教育网单位租用个人充值客服:新世纪教育网单位租用个人充值客服:决这种问题的重点.3. ( 2014?益阳,第 19 题, 10 分)某电器商场销售每台进价分别为200 元、 170 元的 A、 B 两种型号的电电扇,下表是近两周的销售状况:销售时段销售数目销售收入A 种型号B 种型号第一周3台5台1800元第二周4台10 台3100元(进价、售价均保持不变,收益=销售收入﹣进货成本)(1)求 A、 B 两种型号的电电扇的销售单价;(2)若商场准备用不多于5400 元的金额再采买这两种型号的电电扇共30 台,求 A 种型号的电电扇最多能采买多少台?【版权全部: 21 教育】(3)在( 2)的条件下,商场销售完这30 台电电扇可否实现收益为1400 元的目标?若能,请给出相应的采买方案;若不可以,请说明原因.21*cnjy*com考点:二元一次方程组的应用;一元一次方程的应用;一元一次不等式的应用.剖析:( 1)设 A、 B 两种型号电电扇的销售单价分别为x 元、 y 元,依据 3 台 A 型号 5 台 B 型号的电扇收入1800 元, 4 台 A 型号 10 台 B 型号的电扇收入3100 元,列方程组求解;(2)设采买 A 种型号电电扇 a 台,则采买 B 种型号电电扇( 30﹣ a)台,依据金额不剩余5400 元,列不等式求解;(3)设收益为 1400 元,列方程求出 a 的值为 20,不切合( 2)的条件,可知不可以实现目标.解答:解:( 1)设 A、 B 两种型号电电扇的销售单价分别为x 元、 y 元,依题意得:,解得:,答: A、 B 两种型号电电扇的销售单价分别为250 元、 210 元;(2)设采买 A 种型号电电扇 a 台,则采买 B 种型号电电扇( 30﹣ a)台.依题意得: 200a+170 ( 30﹣ a)≤5400,解得: a≤10.答:商场最多采买 A 种型号电电扇 10 台时,采买金额不多于 5400 元;新世纪教育网单位租用个人充值客服:新世纪教育网单位租用个人充值客服:(3)依题意有:( 250﹣ 200) a+( 210﹣ 170)( 30﹣ a) =1400 ,解得:a=20 ,∵ a>10,∴在( 2)的条件下商场不可以实现收益1400 元的目标.评论:本题考察了二元一次方程组和一元一次不等式的应用,解答本题的重点是读懂题意,设出未知数,找出适合的等量关系和不等关系,列方程组和不等式求解.4.( 2014?济宁,第20 题 8 分)在数学活动课上,王老师发给每位同学一张半径为 6 个单位长度的圆形纸板,要求同学们:21 世纪教育网版权全部(1)从带刻度的三角板、量角器和圆规三种作图工具中随意选用作图工具,把圆形纸板分红面积相等的四部分; 21 教育网(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并达成下边的设计报告.名称四平分圆的面积方案方案一方案二方案三采用的带刻度的三角板工具画出表示图简述设作⊙ O 两条相互垂直的直径 AB 、CD,将⊙ O 的面计方案积分红相等的四份.指出对既是轴对称图形又是中心对称图形称性考点:利用旋转设计图案;利用轴对称设计图案.剖析:依据圆的面积公式以及轴对称图形和中心对称图形定义分别剖析得出即可.解答:解:名称四平分圆的面积新世纪教育网单位租用个人充值客服:新世纪教育网单位租用个人充值客服:方案方案一方案二方案三采用带刻度的三角板带刻度三角板、量带刻度三角板、圆的工角器、圆规.规.具画出表示图简述作⊙ O 两条相互垂直的直径设计⊙ O 的面积分红相等的四份.方案AB、CD ,将( 1)以点 O 为圆( 4)作⊙ O 的一条心,以 3 个单位长直径 AB;度为半径作圆;( 5)分别以OA、( 2)在大⊙ O 上 OB 的中点为圆心,挨次取三平分点以 3 个单位长度为半A、 B、 C;径作⊙ O1、⊙ O2;( 3)连结 OA、则⊙ O1、⊙O2和⊙ OOB、OC.中节余的两部分把则小圆 O 与三等⊙ O 的面积四平分.份圆环把⊙ O 的面积四平分.指出既是轴对称图形又是中心对称图形.轴对称图形既是轴对称图形又对称是中心对称图形.性评论:本题主要考察了利用轴对称设计图案以及轴对称图形以及中心对称图形的性质,娴熟利用扇形面积公式是解题重点.方案设计1.( 2014?山东烟台,第 23 题 8 分)山地自行车愈来愈遇到中学生的喜欢,各样品牌接踵投放市场,某车行经营的 A 型车昨年销售总数为 5 万元,今年每辆销售价比昨年降低400 元,若卖出的数目同样,销售总数将比昨年减少20%.(1)今年 A 型车每辆售价多少元?(用列方程的方法解答)新世纪教育网单位租用个人充值客服:(2)该车计划新进一批 A 型车和新款 B 型车共 60 辆,且 B 型车的进货数目不超出 A 型车数目的两倍,应怎样进货才能使这批车赢利最多?21·cn·jy ·comA, B 两种型号车的进货和销售价钱以下表:A 型车B 型车进货价钱(元)1100 1400销售价钱(元)今年的销售价钱2000考点:分式方程的应用,一次函数的应用.剖析:( 1)设今年 A 型车每辆售价 x 元,则昨年售价每辆为( x+400)元,由卖出的数目同样成立方程求出其解即可;www-2-1-cnjy-com(2)设今年新进 A 行车 a 辆,则 B 型车( 60﹣ x)辆,赢利 y 元,由条件表示出y 与 a 之间的关系式,由 a 的取值范围就能够求出y 的最大值.21*cnjy*com解答:( 1)设今年 A 型车每辆售价x 元,则昨年售价每辆为(x+400)元,由题意,得,解得: x=1600 .经查验, x=1600 是元方程的根.答:今年 A 型车每辆售价1600 元;(2)设今年新进 A 行车 a 辆,则 B 型车( 60﹣ x)辆,赢利y 元,由题意,得y=( 1600﹣ 1100) a+( 2000﹣ 1400)( 60﹣ a),y=﹣ 100a+36000.∵B 型车的进货数目不超出 A 型车数目的两倍,∴60﹣ a≤2a,∴a≥20.∵ y=﹣ 100a+36000 .∴ k=﹣ 100< 0,∴y随 a 的增大而减小.∴ a=20 时, y 最大 =34000 元.∴B型车的数目为: 60﹣ 20=40 辆.∴当新进 A 型车 20 辆, B 型车 40 辆时,这批车赢利最大.评论:本题考察了列分式方程解实质问题的运,分式方程的解法的运用,一次函数的分析式的运用,解答时由销售问题的数目关系求出一次函数的分析式是重点.2.