初中数学-《三角形的初步认识》单元测试卷

合集下载

第一章三角形的初步认识测试卷含答案

第一章三角形的初步认识测试卷含答案

第一章三角形的初步认识 测试卷姓名姓名_________________________________班级班级班级一、选一选(30分,每题3分)1. 1. 以下列各组线段为边,能组成三角形的是以下列各组线段为边,能组成三角形的是以下列各组线段为边,能组成三角形的是( ) ( ) A A..2cm 2cm、、2cm 2cm、、4cm B 4cm B..2cm 2cm、、6cm 6cm、、3cmC C..8cm 8cm、、6cm 6cm、、3cmD 3cm D..11cm 11cm、、4cm 4cm、、6cm 2. 2. 如图如图如图, , , △△ABD 的一个外角是的一个外角是( ) ( )A. A. ∠∠CB.C B.∠∠CADC.CAD C.∠∠ADBD.ADB D.∠∠ADC ADC (第(第2题)题) 3. 3. 锐角三角形中任意两个锐角的和必大于锐角三角形中任意两个锐角的和必大于锐角三角形中任意两个锐角的和必大于( ) ( ) A. 120A. 120°° B. 110 B. 110°°C. 100C. 100°°D. 90D. 90°°4. 4. 下面关于三角形高的说法正确的是下面关于三角形高的说法正确的是下面关于三角形高的说法正确的是( ) ( )A A.三角形的高就是顶点和对边的垂线.三角形的高就是顶点和对边的垂线.三角形的高就是顶点和对边的垂线B B B.钝角三角形的三条高交于三角形外部.钝角三角形的三条高交于三角形外部.钝角三角形的三条高交于三角形外部C C.锐角三角形的高都在三角形内部.锐角三角形的高都在三角形内部.锐角三角形的高都在三角形内部D D D.直角三角形有且仅有一条高.直角三角形有且仅有一条高.直角三角形有且仅有一条高 5. 5. 若若AD 是△是△ABC ABC 的中线的中线,,则下列结论错误的是则下列结论错误的是( ) ( ) A.AD 平分∠平分∠BAC B.BD=DC C.BAC B.BD=DC C.BAC B.BD=DC C.点点D 为BC 中点中点 D.BC=2DC D.BC=2DC6. 6. 如图,如图,如图,AC AC 与BD 相交于点O.O.已知已知OA=OC,OB=OD, OA=OC,OB=OD, 则能说明△则能说明△则能说明△AOB AOB AOB≌△≌△≌△COD COD 的理由是(的理由是( )) A. SSSB. ASAC. SASD. AAS(第6题) () (第第7题)7. 7. 如图如图如图,,点P 是∠是∠BAC BAC 的平分线AD 上一点上一点,PE ,PE ,PE⊥⊥AC 于点E,PE=5,E,PE=5,则点则点P 到AB 的距离是( )) A. 15 B. 10 C. 6 D. 58.△ABC 中,AD 是BC 边上的中线边上的中线,,△ABD 与△与△ACD ACD 的周长差是3cm,AC=7cm,3cm,AC=7cm,则则AB 的长是( ))A. 4B. 10C. 4或10D. 10 D. 无法判断无法判断无法判断9. 9. 如图如图如图,,在ΔABC 中BC 边上的垂直平分线交AC 于点D,AB=3,AC=7,D,AB=3,AC=7,则则ΔABD 的周长为( )) A. 10 B. 11 C. 15 D. 12OCBA 第6题图10. 10. 下列说法正确的是下列说法正确的是下列说法正确的是( ) ( )A 、有两边和其中一边所对的角对应相等的两个三角形全等;、有两边和其中一边所对的角对应相等的两个三角形全等;B 、有三个角对应相等的两个钝角三角形全等;、有三个角对应相等的两个钝角三角形全等;C 、有一条边和两个角对应相等的两个三角形全等;、有一条边和两个角对应相等的两个三角形全等;D 、两条边对应相等的两个锐角三角形全等;、两条边对应相等的两个锐角三角形全等;二、填一填 (30分,每题3分)1. 1. 在△在△在△ABC ABC 中,若∠若∠A=A=A=∠∠B, B, ∠∠C=300,则∠则∠A=A=A=∠∠B= B= ;;2. 2. 在△在△在△ABC ABC 中,中,AB AB AB==3,BC BC==7,则AC 的长x 的取值范围是的取值范围是 ;;3. 3. 如图如图如图,AD ,AD 是△是△ABC ABC 的中线的中线, , , △△ABD 的面积为30cm 2,则△则△ABC ABC 的面积是的面积是 cm cm 2;4. 4. 起重机支架上的三角形钢条结构利用的一个三角形的原理是起重机支架上的三角形钢条结构利用的一个三角形的原理是起重机支架上的三角形钢条结构利用的一个三角形的原理是 ;;5. 5. 如图如图如图,,△ABC 中,EF 为AC 的垂直平分线的垂直平分线,,若AF=4,AF=4,△△BCE 周长为15,15,则△则△则△ABC ABC 周长为周长为 ;;6. 6. 如图如图如图,,△ABC 中,∠ABC 和∠和∠ACB ACB 的平分线交于点O,O,若∠若∠若∠A=80A=800,则∠则∠BOC= BOC= BOC= ;; 7. 7. 如图如图如图,,△ABC 中,高BD BD、、CE 相交于点H,H,若∠若∠若∠A=50A=500,则∠则∠BHC= BHC= BHC= ;;8. 8. 把一副常用的三角形如图所示拼在一起,那么如图把一副常用的三角形如图所示拼在一起,那么如图把一副常用的三角形如图所示拼在一起,那么如图,,则∠则∠ACB ACB 是 度;度;度; 9. 9. 已知△已知△已知△ABC ABC 中, , ∠∠A:A:∠∠B:B:∠∠C=5:6:9,C=5:6:9,则△则△则△ABC ABC 为 三角形;三角形;三角形;10.10.如图如图如图,,已知AD=AE,AD=AE,要说明△要说明△要说明△ABE ABE ABE≌△≌△≌△ACD,ACD,ACD,还需要添加的条件是还需要添加的条件是还需要添加的条件是 ( ( (只要填一个只要填一个只要填一个 你认为正确的条件你认为正确的条件),),),全等的理由是全等的理由是全等的理由是 (填(填SSS,SAS,ASA 或AAS AAS)).三、解答题(6+8+8+8+10=40分)第3题图DCBAFE第5题图CBADEHC B A 第7题图A B C 第8题图题图第10题图题图CBAab a1、如图⊿、如图⊿ABC,ABC,ABC,∠∠BAC 是钝角是钝角,,按要求完成下列画图按要求完成下列画图,,用适当的符号在图中表示(不写作法,写出结论):①用刻度尺画AB 边上的中线CD; ②用三角尺画AC 边上的高BE; ③用尺规作∠③用尺规作∠BAC BAC 的角平分线AF.2、尺规作图:已知线段a,b 和∠α.求作求作::ΔABC,ABC,使使BC=a , AC=b , BC=a , AC=b , ∠∠C=C=∠∠α (画出图形画出图形,,保留作图痕迹保留作图痕迹,,不写作法不写作法,,写出结论写出结论) )3、如图:已知△、如图:已知△ABC ABC 中,中,AD AD AD⊥⊥BC 于D ,AE 为∠为∠BAC BAC 的平分线,且∠的平分线,且∠B=30B=30B=30°,°,°, ∠C=60C=60°求°求°求(1)(1)(1)∠∠CAE 的度数;的度数;(2)(2)(2)∠∠DAE 的度数。

浙教新版 八年级数学上册 第1章 三角形的初步认识 单元测试卷 (解析版)

浙教新版 八年级数学上册 第1章 三角形的初步认识 单元测试卷  (解析版)

第1章三角形的初步认识单元测试卷一、选择题(共10小题).1.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm2.如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A.SAS B.SSS C.ASA D.HL3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.下列说法:①满足a+b>c的a、b、c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角,其中错误的有()A.0个B.1个C.2个D.3个5.如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线6.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲乙B.甲丙C.乙丙D.乙7.如图,AO,BO分别平分∠CAB,∠CBA,点O到AB的距离OD=2cm.若△ABC的周长为14cm,则△ABC的面积是()A.7cm2B.14cm2C.21cm2D.28cm28.如图所示,在矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,则图中全等的直角三角形共有()A.1对B.2对C.3对D.4对9.如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则①△ABE ≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上,以上结论正确的是()A.①②③B.②③C.①③D.①10.如图,在△ABC中,已知点P、Q分别在边AC、BC上,BP与AQ相交于点O,若△BOQ、△ABO、△APO的面积分别为1、2、3,则△PQC的面积为()A.22B.22.5C.23D.23.5二、填空题(每题3分,共24分)11.在△ABC中,若∠A比∠B大20°,∠C的外角为96°,则∠A=,∠B=.12.如图所示,在△ABC中,AH垂直BC于H,则以AH为高线的三角形有.若E、F是BC的三等分点,则S△ABE S△AEF S△AFC(填“<”“>”或“=”)13.如图,已知CB⊥AD,AE⊥CD,垂足分别为B,E,AE,BC相交于点F,AB=BC.若AB=8,CF=2,则BD=.14.如图所示,在△ABC中,已知AD=ED,AB=EB,∠A=80°,则∠1+∠C的度数是.15.如图,在△ABC中,∠C=90°,∠B=24°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=.16.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G.若∠ADF=76°,则∠EGC的度数为.17.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②△ABD≌△CBD;③AO=CO=AC;④四边形ABCD的面积=AC×BD,其中,正确的结论有.18.如图,已知∠3=∠4,要说明△ABC≌△DCB,(1)若以“SAS”为依据,则需添加一个条件是;(2)若以“AAS”为依据,则需添加一个条件是;(3)若以“ASA”为依据,则需添加一个条件是.三、解答题(共66分)19.如图所示,已知△ABC≌△DCB,是其中AB=DC,试说明∠ABD=∠ACD.20.如图所示,在△ABC中,∠ACB为直角,∠CAD的角平分线交BC的延长线于点E,若∠B=35°,求∠BAE和∠E的度数.21.如图所示,AB与CD相交于点O,且AO=BO,CO=DO,过点O作直线EF交AC 于E,交BD于F,试说明OE=OF.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE =AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.23.如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3个单位,设运动的时间为t秒.(1)当t=时,CP把△ABC的面积分成相等的两部分;(2)当t=5时,CP把△ABC分成的两部分面积之比是S△APC:S△BPC=(3)当t=时,△BPC的面积为18.24.小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师教过的“倍长中线法”可以解决这个问题,所谓倍长中线法就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到点E,使DE=AD,连结BE,构造△BED≌△CAD,经过推理和计算使问题得到解决请回答:(1)小明证明△BED≌△CAD用到的判定定理是:;(用字母表示)(2)请你帮助小明完成AD取值范围的计算;小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题;(3)如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB=AC.25.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).参考答案一、选择题(每小题3分,共30分)1.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【分析】易得第三边的取值范围,看选项中哪个在范围内即可.解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.2.如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A.SAS B.SSS C.ASA D.HL【分析】根据全等三角形的判定定理判断即可.解:作△DEF,使DE=AB,∠A=∠D,∠E=∠B,根据ASA定理可知,△DEF与原来的图形一样,他所用定理是ASA,故选:C.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【分析】此题需对每一个选项进行验证从而求解.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.4.下列说法:①满足a+b>c的a、b、c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角,其中错误的有()A.0个B.1个C.2个D.3个【分析】利用三角形的三边关系、三角形的三线的定义及三角形的外角的性质,分别判断后即可确定正确的选项.解:(1)满足a+b>c且a<c,b<c的a、b、c三条线段一定能组成三角形,故错误;(2)只有锐角三角形的三条高交于三角形内一点,故错误;(3)三角形的外角大于与它不相邻的任何一个内角,故错误;故选:D.5.如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线【分析】由折叠的性质可求解.解:当AC与BC重合时,折痕是∠C的角平分线;当点A与点B重合时,折叠是AB的中垂线,故选:A.6.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲乙B.甲丙C.乙丙D.乙【分析】甲不符合三角形全等的判断方法,乙可运用SAS判定全等,丙可运用AAS证明两个三角形全等.解:由图形可知,甲有一边一角,不能判断两三角形全等,乙有两边及其夹角,能判断两三角形全等,丙得出两角及其一角对边,能判断两三角形全等,根据全等三角形的判定得,乙丙正确.故选:C.7.如图,AO,BO分别平分∠CAB,∠CBA,点O到AB的距离OD=2cm.若△ABC的周长为14cm,则△ABC的面积是()A.7cm2B.14cm2C.21cm2D.28cm2【分析】连接OC,过点O作OD⊥AC于D,OF⊥BC于F,根据角平分线的性质得到OE=OF=OD=2,根据三角形的面积公式计算,得到答案.解:连接OC,过点O作OD⊥AC于D,OF⊥BC于F,∵AO,BO分别平分∠CAB,∠CBA,OD⊥AB,OD⊥AC,OF⊥BC,∴OE=OF=OD=2,∴△ABC的面积=△AOC的面积+△AOB的面积+△BOC的面积=×AC×OE+×AB×OD+×BC×OF=×(AB+AC+BC)×2=14(cm2),故选:B.8.如图所示,在矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,则图中全等的直角三角形共有()A.1对B.2对C.3对D.4对【分析】先找出图中的直角三角形,再分析三角形全等的方法,然后判断它们之间是否全等.解:图中的全等直角三角形有:△ABD≌△CDB,△ADE≌△FCE,∵四边形ABCD是矩形,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS).∵E为CD中点,∴CE=DE,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA).故全等的直角三角形有2对.故选:B.9.如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则①△ABE ≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上,以上结论正确的是()A.①②③B.②③C.①③D.①【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等和边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.解:∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确),∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确),∴DF=DE,连接AD,∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确),故选:A.10.如图,在△ABC中,已知点P、Q分别在边AC、BC上,BP与AQ相交于点O,若△BOQ、△ABO、△APO的面积分别为1、2、3,则△PQC的面积为()A.22B.22.5C.23D.23.5【分析】连接CO,根据△BOQ、△ABO、△APO的面积分别为1、2、3,求出S△POQ =1.5,设S△OPC=x,S△COQ=y,仍然利用△BOQ、△ABO、△APO的面积分别为1、2、3,列出关于x、y的方程组,解得x、y的值,然后利用S△QPC=S△OPC+S△COQ﹣S△POQ即可求出答案.【解答】解;连接CO,∵△BOQ、△ABO、△APO的面积分别为1、2、3,∴=.=,∴S△POQ=1.5,设S△OPC=x,S△COQ=y,则,,解得,S△QPC=S△OPC+S△COQ﹣S△POQ=15+9﹣1.5=22.5.故选:B.二、填空题(每题3分,共24分)11.在△ABC中,若∠A比∠B大20°,∠C的外角为96°,则∠A=58°,∠B=38°.【分析】首先求得∠C的度数,然后设设∠A=x°,利用三角形的内角和定理即可求解.解:∠C=180°﹣96°=84°,设∠A=x°,则∠B=x﹣20°,根据题意得:x+x﹣20+84=180,解得:x=58,则x﹣20=38.故∠A=58°,∠B=38°.故答案是:58°,38°.12.如图所示,在△ABC中,AH垂直BC于H,则以AH为高线的三角形有△ABE、△ABF、△ABH、△ABC、△AEF、△AEH、△AEC、△AFH、△AHC、△AFC.若E、F是BC的三等分点,则S△ABE=S△AEF=S△AFC(填“<”“>”或“=”)【分析】凡是底边在直线BC上的三角形的高线都是AH;△ABE、△AEF、△AFC是三个等底同高的三角形,它们的面积相等.解:如图,∵在△ABC中,AH垂直BC于H,∴以AH为高线的三角形有:△ABE、△ABF、△ABH、△ABC、△AEF、△AEH、△AEC、△AFH、△AHC、△AFC.∵E、F是BC的三等分点,∴BE=EF=FC,∴S△ABE=S△AEF=S△AFC.故答案是:△ABE、△ABF、△ABH、△ABC、△AEF、△AEH、△AEC、△AFH、△AHC、△AFC;=;=.13.如图,已知CB⊥AD,AE⊥CD,垂足分别为B,E,AE,BC相交于点F,AB=BC.若AB=8,CF=2,则BD=6.【分析】根据“ASA”证明△ABF≌△CBD,BF=BD,求出BF=6,即可得出答案.【解答】证明:∵CB⊥AD,AE⊥CD,∴∠ABF=∠CBD=∠AED=90°,∴∠A+∠D=∠C+∠D=90°,∴∠A=∠C,在△ABF和△CBD中,,∴△ABF≌△CBD(ASA),∴BF=BD,∵BC=AB=8,BF=BC﹣CF=8﹣2=6,∴BD=BF=6;故答案为:6.14.如图所示,在△ABC中,已知AD=ED,AB=EB,∠A=80°,则∠1+∠C的度数是80°.【分析】根据全等三角形的判定定理SSS推知△ABD≌△EDB,则对应角∠A=∠BED =80°,所以根据三角形外角定理求得∠1+∠C=80°.解:如图,∵在△ABD与△EBD中,,∴△ABD≌△EDB(SSS),∴∠A=∠BED=80°,∴∠1+∠C=∠BED=80°.故填:80°.15.如图,在△ABC中,∠C=90°,∠B=24°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=123°.【分析】根据∠ADB=∠C+∠CAD,想办法求出∠CAD即可.解:∵∠C=90°,∠B=24°,∴∠CAB=90°﹣24°=66°,由作图可知:AD平分∠CAB,∴∠CAD=∠CAB=33°,∴∠ADB=∠C+∠CAD=90°+33°=123°,故答案为123°16.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G.若∠ADF=76°,则∠EGC的度数为76°.【分析】如图,由翻折变换的性质得到∠BDE=∠B′DE(设为α),∠BED=∠B′ED(设为β);求出2α=105°,2β=135°,借助三角形外角的性质,即可解决问题.解:如图,由题意得:∠BDE=∠B′DE(设为α),∠BED=∠B′ED(设为β);∵∠ADF=76°,∴2α=180°﹣76°=104°;∵△ABC为等边三角形,∴∠B=∠C=60°,α+β=180°﹣60°=120°;∴2β=240°﹣2α=136°;∴∠EGC=2β﹣∠C=136°﹣60°=76°,故答案为76°.17.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②△ABD≌△CBD;③AO=CO=AC;④四边形ABCD的面积=AC×BD,其中,正确的结论有①②③④.【分析】由题意可得BD是AC的垂直平分线,可得AO=CO=AC,AC⊥BC,根据“SSS”可证△ABD≌△CBD,由三角形的面积公式可得S四边形ABCD=2××AO×BD =×AC×BD.解:∵AB=CB,AD=CD,∴BD是AC的垂直平分线,∴AO=CO=AC,AC⊥BC,故①③正确,∵AB=BC,AD=CD,BD=BD∴△ABD≌△CBD(SAS)故②正确∵S四边形ABCD=2S△ABD,∴S四边形ABCD=2××AO×BD=×AC×BD故④正确故答案为:①②③④18.如图,已知∠3=∠4,要说明△ABC≌△DCB,(1)若以“SAS”为依据,则需添加一个条件是AC=DB;(2)若以“AAS”为依据,则需添加一个条件是∠5=∠6;(3)若以“ASA”为依据,则需添加一个条件是∠1=∠2.【分析】本题要判定△ABC≌△DCB,已知∠3=∠4,和一个公共边,根据SAS,AAS,ASA可添加一对边,一组角.解:已知一组角相等,和一个公共边,则以SAS为依据,则需要再加一对边,即AC=DB以“AAS”为依据,则需添加一组角,即∠5=∠6以“ASA”为依据,则需添加一组角,即∠1=∠2.故分别填AC=DB,∠5=∠6,∠1=∠2.三、解答题(共66分)19.如图所示,已知△ABC≌△DCB,是其中AB=DC,试说明∠ABD=∠ACD.【分析】根据全等三角形对应角相等可得∠ABC=∠DCB,∠ACB=∠DBC,然后相减即可得解.解:∵△ABC≌△DCB,∴∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABC﹣∠DBC=∠DCB﹣∠ACB,即∠ABD=∠ACD.20.如图所示,在△ABC中,∠ACB为直角,∠CAD的角平分线交BC的延长线于点E,若∠B=35°,求∠BAE和∠E的度数.【分析】先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求出∠CAE的度数,故可得出结论.解:∵△ABC中,∠ACB为直角,∠B=35°,∴∠BAC=180°﹣90°﹣35°=55°,∴∠CAD=180°﹣∠BAC=180°﹣55°=125°,∵AE是∠CAD的平分线,∴∠CAE=∠CAD=×125°=62.5°,∴∠BAE=∠BAC+∠CAE=55°+62.5°=117.5°,∠E=90°﹣∠CAE=90°﹣62.5°=27.5°.21.如图所示,AB与CD相交于点O,且AO=BO,CO=DO,过点O作直线EF交AC 于E,交BD于F,试说明OE=OF.【分析】首先利用SAS证明△AOC≌△BOD证得∠A=∠B,然后在△AOE和△OBF 中.利用ASA证明全等,根据全等三角形的对应边相等即可证得.【解答】证明:在△AOC和△BOD中,,∴△AOC≌△BOD,∴∠A=∠B,在△AOE和△OBF中,,∴△AOE≌△OBF.∴OE=OF.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE =AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【分析】(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.【解答】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).23.如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3个单位,设运动的时间为t秒.(1)当t= 6.5时,CP把△ABC的面积分成相等的两部分;(2)当t=5时,CP把△ABC分成的两部分面积之比是S△APC:S△BPC=1:4(3)当t=或时,△BPC的面积为18.【分析】(1)根据中线的性质可知,点P在AB中点时,CP把△ABC的面积分成相等的两部分,进而求解即可;(2)求出当t=5时,AP与BP的长,再根据等高的三角形面积比等于底边的比求解即可;(3)分两种情况:①P在AC上;②P在AB上.解:(1)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP =12+7.5=19.5(cm),∴3t=19.5,解得t=6.5.故当t=6.5时,CP把△ABC的面积分成相等的两部分;(2)5×3=15,AP=15﹣12=3,BP=15﹣3=12,则S△APC:S△BPC=3:12=1:4;(3)分两种情况:①当P在AC上时,∵△BCP的面积=18,∴×9×CP=18,∴CP=4,∴3t=4,t=;②当P在AB上时,∵△BCP的面积=18=△ABC面积的=,∴3t=12+15×=22,t=.故t=或秒时,△BCP的面积为18.故答案为:6.5;1:4;或.24.小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师教过的“倍长中线法”可以解决这个问题,所谓倍长中线法就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到点E,使DE=AD,连结BE,构造△BED≌△CAD,经过推理和计算使问题得到解决请回答:(1)小明证明△BED≌△CAD用到的判定定理是:SAS;(用字母表示)(2)请你帮助小明完成AD取值范围的计算;小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题;(3)如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB=AC.【分析】(1)根据SAS定理解答;(2)根据全等三角形的性质得到BE=AC,根据三角形的三边关系计算,得到答案;(3)仿照(1)的作法,根据等腰三角形的判定定理证明结论.【解答】(1)解:∵BD=DC,∠BDE=∠CDA,DE=AD,∴△BED≌△CAD(SAS),∴小明证明△BED≌△CAD用到的判定定理是SAS,故答案为:SAS;(2)解:∵△BED≌△CAD,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∴AB﹣AC<2AD<AB+AC,∴1<AD<6;(3)证明:延长AD到点E,使DE=AD,连结BE,在△BED和△CAD中,,∴△BED≌△CAD(SAS),∴∠DAC=∠DEB,AC=BE,∵AD平分∠BAC,∴∠DAC=∠DAB,∴∠DAB=∠DEB,∴AB=BE,∴AB=AC.25.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【分析】由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CFA=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CFA+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.。

