绝密:导数与函数考点剖析(高考真题)
高考数学压轴专题专题备战高考《函数与导数》真题汇编及解析
数学《函数与导数》高考复习知识点一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.5.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.6.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x-'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x -'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.7.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ;根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.8.已知()2ln33,33ln3,ln3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b << C .a c b <<D .a b c <<【答案】B 【解析】 【分析】根据,,a b c 与中间值3和6的大小关系,即可得到本题答案. 【详解】因为323e e <<,所以31ln 32<<,则3ln3223336,33ln 36,(ln 3)3a b c <=<=<=+>=<, 所以c a b <<. 故选:B 【点睛】本题主要考查利用中间值比较几个式子的大小关系,属基础题.9.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A.【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.10.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.11.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.12.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+ B .[)5,∞-+ C .(),5∞-- D .(],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解. 【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B. 【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.13.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.14.已知函数()()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对称,当[]0,1x ∈时,()2020x f x =,则()2020f =( ) A .2020B .12020C .11010D .0【答案】D【解析】【分析】 根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得()()20200f f =,由函数的解析式计算可得答案.【详解】解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有()()4f x f x -=-+,函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+,变形可得:()()42f x f x +=-+,即()()2f x f x +=-,则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,()()()20200505400f f f ∴=+⨯==;故选:D .【点睛】本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.15.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为() A .b a c <<B .c b d <<C .b c a <<D .a b c << 【答案】A【解析】【分析】根据()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系.【详解】()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称()f x ∴图象关于1x =对称()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫∴-<-< ⎪⎝⎭,即b a c << 本题正确选项:A【点睛】 本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.16.函数()3ln 2x f x x x =+的图象在点()()1,1f 处的切线方程为( ) A .64y x =-B .75y x =-C .63=-y xD .74y x =- 【答案】B【解析】【分析】首先求得切线的斜率,然后求解切线方程即可.【详解】由函数的解析式可得:()221ln '6x f x x x -=+, 则所求切线的斜率()221ln1'16171k f -==+⨯=, 且:()012121f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-.本题选择B 选项.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.17.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.18.设123log 2,ln 2,5a b c -===则A .a b c <<B .b c a <<C .c a b <<D .c b a << 【答案】C【解析】【分析】由ln 2ln 2ln 3a b =<=及311log ,22a c >==<=可比较大小. 【详解】 ∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <.又3311log 2log ,22a c =>==<=.∴a c >.综上可知:c a b << 故选C.【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.19.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】 利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=, 32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>.故选:C.【点睛】本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.20.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e 上递减,在1(,)e+∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】 令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确.故选:D【点睛】本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.。
全国卷历年高考函数与导数真题归类分析(含答案)
全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
2023年高考数学客观题专题六 函数与导数
2.函数的奇偶性:
(1)奇函数、偶函数的定义:
如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称
函数y=f(x)是偶函数;
如果对于函数则
称函数y=f(x)是奇函数.
(2)奇、偶函数的性质:
①偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
A∩B= (
)
A.(1,2)
B.[1,2]
C.[1,2)
D.(1,2]
【答案】D
【解析】由题意得x-1>0,解得x>1,则集合B={x|x>1}.
而集合A={x|-1≤x≤2},
于是A∩B={x|1<x≤2}.故选D.
6.若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )
1
D.-4
)
3.若奇函数y=f(x)的图象关于直线x=2对称,且f(3)=3,则f(-1)=
【答案】-3
【解析】y=f(x)的图象关于直线x=2对称,则f(3)=f(1)=3.
y=f(x)为奇函数,则f(-1)=-f(1)=-3.
.
1
4.函数f(x)=ln(+1)+
4 − 2 的定义域为
(
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数
y=f(x)有零点.
2.定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一
条曲线,并且有:f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即
存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
指数、对数的运算性质:
(1)幂的运算性质:aman=am+n;
全国卷历年高考函数与导数解答题真题归类分析(含答案)
全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由. 【解析】(1)对32()2f x x ax b =-+求导得2'()626()3a f x x ax x x =-=-.所以有当0a <时,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;当0a =时,(,)-¥+¥区间上单调递增;当0a >时,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a+¥区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以,若0a <,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;此时在区间[0,1]上单调递增,所以(0)1f =-,(1)1f =代入解得1b =-,0a =,与0a <矛盾,所以0a <不成立. 若0a =,(,)-¥+¥区间上单调递增;在区间[0,1].所以(0)1f =-,(1)1f =代入解得1a b =ìí=-î. 若02a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af 而(0),(1)2(0)f b f a b f ==-+³,故所以区间[0,1]上最大值为(1)f . 即322()()13321a a ab a b ì-+=-ïíï-+=î相减得32227a a -+=,即(33)(33)0a a a -+=,又因为02a <£,所以无解. 若23a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af而(0),(1)2(0)f b f a b f ==-+£,故所以区间[0,1]上最大值为(0)f . 即322()()1331a a a b b ì-+=-ïíï=î相减得3227a=,解得332x =,又因为23a <£,所以无解. 若3a >,(,0)-¥区间上单调递增,(0,)3a区间上单调递减,(,)3a+¥区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =ìí-+=-î解得41a b =ìí=î.综上得01a b =ìí=-î或41a b =ìí=î. 【小结】这是一道常规的利用函数导研究函数单调性、极值、【小结】这是一道常规的利用函数导研究函数单调性、极值、最值问题,最值问题,最值问题,此类问题一般住现此类问题一般住现在第一问,在第一问,但但2019年高考3卷把该题放到第20题位置,难度也相应降低,因此,该题的第二问仍然这类问题,只不过多出一个参数。
专题04 导数及其应用-2023年高考数学真题题源解密(新高考)(解析版)
专题04 导数及其应用目录一览2023真题展现考向一导数与单调性考向二利用导数研究函数的极值、最值真题考查解读近年真题对比考向一导数的运算考向二利用导数研究函数的极值、最值考向三利用导数研究曲线上某点切线方程命题规律解密名校模拟探源易错易混速记/二级结论速记考向一导数与单调性1.(2023•新高考Ⅱ•第6题)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C解:对函数f(x)求导可得,f′(x)=ae x−1x ,依题意,a e x−1x≥0在(1,2)上恒成立,即a≥1xe x在(1,2)上恒成立,设g(x)=1xe x,x∈(1,2),则g′(x)=−(e x xe x)(xe x)2=−e x(x1)(xe x)2,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则a ≥g(x )max =g(1)=1e=e −1.故选:C .考向二 导数与极值、最值2.(2023•新高考Ⅱ•第11题)(多选)若函数f (x )=alnx +bx +c x2(a ≠0)既有极大值也有极小值,则( )A .bc >0B .ab >0C .b 2+8ac >0D .ac <0【答案】BCD解:函数定义域为(0,+∞)且f ′(x )=a x −b x 2−2c x 3=ax 2−bx−2cx 3,由题意,方程f ′(x )=0即ax 2﹣bx ﹣2c =0有两个正根,设为x 1,x 2,则有x 1+x 2=ba >0,x 1x 2=−2c a>0,Δ=b 2+8ac >0,∴ab >0,ac <0,∴ab •ac =a 2bc <0,即bc <0.故选:BCD .【命题意图】考查原函数和导函数的关系,考查求导公式,导数几何意义及导数的应用,利用导数研究函数的单调性、极值最值、函数零点问题.体会数形结合思想,分类讨论思想,化归和转化思想.【考查要点】函数与导数是高考必考知识点,考查运用函数的导数解决问题:求切线方程、单调区间、极值最值、零点等.【得分要点】1.利用导数判断函数单调性:设函数()y f x =在某个区间内可导,①'()0f x >⇒()f x 该区间内为增函数; ②'()0f x <⇒()f x 该区间内为减函数;注意:当'()f x 在某个区间内个别点处为零,在其余点处为正(或负)时,()f x 在这个区间上仍是递增(或递减)的。
高考数学专题《函数与导数》解读
从新高考的考查情况来看,函数与导数一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点等问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查。
一般出现在选择题和填空题的后两题以及解答题中,难度较大,复习备考的过程中应引起重视。
通过导数研究函数的单调性、极值、最值问题,考查考生的分类讨论思想、等价转化思想以及数学运算、逻辑推理核心素养.1、研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (1)讨论分以下四个方面①二次项系数讨论;②根的有无讨论;③根的大小讨论;④根在不在定义域内讨论. (2)讨论时要根据上面四种情况,找准参数讨论的分类. (3)讨论完毕须写综述.2、研究函数零点或方程根的方法(1)通过最值(极值)判断零点个数的方法:借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点:①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法. 3、求与函数零点有关的参数范围的方法: 方程有实根函数的图象与轴有交点函数有零点.(1)参数分离法,构造新的函数,将问题转化为利用导数求新函数单调性与最值.(2)分类讨论法. 4、不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点()0f x =()y f x =x ()y f x =重难点06 函数与导数和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.恒成立问题的重要思路:(1)m≥f(x)恒成立⇒m≥f(x)max.(2)m≤f(x)恒成立⇒m≤f(x)min.存在性(有解)问题的重要思路:(1)存在m≥f(x) ⇒m≥f(x) min(2) 存在m≤f(x) ⇒m≤f(x) max.5、利用导数证明不等式f(x)>g(x)的基本方法:(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质,达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.6、函数性质综合问题函数性质综合应用问题的常见类型及解题策略:(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.(4)应用奇函数图象关于原点对称,偶函数图象关于y轴对称.利用单调性比较大小、解不等式、研究函数的最值、函数单调性的讨论(含参)、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的;同时也要注意极值点偏移、双变量等热点问题。
重难点专题13 导数与三角函数结合的解答题(原卷版) 备战2024年高考数学重难点突破
【变式 2-1】3. (2021 秋·河北邯郸·高三统考开学考试)已知函数() =
e
― 2( ∈ )
(其中 ≈ 2.71828为自然对数的底数).
(1)当 = 2时,判断函数()的单调性;
(2)若 > 1,证明() > cos对于任意的 ∈ [0, + ∞)恒成立.
∈ 0, π .
2
(1)当 = 1时,讨论()的单调性;
(2)若() + sin < 0,求的取值范围.
4.
(2023·全国·统考高考真题)(1)证明:当0 < < 1时, ― 2 < sin < ;
(2)已知函数() = cos ― ln(1 ― 2),若 = 0是()的极大值点,求 a 的取值范围.