( 2014?山东淄博 , 第 17 题 4 分)如图,在正方形网格中有一边长为 4 的平行四边形ABCD ,请将其剪拼成一个有一边长为 6 的矩形.(要求:在答题卡的图中画出裁剪线即可)考点:作图—应用与设计作图;图形的剪拼.剖析:如图先过 D 点向下剪出一个三角形放在平行四边形的左侧,再在剪去 D 点下边两格的小正方形放在右边,就构成了一人矩形.2·1·c·n·j·y解答:解:如图:新世纪教育网单位租用个人充值客服:评论:本题一方面考察了学生的着手操作能力,另一方面考察了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.【出处: 21 教育名师】3.( 2014?福建福州 , 第 19 题 12 分)现有A, B 两种商品,买 2 件 A 商品和买1 件 B 商品用了 90 元,买 3 件 A 商品和买 2 件 B 商品用了160 元 .21教育名师原创作品(1)求 A, B 两种商品每件多少元?(2)假如小亮准备购置A, B 两种商品共10 件,总花费不超出 350 元,且不低于300 元,......问有几种购置方案,哪一种方案花费最低?4.( 2014?广东梅州 , 第 20 题 8 分)某校为美化校园,计划对面积为2的地区进行绿1800m新世纪教育网单位租用个人充值客服:化,安排甲、 乙两个工程队达成. 已知甲队每日能达成绿化的面积是乙队每日能达成绿化的面积的 2 倍,而且在独立达成面积为400m 2 地区的绿化时,甲队比乙队少用 4 天. (1)求甲、乙两工程队每日能达成绿化的面积分别是多少 m 2?( 2)若学校每日需付给甲队的绿化花费为 0.4 万元,乙队为 0.25 万元,要使此次的绿化总花费不超出 8 万元,起码应安排甲队工作多少天?考点 :分式方程的应用;一元一次不等式的应用.xm 2,依据在独立达成面积为 400m 2 地区剖析:( 1)设乙工程队每日能达成绿化的面积是的绿化时,甲队比乙队少用 4 天,列出方程,求解即可;( 2)设起码应安排甲队工作 x 天,依据此次的绿化总花费不超出8 万元,列出不等式,求解即可.xm 2,依据题意得:解答:解:( 1)设乙工程队每日能达成绿化的面积是﹣=4,解得: x=50经查验 x=50 是原方程的解,50×2=100( m 2),则甲工程队每日能达成绿化的面积是答:甲、乙两工程队每日能达成绿化的面积分别是100m 2、 50m 2;( 2)设起码应安排甲队工作 y 天,依据题意得:0.4y+× 0.25 ≤8,解得: y ≥10,答:起码应安排甲队工作 10 天.评论:本题考察了分式方程的应用,重点是剖析题意,找到适合的数目关系列出方程和不等式,解分式方程时要注意查验.1.(2014?四川广安 , 第 24 题 8 分)在校园文化建设活动中, 需要裁剪一些菱形来美化教室. 现有平行四边形 ABCD 的邻边长分别为 1, a (a > 1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形, 依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各样表示图,并求出 a 的值.考点 :作图 —应用与设计作图. 剖析:平行四边形 ABCD 的邻边长分别为1, a (a > 1),剪三次后余下的四边形是菱形的 4种状况画出表示图.解答:解:①如图, a=4,②如图, a= ,新世纪教育网单位租用个人充值客服:新世纪教育网单位租用个人充值客服:③如图, a=,④如图, a=,评论:本题主要考察了图形的剪拼以及菱形的判断,依据已知行四边形ABCD将平行四边形切割是解题重点.2.(2014 年广西南宁,第 24 题 10 分)“保护好环境,拒绝冒黑烟”.某市公交公司将裁减某一条线路上“冒黑烟”较严重的公交车,计划购置 A 型和 B 型两种环保节能公交车共 10 辆,若购置 A 型公交车 1 辆, B 型公交车 2 辆,共需 400 万元;若购置 A 型公交车 2 辆, B 型公交车 1 辆,共需 350 万元.【根源:21·世纪·教育·网】(1)求购置 A 型和 B 型公交车每辆各需多少万元?(2)估计在该线路上 A 型和 B 型公交车每辆年均载客量分别为60 万人次和 100 万人次.若该公司购置 A 型和 B 型公交车的总花费不超出 1200 万元,且保证这 10 辆公交车在该线路的年均载客总和许多于 680 万人次,则该公司有哪几种购车方案?哪一种购车方案总花费最少?最少总花费是多少? 2-1-c-n-j-y考点:一元一次不等式组的应用;二元一次方程组的应用.剖析:(1)设购置 A 型公交车每辆需x 万元,购置 B 型公交车每辆需y 万元,依据“A 型公交车 1 辆, B 型公交车 2 辆,共需 400 万元; A 型公交车 2 辆, B 型公交车 1 辆,共需350 万元”列出方程组解决问题;21·世纪*教育网(2)设购置 A 型公交车 a 辆,则 B 型公交车(10﹣a)辆,由“购置 A 型和 B 型公交车的总花费不超出 1200 万元,”和“10 辆公交车在该线路的年均载客总和许多于680 万人次,”列出不等式组商讨得出答案即可.【根源:21cnj*y.co*m】解答:解:( 1)设购置 A 型公交车每辆需 x 万元,购置 B 型公交车每辆需y 万元,由题意得,解得答:设购置 A 型公交车每辆需100 万元,购置 B 型公交车每辆需150 万元.(2)设购置 A 型公交车 a 辆,则 B 型公交车( 10﹣a)辆,由题意得,解得: 6≤a≤8,新世纪教育网单位租用个人充值客服:因此 a=6, 7,8;则 10﹣ a=4,3, 2;三种方案:①购置 A 型公交车 6 辆,则 B 型公交车4 辆: 100×6+150×4=1200 万元;②购置 A 型公交车7 辆,则 B 型公交车3 辆: 100×7+150×3=1150 万元;③购置 A 型公交车8 辆,则 B 型公交车2 辆: 100×8+150×2=1100 万元;购置 A 型公交车8 辆,则 B 型公交车 2 辆花费最少,最少总花费为1100 万元.评论:本题考察二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数目关系,列出方程组或不等式组解决问题.。