2023-2024学年人教版八年级数学上册第一章《三角形的初步认识》检测卷附答案解析

2023-2024学年人教版八年级数学上册第一章《三角形的初步认识》检测卷附答案解析

2023-2024学年八年级数学上册第一章《三角形的初步认识》检测卷(满分120分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.小芳有两根长度为4cm 和8cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.3cm B.5cm C.12cm D.17cm2.等腰三角形的两条边长分别为8和4,则它的周长等于()A.12B.16C.20D.16或203.下面四个图形中,线段BD 是ABC 的高的图形是()A.B.C.D.4.下列判定两直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一直角边对应相等C.两个锐角对应相等D.斜边和一锐角对应相等5.如图,为估计池塘岸边A、B 的距离,小方在池塘的一侧选取一点O,测得OA=19米,OB=10米,A、B 间的距离不可能是()A.26米B.12米C.9米D.15米6.如图,点B ,E ,C ,F 在同一直线上,AB DE =,BC EF =,添加一个条件能判定ABC DEF ≌△△的是()A.AB DE ∥B.A D ∠=∠C.ACB F ∠=∠D.AC DF∥7.如图,AD ,AE ,AF 分别是ABC 的中线,角平分线,高.则下列各式中错误..的是()A.90AFB ∠=︒B.AE CE =C.2BC CD =D.12BAE BAC∠=∠8.如图,在ABC 中,已知点,,D E F 分别为边,,BC AD CE 的中点,且ABC 的面积是12,则BEF △的面积是()A.3B.4C.6D.89.如图,在ABC 中,30A ∠=︒,50B ∠=︒,将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,则NCF ∠的度数为()A.10︒B.15︒C.20︒D.30︒10.如图,在Rt△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于1MN 2的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②点D 在线段AB 的垂直平分线上;③S △DAC :S △ABC =1:2.正确的是()A.①②B.①③C.②③D.①②③二、填空题(本大题共有6个小题,每小题3分,共18分)11.已知等腰三角形的两边长分别是4cm 和8cm ,则周长为_______12如图,将Rt ABC △绕直角顶点C 顺时针旋转90︒,得到A B C ''' ,连接AA ',若65B ∠=︒,则1∠的度数是_______13.如图,ABC DEF ≌△△,点,,,B E C F 在一条直线上.已知8,5BC EC ==,则CF 的长为______14.如图,AB AC =,AD AE BAC DAE =∠=∠,,点B 、D 、E 在同一条直线上,若125360∠=︒∠=︒,,则2∠的度数为___________15.如图,在ABC 中,AD 是高,AE 是角平分线,若118∠=︒,68C ∠=︒,则BAC ∠的度数为_____16.如图△ABC 中,∠C =90°,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交干点P ,作射线AP 交边BC 于点D ,若CD =4,BD =5,AC =12,则△ABD 的面积是________;三、解答题(本大题共有6个小题,共52分)17.如图,已知AB CD =,AB CD ,BE CF =,求证A D ∠=∠.18.已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.19.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.20.已知:如图,AB //CD ,AB =CD ,BF =CE .(1)求证: ABF ≌ DCE .(2)已知∠AFC =80°,求∠DEC 的度数.21.已知:如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .在射线CD 上截取CE CA =,过点E 作EF CE ⊥,交CB 的延长线于点F .(1)求证:ABC CFE △△≌;(2)若9AB =,4EF =,求BF 的长.22.在ABC 中,90o ACB AC BC ∠=,=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CBE ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE -=;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系解答卷二、选择题(本大题共有10个小题,每小题3分,共30分)1.小芳有两根长度为4cm 和8cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.3cm B.5cm C.12cm D.17cm【答案】B2.等腰三角形的两条边长分别为8和4,则它的周长等于()A.12B.16C.20D.16或20【答案】C3.下面四个图形中,线段BD 是ABC 的高的图形是()A.B.C.D.【答案】D4.下列判定两直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一直角边对应相等C.两个锐角对应相等D.斜边和一锐角对应相等【答案】C5.如图,为估计池塘岸边A、B 的距离,小方在池塘的一侧选取一点O,测得OA=19米,OB=10米,A、B 间的距离不可能是()A.26米B.12米C.9米D.15米【答案】C6.如图,点B ,E ,C ,F 在同一直线上,AB DE =,BC EF =,添加一个条件能判定ABC DEF ≌△△的是()A.AB DE ∥B.A D ∠=∠C.ACB F ∠=∠D.AC DF∥【答案】A7.如图,AD ,AE ,AF 分别是ABC 的中线,角平分线,高.则下列各式中错误..的是()A.90AFB ∠=︒B.AE CE =C.2BC CD =D.12BAE BAC∠=∠【答案】B9.如图,在ABC 中,已知点,,D E F 分别为边,,BC AD CE 的中点,且ABC 的面积是12,则BEF △的面积是()A.3B.4C.6D.8【答案】A9.如图,在ABC 中,30A ∠=︒,50B ∠=︒,将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,则NCF ∠的度数为()A.10︒B.15︒C.20︒D.30︒【答案】C10.如图,在Rt△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于1MN 2的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②点D 在线段AB 的垂直平分线上;③S △DAC :S △ABC =1:2.正确的是()A.①②B.①③C.②③D.①②③【答案】A四、填空题(本大题共有6个小题,每小题3分,共18分)11.已知等腰三角形的两边长分别是4cm 和8cm ,则周长为_______【答案】20cm12如图,将Rt ABC △绕直角顶点C 顺时针旋转90︒,得到A B C ''' ,连接AA ',若65B ∠=︒,则1∠的度数是_______【答案】20°13.如图,ABC DEF ≌△△,点,,,B E C F 在一条直线上.已知8,5BC EC ==,则CF 的长为______【答案】315.如图,AB AC =,AD AE BAC DAE =∠=∠,,点B 、D 、E 在同一条直线上,若125360∠=︒∠=︒,,则2∠的度数为___________【答案】35︒15.如图,在ABC 中,AD 是高,AE 是角平分线,若118∠=︒,68C ∠=︒,则BAC ∠的度数为_____【答案】80°16.如图△ABC 中,∠C =90°,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交干点P ,作射线AP 交边BC 于点D ,若CD =4,BD =5,AC =12,则△ABD的面积是________;【答案】30五、解答题(本大题共有6个小题,共52分)17.如图,已知AB CD =,AB CD ,BE CF =,求证A D ∠=∠.证明:∵AB CD ,∴B C ∠=∠,又∵AB DC =,BE CF =,∴()SAS ABE DCF ≌△△,∴A D ∠=∠.18.已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.证明:∵AB DE ∥,∴A D ∠=∠,∵AF DC =,∴AF CF DC CF+=+即AC DF=在ABC 与DEF 中AC DFA D AB DE=⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF ≌△△,∴B E ∠=∠.20.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.解:(1)证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A DAB DE ABC DEF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEF ≌△△;(2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =,∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =--=--=,∴FC 的长度是4.20.已知:如图,AB //CD ,AB =CD ,BF =CE .(1)求证: ABF ≌ DCE .(2)已知∠AFC =80°,求∠DEC的度数.(1)证明:∵AB //CD ,∴∠B =∠C ,在 ABF 与 DCE 中,AB DC B C BF CE=⎧⎪∠=∠⎨⎪=⎩,∴ ABF ≌DCE (SAS ).(2)解:∵∠AFB +∠AFC =180°,∠AFC =80°,∴∠AFB =180°﹣∠AFC =100°,由(1)知, ABF ≌ DCE ,∴∠AFB =∠DEC ,∴∠DEC =100°.22.已知:如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .在射线CD 上截取CE CA =,过点E 作EF CE ⊥,交CB 的延长线于点F.(1)求证:ABC CFE △△≌;(2)若9AB =,4EF =,求BF 的长.解:(1)∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ABC FACB E AC CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CFE △△≌;(2)∵ABC CFE △△≌,∴9AB CF ==,4BC EF ==,∴5BF CF BC =-=.22.在ABC 中,90o ACB AC BC ∠=,=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CBE ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE -=;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系解:(1)如图①∵90ADC ACB ∠=∠=︒,∴123290︒∠∠∠∠+=+=,∴13∠=∠.又∵AC BC =,90ADC CEB ∠=∠=︒,∴ADC CEB ≅ .②∵ADC CEB ≅ ,∴CE AD =,CD BE =,∴DE CE CD AD BE =+=+.(2)∵90ACB CEB ∠=∠=︒,∴12290CBE ∠∠∠∠︒+=+=,∴1CBE ∠=∠.又∵90AC BC ADC CEB ∠∠︒=,==,∴ACD CBE ≅ ,∴CE AD CD BE =,=,∴DE CE CD AD BE =-=-.(3)当MN 旋转到图3的位置时,AD DE BE 、、所满足的等量关系是DE BE AD =-(或AD BE DE BE AD DE -+=,=等).∵90ACB CEB ∠=∠=︒,∴90ACD BCE CBE BCE ∠∠∠∠︒+=+=,∴ACD CBE ∠=∠,又∵90AC BC ADC CEB ∠∠︒=,==,∴ACD CBE ≅ ,∴AD CE CD BE ==,,∴DE CD CE BE AD =-=-.。

浙教版 八年级数学上册 第1章 三角形的初步认识 单元测试卷 (含解析)

浙教版 八年级数学上册 第1章  三角形的初步认识 单元测试卷 (含解析)

八年级(上)数学第1章三角形的初步认识单元测试卷一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或5.用反证法证明“”时应先假设A.B.C.D.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或139.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”10.如图,在等腰中,为的平分线,,,,则A.B.C.D.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是.12.已知在中,,,,那么.13.等腰,,平分交于,如果,则.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于度.15.如图,直角中,,,当时,.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是.(写一种即可)17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为度.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.20.如图,中,,是中点,.求的长.21.如图,已知,平分.求证:是等腰三角形.22.如图,,是上的一点,且,,求证:.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.参考答案一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.解:、不是轴对称图形,故本选项符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意.故选:.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.解:,,①当底角时,则,;②当顶角时,,,;即其余两角的度数是,或,,故选:.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等解:、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;、可以利用边角边判定两三角形全等,不符合题意;、可以利用边角边或判定两三角形全等,不符合题意;、可以利用角角边判定两三角形全等,不符合题意.故选:.4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或解:直角三角形的两边长分别为3和4,①4是此直角三角形的斜边;②当4是此直角三角形的直角边时,斜边长为.综上所述,斜边长为4或5.故选:.5.用反证法证明“”时应先假设A.B.C.D.解:用反证法证明“”时,应先假设.故选:.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,解:选项,,,可利用判定△,同理选项,也可利用判定△,选项,,可利用判定△,选项,,,只能证明△,不能证明△.故选:.7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个解:,是等腰三角形;,是等腰三角形;是的平分线,,,,是等腰三角形;和为等腰三角形;图中等腰三角形的个数有5个;故选:.8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或13解:解得:,当4为腰时,三边为3,3,5,由三角形三边关系定理可知,周长为:.当5为腰时,三边为5,5,3,符合三角形三边关系定理,周长为:.故选:.9.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”解:由题意:“筝形”的一条对角线是另一条对角线的垂直平分线,所以:“筝形”是轴对称图形,对称轴是对角线所在的直线.故选:.10.如图,在等腰中,为的平分线,,,,则A.B.C.D.解:在等腰中,为的平分线,,,,,,,,,,故选:.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是10.解:2是腰长时,三角形的三边分别为2、2、4,,不能组成三角形,2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长.故答案为:10.12.已知在中,,,,那么.解:如图所示:可知为的一个直角边,在中,根据勾股定理有:,即,解得:.故答案为:.13.等腰,,平分交于,如果,则3.解:,平分,,故答案为:3.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于22.5度.解:在直角三角形中,设最小的锐角的度数为,则另一个锐角的度数则为.则,即,解得,,即这个直角三角形中最小的一个角等于.故答案是:22.5.15.如图,直角中,,,当时,.解:设,,,,,,,,,,,故答案为:.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是或.(写一种即可)解:若添加,在和中,,;若添加,在和中,,.故答案为:或.17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.解:如图,设过点的直线与交于点,则与都是等腰三角形,度,,,,,,,故答案为.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为150度.解:,,,,,,,,,最小为,的度数最大为,故答案为:150.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.【解答】证明:假设三角形的三个内角、、中有两个直角,不妨设,则,这与三角形内角和为相矛盾,不成立;所以一个三角形中不能有两个直角.20.如图,中,,是中点,.求的长.解:,点是中点,,,,点是中点,.21.如图,已知,平分.求证:是等腰三角形.【解答】证明:,,平分,,,是等腰三角形.22.如图,,是上的一点,且,,求证:.【解答】证明:,.,和是直角三角形,而.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.【解答】(1)证明:是的平分线,,,,,.(2)解:,,,,.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.解:(1),,,;(2),,根据题意得:,解得:,即出发秒钟后,能形成等腰三角形;(3)①当时,如图1所示,则,,.,,,,,秒.②当时,如图2所示,则,秒.③当时,如图3所示,过点作于点,则,,,,秒.综上所述:当为11秒或12秒或13.2秒时,为等腰三角形.。

第1章 三角形的初步知识单元测试卷(较易 含答案)

第1章 三角形的初步知识单元测试卷(较易 含答案)

浙教版初中数学八年级上册第一单元《三角形的初步认识》单元测试卷考试范围:第一单元;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图所示,图中三角形的个数为( )A. 3个B. 4个C. 5个D. 6个2.如图,以BC为边的三角形共有( )A. 1个B. 2个C. 3个D. 4个3.下列命题中是真命题的是( )A. 如果a+b<0,那么ab<0B. 内错角相等C. 三角形的内角和等于180∘D. 相等的角是对顶角4.下列语句中,是定义的是( )A. 两点确定一条直线B. 在同一平面内,不相交的两条直线叫做平行线C. 三角形的角平分线是一条线段D. 同角的余角相等5.如图,下列命题中,正确的是( ) ①若∠1=∠3,则AD//BC; ②若AD//BC,则∠1=∠2=∠3; ③若∠1=∠3,AD//BC,则∠1=∠2; ④若∠C+∠3+∠4=180∘,则AD//BC.A. ① ②B. ① ③C. ② ④D. ③ ④6.如图,在下列四组条件中,能判定AB//CD的是( )A. ∠1=∠2B. ∠BAD=∠BCDC. ∠ABC=∠ADC,∠3=∠4D. ∠BAD+∠ABC=180°7.如图,两个直角三角形,若△ABC≌△CDE,则线段AC和线段CE的关系是( )A. 既不相等也不互相垂直B. 相等但不互相垂直C. 互相垂直但不相等D. 相等且互相垂直8.如图,△ACE≌△DBF,AD=8,BC=2,则AC=( )A. 2B. 8C. 5D. 39.如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )A. SSSB. SASC. AASD. HL10.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC//DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是( )A. BC=DEB. AE=DBC. ∠A=∠DEFD. ∠ABC=∠D11.如下图,下列四种基本尺规作图分别表示 ①作一个角等于已知角; ②作一个角的平分线; ③作一条线段的垂直平分线; ④过直线外一点作已知直线的垂线,则对应选项中作法错误的是( )A. ①B. ②C. ③D. ④12.作∠AOB平分线的作图过程如下:作法:(1)在OA和OB上分别截取OD、OE,使OD=OE.(2)分别以D,E为圆心,大于1DE的长为半径作弧,两弧交于2点C.(3)作射线OC,则OC就是∠AOB的平分线.用下面的三角形全等的判定解释作图原理,最为恰当的是( )A. SSSB. SASC. ASAD. AAS第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,在△ABC中,按以下步骤作图:BC的长为半径作弧,两①分别以点B和点C为圆心,大于12弧相交于点M和N;②作直线MN,分别交边AB,BC于点D和E,连接CD.若∠BCA=90°,AB=8,则CD的长为______.14.如图,△ABC≌△ADE,若∠E=70∘,∠D=30∘,∠CAD=40∘,则∠BAD=.15.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图:作∠AOB的角平分线OP的依据是______.(填全等三角形的一种判定方法)三、解答题(本大题共9小题,共72.0分。