证明:
(1)()在区间(0,)存在唯一极大值点;
(2)()有且仅有 2 个零点.
1
【变式 1-1】2. (2019 秋·安徽·高三校联考开学考试)已知函数() = cos + 42 ―1.
2 2
(1)证明:() ≤ 0, ∈ ― ,
;
(2)判断 = ()的零点个数,并给出证明过程.
题型 2 放缩法 ..................................................................................................................................2
题型 1 分段分析法
sin
2.
(2023·全国·统考高考真题)已知函数() = ― cos3, ∈ 0, π
全国卷历年高考函数与导数解答题真题归类分析(含答案)
全国卷历年高考函数与导数解答题真题归类分析(含答案)全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数$f(x)=2x^3-ax^2+b$.1)讨论$f(x)$的单调性;2)是否存在$a,b$,使得$f(x)$在区间$[0,1]$的最小值为$-1$且最大值为$1$?若存在,求出$a,b$的所有值;若不存在,说明理由.解析】1)对$f(x)=2x^3-ax^2+b$求导得$f'(x)=6x^2-2ax=2x(3x-a)$。
所以有:当$a<0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减;当$a=0$时,$(-\infty,+\infty)$区间上单调递增;当$a>0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减.2)若$f(x)$在区间$[0,1]$有最大值$1$和最小值$-1$,所以,若$a<0$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$[0,1]$上单调递增,所以$f(0)=-1$,$f(1)=1$代入解得$b=-1$,$a=\frac{1}{3}$,与$a<0$矛盾,所以$a<0$不成立.若$a=0$,$(-\infty,+\infty)$区间上单调递增;在区间$[0,1]$,所以$f(0)=-1$,$f(1)=1$代入解得$\begin{cases}a=0\\b=-1\end{cases}$.若$0<a\leq2$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(1)$而$f(0)=b$,$f(1)=2-a+b\geq f(0)$,故所以区间$[0,1]$上最大值为$f(1)$.若$2<a\leq3$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(0)$而$f(0)=b$,$f(1)=2-a+b\leq f(0)$,故所以区间$[0,1]$上最大值为$f(0)$.已知函数$f(x)=x^3+ax+\frac{1}{4},g(x)=-\ln x$。
第2讲 函数与导数(2022年高考真题)(解析版)
第2讲 函数与导数一、单选题 1.(2022·全国·高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A 【解析】 【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .2.(2022·全国·高考真题(理))已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D 【解析】 【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解. 【详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-. 所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑. 故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ )A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为36π,所以球的半径3R =, 设正四棱锥的底面边长为2a ,高为h , 则2222l a h =+,22232(3)a h =+-, 所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.4.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x x x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.5.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】设()321x xf x x -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D. 故选:A.6.(2022·全国·高考真题(文))函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 【答案】D 【解析】 【分析】利用导数求得()f x 的单调区间,从而判断出()f x 在区间[]0,2π上的最小值和最大值. 【详解】()()()sin sin 1cos 1cos f x x x x x x x '=-+++=+,所以()f x 在区间π0,2⎛⎫ ⎪⎝⎭和3π,2π2⎛⎫ ⎪⎝⎭上()0f x '>,即()f x 单调递增;在区间π3π,22⎛⎫⎪⎝⎭上()0f x '<,即()f x 单调递减,又()()02π2f f ==,ππ222f ⎛⎫=+ ⎪⎝⎭,3π3π3π11222f ⎛⎫⎛⎫=-++=- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在区间[]0,2π上的最小值为3π2-,最大值为π22+. 故选:D7.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】 由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>, 故选:A8.(2022·全国·高考真题(理))函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.9.(2022·全国·高考真题(理))当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .1【答案】B 【解析】 【分析】 根据题意可知12f ,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,12f ,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x '=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-. 故选:B.10.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A. 二、多选题11.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( )A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =是曲线()y f x =的切线 【答案】AD 【解析】 【分析】根据三角函数的性质逐个判断各选项,即可解出. 【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z , 即4ππ,3k k ϕ=-+∈Z , 又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减;对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点; 对C ,当7π6x =时,2π23π3x +=,7π()06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭, 解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z , 从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x =--即y x =. 故选:AD .12.(2022·全国·高考真题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC 【解析】 【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解. 【详解】因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC. 【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解. 13.(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,()231f x x '=-,令()0f x '>得x >x <令()0f x '<得x <<所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(10f =>,10f =>,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝⎭上有一个零点,当x ≥时,()0f x f ≥>⎝⎭,即函数()f x 在⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误. 故选:AC. 三、双空题14.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】 1ey x = 1e y x =-【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-, 又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e ey x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e ey x -=+-,即1ey x =-;故答案为:1ey x =;1e y x =-15.(2022·全国·高考真题(文))若()1ln 1f x a b x++-=是奇函数,则=a _____,b =______. 【答案】 12-; ln 2.【解析】 【分析】根据奇函数的定义即可求出. 【详解】因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211xf x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意.故答案为:12-;ln 2.四、填空题16.(2022·全国·高考真题(理))已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.【答案】1,1e ⎛⎫ ⎪⎝⎭【解析】 【分析】由12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,可得()()12,,x x x ∈-∞⋃+∞时,()0f x '<,()12,x x x ∈时,()0f x '>,再分1a >和01a <<两种情况讨论,方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即函数ln xy a a =⋅与函数e y x =的图象有两个不同的交点,构造函数()ln xg x a a =⋅,利用指数函数的图象和图象变换得到()g x 的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案. 【详解】解:()2ln 2e xf x a a x '=⋅-,因为12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,所以函数()f x 在()1,x -∞和()2,x +∞上递减,在()12,x x 上递增,所以当()()12,,x x x ∈-∞⋃+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>, 若1a >时,当0x <时,2ln 0,2e 0x a a x ⋅><,则此时()0f x '>,与前面矛盾, 故1a >不符合题意,若01a <<时,则方程2ln 2e 0x a a x ⋅-=的两个根为12,x x , 即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点, ∵01a <<,∴函数x y a =的图象是单调递减的指数函数,又∵ln 0a <,∴ln x y a a =⋅的图象由指数函数x y a =向下关于x 轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的ln a 倍得到,如图所示:设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln xx a a ⋅,则切线的斜率为()020ln x g x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x -⋅=⋅-, 则有0020ln ln x x a a x a a -⋅=-⋅,解得01ln x a=, 则切线的斜率为122ln ln eln a a a a ⋅=,因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e ea <<,又01a <<,所以11e a <<,综上所述,a 的范围为1,1e ⎛⎫⎪⎝⎭.【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.17.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++, 切线方程为:()()()00000e 1e x xy x a x a x x -+=++-, ∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞,故答案为:()(),40,-∞-+∞五、解答题18.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x =-->,则()22111x f x x x x-'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-; (2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x --+'=+-=,当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+>-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1ln 21x ⎛> ⎝, 此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <,所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞. 【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.19.(2022·全国·高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞. (2)12a ≤(3)见解析 【解析】 【分析】 (1)求出fx ,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt<-对任意的1t >恒成立,从而可得()ln 1ln n n +-<的*n N ∈恒成立,结合裂项相消法可证题设中的不等式. (1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,0fx,当0x >时,0fx,故()f x 的减区间为(),0-∞,增区间为()0,+∞. (2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-, 则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->, 因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有0g x ,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++, 故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立. 由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤, 故()0h x '≤总成立,即()h x 在()0,+∞上为减函数, 所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-. 综上,12a ≤. (3) 取12a =,则0x ∀>,总有12e e 10x x x -+<成立, 令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有 整理得到:()ln 1ln n n +-<()21ln 2ln1ln 3ln 2ln 1ln n n n n++>-+-+++-+()ln 1n =+,故不等式成立. 【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.20.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列. 【答案】(1)1a = (2)见解析【解析】 【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时, e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、yg x 有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列. (1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,+∞,而11()ax g x a x x'-=-=. 当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数, 当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数, 故()min ()ln ln f x f a a a a ==-. 当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数, 当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数, 故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值, 故11lnln a a a a -=-,整理得到1ln 1a a a-=+,其中0a >, 设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++, 故()g a 为()0,+∞上的减函数,而10g ,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =. 