2021年新人教版七下数学试题全集[各章总复习]

合集下载

2021年人教版七年级下学期期末考试数学试卷(附答案)

2021年人教版七年级下学期期末考试数学试卷(附答案)

七年级下学期期末考试数学试卷满分:150分 考试用时:120分钟班级 姓名 得分 一、选择题(本大题共12小题,每小题4分,共48.0分。

在每小题给出的四个选项中, 只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目答案标号涂黑、涂满) 1. 如图,下列判断中正确的是( )A. 如果∠3+∠2=180°,那么AB//CDB. 如果∠1+∠3=180°,那么AB//CDC. 如果∠2=∠4,那么AB//CDD. 如果∠1=∠5,那么AB//CD 2. 已知√−a =a ,那么a =( )A. 0B. 0或1C. 0或−1D. 0,−1或1 3. 如图所示,下列说法正确的是( ).A. 点A 的横坐标是4B. 点A 的横坐标是−4C. 点A 的坐标是(4,−2)D. 点A 的坐标是(−2,4) 4. 已知关于x 、y 的二元一次方程组{2x +y =ax −y =3的解为{x =5y =b,则a +b 的值为( ) A. 14 B. 10 C. 9 D. 85. 不等式组{x −1>05−x ≥1的整数解共有( )A. 1个B. 2个C. 3个D. 4个6. 在样本的频数直方图中,有11个小长方形,若中间一个长方形的面积等于其他10个小长方形面积的和的14,且样本数据有160个,则中间一组的频数为( ).A. 0.2B. 32C. 0.25D. 407. 如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A. 15°B. 22.5°C. 30°D. 45°8. 已知x 是整数,当|x −√30|取最小值时,x 的值是( )A. 5B. 6C. 7D. 8 9. 下列数据中不能确定物体位置的是( )A. 某市政府位于北京路32号B. 小明住在某小区3号楼7号C. 太阳在我们的正上方D. 东经130°,北纬54°的城市10. 学校的篮球比排球的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少个.若设篮球有x 个,排球有y 个,根据题意列方程组为( )A. {x =2y −33x =2yB. {x =2y +33x =2yC. {x =2y +32x =3yD. {x =2y −32x =3y11. 若实数a 、b 、c 在数轴上对应点的位置如图所示,则下列不等式成立的是( )A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb12.下列调查中适合采用抽样调查的是().①调查本班同学的身高情况;②调查观众对电视剧的喜爱程度;③为保证“神舟11号”的成功发射,对其零部件进行检查;④学校招聘教师,对应聘人员面试.A. ①B. ②C. ③D. ④二、填空题(本大题共4小题,共16.0分)13.已知A(1,−2)、B(−1,2)、E(2,a)、F(b,3),若将线段AB平移至EF,点A、E为对应点,则a+b的值为______ .14.以方程组{y=2x+2y=−x+1的解为坐标的点(x,y)在第____象限.15.运行程序如图所示,从“输入实数x”到“结果是否<18为一次程序操作.若输入x后程序操作仅进行了一次就停止,则x的取值范围是.16.某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5−4.5组别的人数占总人数的30100,那么捐书数量在4.5−5.5组别的人数是______.三、解答题(本大题共8小题,共86.0分。

人教版2020—2021学年七年级数学下册全册综合复习测试题(含答案)

人教版2020—2021学年七年级数学下册全册综合复习测试题(含答案)