2024年浙教版数学八上第一章 三角形的初步认识 单元测试卷(含答案)

2024年浙教版数学八上第一章 三角形的初步认识 单元测试卷(含答案)

第一章三角形的初步认识单元测试卷一、选择题1.以下列数值为长度的各组线段中,能组成三角形的是( )A.2,4,7B.3,3,6C.5,8,2D.4,5,62.下列汽车标志中,不是由多个全等图形组成的是( )A.B.C.D.3.已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是( )A.2b-2c B.-2b C.2a+2b D.2a4.能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是( )A.∠1=91°,∠2=50°B.∠1=89°,∠2=1°C.∠1=120°,∠2=40°D.∠1=102°,∠2=2°5.如图,点B、C、D在同一直线上,若△ABC≌△CDE,DE=4,BD=13,则AB等于( )A.7B.8C.9D.106.如图所示,△ABC≌△BAD,点A与点B,点C与点D是对应顶点,如果∠DAB=50°,∠DBA=40°,那么∠DAC的度数为( )A.50°B.40°C.10°D.5°7.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA = 2,则PQ的长不可能是( )A.4B.3.5C.2D.1.58.在下面四个命题是真命题的个数有( )(1)互相垂直的两条线段一定相交;(2)有且只有一条直线垂直于已知直线;(3)两条直线被第三条直线所截,同位角相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.3个B.2个C.1个D.0个9.如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法如下:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连结AB,AC,则△ABC为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是( )A.(1)B.(2)C.(3)D.(4)10.如图,△ABC为直角三角形,∠ACB=90°,AD为∠CAB的平分线,与∠ABC的平分线BE交于点E,BG是△ABC的外角平分线,AD与BG相交于点G,则∠ADC与∠GBF的和为( )A.120°B.135°C.150°D.160°二、填空题11.将命题“同角的补角相等”改写成“如果……那么……”的形式为 12.如图,在△ABC和△DEF中,A、F、C、D在同一直线上,AF=DC,AB=DE,当添加条件 时,就可得到△ABC≌△DEF(只需填一个你认为正确的条件即可).13.如图,△ABC≌△CDE ,若∠D =35°,∠ACB =45°,则∠DCE 的度数为 .14.已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ;(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点P ;(3)画射线OP ,射线OP 即为所求(如图).从上述作法中可以判断△MOP≌△NOP ,其依据是 (在“SSS ”“SAS ”“AAS ”“ASA ”中选填)15.如图,在△ABC 中,AD 是BC 边上的中线,CE 是AB 边上的高,若AB =3,S △ADC =6,则CE 的长度为 .16.如图,点 C 在线段 BD 上,AB ⊥BD 于 B ,ED ⊥BD 于 D .∠ACE =90°,且 AC =5cm ,CE =6cm ,点 P 以 2cm/s 的速度沿 A→C→E 向终点 E 运动,同时点 Q 以 3cm/s 的速度从 E 开始,在线段 EC 上往返运动(即沿 E→C→E→C→…运动),当点 P 到达终点时,P ,Q 同时停止运动.过 P ,Q 分别作 BD 的垂线,垂足为 M ,N .设运动时间为 ts ,当以 P ,C ,M 为顶点的三角形与△QCN 全等时,t 的值为  .三、作图题17.如图,按下列要求图:(要求有明显的作图痕迹,不写作法)(1)作出△ABC的角平分线CD;(2)作出△ABC的中线BE;(3)作出△ABC的高BG.四、解答题18.某同学用10块高度都是5cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板ABD(∠ABD=90°,BD=BA),点B在CE上,点A和D分别与木墙的顶端重合.(1)求证:△ACB≌△BED;(2)求两堵木墙之间的距离.19.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.20.如图,在△ABC中,E是AB上一点,AC与DE相交于点F,F是AC的中点,AB∥CD.(1)求证:△AEF≌△CDF;(2)若AB=10,CD=7,求BE的长.21.如图,在Rt△ABC中,AC=BC,∠ACB=90°,BF平分∠ABC交AC于点F,AE⊥BF于点E,AE,BC的延长线交于点M.(1)求证:AB=BM;(2)求证:BF=2AE.22.如图,△ABC是等边三角形,点D在AC上,以BD为一边作等边△BDE,连接CE.(1)说明△ABD ≌△CBE的理由;(2)若∠BEC=82°,求∠DBC的度数.23.如图,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别是D,E.(1)求证:△ADC≌△CEB;(2)猜想线段AD,BE,DE之间具有怎样的数量关系,并说明理由.24.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(2)若AB=7,AD=4,CD=8,S△ACD=15,求△ABE的面积.答案解析部分1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】D 8.【答案】(1)D 9.【答案】C 10.【答案】B11.【答案】如果两个角是同一个角的补角,那么这两个角相等12.【答案】BC=EF (答案不唯一)13.【答案】100°14.【答案】SSS 15.【答案】816.【答案】1或115或23517.【答案】(1)解:如图:CD 是所求的△ABC 的角平分线;(2)解:如图:BE 是所求的△ABC 的中线;(3)解:如图BG 为所求的△ABC 的高.18.【答案】(1)证明:由题意得:AB =BD ,∠ABD =90°,AC ⊥CE ,DE ⊥CE ,∴∠BED =∠ACB =90°,∴∠BDE+∠DBE =90°,∠DBE+∠ABC =90°,∴∠BDE =∠ABC ,在△ACB 和△BED 中,{∠ABC =∠BDE ∠ACB =∠BED BD =AB,∴△ACB ≌△BED (AAS );(2)解:由题意得:AC =5×3=15(cm ),DE =7×5=35(cm ),∵△ACB ≌△BED ,∴DE =BC =35cm ,BE =AC =15cm ,∴DE =DC+CE =50(cm ),答:两堵木墙之间的距离为50cm .19.【答案】证明:∵在△ABD 和△CBD 中, {AB =CB AD =CD BD =BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.20.【答案】(1)证明:∵AB//CD∴∠A=∠DCF∵∠AFE=∠DFC∵ F是AC的中点,∴AF=CF∴△AEF≌△CDF(2)解:∵△AEF≌△CDF∴AE=CD∵BE=AB-AE=AB-CD=10-7=321.【答案】(1)证明:∵BF平分∠ABC,∴∠ABE=∠MBE,∵AE⊥BF,∴∠AEB=∠MEB=90°,∵BE=BE∴△ABE≌△MBE(ASA)∴AB=BM(2)证明:∵△ABE≌△MBE,∴AE=EM,∴AM=2AE,∵∠ACB=90°,∠MEB=90°,∴∠BCF=∠ACM=90°,∠M+∠CBF=∠M+∠CAM=90°,∴∠CBF=∠CAM,∵BC=AC,∴△BCF≌△ACM(ASA),∴BF=AM,∴BF=2AE.22.【答案】(1)解:△ABD ≌△CBE,理由如下:∵△ABC与△BDE是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∵∠DBC=∠DBC,∴∠ABD=∠CBE∴△ABD≌△CBE(SAS);(2)解:由(1)可得:△ABD ≌△CBE,∵∠BEC=82°,∴∠BEC=∠BDA=82°,∵∠ACB=60°,∠ADB=∠DBC+∠ACB,∴∠DBC=22°.23.【答案】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=∠CBE+∠ECB=90°,∴∠ACD=∠CBE.在△ADC和△CEB中{∠ADC=∠CEB∠ACD=∠CBEAC=BC∴△ADC≌△CEB;(2)解:AD=BE+DE,理由如下:∵△ADC≌△CEB,∴CD=BE,AD=CE.∴CE=CD+DE=BE+DE.∴AD=BE+DE.24.【答案】(1)证明:如图,过点E作EG⊥AD于G,EH⊥BC于H,∵EF⊥AB,∠AEF=50°,∴∠FAE=90°−50°=40°,∵∠BAD=100°,11 / 11∴∠CAD =180°−∠BAD−∠FAE =40°,∴∠FAE =∠CAD =40°,∴CA 为∠DAE 的平分线,又EF ⊥AB ,EG ⊥AD ,∴EF =EG ,∵BE 是∠ABC 的平分线,∴EF =EH ,∴EG =EH ,∴点E 在∠ADC 的平分线上,∴DE 平分∠ADC ;(2)解:设EG =x ,则EF =EH =EG =x ,∴S △ACD =S △ADE +S △CDE =12AD ⋅EG +12CD ⋅EH =15,即:12×4x +12×8x =15,解得,x =52,∴S △ABE =12AB ⋅EF =12×7×52=354,∴△ABE 的面积为354.。

浙教版八年级数学上册第1章 三角形的初步认识 单元测试卷(含答案)

浙教版八年级数学上册第1章 三角形的初步认识 单元测试卷(含答案)

浙教版八年级数学上册第1章三角形的初步认识单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.在下列长度的四根木棒中,能与两根长度分别为4cm和9cm的木棒构成一个三角形的是()A. 4cmB. 5cmC. 9cmD. 13cm2.如图,∠ABC=∠DCB,添加下列条件,不能判定△ABC≌△DCB的是()A. ∠A=∠DB. ∠ACB=∠DBCC. AC=DBD. AB=DC3.如图,△ABC中,AB=AC,AD⊥BC,下列结论中不正确的是()A. D是BC中点B. AD平分∠BACC. AB=2BDD. ∠B=∠C4.下列判断:①三角形的三个内角中最多有一个钝角;②三角形的三个内角中至少有两个锐角;③三角形的角平分线、中线、高线均在三角形内部;④三角形的外角大于任何一个内角.正确的有几个()A. 1个B. 2个C. 3个D. 4个5.如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A. AD=BDB. AE=ACC. ED+EB=DBD. AE+CB=AB6.下列两个三角形全等的是()A. ①②B. ②③C. ③④D. ①④7.BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC=6cm,则DE=()cm.A. 1B. 2C. 3D. 48.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A. 5对B. 6对C. 8对D. 10对9.如图,在△ABC中,∠C=90∘,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤S BDE:S△ACD=BD:AC,其中正确的个数为()A. 5个B. 4个C. 3个D. 2个10.如图,的两条中线AM,BN相交于点O,已知的面积为4,的面积为2,则四边形MCNO的面积为()A. 4B. 3C. 6D. 2二、填空题(本大题共8小题,共24分)11.12.如图,∠ACD是△ABC的外角,若∠B=50°,∠ACD=120°,则∠A=_________12.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=________cm2.13.如图,∠ACB=90°.AC=BC,AD⊥CE,BE⊥CE.垂足分别为D、E,AD=5,DE=3,则BE=________.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.15.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是______.16.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AB=3,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点O恰好落在线段BC上,当△DCM为直角三角形时,则AM的长为________.17.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AD,CB=CD,则图中共有______对全等三角形.18.如图,已知∠3=∠4,要说明△ABC≌△DCB,(1)若以“SAS”为依据,则需添加的条件是_______;(2)若以“AAS”为依据,则需添加的条件是_______;(3)若以“ASA”为依据,则需添加的条件是_______.三、解答题(本大题共7小题,共66分)19.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于点F,求∠DFB的度数.20.在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.21.如图,AC,BD相交于点O,且AB=DC,AC=DB.求证:∠ABO=∠DCO.22.如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,AD与BE交于点F,∠BAD=45°,求证:BF=2AE.23.如图,长方形ABCD中,AD=BC=4,AB=CD=2.点P从点A出发以每秒1个单位的速度沿A→B→C→D→A的方向运动,回到点A停止运动.设运动时间为t秒.(1)当△ABP的面积为3时,求t的值;(2)△ABP面积的最大值是______,此时t的取值范围是______.24.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°.(1)若∠ABE=65°,∠ACF=75°,求∠BAC的度数.(2)求证:EF=2AD.25.26、(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF 的形状.(不需要证明)答案和解析1.【答案】C【解析】【分析】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.设选取的木棒长为Lcm,再根据三角形的三边关系求出L的取值范围,选出合适的L的值即可.【解答】解:设选取的木棒长为Lcm,∵两根木棒的长度分别为4m和9m,∴9cm−4cm<L<9cm+4cm,即5cm<L<13cm,∴9cm的木棒符合题意.故选C.2.【答案】C【解析】【分析】本题考查了全等三角形的判定的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS,HL,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项不符合题意;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项不符合题意;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项符合题意;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项不符合题意;故选:C.3.【答案】C【解析】解:∵AB=AC,AD⊥BC,∴∠B=∠C,∠BAD=∠CAD,BD=DC.∴AD平分∠BAC,无法确定AB=2BD.故A、B、D正确,C错误.故选:C.由在△ABC中,AB=AC,AD⊥BC,根据等边对等角与三线合一的性质,即可求得答案.此题考查了等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.4.【答案】B【解析】【分析】本题主要考查三角形的内角和定理,三角形的外角性质,三角形的中线、高线、角平分线.掌握三角形的内角和定理,三角形的外角性质,三角形的中线、高线、角平分线是解题的关键.根据三角形的内角和等于180°判断①②,根据角形的中线、高线、角平分线的定义判断③,根据三角形的外角性质判断④即可.【解答】解:因为三角形的内角和为180°,所以三角形的三个内角中最多有一个钝角,三角形的三个内角中至少有两个锐角,所以①②是正确的;锐角三角形的角平分线、中线、三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,所以③不正确;例如钝角三角形三角形中有一个角等于120°,外角小于一个钝角,所以④不正确.综上,正确的有①②共2个.故选B.5.【答案】D【解析】【分析】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案.【解答】解:由折叠的性质知,BC=BE,∴AE+CB=AE+BE=AB.故选D.6.【答案】A【解析】【分析】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS,HL.根据全等三角形判定方法对各图形中的条件进行分析得出答案即可.【解答】解:在图①和图②所给的条件中,具备了两边和它们的夹角对应相等,∴根据SAS可以判断三角形①和三角形②全等,∴两个三角形全等的是①②.故选A.7.【答案】B【解析】【分析】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出DE=DF是解此题的关键.过D作DF⊥BC于F,根据角平分线的性质得出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB于E,∴DE=DF,∵△ABC的面积是15cm2,AB=9cm,BC=6cm,∴12×AB×DE+12×BC×DF=15cm2,∴9DE+6DE=30,解得:DE=2,故选B.8.【答案】D【解析】【分析】本题考查矩形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.【答案】C【解析】【分析】此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用.根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.【解答】解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AE+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选C.10.【答案】A【解析】【分析】本题主要考查了三角形的面积,解题的关键是利用中线找出三角形面积关系.只应用三角形中线平分面积的性质得结论【解答】解:∵AM和BN是中线,∴S△BNC=1S△ABC=S△ABM,即S△ABO+S△BOM=S△BOM+S四边形MCNO,S△ABO=S四边形MCNO,2∵△ABO的面积为4,∴S四边形MCNO=4.故答案为A.11.【答案】70°【解析】【分析】根据三角形的外角的性质计算.【详解】解:由三角形的外角的性质可知,∠A=∠ACD−∠B=70°,故答案为:70°.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.【答案】 12【解析】【分析】本题考查了三角形的中线和三角形的面积,根据三角形的面积公式和三角形的中线的定义可知S△ABC=2S△ACD,S△ACD=2S△ACE,进而得到答案.【解答】解:∵AD是△ABC的中线,CE是△ACD的中线,∴S△ABC=2S△ACD,S△ACD=2S△ACE,∴S△ABC=4S△ACE=12cm2.故答案为12.13.【答案】2【解析】【分析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等).可先证明△BCE≌△CAD,可求得CE=AD,CD=BE,结合条件可求得CD,则可求得BE.【解答】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,{∠E=∠ADC∠CBE=∠ACD BC=AC,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=5,∵DE=3,∴CD=CE−DE=AD−DE=5−3=2,∴BE=CD=2.故答案是2.14.【答案】55°【解析】【分析】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE,求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,{AB=AC ∠BAD=∠EAC AD=AE∴△BAD≌△CAE,∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.15.【答案】圆的半径相等【解析】【分析】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).利用圆的半径相等可判断CD=AB.【解答】解:小亮的作图依据为圆的半径相等.故答案为圆的半径相等.16.【答案】2或3√3−3【解析】【分析】本题考查了翻折变换−折叠问题,含30度角的直角三角形的性质,勾股定理,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及勾股定理,即可得到AM的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形.∵在Rt△ABC中,∠B=90°,∠A=60°,AB=3,∴∠C=30°,AC=6,由折叠可得,AM =DM ,又∵DM =12CM , ∴AM =12CM =13AC =2; ②如图,当∠CMD =90°时,△CDM 是直角三角形.∵在Rt △ABC 中,∠B =90°,∠A =60°,AB =3,∴∠C =30°,AC =6,∴CD =2MD ,在直角△CDM 中,根据勾股定理得:CM 2=CD 2−MD 2,∴CM =√3MD ,又∵根据折叠可得AM =MD ,∴CM =√3AM ,所以AM +√3AM =6,解得AM =3√3−3.故答案为2或3√3−3.17.【答案】3【解析】解:图中有3对全等三角形,是△ABC≌△ADC ,△ABO≌△ADO ,△CBO≌△CDO ,理由是:∵在△ABC 和△ADC 中{AB =AD AC =AC BC =DC∴△ABC≌△ADC(SSS),∴∠BAO =∠DAO ,∠BCO =∠DCO ,在△BAO 和△DAO 中{AB =AD ∠BAO =∠DAO AO =AO∴△ABO≌△ADO(SAS),同理△CBO≌△CDO,故答案为:3.根据SSS能推出△ABC≌△ADC,根据全等得出∠BAO=∠DAO,∠BCO=∠DCO,根据SAS推出△ABO≌△ADO、△CBO≌△CDO即可.本题考查了全等三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.18.【答案】(1)AC=DB;(2)∠5=∠6;(3)∠ABC=∠DCB(答案不唯一).【解析】【分析】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.本题要判定△ABC≌△DCB,已知∠3=∠4,和一个公共边,根据SAS,AAS,ASA可添加一对边,一组角.【解答】解:已知一组角相等,和一个公共边,则以SAS为依据,则需要再加一对边,即AC=DB以“AAS”为依据,则需添加一组角,即∠5=∠6以“ASA”为依据,则需添加一组角,即∠ABC=∠DCB.故分别填AC=DB,∠5=∠6,∠1=∠2.故答案为:(1)AC=DB;(2)∠5=∠6;(3)∠ABC=∠DCB.19.【答案】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∠B=∠D,∴∠BAD=∠CAE=1×(∠BAE−∠DAC)=20°,2∵∠B=∠D,∠BGA=∠DGF,∴∠DFB=∠BAD=20°.【解析】本题考查的是全等三角形的性质,三角形内角和及对顶角,掌握全等三角形的对应角相等是解题的关键.根据全等三角形的性质得到∠BAC=∠DAE,∠B=∠D,求出∠BAD=∠CAE=20°,根据对顶角相等计算即可.20.【答案】解:∵CD是AB边上高,∴∠BDF=90°,∠ABE=∠BFC−∠BDF=113°−90°=23°,∵BE为角平分线,∴∠CBF=∠ABE=23°,∴∠BCF=180°−∠BFC−∠CBF=180°−113°−23°=44°.【解析】本题考查了三角形的高线角平分线的概念,三角形内角和定理以及三角形的外角的性质,掌握三角形内角和等于180°是解题的关键.根据三角形的外角的性质求出∠ABE,由角平分线的定义求出∠CBF的度数,运用三角形内角和定理即可求出∠BCF的度数.21.【答案】证明:连接BC.在△ABC和△DCB中,{AB=DC AC=DB BC=CB,∴△ABC≌△DCB(SSS),∴∠A=∠D,在△AOB和△DOC中,∴△AOB≌△DOC(AAS).∴∠ABO=∠DCO.【解析】本题考查了全等三角形的判定与性质,注意:全等三角形的判定有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等.连接BC,先证明△ABC≌△DCB,然后证明△AOB≌△DOC,即可证得.22.【答案】证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,{∠CAD=∠CBEAD=BD∠ADC=∠BDF=90°,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE.【解析】此题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质.先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证.23.【答案】解:(1)当P点在BC上时,BP=t−2,则12⋅2⋅(t−2)=3,解得t=5;当P点在AD上时,AP=12−t,则12⋅2⋅(12−t)=3,解得t=9;综上所述,t的值为5或9;(2)4;6≤t≤8.【解析】解:(1)当P点在BC上时,BP=t−2,则12⋅2⋅(t−2)=3,解得t=5;当P点在AD上时,AP=12−t,则12⋅2⋅(12−t)=3,解得t=9;综上所述,t的值为5或9;(2)点P在CD上时,△ABP的边AB上的高最大,△ABP的面积有最大值:12×2×4=4,此时t的范围为6≤t≤8.故答案为4,6≤t≤8.(1)讨论:当P点在BC上时,BP=t−2,根据三角形面积公式得到12⋅2⋅(t−2)=3;当P点在AD上时,则AP=12−t,根据三角形面积公式12⋅2⋅(12−t)=3,然后分别解方程即可;(2)根据三角形面积公式,点P点在CD上时△ABP的面积有最大值,然后求出P点运动到C点和D点的时间得到t 的范围.本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.24.【答案】(1)解:∵AE=AB,∴∠AEB=∠ABE=65°,∴∠EAB=50°,∵AC=AF,∴∠ACF=∠AFC=75°,∴∠CAF=30°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠ABC+∠FAC=180°,∴50°+2∠BAC+30°=180°,∴∠BAC=50°;(2)证明:延长AD至H,使DH=AD,连接BH,∵EF=2AD,∴AH=EF,在△BDH和△CDA中,{BD=CD∠BDH=∠CDA DH=AD,∴△BDH≌△CDA,∴HB=AC=AF,∠BHD=∠CAD,∴AC//BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,{AE=AB∠EAF=∠ABH AF=BH,∴△ABH≌△EAF,∴∠AEF=∠ABH,∴EF=AH=2AD.【解析】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题.25.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠AEC AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:成立,理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠AEC AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:△DEF是等边三角形.【解析】【分析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】(1)见答案;(2)见答案;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中{FB=FA∠FBD=∠FAE BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.。