综上,1a =. (2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e x S x x b =--,()e 1xS x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>, 故()S x 在(),0-∞上为减函数,在()0,+∞上为增函数, 所以()()min 010S x S b ==-<,而()e 0b S b --=>,()e 2bS b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=, 当01x <<时,0T x,当1x >时,()0T x '>,故()T x 在0,1上为减函数,在()1,+∞上为增函数, 所以()()min 110T x T b ==-<, 而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点, 当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点, 故若存在直线y b =与曲线()y f x =、y g x 有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-, 设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,+∞上为增函数,故()()00s x s >=即e 1x x >+, 所以1()1210h x x x '>+-≥->,所以()h x 在()0,+∞上为增函数,而(1)e 20h =->,31e 333122()e 3e 30e e eh =--<--<,故()h x 在()0,+∞上有且只有一个零点0x ,0311e x <<且: 当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <, 当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >, 因此若存在直线y b =与曲线()y f x =、yg x 有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<, 此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e 0x b x b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解, 所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.21.(2022·全国·高考真题(理))已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】 【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究 (1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e xx f x x f =++=,所以切点为(0,0)11(),(0)21e x x f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x = (2)()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++ 设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+- 设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=> 所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+< 又1(1)0eg -=> 所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.22.(2022·全国·高考真题(理))已知函数()ln xf x x a xx e -=+-. (1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则环121x x <.【答案】(1)(,1]e -∞+(2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-,若()0f x ≥,则e 10a +-≥,即1a e ≤+所以a 的取值范围为(,1]e -∞+(2)由题知,()f x 一个零点小于1,一个零点大于1不妨设121x x要证121x x <,即证121x x <因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞ 即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦ 下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->, 则11122111111()e e e 1e e 1x x x x x g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 111e 1e 1e e x x x x x x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x x x x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝ 所以()()1e x ϕϕ>=,而1e e x < 所以1e e 0xx x ->,所以()0g x '> 所以()g x 在(1,)+∞单调递增即()(1)0g x g >=,所以1e e 0xx x x-> 令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭ 2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭ 所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭; 综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 【点睛】关键点点睛 :本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式11()ln 2h x x x x ⎛⎫=-- ⎪⎝⎭这个函数经常出现,需要掌握。
高考数学专题03导数与函数-高考数学高频考点与最新模拟(原卷版)
高频考点一 函数的性质的应用例1、设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3B .-1 C .1D .3(2)设奇函数y =f (x )(x ∈R),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.高频考点二 函数的图象的分析判断例2、函数f (x )=ax m(1-x )n在区间[0,1]上的图象如图2-1所示,则m ,n 的值可能是( )图2-1A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1高频考点三 基本初等函数性质及其应用例3、设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)高频考点四 函数的零点和方程根的分布例4、(1)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,-34 C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞ (2)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.高频考点五 二分法求方程的近似解例5、用二分法求方程ln x =1x在[1,2]上的近似解,取中点c =1.5,则下一个有根区间是________.高频考点六 函数模型及其应用例6、如图所示,长方体物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R).E 移动时单位时间....内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;(2)其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量,当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.高频考点七 导数的几何意义的应用例7、曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ) A .-12B.12C .-22D.22高频考点八 导数在研究函数中的应用 例8、已知函数f(x)=(x -k)2e xk . (1)求f(x)的单调区间;(2)若对于任意的x ∈(0,+∞),都有f(x)≤1e,求k 的取值范围.高频考点九 定积分例9、(1)⎠⎛01(e x+2x)d x 等于( )A .1B .e -1C .eD .e +1(2)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A .103B .4C .163D .6一、函数、基本初等函数的图象与性质 1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质,是函数中最常涉及的性质,特别注意定义中的符号语言;(2)奇偶性:偶函数其图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数其图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.特别注意定义域含0的奇函数f(0)=0;(3)周期性:f(x+T)=f(x)(T≠0),则称f(x)为周期函数,T是它的一个周期.2.对称性与周期性的关系(1)若函数f(x)的图象有两条对称轴x=a,x=b(a≠b),则函数f(x)是周期函数,2|b-a|是它的一个正周期,特别地若偶函数f(x)的图象关于直线x=a(a≠0)对称,则函数f(x)是周期函数,2|a|是它的一个正周期;(2)若函数f(x)的图象有两个对称中心(a,0),(b,0)(a≠b),则函数f(x)是周期函数,2|b-a|是它的一个正周期,特别,若奇函数f(x)的图象关于点(a,0)(a≠0)对称,则函数f(x)是周期函数,2|a|是它的一个正周期;(3)若函数f(x)的图象有一条对称轴x=a和一个对称中心(b,0)(a≠b),则函数f(x)是周期函数,4|b -a|是它的一个正周期,特别是若偶函数f(x)有对称中心(a,0)(a≠0),则函数f(x)是周期函数,4|a|是它的一个正周期,若奇函数f(x)有对称轴x=a(a≠0),则函数f(x)是周期函数,4|a|是它的一个正周期.3.函数的图象(1)指数函数、对数函数和幂函数、一次函数、二次函数等初等函数的图象的特点;(2)函数的图象变换主要是平移变换、伸缩变换和对称变换.4.指数函数、对数函数和幂函数的图象和性质(注意根据图象记忆性质)指数函数y=a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;对数函数y=log a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;幂函数y=xα的图象和性质,分幂指数α>0,α=0,α<0三种情况.二、函数与方程、函数的应用1.函数的零点方程的根与函数的零点的关系:由函数的零点的定义可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以,方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.二分法用二分法求函数零点的一般步骤:第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;第二步:求区间[a,b]的中点c;第三步:计算f (c ):(1)若f (c )=0,则c 就是函数的零点;(2)若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c )); (3)若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b ));(4)判断是否达到精确度ε:即若|a -b |<ε,则得到零点近似值a (或b );否则重复(2)~(4). 3.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转译成实际问题作出解答.三、导数在研究函数性质中的应用及定积分 1.导数的几何意义 2.函数的单调性与导数如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y =x +sin x .3.函数的导数与极值对可导函数而言,某点导数等于零是函数在该点取得极值的必要条件,但对不可导的函数,可能在极值点处函数的导数不存在(如函数y =|x |在x =0处),因此对于一般函数而言,导数等于零既不是函数取得极值的充分条件也不是必要条件. 4.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值的最小者.5.定积分与曲边形面积(1)曲边为y =f (x )的曲边梯形的面积:在区间[a ,b ]上的连续的曲线y =f (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab|f x |d x .当f (x )≥0时,S =⎠⎛ab f (x )d x ;当f(x)<0时,S =-⎠⎛ab f (x )d x .(2)曲边为y =f (x ),y =g (x )的曲边形的面积:在区间[a ,b ]上连续的曲线y =f (x ),y =g (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛a b |f (x )-g (x )|d x .当f (x )≥g (x )时,S =⎠⎛ab [f (x )-g (x )]d x ;当f (x )<g (x )时,S =⎠⎛ab [g (x )-f (x )]d x .(2013·新课标I 理)16、若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值是______.(2013·新课标Ⅱ理)(8)设a =log 36,b=log 510,c=log 714,则 (A )c >b >a (B )b >c >a (C )a >c >b(D)a >b >c(2013·浙江理)3.已知y x ,为正实数,则() A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y += C.y x yx lg lg lg lg 222+=• D.lg()lg lg 222xy x y =(2013·天津理)7.函数0.5()2|log |1x f x x =-的零点个数为() (A)1 (B)2 (C)3 (D)4(2013·上海理)14.对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =(2013·上海理)12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________(2013·陕西理)10.设[x]表示不大于x 的最大整数,则对任意实数x,y,有() (A)[-x]=-[x](B)[2x]=2[x](C)[x +y]≤[x]+[y] (D)[x -y]≤[x]-[y](2013·陕西理)1.设全集为R,函数2()1f x x =-的定义域为M,则C M R 为() (A)[-1,1](B)(-1,1)(C),1][1,)(∞-⋃+∞- (D),1)(1,)(∞-⋃+∞-(2013·山东理)8.函数cos sin y x x x =+的图象大致为(2013·山东理)3.已知函数()f x 为奇函数,且当0x >时,()21,f x x x=+,则()1f -= A.2-B.0C.1D.2(2013·辽宁理)(11)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )16(B )16-(C )2216a a --(D )2216a a +-(2013·江西理)2.函数)y x x =-的定义域为( )A.(0,1)B.[0,1)C.(0,1]D.[0,1](2013·湖南理)5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为() A .3B .2C .1D .0(2013·福建理)10. 设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足:)(i {}S x x f T ∈=)(;)(ii 对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <,那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( )A.N B N A ==*,B. {}{}1008,31≤<-==≤≤-=x x x B x x A 或C.{}R B x x A =<<=,10D.Q B Z A ==,(2013·大纲理)9.若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是() A .[1,0]-B .[1,)-+∞C .[0,3]D .[3,)+∞(2013·大纲理)4.已知函数f(x)的定义域为(1,0)-,则函数(21)f x +的定义域() A .(1,1)-B .1(1,)2--C .(1,0)-D .1(,1)2(2013·大纲理)5.函数21()log (1)f x x=+(x>0)的反函数1()f x -=()A .1(0)21x x >-B .1(0)21xx ≠-C .21()x x R -∈D .21(0)xx ->(2013·北京理)5.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x关于y 轴对称,则f (x )=()A.1e x +B.1ex -C.1ex -+D.1ex --(2013·安徽理)(10)若函数()c bx ax x x f +++=23有极值点21,x x ,且()11x x f =,则关于x 的方程()()()0232=++b x af x f 的不同实根个数是(A )3(B )4 (C )5(D )6(2013·安徽理)(8)函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,,,n x x x ,使得1212()()()n nf x f x f x x x x ===,则n 的取值范围为 (A){}2,3(B){}2,3,4 (C){}3,4(D){}3,4,5(2013·大纲理)22.(本小题满分12分) 已知函数(1)()ln(1)1x x f x x xλ+=+-+.(Ⅰ)若0x ≥时,()0f x ≤,求λ的最小值; (Ⅱ)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n n a a n-+>.(2013·福建理)8.设函数)(x f 的定义域为R ,()000≠x x 是)(x f 的极大值点,以下结论一定正确的是()A .)()(,0x f x f R x ≤∈∀ B.0x -是)-(x f 的极小值点 C.0x -是)(-x f 的极小值点D.0x -是)-(-x f 的极小值点(2013·福建理)17.(本小题满分13分)已知函数)(ln )(R a x a x x f ∈-=(1)当2=a 时,求曲线)(x f y =在点))1(,1(f A 处的切线方程; (2)求函数)(x f 的极值(2013·广东理)21.(本小题满分14分) 设函数()()21xf x x e kx =--(其中k ∈R ).(Ⅰ)当1k =时,求函数()f x 的单调区间; (Ⅱ)当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .(2013·湖南理)16.设函数(),0,0.x x xf x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为____。
2020年高考数学(理)大题分解专题06 函数与导数
当 x ( 2 1,+) 时, F (x) 0 , F (x) 单调递减. a
因此 F (x) F ( 2 1) 2 ln 2 2 a ln a a 2 ln a .
a
a
2
2
令函数 g(a) a 2 ln a ,其中 1 a 2 ,
又因为 f (0) 1,所以曲线 y f (x) 在点 (0, f (0)) 处的切线方程为 y 1.
【肢解
2】(2)求函数
f
x 在区间
0,
π 2
上的最大值和最小值.
(2)设 h(x) ex (cos x sin x) 1 ,则 h(x) ex (cos x sin x sin x cos x) 2ex sin x .
【解析】(1) f (x) 3x2 2ax 3x(x 2 a) , 3
当 a 0 , f (x) 0 ,函数递增区间是 (, ) ,
当 a 0 ,递增区间是 (, 2 a), (0, ) , 3
当 a 0 ,递增区间是 (, 0), ( 2a , ) . 3
关注微信公众号《免费下载站》获取更多资料
大题肢解一
专题 06 函数与导数
函数的最值
(2020 安徽省十四校联盟高三段考)已知函数 f x ex cos x x .
(1)求曲线 y f x 在点 0, f 0 处的切线方程;
(2)求函数
f
x 在区间
0,
π 2
1 m
1 e
所以
m
的取值范围是
1
e
e
,1
.