人教版七年级数学下册全册综合测试题一、选择题(本大题共6小题,每小题3分,共18分) 1.下列调查中,最适合用全面调查的是( ) A .检测100只灯泡的质量情况B .了解在如皋务工人员月收入的大致情况C .了解某班学生喜爱体育运动的情况D .了解全市学生观看“开学第一课”的情况 2.在平面直角坐标系中,点(-7,0)在( ) A .x 轴正半轴上B .x 轴负半轴上 C .y 轴正半轴上D .y 轴负半轴上3.不等式组⎩⎪⎨⎪⎧x -1<3,x +3≥1的解集在数轴上表示正确的是()图14.如果5x 3m -2n -2y n -m +11=0是二元一次方程,那么( ) A .m =3,n =4 B .m =1,n =2 C .m =-1,n =2 D .m =2,n =1 5.如图2,直线a∥b ,一块含60°角的三角尺ABC (∠A =60°)按图所示放置.若∠1=43°,则∠2的度数为( )图2A .101°B .103°C .105°D .107°6.如图3,一个点在第一象限及x 轴,y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,且每秒移动一个单位长度,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,那么第2021秒时,点所在位置的坐标是( )图3A .(3,44)B .(37,44)C .(44,37)D .(44,3)二、填空题(本大题共6小题,每小题3分,共18分) 7.4的算术平方根为________.8.在平面直角坐标系中,已知点A (1,3),点B (1,5),那么AB =________.9.去年某市空气质量良好(二级以上)的天数与全年天数(365天)之比达到60%,如果今年(365天)这样的比值要超过80%,那么今年空气质量良好的天数比去年至少要增加________天.10.为了解某市13565名七年级学生每天做家庭作业所用的时间,从中随机抽取了150名学生进行调查,则本次调查的样本容量是________.11.已知⎩⎪⎨⎪⎧x =m ,y =n 是方程组⎩⎪⎨⎪⎧2x +y =6,x +2y =-3的解,则m +n 的值是________. 12.在平面直角坐标系中,三角形ABC 的面积为3,三个顶点的坐标分别为A (-1,-1),B (-3,-3),C (a ,b ),且a ,b 均为负整数,点C 在如图4所示的网格中,则点C 的坐标是____________________.图4三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)计算:|-3|-(-1)+3-27-4;(2)如图5所示,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数.图514.解方程组:⎩⎪⎨⎪⎧3x -2(y +1)=6,3x +2y =10.15.解不等式组:⎩⎪⎨⎪⎧4x -7<5(x -1),x -13≥12x -1.16.已知2a -1的算术平方根是7,a -4b 的立方根是-4. (1)求a 和b 的值; (2)求2a +b 的平方根.17.某校进行“垃圾分一分,环境美十分”的主题宣传活动,随机调查了部分学生对垃圾分类知识的了解情况.调查选项分为“A.非常了解,B.比较了解,C.基本了解,D.不了解”四种,并将调查结果绘制成如图6所示的两幅不完整的统计图.图6请根据图中提供的信息,解答下列问题: (1)把两幅统计图补充完整; (2)本次调查了________名学生;(3)根据上述调查数据,请你提出一条合理化建议.四、解答题(本大题共3小题,每小题8分,共24分)18.如图7,已知∠A=∠ADE.(1)若∠EDC=4∠C,求∠C的度数;(2)若∠C=∠E,求证:BE∥CD.图719.如图8,已知在平面直角坐标系内,点A(-3,2),B(2,-4),把点A 向下平移4个单位长度得到点C.(1)在平面直角坐标系内画出点A,B;(2)写出点C的坐标;(3)画出三角形ABC,并求三角形ABC的面积.图820.我们定义:若整式M与N满足M+N=k(k为整数),则称M与N为关于k的平衡整式.例如,若2x+3y=4,我们称2x与3y为关于4的平衡整式.(1)若2a-5与4a+9为关于1的平衡整式,求a的值;(2)若3x-10与y为关于2的平衡整式,2x与5y+10为关于5的平衡整式,求x +y的值.五、解答题(本大题共2小题,每小题9分,共18分)21.红瓜子和萝卜干是信丰的土特产.小华去市场购买了6千克红瓜子和3千克萝卜干共用了108元;小平以同样的单价购买了5千克红瓜子和2千克萝卜干共用了88元.(1)求红瓜子和萝卜干的单价分别是多少;(2)已知小红想要购买红瓜子和萝卜干共20千克,如果她想购买红瓜子的千克数超过萝卜干的千克数的4倍,且她身上只有296元,请问她有哪几种购买方案.(红瓜子和萝卜干的千克数都取整数)22.如图9,在平面直角坐标系xOy中,长方形ABCD的四个顶点A,B,C ,D的坐标分别为(1,1),(1,2),(-2,2),(-2,1).对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘同一个实数a,纵坐标都乘3,再将得到的点向右平移m(m>0)个单位长度,向下平移2个单位长度,得到长方形A′B′C′D′及其内部的点,其中点A,B,C,D的对应点分别为A′,B′,C′,D′.