八年级数学上册第一章三角形的初步认识单元综合测试卷试题

八年级数学上册第一章三角形的初步认识单元综合测试卷试题

三角形的初步认识一、选择题(每一小题3分,一共30分) 1. 以下各组线段中,能组成三角形的是〔 〕A .4,6,10B .3,6,7C .5,6,12D .2,3,6 2、在△ABC 中,∠A —∠C =∠B ,那么△ABC 是 〔 〕A 、等边三角形B 、锐角三角形C 、钝角三角形D 、直角三角形3、用尺规作图作一个角等于角的示意图如下图,那么说明'''A O B AOB ∠=∠根据是〔 〕A 、SASB 、ASAC 、SSSD 、AAS4. 如图AB ⊥AD ,AB ⊥BC ,那么以AB 为一条高线的三角形一共有〔 〕个. A 、 1 B 、2 C 、3 D 、45.如图,△BDC′是将长方形纸片ABCD 沿BD 折叠得到的,那么图中〔包括虚线局部〕一共有〔 〕对全等三角形A 、2B 、3C 、4D 、5 6、 以下是命题的是〔 〕A 、作两条相交直线B 、∠α和∠β相等吗?C 、全等三角形对应边相等D 、假设24a =,求a 的值 7、以下命题中,真命题是〔 〕 A 、垂直于同一直线的两条直线平行B 、有两边和其中一边上的高对应相等的两个三角形全等第3题 DBCAEC'第5题第4题ABDCEC 、三角形三个内角中,至少有2个锐角D 、有两条边和一个角对应相等的两个三角形全等 8、如图,对任意的五角星,结论正确的选项是〔 〕A 、∠A+∠B+∠C+∠D+∠E=90°B 、∠A+∠B+∠C+∠D+∠E=180°C 、∠A+∠B+∠C+∠D+∠E=270°D 、∠A+∠B+∠C+∠D+∠E=360°9、如图,△ABC 中,∠C=90°,AC=BC ,AD 是∠CAB 的平分线,DE ⊥AB 于E 。

AB=6cm ,那么△DEB 的周长为〔 〕A 、5cmB 、6cmC 、7cmD 、8cm10. 如图, BF 是∠ABD 的平分线,CE 是∠∠BDC =130°,∠BGC=100°,那么∠A =〔 〕A 、50°B 、55°C 、70°D 、80°二、填空题(每一小题3分,一共30分)11、如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条,这样做是运用了三角形的__________________.12. 请将命题“对顶角相等〞改写成“假如……那么……〞的形式:_______________________________________________________________________________第11题EDCBA第9题 第14题第13题 ABE DC G EFD第10题_______13、如图,在△ABC 中,AD ⊥BC 于D ,AE 为∠BAC 的平分线,且∠DAE=15°,∠B=35°,那么∠C=________°14、如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是_______________(添加一个条件即可). 15、命题“假设(1)0x x -=,那么0x =〞是_____命题(填“真〞、假),证明时可举出的反例是______________.16、三角形的三边长分别是3、x 、9,那么化简135-+-x x = .17、如图,在△ABC 中,AB=AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,假如BC=10,△BDC 的周长为22,那么AB= _.18、如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出以下结论: ①∠1=∠2;②EM=BM ;③△ACN ≌△ABM ;④CD=DB . 其中正确的结论是________________.〔填序号〕19、,∠α=50°,且∠α的两边与∠β的两边互相垂直,那么∠β=_______________________.20、假设三角形的周长为13,且三边均为整数,那么满足条件的三角形有__________种.三、解答题〔一共40分〕21、〔10分〕如图,△ABC ,请按以下要求作图: 〔1〕用直尺和圆规作△ABC 的角平分线CG.ED CBA第17题第18题〔2〕作BC边上的高线〔本小题作图工具不限〕.〔3〕用直尺和圆规作△DEF,使△DEF≌△ABC.22、阅读填空:〔8分〕如图,∠∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌ △,断定根据是,由此得到∠OED=∠ ;再证明△PEC≌△,断定根据是__ ,由此又得到PE= ;最后证明△EOP≌△,断定根据是,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.23、〔10分〕证明命题“全等三角形对应边上的高相等〞。

2023-2024学年浙教版八年级数学上册第一章《三角形的初步认识》单元试题卷附答案解析

2023-2024学年浙教版八年级数学上册第一章《三角形的初步认识》单元试题卷附答案解析

2023-2024学年八年级数学上册第一章《三角形的初步认识》单元试题卷(满分120分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.下面各组线段中,能组成三角形的是()A.6,9,14B.8,8,16C.10,5,4D.5,11,62.在ABC 中,A ∠是钝角,下列图中画BC 边上的高线正确的是()A. B.C. D.3.用直尺和圆规作一个角等于已知角,如图,能得出AOB AO B '''∠=∠的依据是()A.SASB.SSS C.ASA D.AAS 4.如图,在ABC 中,90C ∠=︒,4AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于()A.83B.43C.2D.15.如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA '、BB '的中点,只要量出A B ''的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短6.如图,点B E C F 、、、在一条直线上,已知AB DF ∥,AB DF =,下列条件中,不能判断ABC DEF ≌△△的是()A.BE CF =B.AC DE =C.A D ∠=∠D.AC DE∥7.下列说法正确的是()A.三角形的角平分线是一条射线B.三角形的三条中线总在三角形内部C.钝角三角形的三条高都在三角形内部D.三角形的三条中线的交点可能在三角形外部8.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若3CD =,10AB =,则ABD △的面积是()A.15B.30C.45D.609.如图,已知C D ∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③12∠=∠;④B E ∠∠=.其中能使ABC ≌AED △的条件有()A.4个B.3个C.2个D.1个10.如图,直线12l l ∥,点C 、A 分别在1l 、2l 上,以点A 为圆心,适当长为半径画弧,交AC 、2l 于点D 、E ;分别以D 、E 为圆心,大于12DE 长为半径画弧,两弧交于点F ;作射线AF 交1l 于点B .若130BCA ∠=︒,则1∠的度数为()A.20︒B.25︒C.30︒D.50︒二、填空题(本大题共有6个小题,每小题3分,共18分)11.如图,在△ABC 中,D,E 分别是AB,AC 上的点,点F 在BC 的延长线上,DE∥BC,若∠1=50°,∠2=110°,则∠A=____.12.如图,在ABC 和BAD 中,ABC BAD ∠=∠,若要使ABC BAD ≌,则需要补充的条件是______.(写出一个即可)13.如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D 的度数为____.14.如图,△ABC 中,AD⊥BC,AE 平分∠BAC,∠B=60°,∠BAC=110°,则∠DAE=_____.15.一个三角形的两边长分别为3和5,第三边长为偶数,则第三边长可能为________【答案】4或616.如图,AD 是ABC ∆的中线,CE 是ACD ∆的中线,DF 是CDE ∆的中线,若2DEF S ∆=,则ABC S ∆等于_______17.如图,在△ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N 再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知AB =10,20ABE S =△,则CE 的长为_______18.如图,在ABC 中,BD 和CD 分别平分ABC ∠和ACB ∠,若40A ∠=︒,则D ∠的大小为______.三、解答题(本大题共有4个小题,共52分)19.如图,已知//AB CD ,AB CD =,BF CE =.求证:AE DF =且//AE DF .20.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.21.如图,点A 、D 、C 、F 在同一条直线上,AD =CF ,AB =DE ,BC =EF .(1)求证:△ABC ≌△DEF ;(2)若∠A =60°,∠B =80°,求∠F 的度数.22.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.一选择题(本大题共有10个小题,每小题3分,共30分)1.A2.D3.B4.D5.A6.B7.B8.A9.B10.B二填空题(本大题共有6个小题,每小题3分,共18分)11.60°12.BC AD =(答案不唯一)13.50°14.25°.15.4或616.1617.418.110︒三、解答题(本大题共有4个小题,共52分)19.证明:BF CE = ,BF EF CE EF ∴+=+,即BE CF =,//AB CD Q ,B C ∴∠=∠,在ABE 与CDF 中,AB CDB C BE CF=⎧⎪∠=∠⎨⎪=⎩,()ABE CDF SAS ∴△≌△,AEB DFC ∴∠=∠,AE DF=//AE DF ∴.20.解:(1)证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A DAB DE ABC DEF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEF ≌△△;(2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =,∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =--=--=,∴FC 的长度是4.21.解:(1)∵AD=CF,∴AD+CD=CD+CF,即AC=DF,在 ABC 和 DEF 中,AB=DEBC=EF AC=DF⎧⎪⎨⎪⎩∴ ABC≌ DEF(SSS);(2)由(1)可得 ABC≌ DEF,∴∠F=∠ACB,根据三角形内角和180°,∠A=60°,∠B=80°,∴∠ACB=180°-60°-80°=40°,∴∠F=40°22.解:(1)①∵∠ACB =∠DCE ,∠DCB =∠DCB ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,∴AD =BE ,∠CEB =∠ADC =180°−∠CDE =120°,∴∠AEB =∠CEB −∠CED =60°;②AD =BE .证明:∵△ACD ≌△BCE ,∴AD =BE .(2)∠AEB =90°;AE =2CM +BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴AC =BC ,CD =CE ,∠ACB =∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE ,∴△ACD ≌△BCE ,∴AD =BE ,∠BEC =∠ADC =135°.∴∠AEB =∠BEC -∠CED =135°-45°=90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM =ME ,∴DE =2CM .∴AE =DE +AD =2CM +BE .。

(完整版)八年级数学上第一章三角形的初步认识单元测试题

(完整版)八年级数学上第一章三角形的初步认识单元测试题

八年级数学上第一章三角形的初步认识单元测试题第一三角形的初步认识单元测试题一、单选题(共10题;共30分)1、下面命题正确的是()A、一组对边平行,另一组对边相等的四边形是平行四边形。

B、等腰梯形的两个角一定相等。

、对角线互相垂直的四边形是菱形。

D、三角形三条边上的中线相交于一点,并且这一点到三个顶点的距离相等.2、用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′′B′=∠AB的根据是()A、SASB、ASA 、AAS D、SSS3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°、60°或150° D、60°或120°4、如图,四边形ABD是正方形,延长B至点E,使E=A,连接AE交D于点F,则∠AF的度数是()A、150°B、125°、135° D、112.5°5、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是().A、SSSB、SAS 、AAS D、ASA6、以下列各组线段长为边能组成三角形的是()A、1,2,4B、8,6,4 、12,5,6 D、2,3,67、下列命题中,真命题的是()A、如果一个四边形两条对角线相等,那么这个四边形是矩形B、如果一个平行四边形两条对角线相互垂直,那么这个四边形是菱形、如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形8、下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等.A、4B、3 、2 D、19、若△AB≌△DEF,△AB的周长为100,DE=30,DF=25,那么B长()A、55B、45 、30 D、2510、在△AB中,∠B的平分线与∠的平分线相交于,且∠B=130°,则∠A=()A、50°B、60°、80° D、100°二、填空题(共8题;共24分)11、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△D≌△D的依据是________.12、如图,AD是△AB的边B上的中线,已知AB=5,A=3,则△ABD与△AD的周长之差为________.13、△AB中,∠BA:∠AB:∠AB=4:3:2,且△AB≌△DEF,则∠DEF=________ 度.14、①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上说法中正确的是________.15、如图,BF、F是△AB的两个外角的平分线,若∠A=50°,则∠BF=________度.16、如图,点D,B,点在同一条直线上,∠A=60°,∠=50°,∠D=25°,则∠1=________度.17、如图所示,BE⊥A于点D,且AB=B,BD=ED,若∠AB=64°,则∠E=________.18、如图,在△AB中,将∠沿DE折叠,使顶点落在△AB内′处,若∠A=75°,∠B=65°,∠1=40°,则∠2的度数为________.三、解答题(共5题;共36分)19、如图,已知E是∠AB的平分线上的一点,E⊥A,ED ⊥B,垂足分别是,D.求证:E垂直平分D.20、如图,在△AB中,D⊥AB,垂足为D,点E在B上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠AB的度数.21、如图,已知DE∥B,D是∠AB的平分线,∠B=70°,∠AB=50°,求∠ED和∠BD的度数.22、如图所示,已知∠AB和∠ADB都是直角,且A=AD,P是AB上任意一点.求证:P=DP.23、如图,平分∠PQ,A⊥P,B⊥Q,A、B为垂足,AB 交于点N.求证:∠AB=∠BA.四、综合题(共1题;共10分)24、如图,在Rt△AB中,∠=90°,以A为一边向外作等边三角形AD,点E为AB的中点,连结DE.(1)证明DE∥B;(2)探索A与AB满足怎样的数量关系时,四边形DBE是平行四边形.答案解析部分一、单选题1、【答案】D【考点】线段垂直平分线的性质,菱形的判定,等腰梯形的性质,命题与定理【解析】【分析】此题需要根据平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质四个知识点,分别对四个结论进行判断,然后得出正确的结果.【解答】A、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故本选项错误;B、等腰梯形的两个角不一定相等,还可能互补,故本选项错误;、对角线互相垂直的平行四边形是菱形,故本选项错误;D、三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,故本选项正确;故选D.【点评】本题考查了平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质,考查的知识点较多,但难度不大,注意细心判断各个选项.2、【答案】D【考点】全等三角形的判定与性质【解析】【分析】由作法易得D=′D′,=′′,D=′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】由作法易得D=′D′,=′′,D=′D′,依据SSS可判定△D≌△D(SSS),则△D≌△D,即∠AB=∠AB(全等三角形的对应角相等).故选D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.3、【答案】D【考点】三角形内角和定理,等腰三角形的性质【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分另两种情况进行讨论。