2014年全国中考数学试题解析分类汇编(第三期)03 整式与因式分解

2014年全国中考数学试题解析分类汇编(第三期)03 整式与因式分解

整式与因式分解一、选择题1. (2014•海南,第9题3分)下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣25考点:因式分解的意义.分析:利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解答:解;A、a2+4a﹣21=a(a+4)﹣21不是因式分解,故此选错误;B、a2+4a﹣21=(a﹣3)(a+7),正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故此选错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故此选错误;故选:B.点评:此题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.2. (2014•黑龙江龙东,第11题3分)下列各运算中,计算正确的是()A.4a2﹣2a2=2B.(a2)3=a5C.a3•a6=a9D.(3a)2=6a2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法..分析:根据合并同类项,可判断A,根据幂的乘方,可判断B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、底数不变指数相乘,故B错误;C、底数不变指数相加,故C正确;D、3的平方是9,故D错误;故选:C.点评:本题考查了幂的乘方与积的乘方,积得乘方等于每个因式分别乘方,再把所得的幂相乘.3. (2014•黑龙江绥化,第12题3分)下列运算正确的是()A.(a3)2=a6B.3a+3b=6ab C.a6÷a3=a2D.a3﹣a=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据幂的乘方,可判断A,根据合并同类项,可判断B,根据同底数幂的除法,可判断C、D.解答:解:A、底数不变指数相乘,故A正确;B、不是同类项不能合并,故B错误;C、底数不变指数相减,故C错误;D、不是同底数幂的除法,指数不能相减,故D错误;故选:A.点评:本题考查了幂的运算,根据法则计算是解题关键.4. (2014•湖北宜昌,第7题3分)下列计算正确的是()A.a+2a2=3a3B.a3•a2=a6C.a6+a2=a3D.(ab)3=a3b3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项法则,同底数幂的乘法,积的乘方分别求出每个式子的结果,再判断即可.解答:解:A、a和2a2不能合并,故本选项错误;B、a3•a2=a5,故本选项错误;C、a6和a2不能合并,故本选项错误;D、(ab)3=a3b3,故本选项正确;故选D.点评:本题考查了合并同类项法则,同底数幂的乘法,积的乘方的应用,主要考查学生的计算能力.5. (2014•湖南衡阳,第6题3分)下列运算结果正确的是()A.x2+x3=x5B.x3•x2=x6C.x5÷x=x5D.x3•(3x)2=9x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;单项式乘单项式.分析:根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据单项式乘单项式,可判断D.解答:解:A、指数不能相加,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相减,故C错误;D、x3(3x)2=9x5,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.6. (2014•湖南衡阳,第8题3分)下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.解答:解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.点评:此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.7. (2014•湖南永州,第3题3分)下列运算正确的是()A.a2•a3=a6 B.﹣2(a﹣b)=﹣2a﹣2bC.2x2+3x2=5x4D.(﹣)﹣2=4考点:同底数幂的乘法;合并同类项;去括号与添括号;负整数指数幂..分析:根据同底数幂的乘法,单项式乘以多项式法则,合并同类项法则,负整数指数幂分别求出每个式子的值,再判断即可.解答:解:A、结果是a5,故本选项错误;B、结果是﹣2a+2b,故本选项错误;C、结果是5x2,故本选项错误;D、结果是4,故本选项正确;故选D.点评:本题考查了同底数幂的乘法,单项式乘以多项式法则,合并同类项法则,负整数指数幂的应用,主要考查学生的计算能力和判断能力.8. (2014•湖南永州,第8题3分)在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A.B.C.D.a2014﹣1考点:同底数幂的乘法;有理数的乘方..分析:设S=1+a+a2+a3+a4+…+a2014,得出aS=a+a2+a3+a4+…+a2014+a2015,相减即可得出答案.解答:解:设S=1+a+a2+a3+a4+…+a2014,①则aS=a+a2+a3+a4+…+a2014+a2015,②,②﹣①得:(a﹣1)S=a2015﹣1,∴S=,即1+a+a2+a3+a4+…+a2014=,故选B.点评:本题考查了有理数的乘方,同底数幂的乘法的应用,主要考查学生的阅读能力和计算能力.9. (2014•河北,第3题2分)计算:852﹣152=( )A . 70B . 700C . 4900D . 7000考点: 因式分解-运用公式法.分析: 直接利用平方差进行分解,再计算即可.解答: 解:原式=(85+15)(85﹣15)=100×70=7000.故选:D .点评: 此题主要考查了公式法分解因式,关键是掌握平方差公式:a 2﹣b 2=(a +b )(a ﹣b ).10、(2014衡阳,第8题3分)下列因式分解中正确的个数为【 】 ①()3222x xy x x x y ++=+; ②()22442x x x ++=+; ③()()22x y x y x y -+=+-。

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1。

下列各数中,最小的数是()(A)。

0 (B)。

13(C)。

-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875。

5亿元。

若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D)。

13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3。

如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为 ( )(A)。

350(B)。

450(C) .550(D)。

650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900—350=550,故选C。

4。

下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(—a3)2=a6计算正确,故选B5。

下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目"是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。

(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误.(C)神州飞船发射前需要对零部件进行抽样检查要全面检查.(D)了解某种节能灯的使用寿命适合抽样调查,(D)正确。

2014年各地中考数学试卷解析版分类精品汇编开放性问题、规律探索

2014年各地中考数学试卷解析版分类精品汇编开放性问题、规律探索

2014年各地中考数学试卷解析版分类汇编开放性问题、规律探索1. (2014•四川巴中)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.考点:矩形的判定.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.2. (2014•山东威海)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.考点:四边形综合题分析:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,解答:猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME,故答案为:DM=ME.(2)如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.点评:本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.3. (2014•山东枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点:全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题:计算题.分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.4. (2014•山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE 与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.考点:全等三角形,正方形的性质,勾股定理,运动与变化的思想.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.点评:本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.5. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.点评:本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注意思考、理解,难度一般.规律探索一、选择题1. (2014•山东威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()2013考点:规律型:点的坐标专题:规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于而2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为3×()2013.故选D.点评:本题考查了规律型:点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.2. (2014•山东潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.3. (2014•山东烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解答:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.4.(2014•十堰)根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的变化类分析:观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2013÷4=503…1,∴2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选D.点评:本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.5.(2014•四川宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n考点:正方形的性质;全等三角形的判定与性质专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6.(2014•四川内江)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()A.B.C.D.考点:一次函数图象上点的坐标特征.专题:规律型.分析:根据图象上点的坐标性质得出点B1、B2、B3、…、B n、B n+1各点坐标,进而利用相似三角形的判定与性质得出S1、S2、S3、…、S n,进而得出答案.解答:解:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6)…∵A1B1∥A2B2,∴△A1B1P1∽△A2B2P1,∴=,∴△A1B1C1与△A2B2C2对应高的比为:1:2,∴A1B1边上的高为:,∴=××2==,同理可得出:=,=,∴S n=.故选;D.点评:此题主要考查了一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出S的变化规律,得出图形面积变化规律是解题关键.二、填空题1. (2014•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则7×2﹣y=23解得y=﹣9.故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.2. (2014•四川巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.考点:规律探索.分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.3.(2014•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.4.(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5. (2014年湖北咸宁)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6. (2014•江苏盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为24n﹣5.(用含n的代数式表示,n为正整数)考点:正方形的性质;一次函数图象上点的坐标特征.专题:规律型.分析:根据直线解析式判断出直线与x轴的夹角为45°,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果的规律解答即可.解答:解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1,由图可知,S1=×1×1+×(1+2)×2﹣×(1+2)×2=,S2=×4×4+×(2+4)×4﹣×(2+4)×4=8,…,S n为第2n与第2n﹣1个正方形中的阴影部分,第2n个正方形的边长为22n﹣1,第2n﹣1个正方形的边长为22n﹣2,S n=•22n﹣2•22n﹣2=24n﹣5.故答案为:24n﹣5.点评:本题考查了正方形的性质,三角形的面积,一次函数图象上点的坐标特征,依次求出各正方形的边长是解题的关键,难点在于求出阴影S n所在的正方形和正方形的边长.7. (2014•年山东东营)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.8.(2014•四川遂宁)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.考点:三角形中位线定理.专题:规律型.分析:由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,△A2B2C2∽△ABC的相似比为,依此类推△A n B n C n∽△ABC的相似比为,解答:解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A2B2C2∽△A1B1C1且相似比为,∴△A2B2C2∽△ABC的相似比为依此类推△A n B n C n∽△ABC的相似比为,∵△ABC的周长为1,∴△A n B n C n的周长为.故答案为.点评:本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用,解题的关键是有相似三角形的性质:9.(2014•四川内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2014个图形是□.考点:规律型:图形的变化类.分析:去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,依次不断循环出现,由此用(2014﹣2)÷6算出余数,余数是几,就与循环的第几个图形相同,由此解决问题.解答:解:由图形看出去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,不断循环出现,(2014﹣2)÷6=335 (2)所以第2014个图形是与循环的第二个图形相同是正方形.故答案为:□.点评:此题考查图形的变化规律,找出图形的循环规律,利用规律解决问题.10.(2014•四川南充)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.分析:分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.解:a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,2004÷3=668,则a1+a2+a3+…+a2014=668×(﹣1++2)=1002.故答案为:1002.点评:此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.11.(2014•甘肃白银)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=.考点:规律型:数字的变化类.专题:压轴题;规律型.分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.12.(2014•甘肃兰州)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.考点:有理数的乘方专题:整体思想.分析:根据等式的性质,可得和的3倍,根据两式相减,可得和的2倍,根据等式的性质,可得答案.解答:解:设M=1+3+32+33+…+32014 ①,①式两边都乘以3,得3M=3+32+33+…+32015 ②.②﹣①得2M=32015﹣1,两边都除以2,得M=,故答案为:.点评:本题考查了有理数的乘方,等式的性质是解题关键.13.(2014•广东梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.考点:规律型:点的坐标.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2014除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P的坐标为:(8,3);∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3),(5,0).点评:此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.。

