电机的振动及噪音

合集下载

电机噪音分析

电机噪音分析

电机噪音分析1引言噪声是由物体的振动产生的,再通过空气或其它弹性介质才能传播到人的耳朵。

它由很多杂乱无章的单调声音混合而成。

其中20Hz~20000Hz是人们耳朵可以听到的频率。

低于20Hz的波叫次声波,高于20000Hz的波叫超声波。

噪声直接影响人们的身体健康,太强或长时间噪声,会使人十分痛苦、难受,甚至使人耳聋或死亡。

噪声是现代社会污染环境的三大公害之一。

为了保障人民的身体健康,国际标准化组织(ISO)规定了人们容许噪声的标准,如表1。

表1每天最长工作时间(h)8 4 2 -噪声dB(A) 85 93 96 115(最大)电机是产生噪声的声源之一,电机又在家庭、商业、办公室以及工农医等行业广泛而大量地应用着,与人民的生活密切相关。

随着社会的进步,人们对污染环境的噪声提出了越来越高的要求与限制,尤其对与人们密切接触的家用电器更是如此。

这方面,先进国家尤其重视。

我国政府历来重视人民的健康,对限制噪声不遗余力。

表2是我国产品标准规定的部分家用电器的噪声限值。

表2我国部分家用电器的噪声限值dB(A)电冰箱(250升以下)洗衣机吸油烟机电磁灶吸尘器洗衣机镇流器空调器(2500W、分体式)52 75 75 50 84 72 35 45因此,尽量降低电机的噪声,生产低噪声的电机,给人们创造一个舒适、安静的环境是每个设计者与生产者的职责。

2电机噪声的分类根据电机噪声产生的不同方式,大致可把其噪声分为三大类:①电磁噪声;②机械噪声;③空气动力噪声。

3电磁噪声电磁噪声主要是由气隙磁场作用于定子铁芯的径向分量所产生的。

它通过磁轭向外传播,使定子铁芯产生振动变形。

其次是气隙磁场的切向分量,它与电磁转矩相反,使铁芯齿局部变形振动。

当径向电磁力波与定子的固有频率接近时,就会引起共振,使振动与噪声大大增强,甚至危及电机的安全。

根据麦克斯韦定律,气隙磁场中单位面积的径向电磁力按下式计算:式中:B——气隙磁密θ——机械角位移μ0——真空磁导率由于定、转子绕组中存在着主波磁势与各次谐波磁势,它们相互作用可以产生一系列的力波。

电机异响的原因及其处理方法

电机异响的原因及其处理方法

电机异响的原因及其处理方法
电机异响是指在电机运行过程中出现的异常噪音,可能会给设
备的正常运行和使用带来影响。

电机异响的原因有很多种,主要包
括以下几个方面:
1.轴承故障,电机轴承故障是导致电机异响的常见原因之一。

当电机轴承出现损坏或磨损时,会产生摩擦噪音,影响电机的正常
运行。

2.绕组故障,电机绕组出现断线、短路等故障时,会导致电机
运行时出现异常噪音。

3.转子不平衡,电机转子不平衡也是引起电机异响的原因之一。

当电机转子不平衡时,会引起电机振动,产生噪音。

4.电机叶片故障,在风机等设备中,电机叶片的损坏或变形也
会导致电机异响。

针对以上原因,我们可以采取一些处理方法来解决电机异响的
问题:
1.定期检查和维护电机轴承,及时更换磨损严重的轴承,以减
少电机异响的发生。

2.加强对电机绕组的维护和保养,及时修复断线、短路等故障,以确保电机的正常运行。

3.进行动平衡处理,对电机转子进行动平衡处理,以减少转子
不平衡引起的噪音。

4.定期清洁和维护电机叶片,及时更换损坏或变形严重的叶片,以减少电机异响。

综上所述,电机异响的原因主要包括轴承故障、绕组故障、转
子不平衡、电机叶片故障等,针对这些原因,我们可以采取一些处
理方法来解决电机异响的问题。

定期检查和维护电机,及时发现并
处理问题,是保证电机正常运行的关键。

希望以上内容对您有所帮助。

电动机的噪音与振动控制技巧

电动机的噪音与振动控制技巧

电动机的噪音与振动控制技巧近年来,随着工业化的快速发展,电动机在各个领域的应用日益广泛。

然而,电动机在运行中常常会产生噪音和振动,给人们的生活和工作带来不便。

因此,掌握电动机的噪音与振动控制技巧显得尤为重要。

本文将深入探讨电动机噪音与振动控制的各种方法和技术。

一、降低电动机噪音的技巧1. 优化设计:良好的电动机设计是降低噪音的首要因素。

通过合理的结构设计和选择适当的材料,可以减少摩擦、冲击和空气动力学噪音的产生。

同时,也要合理安排设备的布局,尽量减少共振的可能性。

2. 减少机械振动:机械振动是电动机噪音的主要来源之一。

利用合适的减振装置,可以有效减少机械振动的传递和辐射。

常用的减振装置包括橡胶垫、减震脚等。

为了降低振动,还可以使用均布质量、加厚转子、提高轴承精度等方法。

3. 降低电磁噪音:电磁噪音主要由电磁场的变化引起。

通过合理的线圈设计和电磁屏蔽措施,可以有效减少电磁噪音的产生。

另外,注意降低电流的谐波含量和频率,也可以减少电磁噪音。

4. 隔声与吸声:采用隔声与吸声材料,可以有效减少电动机噪音的传播和反射。

常见的隔声材料有吸声板、隔音棉等。

通过布置隔声罩、吸声垫片等,可以进一步降低噪音。

二、控制电动机振动的技巧1. 动平衡处理:电动机的转子在加工和装配过程中难免存在不平衡。

采用动平衡处理,可以有效减少转子振动。

动平衡的方法有静态平衡和动态平衡,根据实际情况选择适合的方法进行处理。

2. 谐振频率的避开:在电动机的运行过程中,避免接近或触发谐振频率。

通过合理的频率分析和调整运行参数,可以减少振动的发生。

3. 引入减振器:对于振动较大的电动机,可以考虑引入减振器。

减振器一般是通过吸收和分散振动能量来减少振动的传递。

常见的减振器包括弹簧减振器、液压减振器等。

4. 加强维护与保养:定期检查和维护电动机,及时更换磨损的零部件,保持电动机良好的工作状态。

定期对电动机进行润滑和冷却,也有助于控制振动的产生。

总结:通过优化设计、减少振动、降低噪音、引入减振器等措施,可以有效控制电动机的噪音和振动。

电机振动噪音影响因素

电机振动噪音影响因素

电机振动噪音影响因素摘要:对于电机来说,噪声是一项非常重要的指标。

通风、机械和电磁是影响电机噪声的三个主要因素,要想有效解决电机噪声问题,首先要找到产生噪声的具体原因,然后采取针对性措施来消除或降低噪音。

本文分析了电机噪声产生的原因,并提出具体的控制措施,为减少噪声污染做出一份贡献。

关键词:电机;振动噪音;影响因素电机噪音的产生可能由单一原因造成,也可能由多方面原因造成,会对人们的正常生活和工作造成一定影响,还会在一定程度上对电机设备造成损害。