(1)点A′的横坐标为________(用含a,m的式子表示).(2)若点A′的坐标为(3,1),点C′的坐标为(-3,4).①求a,m的值;②若对长方形ABCD内部(不包括边界)的点E(0,y)进行上述操作后,试判断得到的对应点E′是否仍然在原来的长方形ABCD内部(不包括边界).图9六、解答题(本大题共12分)23.一个数学小组将一个直角三角形ABC(∠ACB=90°)放进平面直角坐标系中,进行探究活动.点C在第三象限,且AC过坐标原点O,AB交x轴于点G,作直线DM平行于x轴,DM交y轴于点D,交BC于点E,交AB于点F.(1)如图10①,若∠AOG=50°,求∠CEF的度数;(2)如图②,在AC上取一点N,使∠NEC+∠CEF=180°.求证:∠NEF=2∠AOG.图10参考答案1.C 2.B 3.C 4.A 5.B 6.D7. 2 8.2 9.74 10.150 11.112.(-4,-1)或(-1,-4)或(-5,-2)13.解:(1)原式=3+1-3-2=-1.(2)∵EF∥BC,∴∠B+∠BAF=180°,∠C=∠CAF.∵∠B=80°,∴∠BAF =180°-∠B =100°.∵AC 平分∠BAF ,∴∠CAF =12∠BAF =50°, ∴∠C =50°.14.解:方程组整理,得⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入①,得9-2y =8,解得y =12. ∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =12.15.解:⎩⎪⎨⎪⎧4x -7<5(x -1),①x -13≥12x -1.②解不等式①,得x >-2. 解不等式②,得x≤4.∴不等式组的解集为-2<x≤4.16.解:(1)∵2a -1的算术平方根是7, ∴2a -1=(7)2=7,解得a =4. ∵a -4b 的立方根是-4,∴a -4b =(-4)3=-64,即4-4b =-64,解得b =17.(2)∵2a +b =2×4+17=25,∴2a +b 的平方根为±5.17.解:(1)调查的总人数为5÷10%=50(人).B 选项所占的百分比为25÷50×100%=50%.C 选项的人数为50×26%=13(人).D 选项的人数为50-5-25-13=7(人).D 选项所占的百分比为7÷50×100%=14%.补全的统计图如图所示.(2)50(3)答案不唯一,如根据对垃圾分类知识的了解情况,对于垃圾分类知识“非常了解”占的比例比较小,需要进一步加强宣传的力度.18.解:(1)∵∠A =∠ADE ,∴DE ∥AC , ∴∠EDC +∠C =180°.∵∠EDC =4∠C ,∴4∠C +∠C =180°, 解得∠C =36°.(2)证明:∵∠A =∠ADE , ∴DE ∥AC , ∴∠E =∠ABE. 又∵∠C =∠E , ∴∠C =∠ABE , ∴BE ∥CD.19.解:(1)如图所示,点A ,B 即为所求.(2)C(-3,-2).(3)画三角形ABC 如图.如图,过点B 作BD ⊥AC ,交AC 的延长线于点D ,则易得BD =5,∴S 三角形ABC =12AC·BD =12×4×5=10.20.解:(1)由题意,得2a -5+4a +9=1,解得a =-12.(2)由题意,得⎩⎪⎨⎪⎧3x -10+y =2,2x +5y +10=5,解得⎩⎪⎨⎪⎧x =5,y =-3,则x +y =2.21.解:(1)设红瓜子的单价为x 元/千克,萝卜干的单价为y 元/千克.依题意,得⎩⎪⎨⎪⎧6x +3y =108,5x +2y =88,解得⎩⎪⎨⎪⎧x =16,y =4. 答:红瓜子的单价为16元/千克,萝卜干的单价为4元/千克.(2)设购买红瓜子a 千克,则购买萝卜干(20-a)千克.依题意,得⎩⎪⎨⎪⎧16a +4(20-a )≤296,a >4(20-a ), 解得16<a≤18,所以a 可以取17,18.则有两种购买方案:方案一:购买红瓜子17千克,购买萝卜干3千克;方案二:购买红瓜子18千克,购买萝卜干2千克.22.解:(1)a +m(2)①由A(1,1),A ′(3,1),可得a +m =3.①由C(-2,2),C′(-3,4),可得-2a +m =-3.②联立①②,得⎩⎪⎨⎪⎧a +m =3, -2a +m =-3,解得⎩⎪⎨⎪⎧a =2,m =1, ∴a 的值为2,m 的值为1.②根据题意,得E′(1,3y -2).可知无论y 取何值,点E′一定落在直线AB 上,所以得到的对应点E′不在原来的长方形ABCD 内部.23.解:(1)如图,过点C 作CH ∥x 轴,则∠ACH =∠AOG =50°.∵∠ACB =90°,∴∠ECH =40°.∵DM ∥x 轴,∴CH ∥DM ,∴∠ECH +∠CEF =180°,∴∠CEF=180°-∠ECH=140°.(2)证明:由(1)及题意得∠AOG=∠ACH=90°-∠ECH,∠ECH+∠CEF=∠ECH+∠NEC+∠NEF=180°.∵∠NEC+∠CEF=180°,∴∠NEC=∠ECH,∴2∠ECH+∠NEF=180°,则∠NEF=180°-2∠ECH=2(90°-∠ECH)=2∠AOG.。