变式训练一
高考数学最新真题专题解析—函数与导数:函数性质(新高考卷)
高考数学最新真题专题解析—函数与导数:函数性质(新高考卷)【母题来源】2022年新高考I卷【母题题文】设a=0.1e0.1,b=19,c=−ln0.9,则()A. a<b<cB. c<b<aC. c<a<bD. a<c<b【答案】C【分析】本题考查了利用导数比较大小,关键是构造合适的函数,考查了运算能力,属于较难题.【解答】解:a=0.1e0.1,b=0.11−0.1,c=−ln(1−0.1), ①lna−lnb=0.1+ln(1−0.1),令f(x)=x+ln(1−x),x∈(0,0.1],则f′(x)=1−11−x =−x1−x<0,故f(x)在(0,0.1]上单调递减,可得f(0.1)<f(0)=0,即lna−lnb<0,所以a<b; ②a−c=0.1e0.1+ln(1−0.1),令g(x)=xe x+ln(1−x),x∈(0,0.1],则g′(x)=xe x+e x−11−x (1+x)(1−x)e x−11−x,令k(x)=(1+x)(1−x)e x−1,所以k′(x)=(1−x2−2x)e x>0,所以k(x)在(0,0.1]上单调递增,可得k(x)>k(0)>0,即g′(x)>0,所以g(x)在(0,0.1]上单调递增,可得g(0.1)>g(0)=0,即a−c>0,所以a>c.故c<a<b.【母题来源】2022年新高考I卷【母题题文】已知函数f(x)及其导函数f′(x)的定义域为R,记g(x)=f′(x).若f(32−2x),g(2+x)均为偶函数,则( )A. f(0)=0B. g(−12)=0C. f(−1)=f(4)D. g(−1)=g(2)【答案】BC 【解析】本题主要考查导函数与原函数的关系,函数的对称性及奇偶性,属于难题. 【解答】解:由f(32−2x)为偶函数可知f(x)关于直线x =32对称, 由g(2+x)为偶函数可知g(x)关于直线x =2对称,结合g(x)=f′(x),根据g(x)关于直线x =2对称可知f(x)关于点(2,t)对称, 根据f(x)关于直线x =32对称可知:g(x)关于点(32,0)对称,综上,函数f(x)与g(x)均是周期为2的周期函数,所以有f(0)=f(2)=t ,所以A 不正确;f(−1)=f(1),f(4)=f(2),f(1)=f(2),故f(−1)=f(4),所以C 正确. g(−12)=g(32)=0,g(−1)=g(1),所以B 正确;又g(1)+g(2)=0,所以g(−1)+g(2)=0,所以D 不正确. 【母题来源】2022年新高考II 卷【母题题文】若函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f 22k=1(k)=( ) A. −3 B. −2C. 0D. 1【答案】A解: 令 y =1 得 f(x +1)+f(x −1)=f(x)⋅f(1)=f(x)⇒f(x +1)=f(x)−f(x −1)故 f(x +2)=f(x +1)−f(x) , f(x +3)=f(x +2)−f(x +1) , 消去 f(x +2) 和 f(x +1) 得到 f(x +3)=−f(x) ,故 f(x) 周期为 6; 令 x =1 , y =0 得 f(1)+f(1)=f(1)·f(0)⇒f(0)=2 , f(2) =f(1)−f(0)=1−2=−1 , f(3)=f(2)−f(1)=−1−1=−2 , f(4)=f(3)−f(2)=−2−(−1)=−1 , f(5)=f(4)−f(3)=−1−(−2)=1 , f(6)=f(5)−f(4)=1−(−1)=2 ,故 ∑f 22k=1(k)=3[f(1)+f(2)+⋯+f(6)]+f(19)+f(20)+f(21)+f(22) =f(1)+f(2)+f(3)+f(4)=1+(−1)+(−2)+(−1)=−3 即 ∑(22k=1k)=−3 . 【命题意图】(1) 考察函数的性质,考察函数对称性,周期性,考察函数的单调性。
导数及其应用高考专题突破探秘函数与导数热点问题和动向课件pptx
04
数学思想方法在函数与导数解题中的应用
数形结合思想在函数与导数解题中的应用
总结词
通过将代数问题与几何意义相对应,借助 数形结合思想,能够将复杂问题简单化, 提高解题效率
VS
详细描述
数形结合思想是通过将代数问题与几何图 形相对应,借助图形的性质将问题化抽象 为具体,从而简化解题过程。例如,利用 函数图像的性质解决不等式问题,或者利 用导数图像的性质解决极值点等问题。
05
04
求解
利用所学数学知识,求解数学模型。
06
高考复习建议及备考策略
高考复习建议
制定合理的 复习计划
考生应该根据高考要 求和自己实际情况, 制定一份详细的复习 计划,包括复习内容 、时间安排、目标设 定等。
注重基础知 识的学习
在复习过程中,考生 应该注重基础知识的 学习和掌握,尤其是 数学函数和导数部分 的基础概念、基本性 质和基本方法。
函数与导数的命题动向
01
结合实际问题,突出函数与导 数的应用
02
数形结合思想在函数与导数中 的应用
03
函数与导数与其他数学知识的 综合
高考对函数与导数的解题要求
熟练掌握函数与导数的定义及 基本性质
掌握函数与导数的图像表示和 几何意义
加强数学思想方法的应用,提 高解题能力和思维水平
熟悉函数与导数与其他数学知 识的综合应用
加强解题训 练
通过大量解题训练, 提高解题能力和思维 水平,尤其是对于一 些经典例题和高考真 题要进行深入研究和 分析。
建立错题本
将做错的题目整理成 错题本,分析错误原 因,并加以纠正,以 便更好地掌握知识点 和解题方法。
高考备考策略
精细化备考
2023年高考数学真题题源解密(全国通用)专题12 导数及其应用(解析版)
2023年高考数学真题题源解密(全国卷)专题12 导数及其应用目录一览①2023真题展现考向一导数与切线问题考向二导数与函数单调性考向三导数与函数的极值、最值考向四利用导数证明不等式②真题考查解读③近年真题对比④命题规律解密⑤名校模拟探源⑥易错易混速记考向一导数与切线问题考向二导数与函数单调性考向三导数与函数的极值、最值考向四利用导数证明不等式【命题意图】1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).3.生活中的优化问题会利用导数解决某些实际问题.【考查要点】(1)利用导数的几何意义求函数的切线、利用导数研究函数的单调性、极值与最值问题,难度不定,题目可能为简单题,也可能为难题,题型为选择题、填空题或解答题。
(2)导数综合应用的命题方面,理科仍将以选择、填空压轴题或解答题压轴题形式考查不等式恒(能)成立问题与探索性问题、利用导数证明不等式、利用导数研究零点或方程解问题,重点考查分类整合思想、分析解决问题的能力。
文科仍将以解答题压轴题形式考查零点、极值、最值,简单不等式恒(能)成立问题与探索性问题、利用导数解证与不等式有关的问题,一般难度不会太高。
【得分要点】高频考点:含参函数的参数对函数性质的影响;用导数研究函数的单调性、极值或最值;导数的几何意义,求曲线切线的方程;函数的零点讨论;函数的图像与函数的奇偶性。
中频考点:用函数的单调性比较大小;利用函数证明不等式或求不等式的解;求参数的取值范围;函数模型的应用。
考向一导数与函数的极值、最值为函数的极大值点,由图可知b a <,a<0,故ab 当0a >时,由x b >时,f由图可知b a >,0a >,故二、填空题4.(2022·全国乙卷理数第值点和极大值点.若1x <1,1⎛⎫所以2eln e a <,解得1e a <<综上所述,a 的取值范围为⎛ ⎝[方法二]:【通性通法】构造新函数,二次求导()2ln 2e xf x a a x '=⋅-=0的两个根为因为12,x x 分别是函数()2f x =所以函数()f x 在()1,x -∞和(,不符合题意;考向二导数与函数单调性与切线问题(2) 和当时,的解为:时,单调递增;时,单调递减;时,单调递增;综上可得:当时,在当时,在解得:,则,与联立得综上,曲线过坐标原点的切线与曲线的公共点的坐标为和考向三导数与函数的零点3.(2022·全国甲卷理数第21题)(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点1x 【答案】(1)(,1]e -∞+(2)证明见的解析【详解】(1)[方法一]:常规求导内有两个不相同的解.0,考向四利用导数证明不等式x纵观近几年高考对导数的考查,试题设计一般是包含一大一小,理科对导数的几何意义以及切线考查的频率较高,用导数研究函数的单调性、极值、最值是引导教学的常规要求。
2021年高考数学函数与导数解析版
函数与导数【命题趋势】在目前高考全国卷的考点中,导数板块常常作为压轴题的形式出现,这块部分的试题难度呈现非减的态势,因此若想高考中数学拿高分的同学,都必须拿下导数这块的内容.函数单调性的讨论、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的.对于导数内容,其关键在于把握好导数,其关键在于把握好导数的几何意义即切线的斜率,这一基本概念和关系,在此基础上,引申出函数的单调性与导函数的关系,以及函数极值的概念求解和极值与最值的关系以及最值的求解.本专题选取了有代表性的选择,填空题与解答题,通过本专题的学习熟悉常规导数题目的思路解析与解题套路,从而在以后的导数题目中能够快速得到导数问题的得分技巧.【满分技巧】对于导数的各类题型都是万变不离其宗,要掌握住导数的集中核心题型,即函数的极值问题,函数的单调性的判定.因为函数零点问题可转化为极值点问题,函数恒成立与存在性问题可以转化为函数的最值问题,函数不等式证明一般转化为函数单调性和最值求解,而函数的极值和最值是由函数的单调性来确定的.所以函数导数部分的重点核心就是函数的单调性.对于函数零点问题贴别是分段函数零点问题是常考题型,数形结合是最快捷的方法,在此方法中应学会用导数的大小去判断原函数的单调区间,进而去求出对应的极值点与最值.恒成立与存在性问题也是伴随着导数经典题型,对于选择题来说,恒成立选择小题可以采用排除法与特殊值法相结合的验证方法能够比较快捷准确得到答案,对于填空以及大题则采用对函数进行求导,从而判定出函数的最值.函数的极值类问题是解答题中的一个重难点,对于非常规函数,超出一般解方程的范畴类题目则采用特殊值验证法,特殊值一般情况下是0,1等特殊数字进行验证求解.对于理科类导数类题目,对于比较复杂的导数题目.一般需要二次求导,但是要注意导数大小与原函数之间的关系,搞清楚导数与原函数的关系是解决此类题目的关键所在.含参不等式证明问题也是一种重难点题型,对于此类题型应采取的方法是:一 双变量常见解题思路:1双变量化为单变量→寻找两变量的等量关系;2转化为构造新函数;二含参不等式常见解题思路:1参数分离;2通过运算化简消参(化简或不等关系);3将参数看成未知数,通过它的单调关系来进行消参.那么两种结构的解题思路理顺了,那么我们来看这道题.这是含参的双变量问题,一般来说,含参双变量问题我们一般是不采用转化为构造新函数,我们最好就双变量化为单变量,这就是我们解这道题的一个非常重要的思路:① 寻找双变量之间的关系并确定范围,并且确定参数的取值范围;②化简和尝试消参;③双变量化为单变量.④证明函数恒成立(求导、求极值……)(经典题型2018年全国一卷理21题)【考查题型】选择题,填空,解答题21题【限时检测】一、单选题1.(2021·北京高三期末)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=,且(1)0f =,当(0,1)x ∈时,()2x f x x =+.设(5)a f =,1()3b f =,5()2c f =-,则,,a b c的大小关系为( ) A .b a c >>B .a c b >>C .c a b >>D .b c a >>【答案】A 解:因为定义在R 上的奇函数()f x 满足(2)()f x f x +=,所以()f x 是以2为周期的周期函数,且()00f =,又(0,1)x ∈,()2x f x x =+,因为2xy =与y x =在(0,1)x ∈上单调递增,所以()2x f x x =+在(0,1)x ∈上单调递增,根据奇函数的对称性可得()f x 在()1,1-上单调递增,所以()()(5)100a f f f ====,2152c f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,1()3b f =因为11032>>-,所以()11032f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭,即b a c >> 故选:A2.(2021·海南高三二模)设2364log 3log 6log log (28)m m ⋅⋅=+,则m =( ) A .2 B .4C .8D .-2或4【答案】B【分析】条件中的等式左边224ln3ln 6ln log log ln 2ln3ln 6mm m =⨯⨯==, 所以228m m =+, 解得4m =或2m =- (舍去). 故选:B3.(2021·全国高三专题练习(理))将函数()()sin 2f x x ϕ=+的图象向左平移π4个单位后得到函数()g x 的图象,()g x 的图象在π6x =处切线垂直于y 轴,且()ππ04g g ⎛⎫+> ⎪⎝⎭,则当ϕ取最小正数时,不等式()12g x ≥的解集是( )A .()πππ,π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()ππ,π3k k k ⎡⎤+∈⎢⎥⎣⎦Z C .()2ππ,ππ3k k k ⎡⎤--∈⎢⎥⎣⎦Z D .