电机自身机械设备的日常工作运行过程、电机内部元件故障、设备长时间运行或不当的认为操作等都有可能导致噪声出现。

电机运转零部件之间产生的撞击和摩擦或是结构共振会形成机械噪音,这类噪音种类繁多,比较复杂,电机设备是机械噪音的直接来源。

要想彻底解决噪音问题,还需要从设备自身分析,找到产生噪音的部位,并采取有效措施予以改进和优化,从而解决电机在高速运转时出现的噪音问题。

1、导致电机振动噪音的原因1.1电机转子和电机轴承不平衡产生的噪音机械和电气是电机的两个组成部分,当电机出现故障时,应从这两方面进行分析。

通常情况下,电磁方面、机械故障或转动部分不平衡是引起电机出现振动噪音的几个原因。

因此,应针对电机转子和电机轴承不平衡方面进行重点研究。

当前,制动轮、耦合器、联轴器和转子的不平衡转动比较常见,其中,轴承不平衡转动时容易出现异常声响,转子引起的不平衡则需要实际测量单转电机的具体振动值。

另外,当转动部分的机械出现松动情况时,也容易导致转动部分的不平衡。

比如转子绑扎较松、销钉和斜键松动或支架松动等情况。

1.2电机设备超负荷运行产生的噪音由于电机设备附近具有较活跃的磁场活动,而且设备自身负载着较大的电流流量,当电机设备高速运转时,就会让磁场从电机设备附近形成,随着时间的推移,这种电机惯性就会接连出现,导致电磁产生声音,使得噪音越来越大。