2014年各地中考数学试卷解析版分类精品汇编函数、一次函数反比例函数

2014年各地中考数学试卷解析版分类精品汇编函数、一次函数反比例函数

2014年各地中考数学试卷解析版分类汇编函数、一次函数反比例函数一、选择题1. (2014•安徽省)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠P AD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P 的位置分两种情况讨论.2. (2014•福建泉州)在同一平面直角坐标系中,函数y=mx+m与y =(m≠0)的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故本选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故本选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故本选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故本选项错误;故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3. (2014•广西贺州)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.4. (2014•广西贺州)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2)的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5. (2014•广西玉林市、防城港市)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.解答:解:①t≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x﹣x+,③当x≥2时两个三角形重叠面积为小三角形的面积为0,故选:B.点评:本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.6.(2014年四川资阳)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过二、四象限,当b>0时,函数图象与y轴相交于正半轴.7.(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.8.(2014年广东)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.分析:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程增加变快.据此即可选择.解:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快.故选:C.点评:本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.9.(2014年广东汕尾,第10题4分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选A.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.10.(2014•毕节)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥3考点:一次函数与一元一次不等式分析:将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.解答:解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.点评:本题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论.11.(2014•邵阳)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b 的大小关系是()A.a>b B.a=b C.a<b D.以上都不对考点:一次函数图象上点的坐标特征分析:根据一次函数的增减性,k<0,y随x的增大而减小解答.解答:解:∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.点评:本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.12.(2014•四川自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.解答:解:若k>0时,反比例函数图象经过一三象限;一次函数图象经过一二三象限,所给各选项没有此种图形;若k<0时,反比例函数经过二四象限;一次函数经过二三四象限,D答案符合;故选D.点评:考查反比例函数和一次函数图象的性质;若反比例函数的比例系数大于0,图象过一三象限;若小于0则过二四象限;若一次函数的比例系数大于0,常数项大于0,图象过一二三象限;若一次函数的比例系数小于0,常数项小于0,图象过二三四象限.13.(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时考点:函数的图象分析:结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5千米;平均速度=总路程÷总时间.解答:解:A、由函数图象可知,体育场离张强家2.5千米,故此选项正确;B由图象可得出张强在体育场锻炼45﹣15=30(分钟),故此选项正确;C、体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5=1(千米),故此选项错误;D、∵张强从早餐店回家所用时间为100﹣65=35分钟,距离为1.5km,∴张强从早餐店回家的平均速度1.5÷=(千米/时),故此选项正确.故选:C.点评:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.点评:本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.14.(2014•济宁)函数y=中的自变量x的取值范围是()A.x≥0B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.二.填空题1.(2014年四川资阳)函数y=1+中自变量x的取值范围是.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.3.(2014•舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).考点:两条直线相交或平行问题分析:依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.解答:解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为(1,4),(3,1).点评:本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.4.(2014•武汉)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200 米.考点:一次函数的应用分析:设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.解答:解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.点评:本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.5.(2014•武汉)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.考点:一次函数与一元一次不等式分析:把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.解答:解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3.解2x﹣3≥0得,x≥.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.6.(2014•孝感)函数的自变量x的取值范围为x≠1.考点:函数自变量的取值范围;分式有意义的条件专题:计算题.分析:根据分式的意义,分母不能为0,据此求解.解答:解:根据题意,得x﹣1≠0,解得x≠1.故答案为x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.(2014•孝感)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣3考点:一次函数与一元一次不等式.分析:满足不等式﹣x+m>nx+4n>0就是直线y=﹣x+m位于直线y=nx+4n的上方且位于x 轴的上方的图象,据此求得自变量的取值范围即可.解答:解:∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴关于x的不等式﹣x+m>nx+4n>0的解集为x<﹣2,∴关于x的不等式﹣x+m>nx+4n>0的整数解为﹣3,故选D.点评:本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.8.(2014•四川自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7.考点:一次函数的性质分析:由于k的符号不能确定,故应分k>0和k<0两种进行解答.解答:解:当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;当x=4时,y=6,∴,解得,∴=2;当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;当x=4时,y=3,∴,解得,∴=﹣7.故答案为:2或﹣7.点评:本题考查的是一次函数的性质,在解答此题时要注意分类讨论,不要漏解.9.(2014·浙江金华)小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行▲ 米.【答案】80.【解析】10. (2014•益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.(第1题图)考点:函数的图象.分析:他步行回家的平均速度=总路程÷总时间,据此解答即可.解答:解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.11. (2014•株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b1﹣b2等于4.考点:两条直线相交或平行问题.分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.解答:解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为4.点评:本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.12. (2014•泰州)将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x+2.考点:一次函数图象与几何变换分析:根据“上加下减”的平移规律解答即可.解答:解:将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x﹣1+3,即y=3x+2.故答案为y=3x+2.点评:此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k 的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.三.解答题1. (2014•安徽)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. (2014•福建泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?考点:一次函数的应用分析:(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.解答:解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.点评:本题考查了一次函数的应用,(1)利用了路程速度时间三者的关系,(2)分段函数分别利用待定系数法求解,(3)当0≤t≤1时,d2﹣d1>10;当1<t≤3时,d1﹣d2>10,分类讨论是解题关键.3. (2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.4. (2014•珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?考点:一次函数的应用分析:(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.解答:解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586,方案二:y=0.9x+300=5592,5586<5592所以选择方案一更省钱.点评:此题考查一次函数的运用,根据数量关系列出函数解析式,进一步利用函数解析式解决问题.5. (2014•珠海)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD 在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,可的方程组,根据解方程组,可得答案.解答:解:(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,∴A(1,0),D(﹣1,0),B(1,﹣2).∵反比例函数y=的图象过点B,∴,m=﹣2,∴反比例函数解析式为y=﹣,设一次函数解析式为y=kx+b,∵y=kx+b的图象过B、D点,∴,解得.直线BD的解析式y=﹣x﹣1;(2)∵直线BD与反比例函数y=的图象交于点E,∴,解得∵B(1,﹣2),∴E(﹣2,1).点评:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,利用方程组求交点坐标.6.(2014年四川资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.7.(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg 部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.考点:一次函数的应用;一元一次方程的应用.分析:(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.解答:解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.点评:本题考查了一次函数的应用,分类讨论是解题关键.。