()ππ,π2k k k ⎡⎤-∈⎢⎥⎣⎦Z 【答案】C【分析】将函数()()sin 2f x x ϕ=+的图象向左平移π4个单位后,得到函数()()πsin 2cos 22g x x x ϕϕ⎛⎫=++=+ ⎪⎝⎭的图象, ()g x 的图象在π6x =处切线垂直于y 轴,即()g x 的图象在π6x =处切线斜率为零, 由()()'2cos 2g x x ϕ=-+ 得ππ2sin 2066g ϕ⎛⎫⎛⎫'=-⨯+=⎪⎪⎝⎭⎝⎭,则,,3k k Z πϕπ+=∈ 若取ϕ=2π3,此时,()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,()2πcos 23g x x ⎛⎫=+ ⎪⎝⎭.此时,()π1π0422g g ⎛⎫+=--<⎪⎝⎭,不满足条件.若取π3ϕ=-,()πcos 23g x x ⎛⎫=- ⎪⎝⎭,()π1π0422g g ⎛⎫+=+> ⎪⎝⎭, 满足条件.则当ϕ取最小正数5π3时,不等式()5π1cos 232g x x ⎛⎫=+ ⎪⎝⎭≥,即5π1cos 232x ⎛⎫+⎪⎝⎭≥,故5π5π7π2π22π333k x k +≤+≤+,求得πππ3k x k ≤≤+. 由于函数()f x 的周期为π,故πππ3k x k ≤≤+,即2ππππ3k x k -≤≤-. 故不等式的解集为2ππππ,3x k x k k ⎧⎫-≤≤-∈⎨⎬⎩⎭Z , 故选:C .4.(2021·浙江台州市·高三期末)已知函数()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,则实数m 的最小值是( )A.B. CD【答案】D【分析】由()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减, 得()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭, 即2cos 26x x m π⎛⎫+-≤ ⎪⎝⎭, 令()2cos 26g x x x π⎛⎫=+- ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()4sin 216g x x π⎛⎫'=-+- ⎪⎝⎭, 当0,6x π⎡⎤∈⎢⎥⎣⎦时,2662x πππ≤+≤ ,则24sin 246x π⎛⎫≤+≤ ⎪⎝⎭, 所以54sin 2136x π⎛⎫-≤+-≤- ⎪⎝⎭,即()0g x '<, 所以()g x 在0,6x π⎡⎤∈⎢⎥⎣⎦是单调递减函数,max ()(0)g x g ≤得m ≥,m故选:D.5.(2021·江苏常州市·高三期末)函数()x x f x -=的图象大致为( )A .B .C .D .【答案】A 【分析】 设())lng x x =,对任意的x ∈Rx x >≥-0x >,则函数()g x 的定义域为R ,())ln xxg x x-==)()lnx g x ==-=-,所以,函数())ln g xx =为奇函数,令())lng x x ==1x =1x =-,所以,10x -≥,可得1x ≤1x =-可得()2211x x +=-,解得0x=.所以,函数()x x f x -=的定义域为{}0x x ≠,()()()()2222x x x xf x f xg x g x --++-==-=--,所以,函数()f x 为奇函数,排除BD 选项,当0x >时,)ln ln10x >=,220x x -+>,所以,()0f x >,排除C 选项.故选:A.6.(2021·北京高三期末)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使函数()y f x =在0(,)x -∞和0,)x +∞(上均有零点,则称0x 为函数()y f x =的一个“折点”.下列四个函数存在“折点”的是( ) A .1()32x f x -=+B .()lg(2021)x f x =+C .3()13x f x x =--D .2()21f x x mx =--【答案】D【分析】因为1()322x f x -=+>恒成立,所以函数()f x 不存在零点,所以函数()f x 不存在折点,故A 错误;因为20212021x +≥,所以函数()lg(2021)x f x =+不存在零点,即不存在折点,故B 错误;对函数3()13x f x x =--,2()1(1)(1)f x x x x '=-=+-,()0f x '>时,1x <-或1x >;()0f x '<时,11x -<<,所以函数3()13x f x x =--在(),1-∞-和()1,+∞上单调递增,在()1,1-上单调递减,又1(1)03f -=-<,所以函数3()13x f x x =--只有一个零点,所以函数不存在折点,故C 错误;对于函数()222()211f x x mx x m m =--=+--,由于2()11f m m -=--≤-,结合图像可知该函数一定有折点,故D 正确;故选:D.7.(2021·云南昆明市·昆明一中高三月考(理))若函数31()ln 3f x x a x =-在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .(,4)-∞ B .(,4]-∞C .(,8)-∞D .(8],-∞【答案】D【分析】因为31()ln 3f x x a x =-,所以2()a f x x x'=-; 又因为31()ln 3f x x a x =-在(2,)+∞上单调递增, 所以20ax x-≥在(2,)+∞上恒成立, 即3a x ≤在(2,)+∞上恒成立,只需要()min3a x≤,(2,)x ∈+∞因为3y x =在(2,)+∞单调递增,所以3328y x =>=,所以8a ≤. 故选:D .8.(2021·宁夏固原市·高三期末(理))已知定义在0,上的函数()f x ,fx 是()f x 的导函数,满足()()0xf x f x '-<,且()2f =2,则()0x x f e e ->的解集是( ) A .()20,eB .()ln2+∞,C .()ln2-∞,D .()2e +∞,【答案】C【分析】因为2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,所以函数()f x x 在区间0,上单调递减不等式()0xxf ee->可化为()(2)2x xf e f e >,即2xe <,解得ln 2x <故选:C9.(2021·北京顺义区·高三期末)已知函数()13xaxf x x+=-.若存在()0,1x ∈-∞-,使得()00f x =,则实数a 的取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .40,3⎛⎫ ⎪⎝⎭C .(),0-∞D .4,3⎛⎫+∞⎪⎝⎭【答案】B【分析】由()130xax f x x +=-=,可得13x a x =-,令()13x g x x=-,其中(),1x ∈-∞-,由于存在()0,1x ∈-∞-,使得()00f x =,则实数a 的取值范围即为函数()g x 在(),1-∞-上的值域.由于函数3xy =、1y x=-在区间(),1-∞-上为增函数,所以函数()g x 在(),1-∞-上为增函数.当(),1x ∈-∞-时,()1143313xg x x -=-<+=,又()130x g x x=->, 所以,函数()g x 在(),1-∞-上的值域为40,3⎛⎫ ⎪⎝⎭.因此,实数a 的取值范围是40,3⎛⎫ ⎪⎝⎭.故选:B.10.(2020·烟台市福山区教育局高三期中)已知函数()3ln ,393x f x x x <≤=⎨<≤⎪⎩,若函数()()g x f x ax =-有两个不同的零点,则实数a 的取值范围是( )A.1,32⎫⎪⎪⎣⎭B .ln 311,932e ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭C.1ln 31,,3923e ⎡⎫⎡⎫⋃⎪⎢⎪⎢⎪⎣⎭⎣⎭D.ln 3110,9332e ⎫⎛⎫⎧⎫⋃⋃⎪⎨⎬ ⎪⎪⎝⎭⎩⎭⎣⎭【答案】D【分析】函数()()g x f x ax =-有两个不同的零点等价于方程()f x a x=有两个不同的根,3,()ln3,39,x x f x x x x x<≤⎪⎪=⎨⎪<≤⎪⎩,令()u x =,∴''()u x == ''()012,()023,u x x u x x >⇒<<<⇒<< ∴()u x 在(1,2)递增,在(2,3)递减,∴1(1)0,(2),(3)23u u u ===∴()(0,]3u x ∈,且 令lnln33()33x xv x x x ==⨯,39x <≤,令3xt =,则1ln ()3t y v x t ==,13t <≤,'211ln 3t y t-=⋅,当'0y t e =⇒=,'01y t e >⇒<<,'03y e t <⇒<<,∴y 在(1,)e 递增,在(,3)e 递减,且1ln 3(1)0,(),(3)39y y e y e === ∴1()(0,]3v x e∈, 所以直线y a =与3,()ln3,39,x f x x x x x<≤⎪=⎨⎪<≤⎪⎩有两个交点, 可得a的取值范围为:ln 3110,9332e ⎫⎛⎫⎧⎫⋃⋃⎪⎨⎬ ⎪⎪⎝⎭⎩⎭⎣⎭. 故选:D.11.(2020·吉林长春市实验中学高三期中(理))已知函数()()ln 1xf x ex =-,1,2x ⎡⎤∈+∞⎢⎥⎣⎦若存在[]2,1a ∈-,使得21223f a a e m ⎛⎫-≤+-- ⎪⎝⎭成立,则实数m 的取值范围为( )A .31,2⎡⎤⎢⎥⎣⎦B .[]1,+∞C .2,3⎡⎤+∞⎢⎥⎣⎦D .2,13⎡⎤⎢⎥⎣⎦【答案】D【分析】'1()ln 1xf x e x x ⎛⎫=+- ⎪⎝⎭,令1()ln 1g x x x=+-,则'22111()x g x x x x -=-=,故当112x <<时,)'(0g x <,()g x 单调递减,当1x >时,'()0,()g x g x >单调递增,()(1)0g x g ∴≥=,从而当1,2x ⎡⎫∈+∞⎪⎢⎣⎭时,'()0f x ≥,()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.设()()222314h a a a e a e =+--=+--,则()h a 在[]2,1--上单调递减,在[]1,1-上单调递增,()max ()1h a h e ==-,存在[]2,1a ∈-,使21223f a a e m ⎛⎫-≤+-- ⎪⎝⎭成立,等价于()121f e f m ⎛⎫-≤-= ⎪⎝⎭.1211122m m ⎧-≤⎪⎪∴⎨⎪-≥⎪⎩,解得213m ≤≤.故选:D.12.(2020·甘肃兰州市·西北师大附中高三期中)已知函数()f x 的导函数为()f x ',且对任意的实数x 都有()()()23x f x e x f x -'=+-(e 是自然对数的底数),且()01f =,若关于x 的不等式()0f x m -<的解集中恰有两个整数,则实数m 的取值范围是( ) A .[),0e - B .)2,0e ⎡-⎣C .(],0e -D .(2,0e ⎤-⎦【答案】C【分析】()()23xx f x f x e+'=-即()()23xe f x f x x '+=+⎡⎤⎣⎦, 所以()23xe f x x '⎡⎤=+⎣⎦,则()23x e f x x x c =++,所以()23xx x c f x e ++=,因为()01f =,所以()001cf c e===,所以()231xx x f x e ++=,()()()()()()2222331221x x xxx x e e x x x x x x f x e e e+-++-+--+-'===,由()0f x '>得21x -<<,此时()f x 单调递增, 由()0f x '<得2x <-或1x >,此时()f x 单调递减, 所以1x =时,()f x 取得极大值为()51f e=, 当2x =-时,()f x 取得极小值()220f e -=-<,又因为()10f e -=-<,()010f =>,()330f e -=>,且1x >时,()0f x >,()0f x m -<的解集中恰有两个整数等价于()231xx x f x e++=在y m=下方的图象只有2个横坐标为整数的点,结合函数图象可得: 则()10f m -<≤,解得0e m -<≤,所以0e m -<≤时,()0f x m -<的解集中恰有两个整数1,2--, 故实数m 的取值范围是(],0e - 故选:C13.(2020·全国高三专题练习(理))定义在R 上的函数()f x 的导函数为()f x ',当[)0,x ∈+∞时,()2sin cos 0x x f x '⋅->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( )A .15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B .15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C .3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D .1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】令()()2sin F x x f x =-,x R ∀∈,()()cos21f x f x x -++=,所以,()()()()()()()222sinsin 2sin F x F x x f x x f x x f x f x -+=---+-=--+⎡⎤⎣⎦()1cos21cos20x x =---=,()()F x F x ∴-=-,所以,函数()F x 为R 上的奇函数, ()()sin 2F x x f x =-'',当[)0,x ∈+∞时,()2sin cos 0x x f x '⋅->,即()sin 2x f x >',()0F x '∴>, 所以,()()2sin F x x f x =-在[)0,+∞上单调递增,由奇函数的性质可知,函数()F x 在(],0-∞上单调递增, 所以,函数()F x 在R 上单调递增.