电机的电流和自身负载呈正比关系,电机自身负载越大,电流也就越大,当负载超过电机自身可以承受的范围时,就会产生电流噪音。

电机机械振动噪声的控制与改善

电机机械振动噪声的控制与改善

第二章 电机机械振动噪声的控制与改善本章主要对永磁微电机机械振动噪声的形成原理进行分析,对现有控制改善方法进行总结,进一步对现有生产的门镜马达存在的问题进行分析并提出控制和改善的方案,且采用试验方法以论证改良后的效果.2.1微电机机械振动噪声的形成原理分析2.1.1振动分析:在微电机中,转子应有四个自由度,一是绕轴的旋转自由度,二是轴向存在的间隙,还有两个是轴承径向存在的间隙.其中后两个间隙很小,通常只有几个微米.但由于这些因素的存在,即使是只有几微米的间隙,也影响着马达的振动噪声.(1)在N 、S 两磁极下产生的电磁力∑=n i Ni F 1与∑=n i Si F 1作用下,电动机转子产生旋转运动,旋转部件的每个单位质点受离心力作用,均产生一下径向旋转力矢.如图2-1,这些力矢合成后,大部分被相互抵消,没有被抵消的力矢,折算到电动机轴承A 、B 二端,分别为A F 和B F .这两个旋转力矢,持续作用在转子的轴承部位,引起受迫振动.振动通过轴承、端盖和铁壳,影响到整个电机产生振动与噪音.NF A ' F B ' 图2-1转子振动示意图(2)在马达内,电枢在轴向有一定的活动空间即间隙d,如图2-2所示,当电枢在旋转时,如电枢在该间隙内来回窜动,则会对轴承形成撞击,再传递到铁壳和端盖向外发出振动噪声.当马达内的垫圈以及定位圈的表面不平整,垂直度差时,以及磁场中心线设计不当时均易造成电枢窜动.(3)对马达两端轴承内孔而言,与电枢轴配合有一定的间隙,电枢在高速旋转时,由于电枢本身必定有一定的失平衡存在,且由于转子所受各种不同的电磁径向力,转子与轴承一动一静,两者间产生摩擦甚至是碰撞,严重时出现混沌运动,表现为复杂的震动,加重马达噪声.轴承与轴间的间隙配合情形可分为两种,一种为同心度差形成了轴向倾斜, 如图2-3,另一种为径向的碰摩,如图2-4.(4)电刷片振动分析:当电刷在换向器上高速滑动时,由于换向器表面并不十分光滑,而且换向片间存在槽隙,换向片间也存在跳动,故造成电刷的径向振动而产生噪声.其中换向器的圆度和片间跳动是影响噪声的关键因素.图2-3 轴孔配合示意图一图2-4 轴孔配合示意图二2.1.2影响机械振动噪声的原因:(1)转子不平衡产生振动;(2)转子产生轴向窜动;(3)电刷变形及换向器表面有伤痕引致转子受力不均;电刷压力不适;(4)轴与轴承摩擦产生噪声;(5)机壳端盖轴承加工精度差,中孔同轴度超差;(6)部件共振;(7)润滑油的影响;(8)操作工装的影响.(9)操作工人素质的影响2.2机械振动噪声的抑制和改善措施:在当前,对永磁直流微电机的振动噪声研究的结果,参见文献[1]、[2]、[3]、 [4],一般来说主要是控制以下几个方面的因素.(1)通过动平衡工艺,消除转子上不平衡的质量,将其有害振动压制在一定范围内.(2)控制转子在磁钢的位置,应保证轴向磁推力(或拉力)合适,并防止转子轴向窜动.(3)保证电刷无变形.增加适当的避震胶在电刷片上.(4)控制机壳与端盖轴承同心度,应严格于0.02mm以下,表面光滑无毛刺.轴承与机壳的同轴度控制在0.05mm以内.(5)当在轴承压入机壳和湍盖时,采用一根尺寸精度高的硬质合金芯轴,先把轴承套在芯轴上,然后再压进机壳或端盖的轴承室中.组合后会有一个较理想的间隙,且轴承内圈较平整.(6)提高支承转子的机壳和端盖的倔强强度,如加厚机壳和端盖的壁等.(7)含油滑动轴承含油量为18%以上.(8)改善提高总装工具的工序能力.(9)加强提高操作工人的技术水平和品质意识.2.3门镜马达机械振动噪声的分析和采取的抑制改善方法对于本文作者所在的德昌公司生产的门镜马达而言,马达噪声是目前要改善的重要项目.一些型号噪声制程能力(capability)的不足,已极大地影响了客户信心和马的生产.因此,需专门针对门镜马达的振动噪声作进一步的分析探讨,提出抑制改善方法.2.3.1门镜马达振动噪声的分析探讨在现有生产的门镜马达中,一些型号的噪声制程不足,受到了客户的投诉.对生产的取样及客户投诉的样板进行比较分析发现,这些马达噪声包含多种情况.一是马达运转时声音太大,dB(A)值超过规格;二是异常的声音,虽然此时运转声不大, dB(A)值未超过规格,但引致人耳听时感觉马达运转时声音较差,即声品较差,其中一种异常的杂声主要是电枢在马达内来回窜动撞击轴承引起的.因此对于门镜马达的噪声主要可以划分为两种情况,一种是声音大,另一种是存在不纯的杂声.其中以第二种尤为严重.主要是要对第二种情况进行改善.2.3.2电枢失平衡的关键因素及改善控制方法:在现有的门镜马达电枢结构中,芯片为三辨.电枢的失平衡会造成马达在运转时轴与轴承内孔的摩擦加剧产生碰摩,进而产生噪声.由电枢结构性决定它主要影响着1倍频、3倍频等低频段的强度.要降低马达的噪声,就须控制电枢的失平衡量.比较发现,影响电枢失平衡的主要因素主要集中在以下几个因素中:a)冲芯片时芯片本身引致的失平衡;b)电枢绕线时的排线;c)加焊圆形压敏电阻时引致的失平衡.1)对芯片厚度不均影响的改善:现生产的门镜马达均采用0.5mm厚硅钢片材料,铁芯厚度为5.930.050.0+-mm.在芯片生产工艺中,采用的是高速冲床,每一片芯片相对位置是不变的.当来料厚度出现偏差时,一般是来料中间部份厚度均匀,两边变薄,存在一定坡度,厚度变化有一定的规律性.受这些因素的影响,冲芯叠加时铁芯同样会出现在某一方位上出现厚薄,从而引致铁芯失平衡.如采用扭片的工艺,则可将芯片中失平衡质点分散在不同圆周角上.如图2-5所示,将芯片相互之间转动一瓣,即120度,由此可使原来处于相同位置的失平衡质点相互之间错开120度空间位置,每3次则形成一周,相互抵消,在一定基础上使质心回归中心位置,在一定程序上减少铁芯的失衡量.图2-5 扭片平衡示意图在现有的生产中,对于整个电枢而言,如采取每一芯片相互之间转动120度,则需转动18次,那对生产的效率将有较大影响.为提高效率,生产中原本采用每次扭转2片,现有更改为采用每次扭4片.通过研究电枢的总芯片数与扭片次数的关系,以及抵消失平衡的原理,可发现如下的关系:表2-1由此可以看出,采用单次扭转1,2,3,6片时,最终未中和抵消的片数均为0片,而单次扭转为4片时,未中和抵消的片数达到2至4片,单次扭转为5片时,未中和抵消的片数达到3片.由此看来在同样的效果中,采用单次扭转6片时,生产效率最高.采用试验测量单次扭转2、4、6片时的失平衡数作比较:型号:10918马达; 失平衡量测试机:HOEMANN HP7实验时采用同一条芯片来料进行扭片,其中单次扭片2片和4片采用扭片机进行,由于没有6片扭片机,故采用人手扭片代替。

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。

而电动机产生的电机振动电机振动噪音,主要有:1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。

2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。

但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。

3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。

4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。

5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。

一、机械性电机振动的产生原因与对策1、转子的不平衡电机振动A、原因:·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。