浙教版八年级数学上册第 1章三角形的初步认识单元测试卷

浙教版八年级数学上册第 1章三角形的初步认识单元测试卷

浙教版八年级数学上册第1章三角形的初步认识单元测试卷一、选择题(每题3分,共30分)1.下列各组长度的三条线段能组成三角形的是()A.4,5,9 B.4,4,8 C.5,6,7 D.3,5,102.对于命题“|a|=a(a为实数)”,能说明它是假命题的反例是()A.a=0 B.a=-2 C.a= 2 D.a=23.下列命题中真命题是()A.如果a2=b2,那么a=bB.三角形的外角都是锐角C.三角形的一个外角大于任何一个内角D.在同一平面内,垂直于同一条直线的两条直线互相平行4.如图,在△ABC中,AD平分∠BAC,∠C=30°,∠DAC=45°,则∠B的度数为() A.60°B.65°C.70°D.75°(第4题) (第6题) (第7题)5.在△ABC中,AC=10,BC=8,AB=9,用尺规作图,在△ABC的边上确定一点E,使△BEC的周长为18,则符合要求的作图痕迹是()6.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD7.如图,已知△ABC,求作一点P,使点P到∠BAC两边的距离相等,且P A=PB.下列确定点P的方法正确的是()A.P为∠BAC,∠ABC的平分线的交点B.P为AC,AB两边的垂直平分线的交点C.P为AC,AB两边上的高的交点D.P为∠BAC的平分线与AB的垂直平分线的交点8.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAS C.SSS D.ASA(第8题) (第9题) (第10题)9.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,连结BE,点D恰好在BE上,则∠3=()A.60°B.55°C.50°D.无法计算10.如图,在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC 于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每题4分,共24分)11.命题“对顶角相等”的题设是________________,结论是________________.12.如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是________.(第12题) (第13题) (第14题)13.如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是________________.(只需写出一个条件即可)14.如图,在△ABC中,∠C=55°,点D在BC边上,DE∥AB交AC于F,若∠1=115°,则∠B的度数为________.15.如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为________.(第15题) (第16题)16.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则DE的长是________.三、解答题(共66分)17.(6分)已知a,b,c为△ABC的三边长,且b,c满足(b-5)2+c-7=0,a为方程|a-3|=2的解,求△ABC的周长,并判断△ABC的形状.18.(6分)如图,已知△ABC中,AD⊥BC于点D,AE平分∠BAC,过点A作直线GH∥BC,且∠GAB =60°,∠C=40°.(1)求△ABC的外角∠CAF的度数;(2)求∠DAE的度数.19.(6分)如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个论断:①AE∥DF;②AB=CD;③CE=BF.(1)请用其中两个论断作为条件,另一个作为结论,写出你认为正确的所有命题;(用序号写出命题,书写形式:“如果⊕、⊕,那么⊕”)(2)选择(1)中你写出的一个命题,说明它正确的理由.20.(8分)如图,在△ABC中,点E在AB边上,请用尺规作图法求作一点F,使得FE=FB,且F点到AB和AC的距离相等.(保留作图痕迹,不写作法)21.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连结CE,分别过A、B两点作AD⊥CE,BE⊥CE,垂足分别为点D、E,求证:AD=BE+DE.22.(10分)如图,在△ABC中,GD=DC,过点G作FG∥BC交BD的延长线于点F,交AB于点E.(1)△DFG与△DBC全等吗?说明理由;(2)当∠C=90°,DE⊥BD,CD=2时,求点D到AB边的距离.23.(10分)在直角三角形ABC中,∠C=90°,AC=8 cm,BC=6 cm,点D在AC上,且AD=6 cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1 cm/s,设点P运动时间为t s.连结PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.24.(12分)【问题背景】如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_________________________________________________;【探索延伸】如图②,若在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立?请说明理由.答案一、1.C 2.B 3.D 4.A 5.D 6.C 7.D 8.D9.B 点拨:∵∠BAC =∠DAE ,即∠1+∠DAC =∠DAC +∠CAE , ∴∠1=∠CAE . 在△ABD 和△ACE 中,∵⎩⎨⎧AB =AC ,∠1=∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ), ∴∠ABD =∠2=30°,∴∠3=∠1+∠ABD =25°+30°=55°.故选B. 10.C 点拨:∵在直角三角形ABC 中,∠C =90°,∴∠BAC +∠ABC =180°-90°=90°. ∵AD 平分∠BAC ,BE 平分∠ABC ,∴∠F AB =12∠BAC ,∠ABE =∠EBC =12∠ABC , ∴∠F AB +∠ABE =12(∠BAC +∠ABC )=45°,∴∠AFB =180°-(∠F AB +∠ABF )=180°-45°=135°,∴①正确; ∵DG ∥AB ,∴∠BDG =∠ABC .∵∠EBC =12∠ABC ,∴∠EBC =12∠BDG ,∴∠BDG =2∠CBE , ∴②正确;∠ABC 的度数不确定,根据已知条件无法证明BC 平分∠ABG , ∴③不正确;∵BG ⊥DG ,∴∠BGD =90°, ∴∠BDG +∠DBG =90°. 又∵∠CAB +∠ABC =90°, ∠BDG =∠ABC ,∴∠DBG =∠CAB .又∵∠BEC =∠EAB +∠ABE ,∠ABE =∠EBC , ∴∠BEC =∠DBG +∠EBC =∠FBG ,∴④正确; 综上,正确的结论为①②④,共3个.故选C. 二、11.两个角是对顶角;这两个角相等 12.100°13.∠B =∠E (答案不唯一) 14.60° 15.1916.6 点拨:∵BQ 平分∠ABC .∴∠ABQ =∠EBQ , 在△ABQ 和△EBQ 中,⎩⎨⎧∠ABQ =∠EBQ ,BQ =BQ ,∠AQB =∠EQB =90°,∴△ABQ ≌△EBQ (ASA ), ∴BA =BE . 同理:AC =CD , ∵△ABC 的周长为26, ∴AB +AC +BC =26. ∵BC =10, ∴AB +AC =16.∴DE =BE +CD -BC =16-10=6. 故答案为6.三、17.解:∵(b -5)2+c -7=0,∴⎩⎨⎧b -5=0,c -7=0,解得⎩⎨⎧b =5,c =7. ∵a 为方程|a -3|=2的解, ∴a =5或a =1.当a =1,b =5,c =7时,1+5<7,不能组成三角形, 故a =1不符合题意. 当a =5,b =5,c =7时, 5+5>7, 能组成三角形, ∴a =5.∴△ABC 的周长为5+5+7=17. ∵a =b =5,∴△ABC 是等腰三角形. 18.解:(1)∵GH ∥BC ,∠C =40°,∴∠HAC =∠C =40°. ∵∠F AH =∠GAB =60°, ∴∠CAF =∠HAC +∠F AH =100°.(2)∵∠HAC =40°,∠GAB =60°,∴∠BAC =80°. ∵AE 平分∠BAC , ∴∠BAE =40°. ∵GH ∥BC ,AD ⊥BC , ∴∠GAD =90°,∴∠BAD =90°-60°=30°, ∴∠DAE =∠BAE -∠BAD =10°.19.解:(1)如果①、②,那么③;如果①、③,那么②;(2)若选择如果①、②,那么③,理由如下: ∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AB +BC =BC +CD ,即AC =DB . 在△ACE 和△DBF 中,∵⎩⎨⎧∠E =∠F ,∠A =∠D ,AC =DB ,∴△ACE ≌△DBF (AAS ), ∴CE =BF ;若选择如果①、③,那么②,理由如下:∵AE ∥DF ,∴∠A =∠D . 在△ACE 和△DBF 中,∵⎩⎨⎧∠E =∠F ,∠A =∠D ,EC =FB ,∴△ACE ≌△DBF (AAS ), ∴AC =DB ,∴AC -BC =DB -BC ,即AB =CD . 20.解:如图,点F 即为所求.21.证明:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°, ∴∠EBC +∠BCE =90°. ∵∠BCE +∠ACD =90°, ∴∠EBC =∠DCA . 在△BCE 和△CAD 中,∵⎩⎨⎧∠E =∠ADC ,∠EBC =∠DCA ,BC =AC ,∴△BCE ≌△CAD (AAS ), ∴BE =DC ,AD =CE , ∴AD =CE =CD +DE =BE +DE . 22.解:(1)△DFG ≌△DBC ,理由如下:∵FG ∥BC ,∴∠F =∠FBC , 在△DFG 和△DBC 中,∵⎩⎨⎧∠F =∠FBC ,∠GDF =∠CDB ,GD =DC ,∴△DFG ≌△DBC (AAS ).(2)如图,过点D 作DM ⊥AB 于点M .由(1)得△DFG ≌△DBC ,∴DF =DB ,∵DE ⊥BD ,∴∠EDF =∠EDB =90°.在△DEF 和△DEB 中,∵⎩⎨⎧DF =DB ,∠EDF =∠EDB ,DE =DE ,∴△DEF ≌△DEB (SAS ),∴∠F =∠EBD ,∵∠F =∠FBC ,∴∠EBD =∠FBC ,∴BD 平分∠ABC .∵∠C =90°,∴DC ⊥BC ,∵DM ⊥AB ,CD =2,∴DM =CD =2,即点D 到AB 边的距离为2.23.(1)证明:∵PD ⊥BD ,∴∠PDB =90°,∴∠BDC +∠PDA =90°.又∵∠C =90°,∴∠BDC +∠CBD =180°-90°=90°,∴∠PDA =∠CBD .又∵AE ⊥AC ,∴∠P AD =90°,∴∠P AD =∠C =90°.又∵BC =6 cm ,AD =6 cm ,∴AD =BC .在△P AD 和△DCB 中,∵⎩⎨⎧∠P AD =∠C ,AD =CB ,∠PDA =∠CBD ,∴△PDA ≌△DBC (ASA );(2)解:∵PD ⊥AB ,∴∠AFP =90°,∴∠P AF +∠APF =180°-90°=90°.又∵AE ⊥AC ,∴∠P AF +∠CAB =90°,∴∠APF =∠CAB .在△APD 和△CAB 中,∵⎩⎨⎧∠APD =∠CAB ,∠P AD =∠C ,AD =CB ,∴△APD ≌△CAB (AAS ),∴AP =AC ,∵AC =8 cm ,∴AP =8 cm ,∴t =8.24.解:【问题背景】EF =BE +FD【探索延伸】EF =BE +FD 仍然成立.理由:延长FD 到点G ,使DG =BE ,连结AG .∵∠B +∠ADC =180°,∠ADG +∠ADC =180°,∴∠B =∠ADG .又∵AB =AD ,BE =DG ,∴△ABE ≌△ADG ,∴AE =AG ,∠BAE =∠DAG .又∵∠EAF =12∠BAD ,∴∠GAF =∠F AD +∠DAG =∠F AD +∠BAE =∠BAD -∠EAF =∠BAD -12∠BAD =12∠BAD ,∴∠EAF =∠GAF .又∵AF =AF ,AE =AG ,∴△AEF ≌△AGF ,∴EF =GF .又∵GF =DG +FD =BE +FD ,∴EF =BE +FD .。

三角形的初步认识单元测试卷(一)及答案

三角形的初步认识单元测试卷(一)及答案

CABD第6题21AFED CB第一章 三角形的初步认识能力提升测试卷(一)一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B=21∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 2.如图,∠BAC=90°,AD ⊥BC ,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 3.下列说法错误的是( )A. 三角形三条中线交于三角形内一点;B. 三角形三条角平分线交于三角形内一点C. 三角形三条高交于三角形内一点;D. 三角形的中线、角平分线、高都是线段 4.如图,AC 与BD 相交于点O,已知AB=CD,AD=BC,则图中全等的三角形有( ) A. 1对 B. 2对 C. 3对 D. 4对5.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B ,∠B=2∠DAE ,那么∠ACB 为( )A. 80°B. 72°C. 48°D. 36°6.如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A. 一处B. 两处C. 三处D. 四处 7. 如图,∠1=∠2,∠C=∠B ,结论中不正确的是( )A. △DAB ≌△DACB. △DEA ≌△DFAC. CD=DED. ∠AED=∠AFD8. 如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( ) A. 180° B.360° C.540° D.720°第4题第5题 ADEABCDNM第7题9.直线L ⊥线段AB 于点O ,且OA=OB ,点C 为直线L 上一点,且有CA=8cm ,则CB 的长度为( )A 、4cmB 、8cmC 、16cmD 、无法求出10.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件, 不能说明ΔABD ≌ΔACE 的是( )A 、∠B=∠CB 、AD=AEC 、∠BDC=∠CEBD 、BD=CE 二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11. △ABC 中,AB=9,BC=2,周长是偶数,则AC= 。

第1章 三角形的初步认识单元测试(A卷基础篇)(浙教版)(解析版)

第1章 三角形的初步认识单元测试(A卷基础篇)(浙教版)(解析版)

第1章三角形的初步认识单元测试(A卷基础篇)【浙教版】参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(3分)(2019秋•余杭区期末)下列各组线段中(单位:cm),能组成三角形的是()A.5,15,20 B.6,8,15 C.2,2.5,3 D.3,8,15【思路点拨】根据三角形两边之和大于第三边进行判断即可.【答案】解:A、5+15=20,不符合三角形的三边关系,故A不合题意;B、8+6<15,不符合三角形的三边关系,故B不合题意;C、2+2.5>3,符合三角形的三边关系,故C符合题意;D、8+3<15,不符合三角形的三边关系,故D不合题意;故选:C.【点睛】本题主要考查三角形的三边关系,掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.2.(3分)(2019秋•下城区期末)已知△ABC中,∠A=20°,∠B=70°,那么△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.正三角形【思路点拨】先求出∠C的度数,进而可得出结论.【答案】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.(3分)(2020•越城区模拟)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【思路点拨】根据高线的定义即可得出结论.【答案】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点睛】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.4.(3分)(2020春•椒江区期末)下列命题中,是假命题的为()A.两直线平行,同旁内角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.同旁内角互补,两直线平行【思路点拨】根据平行线的性质对A、B进行判断;根据平行线的判定方法对C、D进行判断.【答案】解:A、两直线平行,同旁内角互补,所以A选项为假命题;B、两直线平行,内错角相等,所以B选项为真命题;C、同位角相等,两直线平行,所以C选项为真命题;D、同旁内角互补,两直线平行,所以D选项为真命题.故选:A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.(3分)(2019秋•海曙区期末)如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠F AC【思路点拨】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【答案】解:∵△ABC≌△AEF,∴AC=AF,EF=BC,故A,C正确;∠EAF=∠BAC,∴∠F AC=∠EAB,故D正确;∠AFE=∠C,故B错误;故选:B.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.6.(3分)(2019秋•桐梓县期末)如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2 B.4 C.6 D.8【思路点拨】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.【答案】解:解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;∴S△BEF=S△BEC,同理得,S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=16,∴S△BEF=4,即阴影部分的面积为4.故选:B.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.7.(3分)(2020•温州模拟)如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC【思路点拨】根据全等三角形的判定定理逐个判断即可.【答案】解:A、∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;B、∵∠ABD=∠DCA,∠DBC=∠ACB,∴∠ABD+∠DBC=∠ACD+∠ACB,即∠ABC=∠DCB,∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;C、∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故本选项不符合题意;D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;故选:D.【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.(3分)(2019秋•余杭区期末)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①CE=BF;②△ACE和△CDE面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【思路点拨】根据“SAS”可证明△CDE≌△BDF,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于AE与DE不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠ECD=∠FBD,则利用平行线的判定方法可对③进行判断.【答案】解:∵AD是△ABC的中线,∴CD=BD,∵DE=DF,∠CDE=∠BDF,∴△CDE≌△BDF(SAS),所以④正确;∴CE=BF,所以①正确;∵AE与DE不能确定相等,∴△ACE和△CDE面积不一定相等,所以②错误;∵△CDE≌△BDF,∴∠ECD=∠FBD,∴BF∥CE,所以③正确;故选:C.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.9.(3分)(2019秋•慈溪市期末)如图,已知,AB=AD,∠ACB=∠AED,∠DAB=∠EAC,则下列结论错误的是()A.∠B=∠ADE B.BC=AE C.∠ACE=∠AEC D.∠CDE=∠BAD【思路点拨】由“AAS”可得△ABC≌△ADE,可得∠B=∠ADE,AC=AE,BC=DE,可得∠ACE=∠AEC,由等腰三角形的性质和外角性质可得∠CDE=∠BAD,即可求解.【答案】解:∵∠DAB=∠EAC,∴∠BAC=∠DAE,且∠ACB=∠AED,AB=AD,∴△ABC≌△ADE(AAS)∴∠B=∠ADE,AC=AE,BC=DE,∴∠ACE=∠AEC,故选项A,C不符合题意,∵AB=AD,∴∠B=∠ADB=∠ADE,∵∠ADC=∠B+∠BAD=∠CDE+∠ADE,∴∠CDE=∠BAD,故选项D不符合题意,故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△ABC≌△ADE是本题的关键.10.(3分)(2019秋•临海市期末)有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎D.甲、乙、丙都说谎【思路点拨】分情况,依次推理可得.【答案】解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的是实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.【点睛】本题考查的是推理与论证,通过假设找出条件矛盾之处是本题的关键.二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019秋•唐河县期末)把命题“三条边对应相等的两个三角形全等”改写成“如果…那么…”的形式,可写为如果两个三角形的三条边对应相等,那么这两个三角形全等.【思路点拨】命题改写成“如果…那么…”的形式,其中如果后面的部分是题设,那么后面的部分是结论.【答案】解:如果两个三角形的三条边对应相等,那么这两个三角形全等.【点睛】命题由题设和结论两部分组成,命题可写成“如果…那么…”的形式,其中如果后面的部分是题设,那么后面的部分是结论.12.(4分)(2019秋•嘉兴期末)如图,已知AC=DC,BC=EC,要使△ABC≌△DEC,需添加的一个条件是AB=DE.【思路点拨】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【答案】解:添加的条件是AB=DE,理由是:∵在△ABC和△DEC中∴△ABC≌△DEC(SSS),故答案为:AB=DE.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理的内容是解此题的关键.13.(4分)(2019秋•正阳县期末)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2b﹣2c.【思路点拨】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【答案】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2b﹣2c;故答案为:2b﹣2c【点睛】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.14.(4分)(2019秋•温州期中)如图,△ABC三边的中线AD,BE,CF的公共点为G,若S△ABC=16,则图中阴影部分的面积是.【思路点拨】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【答案】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×16=8,∴S△CGE=S△ACF=×8=,S△BGF=S△BCF=×8=,∴S阴影=S△CGE+S△BGF=,故答案为:.【点睛】本题考查了三角形的面积,正确的识别图形是解题的关键.15.(4分)(2019秋•三台县期末)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【思路点拨】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【答案】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD ≌△CAE.16.(4分)(2019秋•宁都县期末)如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于点E,交AC 于点F,∠CDE=∠ACB=30°,BC=DE,则∠ADF=45°.【思路点拨】证明△ABC≌△CED(ASA),得出AC=CD,由等腰三角形的性质得出求出∠CDA=∠CAD =75°,即可得出答案.【答案】解:∵DE∥AB,∴∠DEC=∠B=90°,∵∠CDE=∠ACB=30°,∴∠CDE=30°,在△ABC和△CED中,,∴△ABC≌△CED(ASA),∴AC=CD,∴∠CDA=∠CAD=(180°﹣30°)=75°,∴∠ADF=∠CDA﹣∠CDE=45°;故答案为:45°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角形内角和定理;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.三.解答题(共7小题,共66分)17.(6分)(2019秋•乌鲁木齐期末)如图,已知AB∥DC,AD∥BC,求证:AB=CD.【思路点拨】根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.【答案】证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.【点睛】本题考查了全等三角形的性质和判定,平行线的性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.18.(8分)(2019秋•商河县期末)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数.【思路点拨】根据三角形的内角和定理求出∠BAC的度数,根据角平分线的定义求出∠BAE的度数,根据三角形的外角性质得到∠AEC的度数,再根据三角形的内角和定理即可求出答案.【答案】解:∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°,∴∠AEC=∠B+∠BAE=80°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=180°﹣∠ADE﹣∠AED=10°.答:∠DAE的度数是10°.【点睛】本题主要考查了三角形的内角和定理,三角形的外角性质,三角形的角平分线,垂直的定义等知识点,能熟练地运用这些性质进行计算是解此题的关键.19.(8分)(2019秋•南浔区期末)如图,已知点B,F,E,C在同一条直线上,AB∥CD,且AB=CD,∠A=∠D.求证:BE=CF.【思路点拨】先由平行线的性质得∠B=∠C,从而利用ASA判定△ABF≌△DCE,再根据全等三角形的性质得BF=CE,然后利用等量加等量和相等,可得结论.【答案】证明:∵AB∥CD,∴∠B=∠C,在△ABF和△DCE中∴△ABF≌△DCE(ASA)∴BF=CE,∴BF+EF=CE+EF,即BE=CF.【点睛】本题考查了全等三角形的判定与性质,这属于几何基础知识的考查,难度不大.20.(10分)(2020•温州三模)如图,在△ABC中,∠C=90°,在边AB上取一点D,使得BD=AC,过B 作AC的平行线BE,过D作AB的垂线与BE交于点E,连结AE.(1)求证:△ABC≌△BED.(2)若∠BAC=34°,求∠AED的度数.【思路点拨】(1)由平行线的性质得出∠BAC=∠EBD,可证明△ABC≌△BED(ASA);(2)由(1)可知AB=BE,则∠EAB=∠AEB,求出∠EAB的度数,则可求出答案.【答案】(1)证明:∵BE∥AC,∴∠BAC=∠EBD,∵DE⊥AB,∴∠EDB=90°,∴∠EDB=∠C,又∵BD=AC,∴△ABC≌△BED(ASA).(2)解:∵△ABC≌△BED,∴AB=BE,∴∠EAB=∠AEB,∵∠BAC=34°,∴∠EBD=34°,∴∠EAB===73°,∴∠AED=90°﹣∠EAB=90°﹣73°=17°.【点睛】本题考查了等腰三角形的性质,平行线的性质,全等三角形的判定与性质,三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.21.(10分)(2019秋•苍南县期末)已知:如图,∠ACB=∠DCE,AC=BC,CD=CE,AD交BC于点F,连结BE.(1)求证:△ACD≌△BCE.(2)延长AD交BE于点H,若∠ACB=30°,求∠BHF的度数.【思路点拨】(1)根据∠ACB=∠DCE,可以得到∠ACD=∠BCE,再根据题目中的条件,利用SAS可以证明结论成立;(2)根据题意作出合适的辅助线,然后根据(1)中的结论和三角形内角和可以得到∠BHF的度数.【答案】证明:(1)∵∠ACB=∠DCE,∴∠ACB+∠DCB=∠DCE+∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS);(2)∵△ACD≌△BCE,∴∠A=∠B,∵∠BFH=∠AFC,∴∠BHF=∠ACB,∵∠ACB=30°,∴∠BHF=30°.【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,利用全等三角形的判定与性质、数形结合的思想解答.22.(12分)(2020•玉山县一模)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.证明:AC=BD.【思路点拨】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【答案】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点睛】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.23.(12分)(2019秋•新昌县期中)如图,△ABC中,∠A=40°,(1)若点P是∠ABC与∠ACB平分线的交点,求∠P的度数;(2)若点P是∠CBD与∠BCE平分线的交点,求∠P的度数;(3)若点P是∠ABC与∠ACF平分线的交点,求∠P的度数;(4)若∠A=β,求(1)(2)(3)中∠P的度数(用含β的代数式表示,直接写出结果)【思路点拨】(1)根据三角形内角和定理和角平分线定义得出∠PBC+∠PCB=(∠ABC+∠ACB)=65°,根据三角形的内角和定理得出∠P的度数;(2)由三角形内角和定理和邻补角关系得出∠CBD+∠BCE=360°﹣130°=230°,由角平分线得出∠PBC+∠PCB=(∠CBD+∠BCE)=115°,再由三角形内角和定理即可求出结果;(3)由三角形的外角性质和角平分线的定义证出∠P=∠A,即可得出结果;(4)由(1)(2)(3),容易得出结果.【答案】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×140°=70°,∴∠BPC=180°﹣70°=110°;(2)∵∠DBC=∠A+∠ACB,∵P为△ABC两外角平分线的交点,∴∠DBC=∠A+∠ACB,同理可得:∴∠BCE=∠A+∠ABC,∵∠A+∠ACB+∠ABC=180°,∴(∠ACB+∠ABC)=90°﹣∠A,∵180°﹣∠BPC=∠DBC+∠BCE=∠A+∠ACB+∠A+∠ABC,∴180°﹣∠BPC=∠A+∠ACB+∠ABC,180°﹣∠BPC=∠A+90°﹣∠A,∴∠BPC=90°﹣∠A=70°;(3)∵点P是∠ABC与∠ACF平分线的交点,∴∠PBC=∠ABC,∠PCF=∠ACF,∵∠PCF=∠P+∠PBC,∠ACF=∠A+∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,∴∠P=∠A=20°;(4)若∠A=β,在(1)中,∠P=180°﹣(180°﹣β)=90°+β;在(2)中,同理得:∠P=90°﹣β;在(3)中同理得:∠P=∠A=β.【点睛】本题考查了三角形的内角和定理、三角形的角平分线、三角形的外角性质、邻补角关系等知识点;熟练掌握三角形内角和定理,弄清各个角之间的数量关系是解决问题的关键.。