对于A 选项,5263ππ-<-,则5263F F ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,即15324643f f ππ⎛⎫⎛⎫--<-- ⎪ ⎪⎝⎭⎝⎭,A 选项错误;对于B 选项,5463ππ->-,5463F F ππ⎛⎫⎛⎫∴->- ⎪ ⎪⎝⎭⎝⎭,即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,B 选项正确; 对于C 选项,334ππ<,334F F ππ⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,即3134324f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,C 选项错误;对于D 选项,343ππ-<,343F F ππ⎛⎫⎛⎫∴-< ⎪ ⎪⎝⎭⎝⎭,即1332443f f ππ⎛⎫⎛⎫--<- ⎪ ⎪⎝⎭⎝⎭,D 选项错误. 故选:B.14.(2021·江苏省新海高级中学高三期末)已知函数2()31f x x x =---,()e g 2x exx ex+=,实数m ,n 满足0m n <<,若[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立,则n m -的最大值为( )A.1 BC .D【答案】A 【分析】()()()()'22222222214222xx x x x x x e e ex e ex eex e e e x e e x g x e e x ex exex +⋅-+⋅⋅-⋅⋅--====⋅, 所以当01x <<时,()()'0,g x g x <递减;当1x >时,()()'0,g x g x >递增. 所以在区间()0,∞+上,()g x 的最小值为()112e eg e+==. ()23524f x x ⎛⎫=-++ ⎪⎝⎭,故()f x 在32x =-时取得最大值54.画出()()0f x x <和()()0g x x >图象如下图所示, 令()1f x =,解得2x =-或1x =-.依题意,实数m ,n 满足0m n <<,若[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立,由图可知,n m -的最大值为()121---=. 故选:A二、填空题15.(2020·罗山县楠杆高级中学高三月考(文))已知()f x 为偶函数,当0x <时,()()ln 2f x x x =-+,则曲线()y f x =在点()()1,1f 处的切线方程是__________.【答案】10x y ++=【分析】令0x >,则0x -<,因为当0x <时,()()ln 2f x x x =-+,所以()ln 2-=-f x x x ,又()f x 为偶函数,所以()()ln 2=-=-f x f x x x , 所以当0x >时,()ln 2f x x x =-,所以12f ,又()12f x x'=-,所以()11f '=-, 所以曲线()y f x =在点()()1,1f 处的切线方程是()21y x +=--,即10x y ++=. 故答案为:10x y ++=16.(2020·海口市第四中学高三期中)已知k 为常数,函数2,0()1ln ,0x x f x x x x +⎧≤⎪=-⎨⎪>⎩,若关于x 的函数()()2g x f x kx =--有4个零点,则实数k 的取值范围为________. 【答案】310,e ⎛⎫⎪⎝⎭【分析】因为函数()()2g x f x kx =--有4个零点, 所以()y f x =与2y kx =+有4个不同的交点,在同一坐标系中作出()y f x =与2y kx =+的图象,如图所示:当0x ≤时,311y x =+-单调递减, 与2y kx =+有一个交点,则0k >; 所以当0x >时,有3个交点,求出2y kx =+与|ln |y x =相切时的k 值, 当1x >时,设切点为()00,ln x x ,所以1y x'=,则01k x =,所以切线方程为()0001ln y x x x x -=-, 又因为点()0,2在切线上,所以则()00012ln 0x x x -=-, 解得30x e =,所以31k e =, 由图像知()()2g x f x kx =--有4个零点,则310k e <<, 故答案为: 310,e ⎛⎫⎪⎝⎭17.(2021·北京高三期末)已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______. 【答案】24,0e ⎡⎤-⎣⎦【分析】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦18.(2021·江西新余市·高三期末(理))已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.【答案】(,]e -∞∵()(ln )xe f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x'---=+-= ∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)xh x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞,∴()h x 在x =1处,取得极小值,∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x =在(0,)x ∈+∞上无解,设()x e g x x=则2(1)()x e x g x x '-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞,∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤故答案为:(,]e -∞.19.(2020·湖北高三月考)若10,x e ⎛⎫∈ ⎪⎝⎭时,关于x 不等式32ln 0ax ax e x +≤恒成立,则实数a 的最大值是______. 【答案】2e【分析】当0a ≤,10,x e ⎛⎫∈ ⎪⎝⎭时,x 不等式32ln 0ax ax e x +≤显然恒成立. 当0a ≥时,32ln 0ax ax e x +≤ 32ln ax ax e x ∴≤-.由于10,x e ⎛⎫∈ ⎪⎝⎭22ln ax x axe x --∴≤,即22l ln n ax ax x e e x --∴≤.所以原不等式32ln 0ax ax e x +≤恒成立,等价于22ln ln ax ax e x x e --≤恒成立. 构造函数()ln f x x x =,()'1ln f x x =+.易知()f x 在1(0,)e上单调递减,在1(,)e+∞上单调递增.则原不等式等价于要证2(())ax f f x e -≤.因为22(,)x e -∈+∞,要使实数a 的最大,则应2ax e x -≤.即2ln x a x -≤. 记函数2ln 1()(0)x g x x x e -=<<,则22(1ln )'()x g x x --=.易知10x e <<,22(1ln )'()0x g x x--=<.故函数()g x 在1(0,)e 上单调递减,所以1()()2g x g e e<=. 因此只需2a e ≤.综上所述,实数a 的最大值是2e . 故答案为:2e三、解答题20.(2021·浙江台州市·高三期末)已知a ,b R ∈,函数()2f x axe b =+,曲线()y f x =在点()()0,0f 处的切线方程为1y x =-.(Ⅰ)求a ,b 的值及()f x 的最小值;(Ⅱ)设函数()ln g x x x =,若对于任意的()0,x ∈+∞,()()21f x g mx +≥恒成立,求实数m 的取值范围.【答案】(Ⅰ)1a =,1b =-;()min 11f x e=--;(Ⅱ)(]0,2e . 【分析】(Ⅰ)()e xf x a x b =⋅+,()0f b =,()()1xf x a x e '=+,()0f a '=, 故切线方程为1y ax b x =+=-,得1a =,1b =-;()1x f x xe ∴=-,()()1x f x x e '∴=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减, 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增, 所以,()()min 111f x f e=-=--; (Ⅱ)()()21f x g mx +≥即()22ln xx emx mx ⋅≥⋅,因为0,0x m >>,即22ln ln 0x e x m m--≥对于任意的()0,x ∈+∞恒成立,设()22ln ln xh x e x m m=--,0x >,0m >, ()241x h x e m x'=-, 因为2xy e =和1y x=-在()0,x ∈+∞时为单调增函数 则函数()h x '在()0,∞+上单调递增,当0x →时,()0h x '<,当x →+∞时,()0h x '>,则存在()00x ∈+∞,,使得()0200410x h x e m x -'==, 当()00,x x ∈时,()0h x '<,()0,x x ∈+∞时,()0h x '>, 故()h x 在()00,x 上单调递减,在()0,x +∞上单调递增,()()02000min 021ln ln ln ln 02x h x h x e x m x m m x ∴==--=--≥; 由020410x e m x -=,得0204x m x e =, ()0000122ln 2ln 202h x x x x ∴=---≥, 因为122y x x=-和2ln y x =-在()0,x ∈+∞上单调递减, 所以函数()0000122ln 2ln 22h x x x x =---,在()00x ∈+∞,上单调递减,且102h ⎛⎫=⎪⎝⎭,故010,2x ⎛⎤∈ ⎥⎝⎦, 因为4y x =和2xy e =在()0,x ∈+∞上单调递增.所以函数0204x m x e=在010,2x ⎛⎤∈ ⎥⎝⎦上单调递增,02m e ∴<≤,因此,实数m 的取值范围是(]0,2e .21.(2020·北京高考真题)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.【答案】(Ⅰ)2130x y +-=,(Ⅱ)32.【分析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 22.(2021·北京顺义区·高三期末)已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程;(2)若()y f x =在区间1,e e⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.【答案】(1)322ln 20x y ---=;(2)2(2,)e e .【分析】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=,由2()23f x x x'=-=解得2x =(12x =-舍去),又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛-+ -⎝⎭⎝⎭'=-==,易知()f x()f x有两个零点,则1e e<<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =2a f a =-所以22111ln 0()ln 002f a e ee f e e a e a f a ⎧⎛⎫⎪=-> ⎪⎪⎝⎭⎪=->⎨⎪⎪=-<⎪⎩,解得22e a e <<.综上a 的范围是2(2,)e e .23.(2020·天津高考真题)已知函数3()ln ()f x x k x k R =+∈,()'f x 为()f x 的导函数.(Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【答案】(Ⅰ)(i )98y x =-;(ii )()g x 的极小值为(1)1g =,无极大值;(Ⅱ)证明见解析.【分析】(Ⅰ) (i) 当k =6时,()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x=-+-, 整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞); g (x )的极小值为g (1)=1,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x=--∈+∞. 当x >1时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当t >1时,()()1h t h >,即12ln 0t t t-->.