2014年全国中考数学试卷分类汇编:阅读理解、图表信息【含解析】

2014年全国中考数学试卷分类汇编:阅读理解、图表信息【含解析】

阅读理解、图表信息一、选择题1. (2014•山东潍坊,第12题3分)如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(—2012,2)B .(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M 的对应点的坐标,即可得规律.解答:∵正方形ABCD ,点A (1,3)、B (1,1)、C (3,1).∴M 的坐标变为(2,2)∴根据题意得:第1次变换后的点M 的对应点的坐标为(2-1,-2),即(1,-2), 第2次变换后的点M 的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M 的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A .点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.(2014山东济南,第14题,3分)现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D .二、填空题1.(2014•四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是②③④(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.=××+=三、解答题1. (2014•四川巴中,第22题5分)定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.考点:新定义.分析:首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.解答:3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:<x<.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.2.(2014•湖南张家界,第23题,8分)阅读材料:解分式不等式<0解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解,解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列分式不等式:(1)≤0(2)>0.或②或②3.(2014•江西抚州,第24题,10分)【试题背景】已知:∥m∥n∥,平行线与m、m与n、n与之间的距离分别为d1、d2、d3,且d1 =d3 = 1,d2 = 2 . 我们把四个顶点分别在、m、n、这四条平行线上的四边形称为“格线四边形”.【探究1】 ⑴ 如图1,正方形ABCD 为“格线四边形”,BE l ⊥于点E ,BE 的反向延长线交直线于点F . 求正方形ABCD 的边长.【探究2】 ⑵ 矩形ABCD 为“格线四边形”,其长 :宽 = 2 :1 ,则矩形ABCD 的宽为--------------------2. (直接写出结果即可)【探究3】 ⑶ 如图2,菱形ABCD 为“格线四边形”且∠ADC =60°,△AEF 是等边三角形,AE ⊥k 于点E , ∠AFD =90°,直线DF 分别交直线、于点G 、M . 求证:EC DF =.【拓 展】 ⑷ 如图3,∥,等边三角形ABC 的顶点A 、B 分别落在直线、上,AB ⊥k于点B ,且AB =4 ,∠A C D =90°,直线CD 分别交直线、于点G 、M ,点D 、E 分别是线段GM 、BM 上的动点,且始终保持AD =AE ,DH l ⊥于点H .猜想:DH 在什么范围内,BC ∥DE ?并说明此时BC ∥DE 的理由.解析:(1) 如图1,∵BE ⊥l , l ∥k ,∴∠AEB=∠BFC=90°,又四边形ABCD 是正方形,∴∠1+∠2=90°,AB=BC, ∵∠2+∠3=90°, ∴ ∠1=∠3,∴⊿ABE ≌⊿BCF(AAS),∴AE=BF=1 , ∵BE=d 1+d 2=3 , ∴=,.(2)如图2,3,⊿ABE ∽⊿BCF,∴BF BCAE AB ==21 或BF BC AE AB ==12∵BF=d 3=1 ,∴AE=12 或AE =2∴AB==2 或AB==∴矩形ABCD 的宽为2(注意:要分2种情况讨论)(3)如图4,连接AC ,∵四边形ABCD 是菱形,∴AD=DC,又∠ADC=60°,∴⊿ADC 是等边三角形,∴AD=AC ,∵AE ⊥k , ∠AFD=90°, ∴∠AEC=∠AFD=90°,∵⊿AEF 是等边三角形, ∴ AF=AE,∴⊿AFD ≌⊿AEC(HL), ∴EC=DF.(4)如图5,当2<DH <4时, BC ∥DE .理由如下:连接AM,∵AB ⊥k , ∠ACD=90°,∴∠ABE=∠ACD=90°,∵⊿ABC 是等边三角形,∴AB=AC ,已知AE=AD, ∴⊿ABE ≌⊿ACD(HL),∴BE=CD ;在Rt ⊿ABM 和Rt ⊿ACM 中,AB ACAM AM=⎧⎨=⎩ ,∴Rt ⊿ABM ≌Rt ⊿ACM(HL), ∴ BM=CM ;∴ME=MD,∴ME MD MB MC= , ∴ED ∥BC. 4. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x 的函数y=2kx 2﹣(4kx+1)x ﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x >1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.=﹣销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

整式运算及因式分解(3大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)

整式运算及因式分解(3大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)