·运转时热应力引起轴弯曲。

·转子配件的热位移引起不平衡载重。

·转子配件的离心力引起变形或偏心。

·外力(皮带、齿轮、直结不良等)引起轴弯曲。

·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

B、对策:·抑制转子不平衡量。

·维护到容许不平衡量以内。

·轴与铁心过度紧配的改善。

·对热膨胀的异方性,设计改善。

·强度设计或装配的改善。

·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。

·轴承端面与轴附段部或锁紧螺帽的防止偏靠。

2、轴承之异常电机振动与电机振动噪音A、原因:·轴承内部的伤。

电动机转速对振动与噪声的影响分析

电动机转速对振动与噪声的影响分析

电动机转速对振动与噪声的影响分析绪论在工业生产和日常生活中,电动机被广泛应用于各个领域,例如制造业、交通运输、家用电器等。

然而,电动机运行时产生的振动与噪声问题也随之而来。

振动与噪声不仅对设备性能和寿命产生负面影响,而且可能对人体健康造成影响。

因此,了解电动机转速对振动与噪声的影响是重要的。

1. 振动与噪声的来源振动与噪声的产生源自电动机内部和外部的各种因素。

内部因素包括电动机内部机械部件的运动不平衡、轴承故障、电机定位不当等。

外部因素包括与电动机相连的设备结构、供电系统不稳定、环境温度和湿度等。

这些因素的综合作用会导致电动机的振动与噪声水平的增加。

2. 电动机转速与振动的影响关系电动机转速是影响振动的重要因素之一。

通常情况下,电动机转速越高,振动水平也会相应增加。

这是由于高速旋转的部件会引起机械不平衡,从而导致振动的增加。

此外,电动机转速还会影响电机的动力学特性,进一步增大振动的程度。

因此,在设计和使用电动机时,需考虑其转速范围以控制振动的水平。

3. 电动机转速与噪声的关系电动机转速对噪声也具有重要的影响。

在电动机运行过程中,机械部件的高速旋转会引起空气的湍流和流体动力学噪声。

这种噪声源自电动机周围的气体和液体,并随着电动机转速的增加而增加。

此外,电动机转速还会导致电机内部电磁噪声的变化,进一步影响噪声的水平。

因此,控制电动机转速可以有效降低噪音水平。

4. 电动机振动与噪声的控制措施为了降低电动机振动与噪声水平,可以采取一些控制措施。

首先,通过精确制造和装配电动机件,减小机械部件的不平衡和磨损,可以有效减少振动与噪声的产生。

其次,采用合适的轴承和减震装置,可以降低振动的传递与辐射。

此外,通过优化电动机结构和控制算法,可以降低电机内部的振动与噪声水平。

最后,对电机及其周围环境进行隔音与隔振处理,可进一步减小振动与噪声的影响范围。

5. 实例分析为了进一步验证电动机转速对振动与噪声的影响,我们进行了一项实验研究。

新能源汽车电机噪音和振动问题的解决方案

新能源汽车电机噪音和振动问题的解决方案

新能源汽车电机噪音和振动问题的解决方案随着环境意识的增强和对能源消耗的担忧,新能源汽车在当前的汽车市场中占据着重要的地位。

然而,与传统燃油汽车相比,新能源汽车在使用过程中存在着电机噪音和振动问题,这给用户的驾驶体验和整体舒适度带来了一定的挑战。

为了解决这一问题,本文将介绍一些有效的解决方案。

1. 电机设计优化新能源汽车中常用的电机类型包括直流无刷电机(BLDC)、感应电机(IM)和永磁同步电机(PMSM)。

通过优化电机的结构和参数设计,可以有效减少电机运行时的噪音和振动。

例如,采用合适的转子材料、减小磁场不均匀性、增加绕组槽的数量等措施可以改善电机的动平衡性,降低振动和噪音水平。

2. 磁轴承技术应用传统的机械轴承存在摩擦和磨损问题,容易产生噪音和振动。

而磁轴承技术可以消除机械接触,实现非接触支撑,从而有效减少电机噪音和振动。

磁轴承技术的应用可以进一步提高电机的稳定性和寿命,提升用户驾驶的舒适度。

3. 振动和噪音控制技术通过传感器监测电机运行时的振动和噪音,结合控制算法调整电机的运行参数,可以有效降低噪音和振动的水平。

例如,可以采用主动控制振动技术,通过在电机结构中植入振动源进行相位和幅值的调整,从而实现噪音和振动的抑制。

4. 电机系统隔振设计在新能源汽车电机安装过程中,合理的隔振设计可以减少电机的振动传递到车身,从而降低整车的振动和噪音水平。

例如,采用橡胶隔振垫、弹簧隔振装置等措施可以有效隔离电机的振动,提高整车的驾驶舒适性。

5. 噪音和振动测试与评估在设计和制造过程中,进行噪音和振动测试与评估是解决问题的基础。

通过建立系统化的测试方法和评估标准,可以全面了解电机噪音和振动问题的来源和特点。

基于测试结果,可以有针对性地进行问题分析和解决方案的优化,提高新能源汽车电机的品质和性能。

结论新能源汽车电机噪音和振动问题是影响用户驾驶体验和舒适性的重要因素。

通过优化电机设计、应用磁轴承技术、控制技术的应用以及合理的隔振设计,可以有效减少噪音和振动。

电机振动噪音的原因及对策

电机振动噪音的原因及对策

电机振动噪音的原因及对策摘要:在经济的发展和制造自动化的提高,电动机的用量与日俱增。

尤其是在发电和工业等领域内得到广泛应用,但是由于电机噪音的不合格引起相关产品的振动、噪音问题,会影响电机的可靠性和安全性。

关于电机噪音的研究十分复杂,其中涉及机械振动、物理声学、数学、电磁等多个领域。

根据噪音产生的原因,通常将电机噪音分为电磁噪音、机械噪音和空气动力噪声。

关键词:电机噪音;原因;对策引言振动与噪音是电机重要的技术指标,如何降低电机的振动与噪音是中小型电机行业中普遍存在的问题。

根据噪音产生的原因,通常将电机噪音分为机械噪音、通风噪音和电磁噪音。

1.机械噪音机械噪音是由电机运转部分的摩擦、撞击、不平衡以及结构共振形成的。

还有很大机械噪音都是由轴承引起的。

由于轴承随电机转子一起旋转,因滚珠、内圈、外圈表面的不光滑,它们之间有间隙,滚珠的不圆或内部混合杂物,而引起它们间互相碰撞产生振动与噪声。

其产生的噪声值与滚珠、内外圈沟槽的尺寸精度、表面粗糙度及形位公差等有很大关系。

有人认为,只要采用精密轴承就可以降低轴承噪声,殊不知使用后,反而使噪声增加。

原因是轴与轴承内圈的配合过紧,使精密轴承的内圈变形大于普通轴承的变形量,因而跳动、振动加大,噪声上升。

所以轴承与轴承室、轴的配合也是非常重要的。

1.1机械噪音的降低对策(1)气隙不均匀及转子同心度差,会产生电磁噪音;需提高制造工艺水平,确保工装以及设备工作状态良好。

(2)定子铁心与机座装配采用的过盈尺寸在装配前进行检测,不应使用过盈配合值偏小,造成定子铁心轴向移动,也不应使用过盈配合值偏大,造成机座存在内应力,在机座止口加工后产生椭圆,影响定转子的同轴度,从而出现电磁噪声和振动现象。