精品解析2021-2022学年人教版初中数学七年级下册第八章二元一次方程组章节练习试题(精选)

精品解析2021-2022学年人教版初中数学七年级下册第八章二元一次方程组章节练习试题(精选)

初中数学七年级下册第八章二元一次方程组章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、若x ,y 为实数,且70x y +=,则y x -的立方根是( )A .2B .2-C .D 2、二元一次方程324x y -=的解可以是( )A .2,1x y =⎧⎨=⎩B .3,2x y =⎧⎨=⎩C .1,1x y =-⎧⎨=⎩D .3,4x y =-⎧⎨=-⎩3、解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ) A .由①得743n m +=再代入② B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①4、下列各方程中,是二元一次方程的是( )A .23xy -=y +5x B .3x +2y =2x +2y C .15x =y 2+1 D .3546y x y -= 5、已知||(1)23a a x y -+=是二元一次方程,则a 的值为( )A .±1B .1C .1-D .26、若|321|a b --a 、b 的值为( )A .14a b =⎧⎨=⎩B .20a b =⎧⎨=⎩C .02a b =⎧⎨=⎩D .11a b =⎧⎨=⎩ 7、若12x y =⎧⎨=⎩是关于x 、y 的二元一次方程ax -5y =1的解,则a 的值为( ) A .-5 B .-1 C .9 D .118、用代入法解方程组25?53?x y x y -=⎧⎨+=⎩①②,以下各式正确的是( ) A .()2352x x --= B .()5235x x -=-C .()553+-=x xD .()556x x -= 9、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x 两,牛每头价值y 两,根据题意可列方程组为( )A .46483538x y x y +=⎧⎨+=⎩B .46483538x y y x +=⎧⎨+=⎩C .46385348x y x y +=⎧⎨+=⎩D .46383548x y x y +=⎧⎨+=⎩ 10、《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为( )A .91191113x y x y y x =⎧⎨-=-+⎩B .91191113x y x y y x =⎧⎨-=--⎩ C .91181013x y x y y x =⎧⎨+=++⎩ D .91181013x y x y y x =⎧⎨+=+-⎩ 二、填空题(5小题,每小题4分,共计20分)1、甲、乙、丙三人到某单人小火锅就餐,该店共有m 种配菜可以选择,每种配菜都有大盘菜、中盘菜、小盘菜这三种分量,价格分别为a 元、b 元和3元,38b a <<≤,a 、b 都为正整数.每个人都选择了所有m 种配菜,而且对于每一种配菜,三个人在分量上的选择都各个相同,结账时,甲乙两人都花费了53元且两个在大盘菜的花费上各不相同,而丙共花费了54元,那么丙在大盘菜上花费_________元.2、把方程2x −y =3 写成用含x 的式子表示y 的形式________.3、若方程23||22(3)4m n x n y +-++=是关于x ,y 的二元一次方程,则n m =_______.4、购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需( )元.5、已知方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,则a b =_____. 三、解答题(5小题,每小题10分,共计50分)1、解方程组:51515104x y x y +=⎧⎨-=-⎩①②. 2、(1)找到几组适合方程0x y +=的x ,y 值;(2)找到几组适合方程2x y -=的x ,y 值;(3)找出一组x ,y 值,使它们同时适合方程0x y +=和2x y -=;(4)根据上面的结论,你能直接写出二元一次方程组02x y x y +=⎧⎨-=⎩的解吗? 3、根据题意列方程组:小明从邮局买了面值50分和80分的邮票共9枚,花了6.3元.小明买了两种邮票各多少枚?4、解方程组:(1)2102x y y x +=⎧⎨=⎩;(2)3()2()107422x y x yx y x y++-=⎧⎪⎨+-+=⎪⎩.5、解方程组(1)329817y xx y=-⎧⎨+=⎩(2)6335935x yx y-=-⎧⎨-=-⎩---------参考答案-----------一、单选题1、A【解析】【分析】根据非负性列出二元一次方程组求出x,y,再求出其立方根.【详解】依题意可得7060 x yx y+=⎧⎨+-=⎩解得17 xy=-⎧⎨=⎩∴y x-=8故y x-的立方根是2故选A.【点睛】此题主要考查二次根式的非负性、二元一次方程组的求解、立方根的性质,解题的关键是熟知其运算法则.2、A【解析】【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、21xy=⎧⎨=⎩代入324x y-=中,方程左边=3221=4⨯-⨯,边等于右边,故此选项符合题意;B、32xy=⎧⎨=⎩代入324x y-=中,方程左边=3322=5⨯-⨯,左边不等于右边,故此选项不符合题意;C、11xy=-⎧⎨=⎩代入324x y-=中,方程左边()=3121=5⨯--⨯-,左边不等于右边,故此选项不符合题意;D、34xy=-⎧⎨=-⎩代入324x y-=中,方程左边()()=3324=1⨯--⨯--,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.3、C【解析】【分析】观察两方程中m系数关系,即可得到最好的解法.