专题02整式运算及因式分解(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01代数式及其应用--------------------------------------------------------------------------------------------------------------1二、考点02整式及其运算-----------------------------------------------------------------------------------------------------------------2三、考点03因式分解-----------------------------------------------------------------------------------------------------------------------5考点01代数式及其应用一、考点01代数式及其应用1.(2024·四川广安·中考真题)代数式3x -的意义可以是()A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商2.(2023·湖南常德·中考真题)若2340a a +-=,则2263a a +-=()A .5B .1C .1-D .03.(2023·山东·中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .24.(2023·甘肃兰州·中考真题)关于x 的一元二次方程20x bx c ++=有两个相等的实数根,则()2212b c -+=()A .-2B .2C .-4D .45.(2023·江苏·中考真题)若圆柱的底面半径和高均为a ,则它的体积是(用含a 的代数式表示).6.(2023·江苏·中考真题)若210a b +-=,则36a b +的值是.7.(2024·山东济宁·中考真题)已知2210a b -+=,则241ba +的值是.8.(2023·江苏宿迁·中考真题)若实数m 满足()()22202320242025m m -+-=,则()()20232024m m --=.9.(2024·江苏苏州·中考真题)若2a b =+,则()2b a -=.10.(2024·四川成都·中考真题)若m,n 为实数,且()240m +=,则()2m n +的值为.11.(2024·广东广州·中考真题)若2250a a --=,则2241a a -+=.12.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+=.13.(2023·西藏·中考真题)按一定规律排列的单项式:5a ,28a ,311a ,414a ,⋯.则按此规律排列的第n 个单项式为.(用含有n 的代数式表示)14.(2024·四川成都·中考真题)在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.15.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.考点02整式及其运算二、考点02整式及其运算16.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=()A .aB .a-C .2aD .2a-17.(2024·贵州·中考真题)计算23a a +的结果正确的是()A .5aB .6aC .25a D .26a 18.(2024·四川内江·中考真题)下列单项式中,3ab 的同类项是()A .33ab B .232a b C .22a b -D .3a b19.(2024·四川广元·中考真题)如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A .第一象限B .第二象限C .第三象限D .第四象限20.(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +21.(2024·云南·中考真题)下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =22.(2024·河北·中考真题)下列运算正确的是()A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=23.(2024·广东·中考真题)下列计算正确的是()A .2510a a a ⋅=B .824a a a ÷=C .257a a a-+=D .()5210a a =24.(2024·辽宁·中考真题)下列计算正确的是()A .2352a a a +=B .236a a a ⋅=C .()325a a =D .2(1)a a a a+=+25.(2024·青海·中考真题)计算1220x x -的结果是()A .8xB .8x-C .8-D .2x 26.(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 27.(2022·山东德州·中考真题)已知2M a a =-,2N a =-(a 为任意实数),则M N -的值()A .小于0B .等于0C .大于0D .无法确定28.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=29.(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a ba a ab b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+30.(2024·湖南长沙·中考真题)下列计算正确的是()A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为.32.(2024·河南·中考真题)请写出2m 的一个同类项:.33.(2024·重庆·中考真题)一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是.34.(2023·江苏泰州·中考真题)若230a b -+=,则2(2)4a b b +-的值为.35.(2024·天津·中考真题)计算86x x ÷的结果为.36.(2024·上海·中考真题)计算:()324x =.37.(2024·江苏苏州·中考真题)计算:32x x ⋅=.38.(2023·江苏·中考真题)先化简,再求值:2(1)2(1)x x +-+,其中x =.39.(2023·湖南·中考真题)先化简,再求值:()()233(3)a b a b a b -++-,其中13,3a b =-=.40.(2024·北京·中考真题)已知10a b --=,求代数式()223232a b ba ab b -+-+的值.41.(2024·陕西·中考真题)先化简,再求值:()()22x y x x y ++-,其中1x =,=2y -.42.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.43.(2023·湖南·中考真题)先化简,再求值:()()()222233a a a a a -+-++,其中13a =-.44.(2023·吉林长春·中考真题)先化简.再求值:2(1)(1)a a a ++-,其中a =45.(2022·吉林·中考真题)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.例先去括号,再合并同类项:m (A )6(1)m -+.解:m (A )6(1)m -+2666m m m =+--=.46.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.47.(2024·甘肃·中考真题)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.考点03因式分解三、考点03因式分解48.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -49.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .950.(2023·山东·中考真题)下列各式从左到右的变形,因式分解正确的是()A .22(3)69+=++a a a B .()24444a a a a -+=-+C .()()22555ax ay a x y x y -=+-D .()()22824a a a a --=-+51.(2023·河北·中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除52.(2024·山东·中考真题)因式分解:22x y xy +=.53.(2024·四川遂宁·中考真题)分解因式:4ab a +=.54.(2024·山东威海·中考真题)因式分解:()()241x x +++=.55.(2024·浙江·中考真题)因式分解:27a a -=56.(2024·北京·中考真题)分解因式:325x x -=.57.(2024·甘肃临夏·中考真题)因式分解:214x -=.58.(2023·广东深圳·中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.59.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b cm n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.60.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.。

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900-350=550,故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。

(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。

2014年河南省中考数学试卷(附答案与解析)