(3)端盖是电机的关键零部件之一,加工精度直接影响电机的运行可靠性,因端盖内孔尺寸变形或端盖与机座装配后挤压造成轴承室变形,轴承压装后造成损伤或变形引起异音。

因此在电机组装前对端盖和机座进行模拟装配,确保轴承室内孔尺寸变形量在0.03mm范围内才可以组装。

常见电机噪音的分析

常见电机噪音的分析

二、常见噪音的分类 1、电磁噪音 2、风道噪音 3、机械噪音
三、各种噪音的基本类型特点 1、电磁噪音 ①倍频噪音:电源频率的倍数。 ②齿谐波噪音:定、转子偏心、槽配合不当,
转子不平衡引起的噪音。 ③滑差噪音:风叶与轴配合不牢引起。 2、风道噪音 ①笛鸣噪声:风扇旋转使气体周期脉动及气流
碰撞固体物产生单调声,也就是我们通常说 的“口哨效应”。 ②涡流噪声:风扇叶片转动时使周围气体产生 的涡流声,其频谱范围较宽。
以上案例中主要是通过改善电机减振机构来实现噪音整改的。
案例五
08年质控部抽测发现新亚厂家FW30X电机整改运行,有峰值噪音。通过分析认为是电机轴与风叶结合部位 匹配不良引起的滑差噪音。通过解剖发现风叶扁位要比电机轴扁位长一些,两者配合时存在虚位。
随后要求注塑分厂对风叶注塑模进行改进,改后的风叶与电机轴结合更牢固了,测试证明整机的滑差噪音 得到了控制。
案例四
前期50柜机所用的中山南丰LN35Y电机噪音问题一直困扰着生产和售后,通过对比发现,该电机胶圈所用 胶圈有两上品牌,一种为GY、一种为RK,两种胶圈虽然硬度都符合要求,但通过各种试验证明GY胶圈的 减振效果要好于RK胶圈。
整改过程当中要求南丰LN35Y电机全部采用GY胶圈,生产线再很少有噪音问题反馈,09年售后比08年售后 也有较大的改善。
随后厂家整改了电机端盖的加工精度,经我司总装生产线验证,效果良好。
以上案例中的噪音主要是因电机加工精度偏低,定转子偏心引起的电磁噪音。
案例三
前期总装频繁反馈南丰厂家50、72柜机所用的LN40、LN35系列电机噪音问题十分突出,LN40系电机08年售 后故障率排名首位,主要问题为整机噪音。
转子质量分布不均匀时,产生重心位移,不平衡重量在转子旋转时将产生单边离心力。 (6)滚动轴承异常产生的机械振动 (7)轴向间隙偏大引起的振动 (8)安装、调试不良引起的机械振动

电机的噪音与振动控制技术

电机的噪音与振动控制技术

电机的噪音与振动控制技术电机在现代生活中扮演着重要角色,广泛应用于各个领域。

然而,电机在工作过程中会产生噪音与振动,对用户的体验和设备的正常运行带来负面影响。

因此,控制电机的噪音与振动是一个关键的技术挑战。

本文将介绍电机的噪音与振动控制技术的发展与应用。

一、电机噪音的产生机制电机的噪音主要来自以下几个方面:电磁噪音、机械噪音和空气噪音。

1. 电磁噪音电机通过电流在导线中产生的磁场会引起磁力的变化,这种磁力的变化会导致铁芯发生振动,从而产生电磁噪音。

此外,电机中的绕组也会因电流的变化而产生瞬时的磁力作用,进而产生磁力的变化。

2. 机械噪音电机在工作过程中,由于机械零部件的运动,会产生机械噪音。

例如,轴承和齿轮的运转摩擦,会产生杂音和振动。

3. 空气噪音电机运行时,由于叶片与空气的摩擦,会产生空气噪音。

这种噪音通常是由电机周围的空气流动引起的,例如风扇电机产生的噪音。

二、电机振动的影响电机振动不仅会产生噪音,还会对电机自身以及周围的设备造成不良影响。

1. 降低设备性能电机振动会导致设备的性能下降,如使机械零件磨损加剧,降低设备的寿命。

2. 增加能源消耗电机振动会使设备产生额外的摩擦损耗,导致能源的浪费。

3. 产生人员不适对于长时间暴露在电机振动环境中的人员来说,振动会给人体带来不适感,甚至对健康产生潜在风险。

三、电机噪音与振动控制的方法为了降低电机的噪音与振动,人们发展了多种控制技术。

1. 结构改进通过优化电机的结构设计,减少机械部件的振动和噪音。

例如,在轴承的选择上采用低振动、低噪音的轴承,通过减少机械零件的松动,提高电机的结构刚度等方式来改善电机的噪音与振动问题。

2. 振动隔离采用振动隔离技术,通过增加隔离装置来降低电机振动的传播性。

振动隔离的方法包括减振垫、弹性吸振器等。

3. 控制算法利用先进的控制算法对电机的运行进行优化,降低噪音和振动。

例如,采用速度闭环控制、电流闭环控制等算法进行电机控制,可以减小电机的振动和噪音。

电机噪音国标

电机噪音国标

电机噪音国标全文共四篇示例,供读者参考第一篇示例:电机噪音是指电机运行时发出的声音,通常由电机本身的机械运转声、空气湍流噪声、电磁振动噪声、电磁辐射噪声等多种因素综合作用所产生。

在日常生活中,我们经常能听到电机工作时发出的噪音,特别是一些老旧设备或者使用时间较长的电机,在工作中常常伴有较大噪音。

这种噪音不仅会影响人们的生活质量,还可能对人体健康造成危害。

对于电机噪音的控制和管理显得十分重要。

为了规范电机噪音的标准,制定了《电机噪音国家标准》。

该标准主要包括了电机噪声的测量方法、噪声限制值及噪声等级划分等内容。

在实际生产过程中,企业必须依照该标准要求进行生产,以保证电机的噪音控制在合理范围内。

本文将对《电机噪音国家标准》进行详细介绍,希望能够为广大生产厂家和消费者提供参考。

一、电机噪音国家标准的背景电机是广泛应用于各种机械设备中的一种电气设备,其噪音问题一直备受关注。

《电机噪音国家标准》的制定旨在规范电机噪音的限制值,促进电机制造行业的健康有序发展。

该标准针对不同类型的电机,制定了相应的噪音限制值,并规定了测量方法和评定标准,以便厂商能够根据标准要求进行生产,消费者也能够根据标准对电机进行选择。

1. 标准适用范围《电机噪音国家标准》适用于各种类型的交流电机、直流电机、异步电机、同步电机等电动机的噪音检测与评定。

标准规定了电机噪音的测量方法和评价方法,以及对于不同类型电机的噪音限制值。

2. 噪音测量方法电机噪音的测量方法是《电机噪音国家标准》的核心内容之一。

根据标准规定,电机噪音的测量应该在符合国家标准的声学室内进行,采用特定的测量仪器和设备进行采样和分析。

测量过程中应考虑到电机工作状态的实际情况,如负荷大小、旋转速度等因素。

3. 噪音限制值《电机噪音国家标准》对于不同类型的电机,规定了相应的噪音限制值。

以常见的家用电器为例,标准规定了空调室内机的噪音限制值为40分贝,制冷机的噪音限制值为45分贝等。

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。

而电动机产生的电机振动电机振动噪音,主要有:1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。

2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。

但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。

3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。

4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。

5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。

一、机械性电机振动的产生原因与对策1、转子的不平衡电机振动A、原因:·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。