【单元测试】第1章 三角形的初步认识(夯实基础培优卷)(原卷版)

【单元测试】第1章 三角形的初步认识(夯实基础培优卷)(原卷版)

【高效培优】2022—2023学年八年级数学上册必考重难点突破必刷卷(浙教版)【单元测试】第1章三角形的初步认识(夯实基础培优卷)学校:___________姓名:___________班级:___________考号:___________ 一、选择题(本大题共10有个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC的三个内角度数之比为3△4△5,则此三角形是()三角形.A.锐角B.钝角C.直角D.不能确定2.如图,直线a∥b,AC△AB,AC交直线b于点C,△1=60°,则△2的度数是()A.30°B.35°C.45°D.50°3.如图,△B+△C+△D+△E―△A等于()A.180°B.240°C.300°D.360°4.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行5.小欣在一次游戏活动中,从三角形的一个顶点A 出发,沿三角形的三条边走过各顶点,再回到A点,然后转向出发时的方向,则他在行程中所转的各个角的度数和()A .90°B .180°C .360°D .270°6.如图,ABC EFD ≌,那么下列结论正确的是( )A .EC BD =B .EF AB ∥C .DE BD = D .AC ED ∥7.下列各组中的两个图形属于全等形的是( )A .B .C .D . 8.如图,在△ABC 和△DEF 中,点A ,E ,B ,D 在同一直线上,BC EF ∥,AC =DF ,只添加一个条件,能判定△ABC △△DEF 的是( )A .BC =EFB .AE =DBC .△A =△DEFD .△A =△D9.如图,小颖按下面方法用尺规作角平分线:在已知的AOB ∠的两边上,分别截取,OC OD ,使OC OD =.再分别以点C ,D 为圆心、大于12CD 的长为半径作弧,两弧在AOB ∠内交于点P ,作射线OP ,则射线OP 就是AOB ∠的平分线.其作图原理是:OCP ODP △≌△,这样就有AOP BOP ∠=∠,那么判定这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS10.如图1,已知 AB=AC ,D 为△BAC 的平分线上一点,连接 BD 、 CD ;如图2,已知 AB= AC ,D 、E 为△BAC 的平分线上两点,连接 BD 、CD 、BE 、CE ;如图3,已知 AB=AC ,D 、E 、F 为△BAC 的平分线上三点,连接BD 、CD 、BE 、CE 、 BF 、CF ;…,依次规律,第 n 个图形中全等三角形的对数是( )A .nB .2n -1C .()12n n +D .3(n+1)二、填空题(本大题共8有小题,每题3分,共24分)11.如图,DBC ∠与ECB ∠是ABC ∆的两个外角,BF 平分DBC ∠交ECB ∠的平分线于点F .若60F ∠=︒,则A ∠=________.12.“同一平面内,若a △b ,c △b ,则a △c ”这个命题的条件是___________________________,结论是__________,这个命题是____________命题.13.如图,△ABC △△DBE ,△C =45°,△ABE =70°,△ABD =40°,则△D 的度数为____________.14.如图,PAC △△PBD △,若40A ∠=︒,20BPD ∠=︒,则PCD ∠的度数为______.15.如图,已知点A ,C 在线段BD 两侧,AB AD =,CB CD =,线段AC ,BD 相交于点O .下列结论:①ABC ADC ∠=∠;②AC BD ⊥;③AC 平分BAD ∠;④OB OD =.其中正确的是_________(填写所有正确结论的序号).16.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中ABC 是格点三角形,请你找出方格中所有与ABC 全等,且以A 为顶点的格点三角形.这样的三角形共有_____个(ABC 除外).17.如图ABC 中,40B ∠=︒,50C ∠=︒.通过观察尺规作图的痕迹,可以发现直线DF 是线段AB 的_________,射线AE 是DAC ∠的_____;并求DAE ∠的度数为_________.C,点Q 18.如图,在平面直角坐标系中,O为坐标原点,点A,C分别在x轴,y轴的正半轴上,点(0,4)S=分别以AC、CQ为腰,点C为直角项点在第一、第二象限作等腰Rt CAN、在x轴的负半轴上,且12CQA等腰Rt QCM,连接MN交y轴于P点,则OP的值为__________.三、解答题(本大题共6有小题,共66分;第19小题8分,第20-21每小题10分,第22-23每小题12分,第24小题14分)19.如图已知△ABC△△DEF,点B、E、C、F在同一直线上,△A=85°,△B=60°,AB=8,EH=2.(1)求△F的度数与DH的长;(2)求证:AB△DE.20.如图,把三角形纸片'A BC沿D折叠,点A'落在四边形BCDE内部点A处,(1)写出图中一对全等的三角形,井写出它们的所有对应角.∠∠的度数分别是多少(用含x或y的式子表示)?(2)设AED∠的度数为x,ADE∠的度数为y,那么1,2(3)A∠+∠之间有一种数量关系始终保持不变,请找出这个规律,井说明理由.∠与1221.小宋对三角板在平行线间的摆放进行了探究(1)如图(1),已知a b ∥,小宋把三角板的直角顶点放在直线b 上.若140∠=︒,直接写出2∠的度数;若1m ∠=︒,直接写出2∠的度数(用含m 的式子表示).(2)如图(2),将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的直角顶点与45°角的顶点重合于点A ,含30°角的直角三角板的斜边与纸条一边b 重合,含45°角的三角板的另一个顶点在纸条的另一边a 上,求1∠的度数.22.一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.【发现猜想】(1)如图①,已知△AOB =70°,△AOD =100°,OC 为△BOD 的角平分线,则△AOC 的度数为 ;.【探索归纳】(2)如图①,△AOB =m ,△AOD =n ,OC 为△BOD 的角平分线. 猜想△AOC 的度数(用含m 、n 的代数式表示),并说明理由.【问题解决】(3)如图②,若△AOB =20°,△AOC =90°,△AOD =120°.若射线OB 绕点O 以每秒20°逆时针旋转,射线OC 绕点O 以每秒10°顺时针旋转,射线OD 绕点O 每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA 重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?23.在等腰直角三角形ABC 中,△BAC =90°,AB =AC ,直线PQ 过点A 且PQ //BC ,过点B 为一锐角顶点作Rt△BDE ,△BDE =90°,且点D 在直线PQ 上(不与点A 重合).(1)如图1,DE 与AC 交于点M ,若DF △PQ 于点D 交AB 于点F ,求证:△BDF △△MDA ;(2)在图2中,DE 与CA 延长线交于点M ,试猜想线段BD 、ED 、EM 的数量关系,并证明你的猜想.(3)在图3中,DE 与AC 延长线交于点M ,(2)中结论是否成立?如果成立,请给予证明;如果不成立,请说明理由.24.直线m 与直线n 相交于C ,点A 是直线m 上一点,点B 是直线n 上一点,ABC ∠的平分线BP 与DAB ∠的平分线AE 的反向延长线相交于点P .(1)如图1,若90ACB ∠=︒,则P ∠=__________;若ACB α∠=,则P ∠=__________(结果用含α的代数式表示);(2)如图2,点F 是直线n 上一点,若点B 在点C 左侧,点F 在点C 右侧时,连接AF ,CAF ∠与AFC ∠的平分线相交于点Q .①随着点B 、F 的运动,APB AQF ∠+∠的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ 交直线n 于点G ,作QH∥CF 交AF 于点H ,则,,AGC HQF ACB ∠∠∠三个角之间是否存在某种数量关系,请说明理由.。

浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷(含答案)

浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷(含答案)

浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷满分120分姓名:___________班级:___________学号:___________一.选择题(共12小题,满分36分,每小题3分)1.下列长度线段能组成三角形的是()A.1cm,2cm,3cm B.4cm,5cm,10cmC.6cm,8cm,13cm D.5cm,5cm,10cm2.三角形的三条中线、三条角平分线、三条高都是()A.直线B.射线C.线段D.射线或线段3.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.4.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,∠A=50°,则∠BOC=()A.50°B.65°C.105°D.115°5.如图,△ABC的中线AD、BE相交于点F,若△ABF的面积是4,则四边形FDCE的面积是()A.4 B.4.5 C.3.5 D.56.如图,已知△ABC,点D在BC的延长线上,∠ACD=140°,∠ABC=50°,则∠A的大小为()A.50°B.140°C.120°D.90°7.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去8.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2 B.3 C.5 D.79.下列条件中,不能判定△ABC与△DEF一定全等的是()A.AB=DE,BC=EF,∠A=∠D=90°B.AB=DE,BC=EF,∠A=∠D=80°C.AB=DE,∠A=∠D=90°,∠B=∠E=40°D.BC=EF,∠A=∠D=80°,∠B=∠E=40°10.下列命题是真命题的是()A.如果a2=b2,那么a=b B.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠B D.负数没有立方根11.有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎D.甲、乙、丙都说谎12.如图,AD交BC于点O,∠BAD的角平分线与△OCD的外角∠OCE的角平分线交于点P,则∠P与∠B、∠D的数量关系为()A.∠P=B.∠P=C.∠P=90°+∠B+∠D D.∠P=90°﹣∠B+∠D二.填空题(共8小题,满分24分,每小题3分)13.命题“直角三角形的两个锐角互余”的逆命题是命题.(填“真”或“假”)14.如图,为了加固小板凳,用两枚钉子A,B将一根木条钉在它上面,这和做法的几何原理是利用了三角形的.15.已知三角形的两条边长分别为3cm和2cm,如果这个三角形的第三条边长为奇数,则这个三角形的周长为cm.16.如图,把两根钢条的中点连在一起,可以做到一个测量工件内槽宽的工具(长钳),在图中,要测量工件内槽宽AB,只要测就可以了.17.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是.18.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=度.19.如图,已知:∠A=∠D,∠1=∠2,下列条件中:①∠E=∠B;②EF=BC;③AB=EF;④AF=CD.能使△ABC≌△DEF的有.(填序号)20.如图,直线a、b、c、d互不平行,以下结论正确的是.(只填序号)①∠1+∠2=∠5;②∠1+∠3=∠4;③∠1+∠2+∠3=∠6;④∠3+∠4=∠2+∠5.三.解答题(共8小题,满分60分)21.(6分)如图,已知线段AC,BD相交于点E,∠A=∠D,BE=CE,求证:△ABE≌△DCE.22.(6分)生活中的说理小明、小红、小丽三人中一个是班长,一个是学习委员,一个是生活委员.现在知道小红比生活委员年龄大,小明与学习委员不同岁,学习委员比小丽年龄小.请你猜一猜他们当中谁是班长,并说明理由.23.(6分)如图,已知:AD平分∠BAC,点F是AD反向延长线上的一点,EF⊥BC,∠1=40°,∠F=15°.求:∠B和∠C的度数.24.(7分)如图,AE,DE分别平分∠BAC和∠BDC,∠B=∠BDC=45°,∠C=51°,求∠E的度数.25.(8分)已知,已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?26.(8分)如图,在△ABC中,∠ABC=110°,∠A=40°.(1)作△ABC的角平分线BE(点E在AC上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BEC的度数.27.(9分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.28.(10分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:A、1+2=3,不能构成三角形,故此选项错误;B、4+5=9<10,不能构成三角形,故此选项错误;C、6+8>13,能构成三角形,故此选项正确;D、5+5=10,不能构成三角形,故此选项错误.故选:C.2.解:三角形的三条中线、三条角平分线、三条高都是线段,故选:C.3.解:A,C,D都不是△ABC的边AB上的高,故选:B.4.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50=130°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选:D.5.解:∵△ABC的中线AD、BE相交于点F,∴BD=CD,点F为△ABC的重心,∴BF=2EF,AF=2FD,∴S△BFD=S△ABF=×4=2,S△AEF=S△ABF=×4=2,∵S△ABD=S△ACD=4+2=6,∴四边形FDCE的面积=6﹣2=4.故选:A.6.解:∵∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ACD=140°,∠ABC=50°,∴∠A=140°﹣50°=90°故选:D.7.解:带③去符合“角边角”可以配一块同样大小的三角板.故选:C.8.解:∵△ABC≌△DEF,∴EF=BC=7,∵EC=4,∴CF=3,故选:B.9.解:A、∵AB=DE,BC=EF,∠A=∠D=90°,∴根据HL证明Rt△ABC≌Rt△DEF,不符合题意;B、∵AB=DE,BC=EF,∠A=∠D=80°,根据ASS不能推出△ABC≌△DEF,故本选项符合题意;C、∵AB=DE,∠A=∠D=90°,∠B=∠E=40°,∴利用ASA能推出△ABC≌△DEF,故本选项不符合题意;D、∵BC=EF,∠A=∠D=80°,∠B=∠E=40°,∴利用AAS能推出△ABC≌△DEF,故本选项不符合题意;故选:B.10.解:A、如果a2=b2,那么a=±b,故原命题错误,是假命题;B、0的平方根是0,正确,是真命题,符合题意;C、内错角不一定相等,故原命题错误,是假命题;D、负数的立方根是负数,故原命题错误,是假命题,故选:B.11.解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的是实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.12.解:设∠P AB=∠OAP=x,∠ECP=∠PCB=y,则有,①﹣2×②可得:∠B﹣2∠P=∠D﹣2∠D﹣180°,∴∠P=,故选:A.二.填空题(共8小题,满分24分,每小题3分)13.解:命题“直角三角形的两个锐角互余”的逆命题是两个锐角互余的三角形是直角三角形,逆命题是真命题;故答案为:真.14.解:为了加固小板凳,用两枚钉子A,B将一根木条钉在它上面,这和做法的几何原理是利用了三角形的稳定性.故答案为稳定性.15.解:设第三边长为x.根据三角形的三边关系,则有3﹣2<x<2+3,即1<x<5,因为第三边的长为奇数,所以x=3,所以周长=3+3+2=8.故答案为:8;16.解:答:只要测量A'B'.理由:连接AB,A'B',如图,∵点O分别是AC、BB'的中点,∴OA=OA',OB=OB'.在△AOB和△A'OB'中,OA=OA',∠AOB=∠A'OB'(对顶角相等),OB=OB',∴△AOB≌△A'OB'(SAS).∴A'B'=AB.答:需要测量A'B'的长度,即为工件内槽宽AB,故答案为:A'B'17.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.18.解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=∠CAB=30°,∴∠ADB=90°+30°=120°,故答案为:120;19.解:①∠E=∠B,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴①错误;②EF=BC,符合全等三角形的判定定理,可以用AAS证明△ABC≌△DEF,∴②正确;③AB=EF,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴③错误;④∵AF=CD,∴AF+FC=CD+FC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴④正确;故答案为:②④.20.解:由三角形外角的性质可知:∠5=∠1+∠2,∠4=∠1+∠3,∠6=∠4+∠2=∠3+∠5,∴∠6=∠1+∠2+∠3,故①②③正确,故答案为①②③.三.解答题(共8小题,满分60分)21.证明:∵在△ABE和△DCE中,,∴△ABE≌△DCE(AAS).22.解:小丽是班长,理由:由小明与学习委员不同岁,可得小明非学习委员,则是班长或者生活委员;由学习委员比小丽年龄小,可得小丽非学习委员,则是班长或者生活委员;由小红比生活委员年龄大,可得小红是学习委员,由年龄可以判断小丽是班长.23.解:∵EF⊥BC,∴∠DEF=90°,∵∠F=15°,∠ADE+∠F+∠DEF=180°,∴∠ADE=75°,∵AD平分∠BAC,∠1=40°,∴∠BAC=2∠DAC=2∠1=80°,∴∠DAC=40°,∵∠ADE+∠C+∠DAC=180°,∴∠C=180°﹣40°﹣75°=65°,∵∠B+∠C+∠BAC=180°,∴∠B=180°﹣65°﹣80°=35°.24.解:∵∠B=∠BDC=45°,∴AB∥CD,∵∠C=51°,∵AE,DE分别平分∠BAC和∠BDC,∴∠BAE=BAC=,∠EDB=BDC=,∵∠AFB=∠DFE,∴∠E=∠B+∠BAE﹣∠BDE=45°+﹣=48°.25.解:(1)∵,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴.(2)不能,理由如下:∵,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.26.解:(1)如图,BE即为所求;(2)由(1)得,BE平分∠ABC,∵∠ABC=110°,∴,∵∠A=40°,∴∠AEB=180°﹣55°﹣40°=85°,∴∠BEC=180°﹣85°=95°.27.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s 或cm/s.28.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。