【详解】解:解方程组347910250m nm n-=⎧⎨-+=⎩①②的最好方法是由①得347m n=+,再代入②.故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、D【解析】【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【详解】解:A、不是整式方程;故错误.B、3x+2y=2x+2y移项,合并同类项,得x=0,只有一个未知数;故错误.C、未知数y最高次数是2;故错误.D、是二元一次方程,故正确.故选:D.【点睛】本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.5、C【解析】【分析】根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.【详解】解:∵||(1)23a a x y -+=是二元一次方程, ∴1=a ,且10a -≠ ,解得:1a =- .故选:C【点睛】本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.6、D【解析】【分析】首先根据绝对值的性质和二次根式的性质得到3210,20a b a b --=+-=,然后解方程组求解即可.【详解】解:∵|321|a b --∴|321|a b --0,∴321020a b a b --=⎧⎨+-=⎩①②, 2⨯②得:2240a b +-=③,①+③得:550a -=,解得:1a =,将1a =代入①得:31210b ⨯--=,解得:1b =.故选:D .【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a 、b 的方程组321020a b a b --=⎧⎨+-=⎩并求解. 7、D【解析】【分析】把12x y =⎧⎨=⎩代入ax -5y =1解方程即可求解. 【详解】解:∵12x y =⎧⎨=⎩是关于x 、y 的二元一次方程ax -5y =1的解, ∴将12x y =⎧⎨=⎩代入ax -5y =1, 得:101a -=,解得:11a =.故选:D .【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.8、B【解析】【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得35y x =-,代入①得2(35)5x x --=,移项可得52(35)x x -=-,故选B .【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.9、A【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x 两,牛每头价值y 两,根据题意可列方程组为:46483538x y x y +=⎧⎨+=⎩. 故选:A .【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.10、D【解析】【分析】根据题目中的等量关系列出二元一次方程组即可.【详解】解:设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为91181013x y x y y x =⎧⎨+=+-⎩. 故选:D .【点睛】此题考查了列二元一次方程组,解题的关键是根据题意找到题目中的等量关系.二、填空题1、21【分析】由题意,三人各不相同,说明每一种菜的各类都被三人吃了,所以535354160++=应是每一种菜品的总价的整数倍,即(3)160a b m ++=,根据题意求出整数解,推出8a =,5b =,10m =或7a =,6b =,10m =,设丙选了大盘菜x 份,中盘菜y 份,分两种情形分别构建方程求解即可.【详解】解:由题意,三人各不相同,说明每一种菜的各类都被三人吃了,所以535354160++=应是每一种菜品的总价的整数倍,即(3)160a b m ++=,38b a <<,a 、b 都为正整数,可知:8a =,5b =,10m =或7a =,6b =,10m =设丙选了大盘菜x 份,中盘菜y 份.由题意853(10)54x y x y ++--=,5224x y ∴+=,2x ∴=,7y =(舍弃不合题意)或4x =,2y =(舍弃不合题意),或763(10)54x y x y ++--=,4324x y ∴+=,3721⨯=故答案为:21.【点睛】本题考查列代数式,二元一次方程的整数解等知识,理解题意,学会利用参数构建方程解决问题是解题的关键.2、y =2x −3【分析】将x 看做已知数求出y 即可.【详解】解:∵2x -y =3,∴2x -3=y ,∴y =2x -3;故答案为:y =2x -3.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.3、-1【分析】根据 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程,求出x ,y 的值即可得出答案.【详解】 解:方程23||22(3)4m n x n y +-++=是关于x ,y 的二元一次方程,231,21,30m n n ∴+=-=+≠,3(1)1n m ∴=-=-,故答案为:1-.