·运转时热应力引起轴弯曲。

·转子配件的热位移引起不平衡载重。

·转子配件的离心力引起变形或偏心。

·外力(皮带、齿轮、直结不良等)引起轴弯曲。

·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

B、对策:·抑制转子不平衡量。

·维护到容许不平衡量以内。

·轴与铁心过度紧配的改善。

·对热膨胀的异方性,设计改善。

·强度设计或装配的改善。

·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。

·轴承端面与轴附段部或锁紧螺帽的防止偏靠。

2、轴承之异常电机振动与电机振动噪音A、原因:·轴承内部的伤。

电扇发出噪音的原因及解决方法

电扇发出噪音的原因及解决方法

电扇发出噪音的原因及解决方法电扇发出噪音的原因及解决方法如下,供参考:一、原因1. 叶片旋转时产生的空气流动噪音:电扇工作时,叶片旋转会带动周围的空气流动,从而产生一定的噪音。

这种噪音通常是由叶片旋转速度和风量的大小决定的。

2. 电机运转噪音:电机是电扇的核心部件,它在运转过程中会产生一定的噪音。

电机的噪音通常与电机的质量、运行状态以及电压有关。

3. 机械振动和共振:电扇在使用过程中,由于各种原因可能会导致机械振动,这种振动可能会引发共振现象,从而产生较大的噪音。

4. 安装不稳定:如果电扇安装不稳定或者放置不平,也可能导致运转过程中产生噪音。

二、解决方法1. 调整叶片角度:适当调整叶片的角度,可以改变风向和风量,从而减少噪音。

调整时,可以根据实际需求来调整叶片的角度,以达到最佳的通风效果。

2. 保持电机润滑:定期为电机加注润滑油,保证电机顺畅运转,可以减少因电机问题产生的噪音。

如果电机出现磨损或者故障,应及时更换。

3. 消除机械振动:通过调整电扇的安装位置或者增加减震措施,可以减少机械振动引发的噪音。

此外,定期检查电扇的零部件是否松动或磨损也是必要的。

4. 保持稳定的电源电压:电压不稳定可能导致电机运转不稳定,从而产生噪音。

可以通过使用稳压器等设备来保持稳定的电源电压,以降低噪音。

5. 使用消音设备:在电扇出口处加装消音片或者使用消音器等设备,可以有效降低因空气流动产生的噪音。

综上所述,电扇发出噪音的原因有多种,解决的方法也有多种。

用户可以根据自己的实际情况选择合适的解决方法,以达到降低噪音的目的。

在使用电扇的过程中,也应注意定期维护和保养,以保证其正常运转和延长使用寿命。

电动机运行有异常噪音的原因及处理方法正式版

电动机运行有异常噪音的原因及处理方法正式版

电动机运行有异常噪音的原因及处理方法正式版一、机械振动引起的异常噪音机械振动可能由于电动机本身的结构问题、不良的安装或悬挂方式等原因导致。

处理机械振动引起的异常噪音的方法如下:1.检查电动机的轴承和轴承座是否安装正确,如果有松动或损坏需要进行修复或更换。

2.检查电动机的定子和转子是否平衡,如果不平衡需要进行重新平衡处理。

3.检查电动机的联轴器和传动装置是否正常,如果存在不均匀或不光滑的现象,需要进行修理或更换。

二、电磁干扰引起的异常噪音电磁干扰可能由于电动机的电源供应问题或线路布线不良导致。

处理电磁干扰引起的异常噪音的方法如下:1.检查电动机的电源供应是否稳定和符合标准要求,必要时可以使用稳压器或稳流器对电源进行调整。

2.检查电动机的电源线路是否正确连接和接地,必要时可以重新布线或加装隔离设备。

3.检查电动机的绝缘和屏蔽是否完好无损,必要时可以进行维修或更换。

三、杂音引起的异常噪音杂音可能由于电动机的部件磨损、质量问题或不合理设计导致。

处理杂音引起的异常噪音的方法如下:1.检查电动机的部件和连接件是否有松动或磨损,必要时进行修复或更换。

2.检查电动机的轴承、齿轮和传动带是否润滑充分,必要时进行润滑处理。

3.检查电动机的外壳和防护设施是否合理,必要时进行调整或加装隔音设备。

四、故障引起的异常噪音故障可能由于电动机的电气或机械部件损坏导致。

处理故障引起的异常噪音的方法如下:1.检查电动机的电气部件是否正常工作,如开关、保险丝和继电器等,必要时进行修复或更换。

2.检查电动机的机械部件是否有明显的损坏,如绕组短路、轴承磨损或转子偏心等,必要时进行修理或更换。

无刷电机的噪音和振动问题如何解决

无刷电机的噪音和振动问题如何解决

无刷电机的噪音和振动问题如何解决在现代工业和科技领域,无刷电机因其高效、节能、寿命长等优点得到了广泛应用。

然而,无刷电机在运行过程中可能会产生噪音和振动问题,这不仅会影响设备的性能和稳定性,还可能对使用者的体验造成不良影响。

那么,如何有效地解决无刷电机的噪音和振动问题呢?首先,我们需要了解无刷电机产生噪音和振动的原因。

常见的原因包括电磁因素、机械因素和空气动力因素等。

电磁因素方面,磁场的不均匀分布、定子和转子之间的电磁力不平衡等都可能导致电机振动和产生噪音。

例如,电机绕组的设计不合理、磁极的形状和排列不当等,都可能引起磁场的畸变,从而产生额外的电磁力,导致电机振动和噪音的增加。

机械因素也是导致无刷电机噪音和振动的重要原因之一。

电机的轴承磨损、轴的弯曲、转子的不平衡等都会引起机械振动和噪音。

当轴承使用时间过长或者受到较大的冲击时,可能会出现磨损和间隙增大的情况,这会导致电机在运行时产生晃动和噪音。

另外,如果转子在制造或安装过程中出现不平衡,旋转时会产生离心力,引起振动和噪音。

空气动力因素同样不可忽视。

电机在高速旋转时,风扇叶片与空气的摩擦、风道的不合理设计等都可能产生噪音。

针对这些原因,我们可以采取一系列措施来解决无刷电机的噪音和振动问题。

在电磁设计方面,可以通过优化电机的绕组结构和磁极形状,来改善磁场的分布,减少电磁力的不平衡。

采用先进的电磁仿真软件,在电机设计阶段就对磁场进行模拟分析,及时发现并解决可能存在的问题。

对于机械因素导致的问题,定期对电机进行维护和保养是非常重要的。

及时更换磨损的轴承,确保轴的直线度和转子的平衡精度。

在电机制造过程中,严格控制加工精度和装配质量,保证电机的机械结构稳定可靠。

在空气动力方面,优化风扇叶片的形状和数量,设计合理的风道,可以降低空气阻力和噪音。

此外,控制电机的运行速度和负载也有助于减少噪音和振动。