因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t tt t t t tt ⎛⎫⎛⎫-+-+------- ⎪+ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(Ⅰ)(ii)可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++-> ③ 由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 24.(2020·全国高考真题(理))设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析 【分析】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或12x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <,即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0'x , 即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.25.(2020·全国高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27,4e ⎡⎫-+∞⎪⎢⎣⎭【分析】(1)当1a =时,()2x x x e f x =+-,()21x f x e x '=+-,由于()20x f x e ''=+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----,记()32112x e x x g x x ---=-,()()231212xx e x x g x x ⎛⎫---- ⎪⎝⎭'=-,令()()21102x e x x h x x ---≥=,则()1x h x e x '=--,()10x h x e ''=-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=, 由()0h x ≥可得:21102x e x x ---恒成立, 故当()0,2x ∈时,0g x,()g x 单调递增; 当()2,x ∈+∞时,0g x ,()g x 单调递减; 因此,()()2max 724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭.。
高中数学高考总复习:导数与函数的综合知识讲解及考点梳理
求曲线 y f (x) 过点 P(x0, y0 ) 的切线,可以分两种情况:
①切点为 P(x0, y0 ) 时,方法同(1)
② 切 点 不 为 P(x0, y0 ) 时 , 可 以 设 切 点 为 M (x1, y1) , 然 后 列 出 方 程 y1 f (x1) 及
2
①函数最大值和最小值是比较整个定义域上的函数值得出的,是整个定义区间上的一个概 念,而函数的极值则是比较极值点附近两侧的函数值而得出的,是局部的概念; ②极值可以有多个,最大(小)值若存在只有一个;
③极值只能在区间内取得,不能在区间端点取得;而使函数取得最大值、最小值的点可能 在区间的内部,也可能在区间的端点。
①若 a 0 f '(x) 0 恒成立,
此时 f(x)在 R 上为单调函数,只有一个单调区间为(-∞,+∞),不合题意;
②若 a 0
f '(x) 0 - - 1 x - 1 , f '(x) 0 x - - 1或x - 1
a
a
a
a
综上,a<0 时有三个单调区间,
增区间为: -
b
若函数 y
f (x) 在区间b,b上是奇函数,则
f (x)dx 0
b
;
b
b
若函数 y
f (x) 在区间b,b上是偶函数,则
f (x)dx 2
b
0
f (x)dx
.
2.微积分基本定理:
b
f (x)dx F(x)
a
b a
F(b) F(a)
.
【高清课堂:函数的概念、图象和性质 368992 知识要点】
果曲线有切线的话,则切线是水平的,从而有 f '(x) 0 。但反过来不一定。如函数 y=x3,
高考数学压轴专题(易错题)备战高考《函数与导数》图文解析
《函数与导数》考试知识点一、选择题1.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <-的解集是( ) A .(2,3) B .(,1)-∞C .()(1,2)2,3⋃D .()(,1)3,-∞⋃+∞【答案】C 【解析】 【分析】令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可. 【详解】当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>, 令()|2|()F x x f x =-.当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>, 即当2x >时,()F x 单调递增. 函数()f x 满足(2)(2)f x f x +=-,所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U . 故选:C 【点睛】本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.2.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.3.函数22()41x x x f x ⋅=-的图像大致为( )A .B .C .D .【答案】A 【解析】∵函数()22?41x x x f x =-的定义域为(,0)(0,)-∞+∞U∴222()2()()4114x x x xx x f x f x --⋅-⋅-===---∴函数()f x 为奇函数,故排除B ,C. ∵2(1)03f =>,故排除D. 故选A.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.4.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a的取值范围为( )A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭ D .11,127⎛⎫-⎪⎝⎭【答案】C【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.5.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.6.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2- B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.7.[]()x a,b ,f x m ∀∈≥恒成立,等价于[]()x a,b ,[f x ]m min ∈≥8.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】 【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0f f x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93x f x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0ff x =,得()32log 93xf x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭. 故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.9.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.10.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根,函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.11.函数()||()af x x a R x=-∈的图象不可能是( ) A . B .C .D .【答案】C 【解析】 【分析】变成分段函数后分段求导,通过对a 分类讨论,得到函数的单调性,根据单调性结合四个选项可得答案. 【详解】,0(),0a x x xf x a x x x ⎧->⎪⎪=⎨⎪--<⎪⎩,∴221,0()1,0a x x f x a x x ⎧+>⎪⎪=⎨⎪-+<⎩'⎪.(1)当0a =时,,0(),0x x f x x x >⎧=⎨-<⎩,图象为A; (2)当0a >时,210ax+>,∴()f x 在(0,)+∞上单调递增,令210ax-+=得x =∴当x <,210ax -+<,当0x <<时,210ax-+>,∴()f x 在(,-∞上单调递减,在(上单调递增,图象为D; (3)当0a <时,210ax-+<,∴()f x 在(,0)-∞上单调递减,令210ax+=得x =∴当x >时,210ax +>,当0x <<,210ax+<,∴()f x 在上单调递减,在)+∞上单调递增,图象为B; 故选:C. 【点睛】本题考查了分段函数的图像的识别,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.12.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.13.已知函数()()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对称,当[]0,1x ∈时,()2020xf x =,则()2020f =( ) A .2020 B .12020C .11010D .0【答案】D 【解析】 【分析】根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得()()20200f f =,由函数的解析式计算可得答案.【详解】解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有()()4f x f x -=-+,函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+, 变形可得:()()42f x f x +=-+,即()()2f x f x +=-, 则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,()()()20200505400f f f ∴=+⨯==;故选:D . 【点睛】本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.14.[]0x a,b ∃∈使得()f x m ≥成立,等价于[]()0x a,b ,[f x ]m max ∈≥15.曲线2y x =与直线y x =所围成的封闭图形的面积为( )A .16B .13C .12D .56【答案】A【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x =与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.16.设函数()xf x x e =⋅,则( ) A .()f x 有极大值1e B .()f x 有极小值1e- C .()f x 有极大值eD .()f x 有极小值e -【答案】B【解析】【分析】 利用导数求出函数()y f x =的极值点,分析导数符号的变化,即可得出结论.【详解】()x f x x e =⋅Q ,定义域为R ,()()1x f x x e '∴=+,令()0f x '=,可得1x =-. 当1x <-时,()0f x '<;当1x >-时,()0f x '>.所以,函数()x f x x e =⋅在1x =-处取得极小值()11f e-=-, 故选:B.【点睛】本题考查利用导数求函数的极值,在求出极值点后,还应分析出导数符号的变化,考查计算能力,属于中等题.17.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .17(1)a r +B .17[(1)(1)]a r r r +-+C .18(1)a r +D .18[(1)(1)]a r r r+-+ 【答案】D【解析】【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可.【详解】解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +,孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.18.40cos2d cos sin x x x xπ=+⎰( ) A.1)B1 C1 D.2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】 设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--,Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.20.