【点睛】本题考查了二元一次方程的概念以及有理数的乘方运算,根据二元一次方程的概念得出x ,y 的值是解本题的关键.4、5【分析】假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元,购买铅笔11支、作业本5本圆珠笔2支共需a 元,由题意列出方程组,解方程组求出a 的值,即为所求结果.【详解】解:设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.则由题意得:73310441152x y z x y z x y z a ++=⎧⎪++=⎨⎪++=⎩①②③, 由-②①得:31x y +=,④由+②①得:17727x y z ++=,⑤由2-⨯-⑤④③得:05a =-,解得:5a =.故答案为:5【点睛】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.5、-1【分析】根据方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,所以把2x y +=和27x y --=组成方程组求出 x 、y 的值,再把 x 、y 的值代入其他两个方程 4ax y +=和8x by +=即可求出a 、 b 的值,即可得答案.【详解】解:∵方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解, ∴方程组227x y x y +⎧⎨--⎩=①=②的解也是它们的解, ①× 2+②,得:2x +x = 4-7,解得:x =-1,把x = -1代入①,得:-1+y =2,解得:y =3,把x =-1, y =3代入4ax y +=得:-a +3= 4解得:a = -1,把x =-1, y =3代入8x by +=得:-1+3b =8,解得:b =3,∴a b =(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.三、解答题1、2515x y ⎧=-⎪⎪⎨⎪=⎪⎩【分析】根据加减消元法解方程组即可;【详解】解:51515104x y x y +=⎧⎨-=-⎩①②, ①-②得:255y =,15y =, 把15y =代入①中:151515x +⨯=, 解得:25x =-, ∴方程组的解是2515x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.2、(1)11x y =⎧⎨=-⎩;22x y =⎧⎨=-⎩答案不唯一;(2)42x y =⎧⎨=⎩;11x y =⎧⎨=-⎩答案不唯一;(3)11x y =⎧⎨=-⎩;(4)11x y =⎧⎨=-⎩. 【分析】(1)根据二元一次方程解的含义求解即可;(2)根据二元一次方程解的含义求解即可;(3)根据二元一次方程组解的含义求解即可;(4)根据前面得到的结论求解即可.【详解】解:(1)令x =1 ,则y =-1 ;令x =2,则y =-2.答案不唯一;(2)令x =1,则y =1-2=-1 ;令x =4,则y =4-2=2.答案不唯一 ;(3)当x =1 ,y =﹣1时同时满足方程:0x y +=和2x y -=;(4)方程组02x y x y +=⎧⎨-=⎩的解是11x y =⎧⎨=-⎩. 【点睛】此题考查了二元一次方程组解的含义,解题的关键是熟练掌握二元一次方程组解的含义.3、0.50.8 6.39x y x y +=⎧⎨+=⎩ 【分析】设小明买了面值50分的邮票x 枚和面值80分的邮票y 枚,然后根据小明从邮局买了面值50分和80分的邮票共9枚,花了6.3元列出方程即可.【详解】解:设小明买了面值50分的邮票x 枚和面值80分的邮票y 枚,由题意得:0.50.8 6.39x y x y +=⎧⎨+=⎩. 【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意.4、(1)24x y =⎧⎨=⎩;(2)35x y =⎧⎨=-⎩ 【分析】(1)利用代入消元法解二元一次方程组即可;(2)先整理原方程得()()3()2()10214x y x y x y x y ++-=⎧⎨++-=⎩然后把()x y +和()x y -当做一个整体利用加减消元法求出2x y +=-③,8x y -=④,然后利用加减消元法求解即可.【详解】解:(1)2102x y y x +=⎧⎨=⎩①②, 把②代入①中得:410x x +=,解得2x =,把2x =代入②中得,4y =,∴方程组的解集为24x y =⎧⎨=⎩; (2)3()2()107422x y x y x y x y ++-=⎧⎪⎨+-+=⎪⎩ 整理得:()()3()2()10214x y x y x y x y ++-=⎧⎪⎨++-=⎪⎩①②, 用①-②得:()24x y +=-,解得2x y +=-③,把③代入①得:()6210x y -+-=,解得8x y -=④,用③+④得:26x =,解得3x =,把3x =代入③得5y =-,∴方程组的解为5y ⎨=-⎩. 【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.5、(1)11x y =⎧⎨=⎩;(2)25x y =⎧⎨=⎩. 【分析】(1)利用代入消元法解方程组即可得;(2)利用加减消元法解方程组即可得.【详解】解:(1)329817y x x y =-⎧⎨+=⎩①②, 将①代入②得:98(32)17x x +-=,解得1x =,将1x =代入①得:312y =⨯-,即1y =,则方程组的解为11x y =⎧⎨=⎩; (2)6335935x y x y -=-⎧⎨-=-⎩①②, 由①3⨯-②得:185935x x -=-+,解得2x =,将2x =代入①得:6233y ⨯-=-,解得5y =,则方程组的解为5y ⎨=⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握消元法是解题关键.。