避免电机在过高的速度或过大的负载下运行,能够降低电机的工作应力,减少振动和噪音的产生。

电动机振动标准对设备噪音产生的影响分析

电动机振动标准对设备噪音产生的影响分析

电动机振动标准对设备噪音产生的影响分析随着科技的进步和工业化的发展,电动机在各个行业中得到了广泛应用。

然而,电动机的振动对设备的噪音产生了一定的影响。

为了控制噪音水平,电动机行业制定了一系列的振动标准。

本文将对电动机振动标准对设备噪音产生的影响进行分析和探讨。

一、电动机振动标准的简介电动机振动标准是对电动机振动水平进行评估和控制的指标。

这些标准通过测量电动机在运行过程中产生的振动来评估电机的性能和质量。

它们通常包括振动速度、振动加速度和振动位移等参数。

振动标准的制定旨在确保设备在正常运行时具有合理的振动水平,并且不会对设备的噪音产生过大影响。

二、电动机振动标准与设备噪音的关系1. 振动与噪音的关系振动是电动机运行中的一种机械行为,其主要原因是电动机内部的不平衡、轴承磨损、转子偏磁等。

这些振动会通过机械传导途径传递到设备的外壳和结构中,进而转化为噪音。

因此,电动机的振动水平与设备产生的噪音存在着密切的关系。

2. 振动标准对设备噪音的影响电动机振动标准的制定主要考虑了设备噪音的控制要求。

合理的振动标准能够限制电动机的振动水平,从而减少噪音的产生。

当设备在运行时,如果电动机的振动超过了标准规定的范围,会导致设备产生过大的噪音,影响设备的正常使用和工作环境的安静。

因此,通过合理的振动标准,可以有效地控制设备噪音水平,提供一个良好的工作环境。

三、电动机振动标准的应用现状分析1. 国际标准国际上对电动机振动水平有一定的标准和要求。

例如,国际电工委员会(IEC)发布了一系列与电动机振动和噪音相关的标准,如IEC60034-14、IEC60034-17等。

这些标准对电动机的振动和噪音水平进行了详细的规定和测试方法的说明,为电动机行业提供了技术参考和指导。

2. 国内标准在国内,中国电机工程学会制定了一系列针对电动机振动水平和噪音的标准,如GBT 14181-2017等。

这些标准参考了国际标准,并结合国内实际情况,制定了适合中国电动机行业的振动标准,以确保电机的质量和性能符合国家要求。

电机振动与噪声的分析

电机振动与噪声的分析

电机的振动及噪声1、概述噪声干扰人们正常谈话,降低人的思维能力,使人疲劳,并影响人睡眠、休息和工作,长期生活在大噪声的环境中,不仅可使人耳朵由痛感,还使人的听觉受到损害,甚至会发生昏厥和引起神经系统疾病。

而振动是噪声的来源,我们在控制噪声的同时也同样抑制了振动,所以在分析电机的噪声时,总是结合电机的振动一起来描述。

为了保证人们有一个合理的生活、工作环境,各国都制定了法规以限制噪声的污染。

我国在1988年参照国际标准ISO1680.2(1986)《声学——旋转电机辐射空气噪声的测定之第二部分简易法》和ISO 3746(1980)《声学——噪声源的声功率级测定:简易法》制定了GB10069.2-88《旋转电机噪声测定方法及限值:噪声简易测定方法》。

电机噪声主要来自三个方面,即空气噪声、机械噪声和电磁噪声,但有时也会将电路内部噪声列入噪声源之一。

电路内部噪声主要来自电路自励、电源哼声以及电路元件中的电子流起伏变化和自由电子的热运动。

2、电机噪声和振动及抑制措施(1)空气噪声空气噪声主要由于风扇转动,使空气流动、撞击、摩擦而产生。

噪声大小决定于风扇大小、形状、电机转速高低和风阻风路等情况。

空气噪声的基本频率f v:f v=Nn/60(H Z)其中,N——风扇叶片数n——电机转速(RPM)风扇直径越大,噪声越大,减小风扇直径10%,可以减小噪声2—3dB。

但随之冷量也会减少。

当风叶边缘与通风室的间隙过小,就会产生笛声(似吹笛声)。

如果风叶形状与风扇的结构不合理,造成涡流,同样也会产生噪声。

由于风扇刚度不够,受气流撞击时发生振动,也会增加噪声。

此外,转于有凸出部分,也会引起噪声。

针对以上产生空气噪声的原因,则下列措施有助于减小空气噪声:合理地设计风扇结构和风叶形状,避免产生涡流;保证风叶边缘与通风室有足够的间隙,在许可情况下,尽量缩小风扇直径;在许可情况下,将气流转向后再吹(吸)出,可明显降低噪声,此在吸尘器中已有采用;保证风路通畅,减小空气的撞击和摩擦。

永磁同步电机的振动与噪音解析PPT课件

永磁同步电机的振动与噪音解析PPT课件

3、空气动力噪音
第2页/共31页
对人的损害: 对神经系统有坏的影响;损害人的听觉。
——在频率300一600赫兹区队80分贝响度级的噪声若每天 连续作用8小时,实际上不会引起对1000一2000赫兹言语频 率范围内的听觉丧失;
——在频率300一600赫兹区间,88至95分贝的噪声响度级经 过30年会引起对1000赫兹的听觉丧失8至13分贝,对2000赫 兹的听觉丧失13.5至19分贝;
100mv/格
20ms/格
(b)T=0.5 N•m,n=326rpm
(a)电流周期18次,噪音频率为165Hz。 (b) 电流周期6次,噪音频率为163Hz。 (c)电流周期12次,噪音频率为162Hz。
小电机
第21页/共31页
四、正弦波无刷直流电机力矩波动与噪音
正弦波驱动
• 理想情况
e sin
三、方波无刷直流电机力矩波动与噪音
ea (t) ~ Em1 sint Em3 sin 3t Em5 sin 5t Em7 sin 7t
ia (t) ~ Im1 sint Im5 sin 5t Im7 sin 7t 得到 Tem ~ Tem0 T6 sin 6t T12 sin 12t T18 sin 18t
2P 例: Z
C
min
• 最低次数υmin-每周磁能状态重复次数
min
2PZ C
C— 2P 和Z的最大公约数
• 幅值-决定于磁势平方F2和磁导G的υ次幅值乘积
第12页/共31页
88 9 12 12 72 48
二、定位力矩 缺陷磁路的齿槽力矩 • 转子有缺陷导致Z次定位力矩 •定子有缺陷导致2P次定位力矩
第13页/共31页
二、定位力矩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机的振动及噪音
一般评估电动机的品质除了运转时之各特性外,以人之五感判断振动及噪音的情形较多。