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e 上递减,在1(,)e+∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确.故选:D【点睛】 本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密:导数与函数考点剖析(新课标)TL123数学小屋: (内部资料仅供北京八中北海分校内部使用) 龙伟基考点一:切线类型高考真题赏析:1.[2013·广东卷] 若曲线y =kx +ln x 在点(1,k)处的切线平行于x 轴,则k =________.2.[2013·新课标全国卷Ⅰ] 设函数f(x)=x 2+ax +b ,g(x)=e x (cx +d).若曲线y =f(x)和曲线y =g(x)都过点P(0,2),且在点P 处有相同的切线y =4x +2. (1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f(x)≤kg(x),求k 的取值范围.3.[2013·北京卷] 设L 为曲线C :y =ln x x在点(1,0)处的切线. (1)求L 的方程; (2)证明:除切点(1,0)之外,曲线C 在直线L 的下方.4.[2013·重庆卷] 设f(x)=a(x -5)2+6ln x ,其中a ∈R ,曲线y =f(x)在点(1,f(1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f(x)的单调区间与极值.5.[2013·福建卷] 已知函数f(x)=x -aln x(a ∈R ).(1)当a =2时,求曲线y =f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.6.[2012·广东卷] 曲线y =x 3-x +3在点(1,3)处的切线方程为________.7.[2012·辽宁卷] 已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.8.[2012·北京卷] 已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值;(2)当a 2=4b 时,求函数f (x )+g (x )的单调区间,并求其在区间(-∞,-1]上的最大值.9.[2012·福建卷] 已知函数f (x )=e x +ax 2-e x ,a ∈R .(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求函数f (x )的单调区间;(2)试确定a 的取值范围,使得曲线y =f (x )上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .考点二:方程跟类型或图像交点和函数性质10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.13.B1,B11[2013·江西卷] 设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f′(1)=________.13.2 [解析] f(e x )=x +e x ,利用换元法可得f(x)=ln x +x ,f ′(x)=1x+1,所以f′(1)=2.5.B5,B9[2013·湖南卷] 函数f(x)=2ln x的图像与函数g(x)=x2-4x+5的图像的交点个数为()A.3 B.2 C.1 D.05.B[解析] 法一:作出函数f(x)=2ln x,g(x)=x2-4x+5的图像如图:可知,其交点个数为2,选B.答案:1. -12.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x (cx +d +c),故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f(x)=x 2+4x +2,g(x)=2e x (x +1).设函数F(x)=kg(x)-f(x)=2ke x (x +1)-x 2-4x -2,则F′(x)=2ke x (x +2)-2x -4=2(x +2)(ke x -1).由题设可得F(0)≥0,即k ≥1.令F′(x)=0得x 1=-ln k ,x 2=-2.①若1≤k<e 2,则-2<x 1≤0,从而当x ∈(-2,x 1)时,F′(x)<0;当x ∈(x 1,+∞)时,F′(x)>0,即F(x)在(-2,x 1)上单调递减,在(x 1,+∞)上单调递增.故F(x)在[-2,+∞)上的最小值为F(x 1).而F(x 1)=2x 1+2-x 21-4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k =e 2,则F′(x)=2e 2(x +2)(e x -e -2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当x ≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e 2,则F(-2)=-2ke -2+2=-2e -2(k -e 2)<0,从而当x ≥-2时,f(x)≤kg(x)不可能恒成立.综上,k 的取值范围是[1,e 2].3.解:(1)设f(x)=ln x x ,则f′(x)=1-ln x x 2.所以f′(1)=1.所以L 的方程为y =x -1. (2)令g(x)=x -1-f(x),则除切点之外,曲线C 在直线L 的下方等价于 g(x)>0(x>0,x ≠1).g(x)满足g(1)=0,且g ′(x)=1-f′(x)=x 2-1+ln x x 2. 当0<x<1时,x 2-1<0,ln x<0,所以g′(x)<0,故g(x)单调递减;当x>1时,x 2-1>0,ln x>0,所以g′(x)>0,故g(x)单调递增.所以g(x)>g(1)=0(x>0,x ≠1).所以除切点之外,曲线C 在直线L 的下方.4.解:(1)因f(x)=a(x -5)2+6ln x ,故f′(x)=2a(x -5)+6x. 令x =1,得f(1)=16a ,f′(1)=6-8a ,所以曲线y =f(x)在点(1,f(1))处的切线方程为y -16a =(6-8a)(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12. (2)由(1)知,f(x)=12(x -5)2+6ln x(x >0), f ′(x)=x -5+6x =(x -2)(x -3)x,令f′(x)=0,解得x 1=2,x 2=3. 当0<x <2或x >3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数;当2<x <3时, f′(x)<0,故f(x)在(2,3)上为减函数.由此可知,f(x)在x =2处取得极大值f(2)=92+6ln 2,在x =3处取得极小值f(3)=2+6ln 3. 5.解:函数f(x)的定义域为(0,+∞),f′(x)=1-a x. (1)当a =2时,f(x)=x -2lnx ,f′(x)=1-2x(x>0),因而f(1)=1,f′(1)=-1, 所以曲线y =f(x)在点A(1,f(1))处的切线方程为y -1=-(x -1), 即x +y -2=0.(2)由f′(x)=1-a x =x -a x,x>0知: ①当a ≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x =a.又当x ∈(0,a)时,f′(x)<0;当x ∈(a ,+∞)时,f′(x)>0,从而函数f(x)在x =a 处取得极小值,且极小值为f(a)=a -aln a ,无极大值.综上,当a ≤0时,函数f(x)无极值;当a>0时,函数f(x)在x =a 处取得极小值a -aln a ,无极大值.6.y =2x +1 [解析] 根据已知曲线方程求导得:y ′=3x 2-1,所以切线斜率k =y ′|x =1=3-1=2,所以根据点斜式方程得:y -3=2(x -1),即方程为:y =2x +1.7.-4 [解析] 本小题主要考查导数的几何意义的应用.解题的突破口为求切点坐标和切线的斜率.由x 2=2y 可知y =12x 2,这时y ′=x ,由P ,Q 的横坐标为4,-2,这时P (4,8),Q (-2,2), 以点P 为切点的切线方程P A 为y -8=4(x -4),即4x -y -8=0①;以点Q 为切点的切线方程QA 为y -2=-2(x +2),即2x +y +2=0②;由①②联立得A 点坐标 为(1,-4),这时纵坐标为-4.8.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,所以f (1)=g (1),且f ′(1)=g ′(1).即a +1=1+b ,且2a =3+b ,解得a =3,b =3.(2)记h (x )=f (x )+g (x ).当b =14a 2时,h (x )=x 3+ax 2+14a 2x +1, h ′(x )=3x 2+2ax +14a 2.令h ′(x )=0,得x 1=-a 2,x 2=-a 6.所以函数h (x )的单调递增区间为⎝⎭⎫-∞,-a 2和⎝⎭-a 6,+∞;单调递减区间为⎝⎭⎫-a 2,-a 6. 当-a 2≥-1,即0<a ≤2时,函数h (x )在区间(-∞,-1]上单调递增,h (x )在区间(-∞,-1]上的最大值为h (-1)=a -14a 2.当-a 2<-1,且-a 6≥-1,即2<a ≤6时, 函数h (x )在区间⎝⎛⎭⎫-∞,-a 2内单调递增,在区间⎝⎛⎦⎤-a 2,-1上单调递减, h (x )在区间(-∞,-1]上的最大值为h ⎝⎛⎭⎫-a 2=1. 当-a 6<-1,即a >6时,函数h (x )在区间⎝⎛⎭⎫-∞,-a 2内单调递增,在区间⎝⎛⎭⎫-a 2,-a 6内单调递减,在区间⎝⎛⎦⎤-a 6,-1上单调递增,又因h ⎝⎛⎭⎫-a 2-h (-1)=1-a +14a 2=14(a -2)2>0, 所以h (x )在区间(-∞,-1]上的最大值为h ⎝⎛⎭⎫-a 2=1. 9.解:(1)由于f ′(x )=e x +2ax -e ,曲线y =f (x )在点(1,f (1))处切线斜率k =2a =0,所以a =0,即f (x )=e x -e x .此时f ′(x )=e x -e ,由f ′(x )=0得x =1.当x ∈(-∞,1)时,有f ′(x )<0;当x ∈(1,+∞)时,有f ′(x )>0.所以f (x )的单调递减区间为(-∞,1),单调递增区间为(1,+∞).(2)设点P (x 0,f (x 0)),曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), 令g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),故曲线y =f (x )在点P 处的切线与曲线只有一个公共点P 等价于函数g (x )有唯一零点.因为g (x 0)=0,且g ′(x )=f ′(x )-f ′(x 0)=e x -e x 0+2a (x -x 0).①若a ≥0,当x >x 0时,g ′(x )>0,则x >x 0时,g (x )>g (x 0)=0;当x <x 0时,g ′(x )<0,则x <x 0时,g (x )>g (x 0)=0.故g (x )只有唯一零点x =x 0.由于x 0具有任意性,不符合P 的唯一性,故a ≥0不合题意.②若a <0,令h (x )=e x -e x 0+2a (x -x 0),则h (x 0)=0,h ′(x )=e x +2a .令h ′(x )=0,得x =ln(-2a ),记x *=ln(-2a ),则当x ∈(-∞,x *)时,h ′(x )<0,从而h (x )在(-∞,x *)内单调递减;当x ∈(x *,+∞)时,h ′(x )>0,从而h (x )在(x *,+∞)内单调递增.(i)若x 0=x *,由x ∈(-∞,x *)时,g ′(x )=h (x )>h (x *)=0;x ∈(x *,+∞)时,g ′(x )=h (x )>h (x *)=0.知g (x )在R 上单调递增.所以函数g (x )在R 上有且只有一个零点x =x *.(ii)若x 0>x *,由于h (x )在(x *,+∞)内单调递增,且h (x 0)=0,则当x ∈(x *,x 0)时有g ′(x )=h (x )<h (x 0)=0,g (x )>g (x 0)=0;任取x 1∈(x *,x 0)有g (x 1)>0.又当x ∈(-∞,x 1)时,易知g (x )=e x +ax 2-(e +f ′(x 0))x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-(e +f ′(x 0))x -f (x 0)+x 0f ′(x 0)=ax 2+bx +c ,其中b =-(e +f ′(x 0)),c =e x 1-f (x 0)+x 0f ′(x 0).由于a <0,则必存在x 2<x 1,使得ax 22+bx 2+c <0.所以g (x 2)<0,故g (x )在(x 2,x 1)内存在零点.即g (x )在R 上至少有两个零点.(iii)若x 0<x *,仿(ii)并利用e x >x 36,可证函数g (x )在R 上至少有两个零点. 综上所述,当a <0时,曲线y =f (x )上存在唯一点P (ln(-2a ),f (ln(-2a ))),曲线在该点处的切线与曲线只有一个公共点P .。