三角形的初步认识 浙教版八年级数学上册单元检测试题(含答案)

三角形的初步认识 浙教版八年级数学上册单元检测试题(含答案)

第1章三角形的初步认识单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列说法错误的是()A.在同一个三角形中大边所对的角为大角B.角内部一点到角两边的距离相等,那么这个点在角的平分线上C.在同一个三角形中等边所对的角为等角D.在直角三角形中,直角所对的边为直角边2. 三角形的三条高所在的直线相交于一点,这个交点的位置在()A.三角形内B.三角形外C.三角形边上D.要根据三角形的形状才能定3. 如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASAB.SSSC.SASD.AAS4. 能将一个三角形分成面积相等的两个三角形的一条线段是( )A.三角形的一条中线B.角平分线C.高线D.三角形的角平分线5. 如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16B.18C.26D.286. 如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=10,DE=3,则△BCE的面积等于()A.9B.13C.15D.307. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种8. 下列作图语句正确的是()A.过点P作线段AB的中垂线B.在线段AB的延长线上取一点C,使AB=BCC.过直线a,直线b外一点P作直线MN使MN // a // bD.过点P作直线AB的垂线9. 已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≅△EBC;②∠BCE+∠BCD= 180∘;③AD=AE=EC;④BA+BC=2BF.其中正确的是( )A.①②③B.①③④C.①②④D.①②③④AC的长为半径作弧,两弧相交10. 如图,在△ABC中,分别以点A和点C为圆心,以大于12于M、N两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26m,则△ABC的周长为()A.32cmB.38cmC.44cmD.50cm二、填空题(本题共计7 小题,每题3 分,共计21分,)11. 命题“全等三角形的对应角相等“的逆命题是一个________命题(填“真“或“假“).>1,则a>b.”是错误的,这组值可以是a=________,12. 用一组a,b的值说明命题"若abb=________.13. 如图是3×3网格图,每个小正方形的边长为1,请在网格图上找出一点C,补全格点三角形ABC(即三角形的三个顶点A、B、C均在小正方形的顶点上),使△ABC的每边长都是无理数(只要画出一个符合条件的三角形),并直接写出各边的长度和面积.AB=________;BC=________;CA=________;S△ABC=________.14. 如图,笔直的公路旁有A、B两车站,相距15km,C、D为同旁的两个村庄,DA⊥AB 于A,CB⊥AB于B,AD=10cm,CB=5cm,要在这段公路AB旁建一个公路管理站E,使C、D两村到公路管理站的距离相等,那么公路管理站E应建在距A站________km处.15. 三角形的高、中线和角的平分线不一定在三角形内部的线段是________.16. 现有一只鸡、一条狗、一筐菜和一条小船,一个人自已划船把鸡、狗、菜送到河对岸,要求一次只能带鸡、狗、菜中的一样,但是人不在时,鸡会吃菜,狗会吃鸡,若要完好地把鸡、狗、菜都送到对岸,至少需要划船往返________趟.17. 如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,=________cm2.则S阴影三、解答题(本题共计7 小题,共计69分,)18. 把下列各图分成若干个全等图形,请在原图上用虚线标出来.19. 已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:AF=DE.20. 如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=30∘,∠B=70∘,求∠DCE的度数.21. 如图,在△BCD中,BC=4,CD=2,线段BC绕点C沿顺时针方向旋转60∘到AC的位置,线段CD绕点C沿顺时针方向旋转60∘到CE的位置,连结AB,DE,AE,AE与BD交于点M.(1)求证:∠AMB=60∘;(2)若∠CDB=30∘,求BD的长.22. 如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一条直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE // AF.(1)请你用其中两个关系式作为条件,另一个作为结论,写出一个你认为正确的命题;(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗)(2)说明你写的一个命题的正确性.23. 如图,在△ABC中,∠C=90∘,BE是△ABC的角平分线,ED⊥AB,垂足为D.(1)已知∠A=30∘,求∠BEC的度数.(2)已知CE=2,AB=4√3,求△ABE的面积.24. 某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有________;(2)请你选择一可行的方案,说说它可行的理由.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:在同一个三角形中,等边对等角,则大边对大角,所以A、C正确;由角平分线的判定可知到角两边距离相等的点,在角的平分线上,所以B正确;在直角三角形中,直角所对的边是斜边,所以D不正确;故选D.2.【答案】D【解答】解:A、直角三角形的高的交点即直角顶点,不在三角形内,错误;B、直角三角形的高的交点即直角顶点,不在三角形外,错误;C、锐角三角形的高的交点在三角形的内部,不在三角形边上,错误;D、锐角三角形的高的交点在三角形的内部,直角三角形的高的交点即直角顶点,钝角三角形的高所在的直线的交点在三角形的外部.即三角形的三条高所在的直线相交于一点,这个交点的位置要根据三角形的形状才能定,正确.故选D.3.【答案】B【解答】解:在△OCE和△ODE中,{CO=DO EO=EO CE=DE,∴△OCE≅△ODE(SSS).故选:B.4.【答案】A【解答】解:∵三角形的中线把三角形分成的两个三角形,底边相等,高是同一条高,∴分成的两三角形的面积相等.故选A.5.【答案】B【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米.故选B.6.【答案】C【解答】解:过E作EF⊥BC于F,∵CD是AB边上的高线,BE平分∠ABC,∴EF=DE=3,∵BC=10,×BC×EF=15,∴△BCE的面积为12故选C.7.【答案】C【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.8.【答案】D【解答】解:A、只有过线段中点的垂线才叫中垂线,P是任意一点,错误;B、应为在线段AB的延长线上取一点C,使BC=AB,错误;C、a和b的位置不一定是平行,错误.D、正确.故选D.9.【答案】D【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,{BD=BC,∠ABD=∠EBC,BA=BE,∴△ABD≅△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA.∵△ABD≅△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180∘,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC.∵△ABD≅△EBC,∴AD=EC,∴AD=AE=EC,③正确;④过E作EG⊥BC于G点,∵ E 是BD 上的点,∴ EF =EG .∵ 在Rt △BEG 和Rt △BEF 中,{BE =BE ,EF =EG ,∴ Rt △BEG ≅Rt △BEF(HL),∴ BG =BF .∵ 在Rt △CEG 和Rt △AEF 中,{EF =EG ,AE =CE ,∴ Rt △CEG ≅Rt △AEF(HL),∴ AF =CG ,∴ BA +BC =BF +FA +BG −CG =BF +BG =2BF ,④正确.综上,正确的是①②③④.故选D .10.【答案】B【解答】∵ DE 垂直平分线段AC ,∴ DA =DC ,AE +EC =12(cm),∵ AB +AD +BD =26(cm),∴ AB +BD +DC =26(cm ,∴ △ABC 的周长=AB +BD +BC +AC =26+12=38(cm),二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 )11.【答案】假【解答】解:命题“全等三角形的对应角相等“的逆命题是对应角相等的两个三角形全等,此逆命题为假命题.故答案为:假.12.【答案】−2(答案不唯一),−1(答案不唯一)【解答】解:当a=−2,b=−1时,ab =−2−1=2>1,但此时a<b,故“若ab>1,则a>b.”是错误的.故答案为:−2;−1(答案不唯一).13.【答案】2√2,√2,√10,2【解答】解:AB=√8;BC1=√2;C1A=√10;S△ABC1=2.14.【答案】5【解答】解:设AE=xkm,由勾股定理,得102+x2=52+(15−x)2,x=5.故:E点应建在距A站5千米处.15.【答案】三角形的高【解答】解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高在三角形的外部.故答案为:三角形的高16.【答案】4【解答】解:第一次带鸡过河,剩下狗和菜;第二次带白菜过河,剩下狗,但回来的时候要把鸡再带回来;第三次带狗过河,剩下鸡;最后带狗过河.一共要带四次才可以完成.故答案为:4.17.【答案】1【解答】解:∵点D时BC的中点,∴△ABD的面积是△ABC的面积的一半,△ADC的面积是△ABC的面积的一半. ∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.故答案为:1.三、解答题(本题共计7 小题,每题10 分,共计70分)18.【答案】【解答】19.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中{AB=DC∠B=∠CBF=CE ∴△ABF≅△DCE(SAS),∴AF=DE.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中{AB=DC∠B=∠CBF=CE ∴△ABF≅△DCE(SAS),∴AF=DE.20.【答案】解:∵∠A=30∘,∠B=70∘,∴∠ACB=80∘∵CD平分∠ACB,∴∠DCB=12∠ACB=40∘∵CE是AB边上的高∴∠ECB=90∘−∠B=90∘−70∘=20∘∴∠DCE=40∘−20∘=20∘.【解答】解:∵∠A=30∘,∠B=70∘,∴∠ACB=80∘∵CD平分∠ACB,∠ACB=40∘∴∠DCB=12∵CE是AB边上的高∴∠ECB=90∘−∠B=90∘−70∘=20∘∴∠DCE=40∘−20∘=20∘.21.【答案】【解答】此题暂无解答22.【答案】解:(1)如果①,③,那么②;如果②,③,那么①;(2)对于命题“如果①,③,那么②”证明如下:∵BE // AF,∴∠AFD=∠BEC.∵AD=BC,∠A=∠B,∴△ADF≅△BCE,∴DF=CE.∴DF−EF=CE−EF,即DE=CF;对于命题“如果②,③,那么①”证明如下:∵BE // AF,∴∠AFD=∠BEC.∵DE=CF,∴DE+EF=CF+EF,即DF=CE.∵∠A=∠B,∴△ADF≅△BCE,∴AD=BC.【解答】解:(1)如果①,③,那么②;如果②,③,那么①;(2)对于命题“如果①,③,那么②”证明如下:∵BE // AF,∴∠AFD=∠BEC.∵AD=BC,∠A=∠B,∴△ADF≅△BCE,∴DF=CE.∴DF−EF=CE−EF,即DE=CF;对于命题“如果②,③,那么①”证明如下:∵BE // AF,∴∠AFD=∠BEC.∵DE=CF,∴DE+EF=CF+EF,即DF=CE.∵∠A=∠B,∴△ADF≅△BCE,∴AD=BC.23.【答案】解:(1)由题可得,∠CBA=90∘−∠A=60∘.∵ BE平分∠CBA,∴∠CBE=∠ABE=30∘,∴∠BEC=90∘−∠CBE=60∘.(2)∵ BE平分∠CBA,∠C=90∘,ED⊥AB,∴ DE=CE=2,∴S△ABE=12⋅AB⋅DE=12×4√3×2=4√3.【解答】解:(1)由题可得,∠CBA=90∘−∠A=60∘.∵ BE平分∠CBA,∴∠CBE=∠ABE=30∘,∴∠BEC=90∘−∠CBE=60∘.(2)∵ BE平分∠CBA,∠C=90∘,ED⊥AB,∴ DE=CE=2,∴S△ABE=12⋅AB⋅DE=12×4√3×2=4√3.24.【答案】解:(1)甲、乙、丙;(2)答案不唯一.选甲:在△ABC 和△DEC 中{AC =DC∠ACB =∠ECD EC =BC,∴ △ABC ≅△DEC(SAS), ∴ AB =ED ;选乙:∵ AB ⊥BD ,DE ⊥BD , ∴ ∠B =∠CDE =90∘,在△ABC 和△EDC 中{∠ABC =∠EDCCB =CD ∠ACB =∠ECD,∴ △ABC ≅△EDC(ASA), ∴ AB =ED ;选丙:在△ABD 和△CBD 中{∠ABD =∠CBDBD =BD ∠ADB =∠CDB,∴ △ABD ≅△CBD(ASA), ∴ AB =BC .【解答】解:(1)甲、乙、丙;(2)答案不唯一.选甲:在△ABC 和△DEC 中{AC =DC∠ACB =∠ECD EC =BC,∴ △ABC ≅△DEC(SAS), ∴ AB =ED ;选乙:∵ AB ⊥BD ,DE ⊥BD , ∴ ∠B =∠CDE =90∘,在△ABC 和△EDC 中{∠ABC =∠EDCCB =CD ∠ACB =∠ECD,∴ △ABC ≅△EDC(ASA), ∴ AB =ED ;选丙:在△ABD 和△CBD 中{∠ABD =∠CBDBD =BD ∠ADB =∠CDB,∴△ABD≅△CBD(ASA),∴AB=BC.。

第1章三角形的初步认识单元测试

第1章三角形的初步认识单元测试

2021-2022学年八年级数学上册尖子生同步培优题典【浙教版】专题1.12第1章三角形的初步认识单元测试(培优提升卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共24题,选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•嘉兴)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .x =1B .x =1C .x =D .x ―2.(2021春•玉田县期末)已知一个三角形的两条边长分别是3和5,则第三条边的长度不能是( )A .2B .3C .4D .53.(2020秋•椒江区期末)在平面内,若AB =6,BC =4,∠A =30°,则可以构成的△ABC 的个数是( )A .0个B .1个C .2个D .不少于2个4.(2020春•松北区期末)下列四个图形中,线段BE 是△ABC 的高的图形是( )A .B .C .D .5.(2020春•常熟市期末)如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,点F 在BE 上,且EF =2BF ,若S △BCF =2cm 2,则S △ABC 为( )A .4cm 2B .8cm 2C .12cm 2D .16cm 26.(2020秋•红桥区期末)如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A.∠BAD=∠CAE B.AC=DE C.∠ABC=∠AED D.AB=AE7.(2021•阳新县校级模拟)如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是( )A.32°B.45°C.60°D.64°8.(2020秋•北海期末)将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为( )A.145°B.155°C.165°D.175°9.(2020秋•温岭市期中)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②BE=DE;③AD⊥EF;④AB:AC=BD:CD.正确的有( )个.A.1B.2C.3D.410.(2020春•松北区期末)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,则①DH=HC;②DF=FC;③BF=AC;④CE=12BF中正确有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020春•灌云县期中)如图,以AD为高的三角形共有 个.12.(2021•宁波模拟)写出一个能说明命题“若|a|>|b|,则a>b”是假命题的反例 .13.(2020秋•南浔区期末)如图,已知在△ABC和△ADC中,∠ACB=∠ACD,请你添加一个条件: ,使△ABC≌△ADC(只添一个即可).14.(2019秋•肥西县期末)如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 个.15.(2020春•叙州区期末)如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有 .(填序号)16.(2020春•天心区期末)如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB 于F,则下列结论中正确的是 .(填序号)①AC=AF②CH=CE③∠ACD=∠B④CE=EB三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020春•安源区期中)如图,在△ABC中,AD,AE,AF分别为△ABC的高线、角平分线和中线.(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm,AD=7cm时,求△ABC的面积.18.(2021春•綦江区期中)如图,在△ABC中,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)若∠1=∠2,试说明DG∥BC;(2)若CD平分∠ACB,∠A=60°,求∠B的度数.19.(2021春•惠来县期末)如图,在△ABC和△DEF中,边AC,DE交于点H,AB∥DE,AB=DE,BE=CF.(1)若∠B=55°,∠ACB=100°,求∠CHE的度数.(2)求证:△ABC≌△DEF.20.(2021春•郏县期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.21.(2020秋•东海县期末)小明与爸爸妈妈在公园里荡秋千,如图,小明坐在秋千的起始位置A处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住他后用力一推,爸爸在C处接住他,若妈妈与爸爸到OA的水平距离BD、CE分别为1.6m和2m,∠BOC=90°.(1)△OBD与△COE全等吗?请说明理由;(2)爸爸是在距离地面多高的地方接住小明的?22.(2020春•南岗区校级期中)已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.(1)如图1,求证:△ABE≌△CDF.(2)如图2,连接AD、BC、BF、DE,在不添加任何辅助线的情况下,请直接写出图2中所有全等的三角形(除△ABE全等于△CDF外).23.(2020春•雨花区校级期末)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.(1)若∠A=60°,求∠DCE和∠F的度数;(2)若∠A=n°(0<n<90),请直接写出∠DCE和∠F的度数(用含n的代数式表示);(3)若△FCB高FH和∠DCB的角平分线交于点Q,在(2)的条件下求∠CQH的度数(用含n的代数式表示).24.(2020春•广饶县期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.。

【浙教版】八年级数学上册《三角形的初步知识》单元测试卷(含答案)

【浙教版】八年级数学上册《三角形的初步知识》单元测试卷(含答案)