2014年河南省中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前海南省2014年初中毕业生学业水平考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5的相反数是( ) A .5B .5-C .15D .15- 2.方程21x +=的解是( ) A .3B .3-C .1D .1-3.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元.数据27100000000用科学记数法表示为( ) A .827110⨯ B .92.7110⨯ C .102.7110⨯D .112.7110⨯4.一组数据:2-,1,1,0,2,1,则这组数据的众数是( ) A .2-B .0C .1D .2 5.如右下图所示的几何体的俯视图是()ABCD6.在一个直角三角形中,有一个锐角等于60,则另一个锐角的度数是( ) A .120 B .90 C .60D .307.如图,已知AB CD ∥,与1∠是同位角的角是( )A .2∠B .3∠C .4∠D .5∠8.如图,ABC △与DFE △关于y 轴对称,已知(4,6)A -,(6,2)B -,(2,1)E ,则点D 的坐标为 ()A .(4,6)-B .(4,6)C .(2,1)-D .(6,2) 9.下列式子从左到右变形是因式分解的是( )A .2421(4)21a a a a +-=+- B .2421(3)(7)a a a a +-=-+ C .2(3)(7)421a a a a -+=+-D .22421(2)25a a a +-=+-10.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .2100(1)81x += B .2100(1)81x -=C .2100(1%)81x -=D .210081x =11.一个圆锥的侧面展开图是半径为8cm ,圆心角为120的扇形,则此圆锥底面圆的半径为( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)A .8cm 3B .16cm 3C .3cmD .4cm 312.一个不透明的袋子中有3个分别标有数字3,1,2-的球,这些球除所标的数字不同外其他都相同.若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是 ( )A .12B .13C .23D .1613.将抛物线2y x =平移得到抛物线2(2)y x =+,则这个平移过程正确的是 ( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位14.已知120k k >>,则函数1y k x =和2k y x=的图象在同一平面直角坐标系中大致是()ABCD第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上) 15.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款 元. 16.函数y ,自变量x 的取值范围是 . 17.如图,AD 是ABC △的高,AE 是ABC △的外接圆O 的直径,且AB =,5AC =,4AD =,则O 的直径AE = .18.如图,COD △是AOB △绕点O 顺时针旋转40后得到的图形,若点C 恰好落在AB 上,且AOD ∠的度数为90,则B ∠的度数是 .三、解答题(本大题共6小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分) 计算:(1)22112()82(1)3-⨯-+⨯--.(2)解不等式2723x x--≤,并求出它的正整数解.20.(本小题满分8分)海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项,以下是同学们整理的不完整的统计图:旅游产品喜爱情况条形统计图旅游产品喜爱情况扇形统计图数学试卷 第5页(共22页) 数学试卷 第6页(共22页)根据以上信息完成下列问题: (1)请将条形统计图补充完整;(2)随机调查的游客有 人;在扇形统计图中,A 部分所占的圆心角是 度;(3)请根据调查结果估计在1500名游客中喜爱黎锦的约有 人. 21.(本小题满分8分)海南五月瓜果飘香.某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?22.(本小题满分9分)如图,一艘核潜艇在海面DF 下600米A 点处测得俯角为30正前方的海底C 点处有黑匣子,继续在同一深度直线航行1464米到B 点处测得正前方C 点处的俯角为45.求海底C 点处距离海面DF 的深度(结果精确到个位,参考数据:1.4141.7322.236≈).23.(本小题满分13分)如图,正方形ABCD 的对角线相交于点O ,CAB ∠的平分线分别交BD ,BC 于点E ,F ,作BH AF ⊥于点H ,分别交AC ,CD 于点G ,P ,连接GE ,GF .(1)求证:OAE OBG △≌△;(2)试问:四边形BFGE 是否为菱形?若是,请证明;若不是,请说明理由; (3)试求:PGAE的值(结果保留根号).24.(本小题满分14分)如图,对称轴为直线2x =的抛物线经过(1,0)A -,(0,5)C 两点,与x 轴另一交点为B .已知0,1M (),,0)E a (,(1,0)F a +,点P 是第一象限内的抛物线上的动点.备用图(1)求此抛物线的解析式;(2)当1a =时,求四边形MEFP 面积的最大值,并求此时点P 的坐标;(3)若PCM △是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共22页)数学试卷 第8页(共22页)海南省2014年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】5的相反数是5-,故选B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式与因式分解一、选择题1. (2014•省,第2题4分)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n 计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. (2014•省,第4题4分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. (2014•省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. (2014•,第2题3分)下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a2考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则判断.解答:解:A、a3+a3=2a3,故选项错误;B、2(a+1)=2a+2≠2a+1,故选项错误;C、(ab)2=a2b2,故选项正确;D、a6÷a3=a3≠a2,故选项错误.故选:C.点评:本题主要考查了二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则,解题的关键是熟记法则运算5. (2014•,第6题3分)分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)考点:提公因式法与公式法的综合运用分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.6. (2014•,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. (2014•,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. (2014•,第3题3分)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a考点:合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.解答:解:A、不是同类项,不能加减,故本选项错误;B、(3a3)2=9a6≠6a6,故本选项错误;C、不是同类项,不能加减,故本选项错误;D、﹣3a+2a=﹣a正确故选:D.点评:本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键.9.(2014资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(2014•,第3题5分)下列各式计算正确的是()11.(2014年省,第2题3分)下列运算正确的是()A. 3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(2014•,第5题4分)计算:m6•m3的结果()A.m18B.m9C.m3D.m2考点:同底数幂的乘法.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.解答:解:m6•m3=m9.故选B.点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.13.(2014•,第6题3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a6]考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.14.(2014•地区,第3题3分)下列运算正确的是()A.π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a2考点:同底数幂的除法;实数的运算;同底数幂的乘法.分析:根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.解答:解;A、π≠3.14,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.15.(2014•地区,第4题3分)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2考点:提公因式法与公式法的综合运用分析:A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.解答:解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.(2014•地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1 D.1考点:合并同类项分析:根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.解答:解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.点评:本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.17.(2014•,第5题3分)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.解答:解:A、(x3)2=x6,原式计算错误,故本选项错误;B、(2x)2=4x2,原式计算错误,故本选项错误;C、x3•x2=x5,原式计算正确,故本选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故本选项错误;故选C.点评:本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握各部分的运算法则是关键.18.(2014•襄阳,第2题3分)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1 C.(﹣2x2y)3=8x6y3D.a6÷a3=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:运用同底数幂的加法法则,合并同类项的方法,积的乘法方的求法及同底数幂的除法法则计算.解答:解:A、a2+a2=2a2≠2a4,故A选项错误;B,4x﹣9x+6x=x≠1,故B选项错误;C、(﹣2x2y)3=﹣8x6y3,故C选项正确;D、a6÷a3=a3≠a2故D选项错误.故选:C.点评:本题主要考查了同底数幂的加法法则,合并同类项的方法,积的乘方的求法及同底数幂的除法法则,解题的关键是熟记法则进行运算.19.(2014•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.点评:本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.20.(2014•,第2题3分)下列计算正确的是()A.2x﹣x=x B.a3•a2=a6C.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式专题:计算题.分析:A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用完全平方公式展开得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.解答:解:A、原式=x,正确;B、原式=x5,错误;C、原式=a2﹣2ab+b2,错误;D、原式=a2﹣b2,故选A点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式是解本题的关键.21.(2014•,第7题3分)地球的表面积约为511000000km2,用科学记数法表示正确的是()A.5.11×1010km2B.5.11×108km2C.51.1×107km2D.0.511×109km2考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于511000000有9位,所以可以确定n=9﹣1=8.解答:解:511 000 000=5.11×108.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.22.(2014•,第2题4分)(x4)2等于()A.x6B.x8C.x16D.2x4考点:幂的乘方与积的乘方分析:根据幂的乘方等于底数不变指数相乘,可得答案.解答:解:原式=x4×2=x8,故选:B.点评:本题考查了幂的乘方,底数不变指数相乘是解题关键.23.(2014•,第11题4分)分解因式:x2y﹣y=y(x+1)(x﹣1).考点:提公因式法与公式法的综合运用分析:观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.解答:解:x2y﹣y,=y (x 2﹣1),=y (x +1)(x ﹣1).点评: 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.24.(2014·,第2题3分)若A 为一数,且A =25×76×114,则下列选项中所表示的数,何者是A 的因子?( )A .24×5B .77×113C .24×74×114D .26×76×116分析:直接将原式提取因式进而得出A 的因子.解:∵A =25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.故选:C .点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键.25.(2014·,第15题3分)计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x 2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法则计算,即可确定出余式.解:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5). 故选D .点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.26.(2014·,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可.解:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)=(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5)=﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1)=﹣(3x 6﹣4x 5)(2x +1).故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.27.(2014·,第4题3分)下列运算正确的是( )A . 532)(a a =B . 222)(b a b a -=-C . 3553=-D . 3273-=-考点: 幂的乘方;完全平方公式;合并同类项;二次根式的加减法;立方根.分析: A、幂的乘方:mn n m a a =)(; B 、利用完全平方公式展开得到结果,即可做出判断;C 、利用二次根式的化简公式化简,合并得到结果,即可做出判断.D 、利用立方根的定义化简得到结果,即可做出判断;解答: 解:A 、632)(a a =,错误;B 、 2222)(b ab a b a +-=- ,错误;C 、52553=-,错误;D 、3273-=-,正确.故选D点评: 此题考查了幂的乘方,完全平方公式,合并同类项,二次根式的化简,立方根,熟练掌握公式及法则是解本题的关键.28.(2014•,第2题3分)计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x 分析:原式利用单项式乘以多项式法则计算即可得到结果.解:原式=6x 3+2x ,故选C]点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.29.(2014·,第7题4分)把代数式22x 18-分解因式,结果正确的是【 】A .()22x 9-B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+-【答案】C .【解析】30. (2014•,第2题,3分)下列计算正确的是()A.a+a2=a3B.2﹣1= C.2a•3a=6a D.2+=2考点:单项式乘单项式;实数的运算;合并同类项;负整数指数幂.分析:A、原式不能合并,错误;B、原式利用负指数幂法则计算得到结果,即可做出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式不能合并,故选项错误;B、原式=,故选项正确;C、原式=6a2,故选项错误;D、原式不能合并,故选项错误.故选B.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.31. (2014•,第2题,4分)下列式子化简后的结果为x6的是()A.x3+x3B.x3•x3C.(x3)3D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项错误;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.32. (2014年,第2题,2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.33. (2014•,第2题,3分)下列运算正确的是()A.x3•x3=2x6B.(﹣2x2)2=﹣4x4C.(x3)2=x6D.x5÷x=x5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:分别根据同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则对各选项进行计算即可.解答:解:A、原式=x6,故本选项错误;B、原式=4x4,故本选项错误;C、原式=x6,故本选项正确;D、原式=x4,故本选项错误.故选C.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.34.(2014•,第2题,3分)若□×3xy=3x2y,则□应填的单项式是()A.xy B.3xy C.x D.3x考点:单项式乘单项式专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:3x2y÷3xy=x,故选C点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.35.(2014•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a考点:列代数式.分析:原价提高10%后商品新单价为a(1+10%)元,再按新价降低10%后单价为a(1+10%)(1﹣10%),由此解决问题即可.解答:解:由题意得a(1+10%)(1﹣10%)=0.99a(元).故选:B.点评:本题主要考查列代数式的应用,属于应用题型,找到相应等量关系是解答此题的关键.36.(2014•滨州,第2题3分)一个代数式的值不能等于零,那么它是()A.a2B.a0C.D.|a|考点:零指数幂;绝对值;有理数的乘方;算术平方根.分析:根据非0的0次幂等于1,可得答案.解答:解:A、C、D、a=0时,a2=0,故A、C、D错误;B、非0的0次幂等于1,故B正确;故选:B.点评:本题考查了零指数幂,非0的0次幂等于1是解题关键.37.(2014•,第2题3分)化简﹣5ab+4ab的结果是()A.﹣1 B.a C.b D.﹣ab考点:合并同类项.分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变作答.解答:解:﹣5ab+4ab=(﹣5+4)ab=﹣ab故选:D.点评:本题考查了合并同类项的法则.注意掌握合并同类项时把系数相加减,字母与字母的指数不变,属于基础题.38.(2014年,第2题3分)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. (2014•,第11题4分)计算2x3÷x=2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. (2014•,第7题4分)填空:x2﹣4x+3=(x﹣2)2﹣1.考点:配方法的应用.专题:计算题.分析:原式利用完全平方公式化简即可得到结果.解答:解:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.3. (2014•广西贺州,第13题3分)分解因式:a3﹣4a=a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. (2014•广西市、市,第3题3分)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5考点:幂的乘方与积的乘方.分析:利用幂的乘方与积的乘方的性质求解即可求得答案.解答:解:(2a2)3=8a6.故选C.点评:此题考查了幂的乘方与积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键.5.(2014•广西市、市,第4题3分)下面的多项式在实数围能因式分解的是()A.x2+y2B.x2﹣y C.x2+x+1 D.x2﹣2x+1考点:实数围分解因式.分析:利用因式分解的方法,分别判断得出即可.解答:解;A、x2+y2,无法因式分解,故此选项错误;B、x2﹣y,无法因式分解,故此选项错误;C、x2+x+1,无法因式分解,故此选项错误;D、x2﹣2x+1=(x﹣1)2,故此选项正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用公式是解题关键.6.(2014年市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(2014•,第11题5分)分解因式:a2+3a=.考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:解:a2+3a=a(a+3).故答案为:a(a+3).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.(2014年,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2=.分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(2014•,第12题3分)分解因式:a3﹣a= a(a+1)(a﹣1).10.(2014•,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是n(m﹣1)2.11.(2014•,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为1.考点:完全平方公式分析:运用平方差公式,化简代入求值,解答:解:因为a﹣b=1,a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.点评:本题主要考查了平方差公式,关键要注意运用公式来求值.12.(2014•,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2014•,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).考点:平方差公式的几何背景分析:利用大正方形的面积减去4个小正方形的面积即可求解.解答:解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,大正方形中未被小正方形覆盖部分的面积=()2﹣()2=ab.故答案为:ab.点评:本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.14.(2014•,第19题6分)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.考点:整式的混合运算;解一元一次不等式分析:(1)先运用完全平方公式和平方差公式展开,再合并同类项即可;(2)先去括号,再移项、合并同类项.解答:解:(1)原式=a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)去括号,得5x﹣10﹣2x﹣2>3,15. (2014•,第10题,3分)分解因式:ax﹣a=a(x﹣1).16. (2014•,第9题,4分)若x2﹣9=(x﹣3)(x+a),则a=3.考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.17. (2014•株洲,第9题,3分)计算:2m2•m8=2m10.考点:单项式乘单项式.分析:先求出结果的系数,再根据同底数幂的乘法进行计算即可.解答:解:2m2•m8=2m10,故答案为:2m10.点评:本题考查了单项式乘以单项式,同底数幂的乘法的应用,主要考查学生的计算能力.18. (2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:解:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.19.(2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:解:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.20.(2014•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y (3x﹣y)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式﹣y,进而利用完全平方公式分解因式得出即可.解答:解:6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2.故答案为:﹣y(3x﹣y)2.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握完全平方公式是解题关键.21.(2014•滨州,第14题4分)写出一个运算结果是a6的算式a2•a4.专题:开放型.分析:根据同底数幂的乘法底数不变指数相加,可得答案.解答:解:a2•a4=a6,故答案为:a2•a4=a6.点评:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.22.(2014•,第11题3分)分解因式:2x3﹣4x2+2x= 2x(x﹣1)2=__________ .考点:提公因式法与公式法的综合运用.分析:先提取公因式2x,再对余下的多项式利用完全平方公式继续分解.解答:解:2x3﹣4x2+2x,=2x(x2﹣2x+1),=2x(x﹣1)2.故答案为:2x(x﹣1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.(2014•,第11题3分)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.考点:列代数式(分式).分析:这卷电线的总长度=截取的1米+剩余电线的长度.解答:解:根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(+1)米.点评:注意代数式的正确书写,还要注意后边有单位,故该代数式要带上括号.解决问题的关键是读懂题意,找到所求的量的等量关系.三.解答题1. (2014•省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. (2014•,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.考点:整式的混合运算—化简求值分析:首先利用完全平方公式和整式的乘法计算,再进一步合并得出结果,最后代入求得数值即可.解答:解:(a+2)2+a(a﹣4)=a2+4a+4+a2﹣4a=2a2+4,当a =时,原式=2×()2+4=10. 点评: 此题考查整式的化简求值,注意先化简,再代入求值.3.(2014•,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a +1)2+2(1﹣a )考点: 实数的运算;整式的混合运算;零指数幂.分析: (1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答: 解:(1)原式=2﹣10+9+1=2; (2)原式=a 2+2a +1+2﹣2a =a 2+3.点评: 本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.4.(2014•,第17题6分)(1)计算:+()﹣2﹣4cos 45°; (2)化简:(x +2)2﹣x (x ﹣3)考点: 实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值专题: 计算题.分析: (1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果. 解答: 解:(1)原式=2+4﹣4×=2+4﹣2=4; (2)原式=x 2+4x +4﹣x 2+3x =7x +4.点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5. (2014·,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-.【答案】7.。

相关文档
最新文档