而电动机产生的振动噪音,主要有:
1、机械振动噪音,为转子的不平衡重量,产生相当转数的振动。

2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。

但轴承自然的振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向振动,润滑不良产生摩擦音等问题产生。

3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的噪音。

4、流体噪音,风扇或转子引起通风噪音对电动机很难避免,很多情形左右电动机整体的噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。

5、电磁的噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之噪音,又磁通密度饱和或气隙偏心引起磁的噪音。

一、机械性振动的产生原因与对策
1、转子的不平衡振动
A、原因:
·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。

·运转时热应力引起轴弯曲。

·转子配件的热位移引起不平衡载重。

·转子配件的离心力引起变形或偏心。

·外力(皮带、齿轮、直结不良等)引起轴弯曲。

·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

B、对策:
·抑制转子不平衡量。

·维护到容许不平衡量以内。

·轴与铁心过度紧配的改善。

·对热膨胀的异方性,设计改善。

·强度设计或装配的改善。

·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。

·轴承端面与轴附段部或锁紧螺帽的防止偏靠。

2、轴承之异常振动与噪音
A、原因:
·轴承内部的伤。

·轴承的轴方向异常振动,轴方向弹簧常数与转子质量组成振动系统的激振。

·摩擦音:圆柱滚动轴承或大径高速滚珠轴承产生润滑不良与轴承间隙起因。

B、对策:
·轴承的替换。

·适当轴方向弹簧预压给轴承间隙的变动。

·选择软的滑脂或低温性优秀的滑脂,残留间隙使小(须注意温升问题)。

3、电刷滑动音
A、原因:
·整流子与电刷的滑动时的振动电刷保持器激振产生
B、对策:
·握刷的弹性支持、选择电刷材质与形状、抑制侧压引起的电刷振动及提高整流子的精度等。

二、流体噪音的产生与对策
电动机的流体噪音中,主要为冷却用的风扇引起的噪音。

此外,转子铁心的槽开口部接近静止侧的部份,变成显著气笛音,再则通风路等如存在共鸣空间,产生显著的共鸣者。

1、风扇噪音的大小:
电动机一般求两方向转动,风扇的叶片为径向直线叶片,效率不良,而且噪音大。

噪音值约由下式来求。

但测定电动机的轴中心高度,距离有1m的情形。

噪音dB(A)=70 log D+50 log N+
D:叶片的外径(m),N:每秒的转数,:常数32~36,
由上式,降低噪音位准,以减少风扇的外径较重要。

但吐出风量与风压低下,与这些的配合变成重要。

风扇在外框的内部时有减音或遮音效果。

2、风扇噪音的频率依不同类型而有差异。

·压力噪音,为风扇的叶片空气受压力冲击产生。

·扰流噪声,为叶片周边空气流动的扰乱起因者,径向直线叶片的风扇,电动机的用途上可说不可避免。

·风扇与其它部份的干涉引起的气笛音,为接近转动叶片存在其它部份空气如流通,产生激烈的气笛音。

三、电磁噪音(感应电动机)
有关电磁噪音,其电磁噪音由耳朵的听感感度良好频率100HZ以上的频率带域,单一或复数的特定频率音组成,特别与定子共振时变成显著的噪音。

感应电动机较DC电动机常有电磁噪音问题,因此以感应电动机为中心说明。

电磁噪音感应电动机通称“磁音”,对此种的研究,首先要了解正弦波电流的电磁噪音。

1、正弦波电流的电磁噪音:
因正弦波电流,感应电动机的气隙产生的磁通,加转矩产生的基本(主)磁通,存在高谐波磁通。

这些的磁通使定子与转子铁心互相吸引的电磁力波作用,定子铁心变形为多角形,转轴弯曲移位产生振动。

主要产生电磁噪声之气隙高谐波磁通原因者,有
A、绕线分布引起的磁动势高谐波。

B、定子或转子铁槽产生的槽高谐波。

C、铁心饱和产生的饱和高谐波。

D、偏心引起的偏心高谐波
E、电压、线圈、磁路等不平衡引起的高谐波。

F、槽磁导高谐波等。

G、相带高谐波,气隙存在为数很多的空间高谐波磁与电源波形畸变等引起时间高谐波磁通。

2.电磁噪音防止对策:
A.由电机设计上
·适当槽数组合
·采用特殊槽
·斜槽化
·选择线圈节距
·正弦波绕线
·采用分数槽绕线
·气隙、齿、轭铁部之磁通密度的适当化
·转子槽部极与厚度的均等化
·采用磁性楔
·气隙的扩大
B.由机械设计上
·消除静的偏心,提高加工·装配精度。

·对外力提高轴的弯曲刚性,装配精密。

·全闭槽消除齿尖厚度不同,提高制造技术。

·磁路使不造成不平衡的构造以及制造,特别转子导体的电阻,绝缘或轴的断面形状。

·定子、转子避免与电动机构成部材料的共振。

·避免与电动机装置机构产生共振。

·定子铁心或轴承支持部的弹性、防振支持。

·由电动机外部的遮音或防音的构造。

C.在使用上,消除电源电压的不平衡。

·电磁噪音的原因变成电磁加振力,这些的高谐波磁通因互相干涉产生电磁力波引起。

但并非所有电动机的噪音问题,皆由电磁力波所引起的。

有些是因与定子或转子的自然振动数一致或接近的情形形成共振状态。

所以电磁噪音产生的因素,不单单只因为电磁力波的频率,我们还需要了解电动机各部份的振动体自然振动频率。

相关文档
最新文档