第 1 章三角形的初步知识检测卷一、选择题 (每题2分,共20分 )第1题图1.如图,为预计池塘两岸A, B 间的距离,杨阳在池塘一侧选用了一点P,测得 PA=16m, PB= 12m,那么 AB 间的距离不行能是()A. 5m B. 15m C .20m D. 28m2.一个三角形三个内角的度数之比为2∶ 3∶ 5,这个三角形必定是()A.锐角三角形B.直角三角形C .钝角三角形D.等腰三角形第3题图3.张师傅不当心将一块三角形玻璃打破成如图中的三块,他准备去店里从头配置一块与本来如出一辙的,最省事的做法是()A.带 1去B.带 2去C.带 3 去D.三块都带去4.以下说法:① 全等三角形的面积相等;② 全等三角形的周长相等;③ 全等三角形的对应角相等;④全等三角形的对应边相等.此中正确的有()A.1 个B.2 个C.3 个D.4 个5.如图,以下A, B,C ,D 四个三角形中,能和模板中的△ ABC完整重合的是(A)第 5题图6.BD是△ABC的中线,若AB= 5cm, BC= 3cm,则△ ABD 与△ BCD 的周长之差是()A. 1cm B. 2cm C. 3cm D . 5cm7.如图,已知MB = ND ,∠ MBA =∠ NDC ,以下不可以判断△ ABM≌△ CDN的条件是()A.∠ M =∠N B.AB= CD C.AM =CN D.AM ∥ CN第7题图第8题图第9题图第10题图8.如图, AD 是△ ABC 中∠ BAC 的角均分线,DE⊥ AB 于点 E, S△ABC= 7, DE = 2,AB=4,则 AC 长是()A.3B.4C.6D.59.如图,锐角三角形ABC 中,直线l 为 BC 的中垂线,直线m 为∠ ABC 的角均分线,l 与 m 订交于 P 点.若∠ BAC = 60°,∠ ACP = 24°,则∠ ABP 是() A. 24°B. 30°C. 32°D. 36°10.如图,在△ ABC 中,∠ C= 90°,∠ B= 30°,以点A 为圆心,随意长为半径画弧1分别交 AB,AC 于点 M 和 N ,再分别以点M ,N 为圆心,大于2MN 的长为半径画弧,两弧交于点 P,连接 AP 并延伸交BC 于点 D,则以下说法中正确的个数是()① AD 是∠ BAC 的均分线;②∠ ADC = 60°;③点 D 在 AB 的中垂线上;④ S△DAC∶ S△ABC =1∶3.图中A.1 个B.2 个C.3 个D.4个二、填空题 (每题3分,共30分 )11.木匠师傅在做完门框后,为防备变形经常像图中所示那样钉上两条斜拉的木板条AB、 CD 两个木条),这样做依据的数学道理是____.( 即第 11题图第12题图第13题图第15题图12.如图,点 D ,E 分别在线段AB , AC 上, BE , CD 订交于点O ,AE = AD ,要使△ABE ≌△ ACD ,需增添一个条件是 ____________________________________________ (只要求写一个条件 ).13.一副拥有30°和45°角的直角三角板,如图叠放在一同,则图中∠ α 的度数是________________________________________________________________________ .14.能够用来证明命题“ 假如a,b是有理数,那么|a+b|= |a|+ |b|”是假命题的反例可以是 ____.15.如图,在△ ABC 中,∠ C= 90°, BD 均分∠ ABC ,交 AC 于 D. 若 DC =3,则点 D 到 AB 的距离是__________.16.如图,在△ ABC 中, AB = 12, EF 为 AC 的垂直均分线,若EC = 8,则 BE 的长为________________________________________________________________________ .第16题图第18题图第19题图第20题图17.一个三角形的两边长分别是 3 和 7,且第三边长为奇数,这样的三角形的周长最大值是 ___________.18.如图,在△ ABC 中,高BD, CE订交于点H ,若∠ BHC = 110°,则∠ A 等于________________________________________________________________________ .19.如图,把△ ABC 纸片沿 DE 折叠,当点 A 落在四边形BCDE 内部时,∠ A,∠ 1,∠ 2 之间有一种数目关系一直保持不变,这类关系是___.20.如图,在△ ABC 中, BC 边不动,点 A 竖直向上运动,∠ A 愈来愈小,∠B,∠ C 愈来愈大,若∠ A 减少α度,∠ B 增添β度,∠ C 增添γ度,则α,β,γ 三者之间的等量关系是 ___.三、解答题 (共50分 )21.(6 分)已知线段a,b 及∠α,用直尺和圆规作△ABC,使∠B=∠ α,AB=a,BC=b.第21题图22.( 7 分)如图,△ABC ≌△ ADE ,且∠ CAD = 35°,∠B=∠ D= 20°,∠ EAB = 105°,求∠ BFD 和∠ BED 的度数.第22题图23.(6 分)如图,△ ABC 与△ BAD 中, AD 与 BC 订交于点M ,∠ 1=∠ 2,________,试说明△ABC≌△BAD. 请你在横线上增添一个条件,使得它能够用“AAS”来说明△ ABC ≌△ BAD ,并写出说理过程.第23题图24.(7 分)(永州中考)如图,在四边形ABCD 中,∠ A=∠ BCD = 90°, BC =DC ,延伸AD 到 E 点,使 DE =AB.第24题图( 1)求证:∠ABC=∠EDC;( 2)求证:△ABC≌△EDC.25.(8 分)如图,在△ ABC 中,∠ C= 90°, BE 均分∠ ABC ,AF 平格外角∠ BAD ,BE 与 FA 交于点 E.求∠ E 的度数.第25题图26.(8 分)如图,在△ ABC 中,AC = 6cm,AB =9cm,D 是边 BC 上一点, AD 均分∠ BAC ,在 AB 上截取 AE =AC ,连接 DE ,已知 DE = 2cm, BD =3cm.求:( 1)线段BC的长;( 2)若∠ACB的均分线CF 交 AD 于点 O,且 O 到 AC 的距离是acm,请用含 a 的代数式表示△ ABC 的面积.第26题图27.(8 分)如图,在△ ABC 中, AB = AC ,∠ BAC =90°,∠ 1=∠ 2,CE ⊥ BD 交 BD 的延伸线于点 E ,求证: BD= 2CE.第27题图参照答案第 1 章三角形的初步知识检测卷一、选择题1.D 2.B 3.C 4.D 5.A 6.B7.C8.A9.C10.D二、填空题11.三角形的稳固性12.AB=AC或∠B=∠C或∠ADC=∠AEB13.75°14.答案不独一,如a=- 1, b= 3 等异号两数15.316.417.1918.70°19.2∠A=∠1+∠220.α=β+γ三、解答题21.略22.∠BFD=90°,∠BED=70°23.答案不独一,如横线上增添的条件是∠C=∠ D.原因以下:在△ ABC 与△ BAD 中,∠C=∠ D (已知),∠2=∠ 1(已知),AB = BA (公共边),∴△ ABC ≌△ BAD(AAS) .第24题图24.(1)证明:在四边形ABCD 中,∵∠ A =∠ BCD = 90°,∴∠ B +∠ ADC = 180°.又∵∠ ADC +∠ EDC = 180°,∴∠ ABC =∠ EDC.(2)证明:连接 AC.在△ ABC 和△ EDC 中,BC = DC,∵∠ABC=∠ EDC,AB = ED,∴△ ABC ≌△ EDC.25.∠E=45°26.(1)BC=5cm(2)10acm227.证明:延伸CE 与 BA 的延伸线交于点F,∵∠ BAC = 90°, CE⊥BD ,∴∠ BAC =∠ DEC ,∵∠ ADB =∠ CDE ,∴∠ ABD =∠ DCE ,在△ BAD 和△ CAF 中,∠BAD =∠ CAF ,AB =AC,∠ABD =∠ DCE,∴△ BAD ≌△ CAF(ASA) ,∴BD = CF,在△ BEF 和△ BEC 中,∠ 1=∠ 2,BE= BE,∠BEF =∠ BEC ,∴△ BEF ≌△ BEC(ASA) ,∴CE= EF,∴ DB = 2CE.第27题图。

浙教版初中数学八年级上册第一单元《三角形的初步认识》单元测试卷(较易)《含答案解析》

浙教版初中数学八年级上册第一单元《三角形的初步认识》单元测试卷(较易)《含答案解析》

浙教版初中数学八年级上册第一单元《三角形的初步认识》单元测试卷考试范围:第一章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.在△ABC中,若∠A=45°,∠B=55°,则△ABC为( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 任意三角形2.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A. 4B. 5C. 6D. 73.下列语句中,属于定义的是( )A. 两点确定一条直线B. 三人行,必有我师焉C. 在同一平面内三条线段首尾顺次连结得到的图形叫做三角形D. 三角形任意两边的和大于第三边4.说明“一个角的余角大于这个角”是假命题,所举反例错误的是( )A. 设这个角是45∘,它的余角是45∘,但45∘=45∘B. 设这个角是30∘,它的余角是60∘,但30∘<60∘C. 设这个角是60∘,它的余角是30∘,但30∘<60∘D. 设这个角是50∘,它的余角是40∘,但40∘<50∘5.如图,下列命题中,正确的是( ) ①若∠1=∠3,则AD//BC; ②若AD//BC,则∠1=∠2=∠3; ③若∠1=∠3,AD//BC,则∠1=∠2; ④若∠C+∠3+∠4=180∘,则AD//BC.A. ① ②B. ① ③C. ② ④D. ③ ④6.一副三角板如图所示摆放,若∠1=80∘,则∠2的度数是( )A. 80∘B. 95∘C. 100∘D. 110∘7.下列说法错误的是( )A. 全等三角形的对应边相等B. 全等三角形的角相等C. 全等三角形的周长相等D. 全等三角形的面积相等8.如图,△ACE≌△DBF,AD=8,BC=2,则AC=( )A. 2B. 8C. 5D. 39.如图,点B,F,C,E在同一条直线上,AC=DF,∠1=∠2.如果根据“ASA”判断△ABC≌△DEF,那么需要补充的条件是( )A. AB=DEB. ∠A=∠DC. BF=CED. ∠B=∠E10.如图所示,在正方形网格中,△ABC的三个顶点及点D,E,F,G,H都在格点上,现以点D,E,F,G,H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是( )A. △EHDB. △EGFC. △EFHD. △HDF11.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )A. (SAS)B. (SSS)C. (ASA)D. (AAS)12.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图中是按上述要求排乱顺序的尺规作图:则正确的配对是( )A. ①−Ⅳ, ②−Ⅱ, ③−Ⅰ, ④−ⅢB. ①−Ⅳ, ②−Ⅲ, ③−Ⅱ, ④−ⅠC. ①−Ⅱ, ②−Ⅳ, ③−Ⅲ, ④−ⅠD. ①−Ⅳ, ②−Ⅰ, ③−Ⅱ, ④−Ⅲ第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,在△ABC中,D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则S△BEF=_________cm2.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20∘,∠ACP=50∘,则∠A=.15.如图,ΔABC≌ΔA′B′C′,其中∠A=36∘,∠C′=24∘,则∠B=.16.如图,若AD是△ABC的高线,∠DBE=∠DAC,BD=AD,∠AEB=120∘,则∠C=°.三、解答题(本大题共9小题,共72.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:《三角形的初步认识》单元测试卷一、选择题(每小题3分,共30分)1.下列各组线段中,能组成三角形的是( )A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,62.在△ABC中,∠A﹣∠C=∠B,那么△ABC是( )A.等边三角形 B.锐角三角形 C.钝角三角形 D.直角三角形3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是( )A.SAS B.SSS C.AAS D.ASA4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有( )个.A.1 B.2 C.3 D.45.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对.A.2 B.3 C.4 D.56.下列是命题的是( )A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等D.若a2=4,求a的值7.下列命题中,真命题是( )A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等8.如图,对任意的五角星,结论正确的是( )A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为( )A.5cm B.6cm C.7cm D.8cm10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为( )A.60°B.70°C.80°D.90°二、填空题(每题3分,共30分)11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是__________.12.把命题“对顶角相等”改写成“如果…那么…”的形式:__________.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=__________°.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).15.命题“若x(1﹣x)=0,则x=0”是__________命题(填“真”、假),证明时可举出的反例是__________.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=__________.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC 的周长为22,那么AB=__________.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是__________.(将你认为正确的结论的序号都填上)19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=__________.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有__________种.三、解答题(共40分)21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△__________,判定依据是__________,由此得到∠OED=∠__________;再证明△PEC≌△__________,判定依据是__________,由此又得到PE=__________;最后证明△EOP≌△__________,判定依据是__________,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.23.证明命题“全等三角形对应边上的高相等”.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.一、选择题(每小题3分,共30分)1.下列各组线段中,能组成三角形的是( )A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,6【考点】三角形三边关系.【分析】三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.【解答】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选B.【点评】本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.2.在△ABC中,∠A﹣∠C=∠B,那么△ABC是( )A.等边三角形 B.锐角三角形 C.钝角三角形 D.直角三角形【考点】三角形内角和定理.【分析】根据三角形内角和定理得到∠A+∠B+∠C=180°,则∠A+∠B=180°﹣∠C,由∠A=∠B ﹣∠C变形得∠A+∠B=∠C,则180°﹣∠C=∠C,解得∠C=90°,即可判断△ABC的形状.【解答】解:∵∠A+∠B+∠C=180°,∴∠C+∠B=180°﹣∠A,而∠A﹣∠C=∠B,∴∠C+∠B=∠A,∴180°﹣∠A=∠A,解得∠A=90°,∴△ABC为直角三角形.故选D.【点评】本题考查了三角形内角和定理:三角形的内角和为180°,直角三角形的判定,熟记掌握三角形的内角和是解题的关键.3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是( )A.SAS B.SSS C.AAS D.ASA【考点】作图—基本作图;全等三角形的判定.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点评】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有( )个.A.1 B.2 C.3 D.4【考点】三角形的角平分线、中线和高.【分析】由于AB⊥AD,AB⊥BC,根据三角形的高的定义,可确定以AB为一条高线的三角形的个数.【解答】解:∵AB⊥AD,AB⊥BC,∴以AB为一条高线的三角形有△ABD,△ABE,△ABC,△ACE,一共4个.故选D.【点评】此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.5.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对.A.2 B.3 C.4 D.5【考点】全等三角形的判定.【分析】从最简单的开始找,因为图形对折,所以首先△CDB≌△C′DB,由于四边形是长方形所以,△ABD≌△CDB.进而可得另有2对,分别为:△ABE≌△C′DE,△ABD≌△C′DB,如此答案可得.【解答】解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,∴C′D=CD,BC′=BC,∵BD=BD,∴△CDB≌△C′DB(SSS),同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.所以,共有4对全等三角形.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.6.下列是命题的是( )A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等D.若a2=4,求a的值【考点】命题与定理.【分析】根据命题的定义对各选项进行判断.【解答】解:A、“作两条相交直线”为描叙性语言,它不是命题,所以A选项错误;B、“∠α和∠β相等吗?”为疑问句,它不是命题,所以A选项错误;C、全等三角形对应边相等,它是命题,所以C选项正确;D、“若a2=4,求a的值”为描叙性语言,它不是命题,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列命题中,真命题是( )A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等【考点】命题与定理.【分析】利用垂线的性质、全等三角形的判定、锐角的性质分别判断后即可确定正确的选项.【解答】解:A、同一平面内垂直于同一直线的两条直线平行,故错误,为假命题;B、有两边和其中一边上的高对应相等的两个三角形全等,故错误,为假命题;C、三角形的三个角中,至少有两个锐角,故正确,为真命题;D、有两边和其中一个角对应相等的两个三角形全等,错误,为假命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解垂线的性质、全等三角形的判定、锐角的性质,难度不大.8.如图,对任意的五角星,结论正确的是( )A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和得到∠1=∠2+∠D,∠2=∠A+∠C,根据三角形内角和定理得到答案.【解答】解:∵∠1=∠2+∠D,∠2=∠A+∠C,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为( )A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,然后求出△DEB的周长=AB 即可得解.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长=6cm.故选B.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质是解题的关键.10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为( )A.60°B.70°C.80°D.90°【考点】三角形内角和定理;三角形的角平分线、中线和高.【专题】探究型.【分析】根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【解答】解:连接BC.∵∠BDC=130°,∴∠DBC+∠DCB=180°﹣130°=50°,∵∠BGC=100°,∴∠GBC+∠GCB=180°﹣100°=80°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°.故选B.【点评】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.二、填空题(每题3分,共30分)11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性进行解答即可.【解答】解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.12.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=65°.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】利用三角形内角和定理求得∠AED=75°;然后根据已知条件和三角形外角定理可以求得∠BAE的度数;最后结合三角形角平分线的定义和三角形内角和定理进行解答.【解答】解:如图,∵AD⊥BC,∴∠ADE=90°.又∵∠DAE=15°,∴∠AED=75°.∵∠B=35°,∴∠BAE=∠AED﹣∠B=40°.又∵AE为∠BAC的平分线,∴∠BAC=2∠BAE=80°,∴∠C=180°﹣∠B﹣∠BAC=65°.故答案是:65.【点评】本题主要考查三角形内角和定理,垂直的性质,角平分线的性质,关键在于熟练运用个性质定理推出相关角之间的关系.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.命题“若x(1﹣x)=0,则x=0”是假命题(填“真”、假),证明时可举出的反例是x=1.【考点】命题与定理.【分析】要证明一个命题是假命题只要举一个反例即可.【解答】解:当x=1时,x(1﹣x)=0也成立,所以证明命题“若x(1﹣x)=0,则x=0”是假命题的反例是:x=1,故答案为:假,x=1.【点评】考查了命题与定理的知识,解题的关键是了解学生对反例证法的掌握情况,属于基础题,比较简单.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=8.【考点】三角形三边关系.【分析】首先确定第三边的取值范围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值范围,从而确定绝对值内的代数式的符号,难度不大.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC 的周长为22,那么AB=12.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由AB的中垂线DE交AC于点D,交AB于点E,可得AD=BD,又由BC=10,△DBC的周长为22,可求得AC的长,继而求得答案.【解答】解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12.∵AB=AC,∴AB=12.故答案为:12.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=140°或50°.【考点】垂线.【专题】分类讨论.【分析】根据题意画出图形,然后分情况进行讨论分析即可.【解答】解:①如图1,∵∠a+∠β=180°﹣90°﹣90°=180°,∠α=50°,∴∠β=140°,②如图2,若∠a的两边分别与∠β的两边在同一条直线上,∴∠a=∠β=50°,综上所述,∠β=140°或50°.故答案是:140°或50°.【点评】本题主要考查角的计算,垂线的性质,关键在于根据题意画出图形,分情况进行讨论分析.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有4种.【考点】三角形三边关系.【分析】三角形的三边中,等边三角形三边相等;除此外,必有一边是最长边;然后首先确定第三边的取值范围,从而确定答案.【解答】解:设三边长分别为a≤b≤c,则a+b=13﹣c>c≥,∴≤c<,故c=5,或6;分类讨论如下:①当c=5时,b=4,a=4或b=3,a=5;②当c=6时,b=5,a=2或b=4,a=3;∴满足条件的三角形的个数为4,故答案为:4.【点评】本题考查了三角形的三边关系,属竞赛题型,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.三、解答题(共40分)21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.【考点】作图—复杂作图.【专题】作图题.【分析】(1)利用基本作图(作已知角的平分线)画∠ACB的平分线OG;(2)过点A作AH⊥BC于H,则AH为BC边上的高;(3)先作线段EF=BC,然后分别以E、F为圆心,BA和CA为半径画弧,两弧交于点D,则△DEF 与△ABC全等.【解答】解:(1)如图1,CG为所作;(2)如图1,AH为所作;(3)如图2,△DEF为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△FOC,判定依据是SAS,由此得到∠OED=∠OFC;再证明△PEC≌△PFD,判定依据是AAS,由此又得到PE=PF;最后证明△EOP≌△FOP,判定依据是SSS,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.【考点】作图—基本作图;全等三角形的判定与性质.【分析】求∠AOB的平分线可利用三角形全等的性质作图.【解答】解:作法:(1)分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,(2)连接OP即可,在△EOD与△FOC中,,∴△EOD≌△FOC(SAS),∴∠OED=∠OFC,在△PEC与△PFD中,,∴△PEC≌△PFD(AAS),∴PE=PF.在△EOP与△FOP中,,∴△EOP≌△FOP(SSS),∴∠AOP=∠BOP,即OP平分∠AOB.故答案为:FOC,SAS,OFC;PFD,AAS,PF;△FOP,SSS,【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及全等三角形的判定定理是解答此题的关键.23.证明命题“全等三角形对应边上的高相等”.【考点】全等三角形的性质.【专题】证明题.【分析】根据图形写出已知,求证,根据全等三角形的性质求出AB=EF,∠B=∠F,根据全等三角形的判定求出△ABD≌△EFH即可.【解答】解:已知:如图,△ABC≌△EFC,AD、EH分别是△ABC和△EFC的对应边BC、FG 上的高.求证:AD=EH.证明:∵△ABC≌△EFC,∴AB=EF,∠B=∠F,∵AD、EH分别是△ABC和△EFC的对应边BC、FG上的高,∴∠ADB=∠EHF=90°,在△ABD和△EFH中,∴△ABD≌△EFH(AAS),∴AD=EH.【点评】此题主要考查学生对全等三角形的性质及判定的理解及运用能力.注意命题的证明的格式、步骤.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①根据∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,即可得出∠BAD=∠ACE;②根据全等三角形的判定方法(AAS)得出△ABD≌△CAE,从而得出BD=AE;(2)根据△ABD≌△CAE,得出BD=AE,AD=CE,再根据AE=AD+DE,即可得出BD,DE,CE三者间的数量关系.【解答】解:(1)①∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥MN,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE;②∵BD⊥MN,∴∠BDA=∠AEC=90°,在△ABD和△CAE中,,∴△ABD≌△CAE,∴BD=AE;(2)∵△ABD≌△CAE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=CE+DE.【点评】此题考查了全等三角形的判定与性质,用到的知识点是AAS、直角三角形的性质,关键是通过证明两个三角形全等得出相等的线段.。

相关文档
最新文档