2020-2021学年人教版数学七年级下册全册单元、期中、期末测试题及答案解析(共8套)

2020-2021学年人教版数学七年级下册全册单元、期中、期末测试题及答案解析(共8套)

人教版数学七年级下册全册单元、期中、期末测试题第五章单元测试题一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A. B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A. B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD 所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.人教版数学七年级下册第六章单元测试题一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣162.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.14.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.75.若,则2a+b﹣c等于()A.0 B.1 C.2 D.36.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.18.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题11.的相反数是,的绝对值是,的倒数是.12.已知:,则x+17的算术平方根为.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?21.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个,(1)当2m﹣6=m﹣2,解得m=4.(2)所以这个数为(2m﹣6)=(2×4﹣6)=2.(3)当2m﹣6=﹣(m﹣2)时,解得m=.(4)所以这个数为(2m﹣6)=(2×﹣6)=﹣.(5)综上可得,这个数为2或﹣.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.22.已知:=0,求实数a,b的值,并求出的整数部分和小数部分.23.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.已知实数a、b与c的大小关系如图,化简:﹣+.25.先阅读然后解答提出的问题:设a、b是有理数,且满足,求b a的值.解:由题意得,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以b a=(﹣2)3=﹣8.问题:设x、y都是有理数,且满足,求x+y的值.参考答案与试题解析一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣16【考点】22:算术平方根.【专题】1 :常规题型.【分析】先求出被开方数,再根据算术平方根的定义进行解答.【解答】解:=﹣=﹣4.故选B.【点评】本题主要考查了算术平方根的计算,先求出被开方数是解题的关键.2.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【专题】1 :常规题型.【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.1【考点】21:平方根.【分析】根据1的平方根是±1确定出b=1,然后根据有理数的乘方进行计算即可得解.【解答】解:∵±1是b的平方根,∴b=1,∴b2013=12013=1.故选D.【点评】本题考查了平方根的定义,有理数的乘方,是基础题,确定出b的值是解题的关键.4.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.7【考点】24:立方根.【分析】根据被开方数小数点移动3位,立方根的小数点移动1位解答.【解答】解:==1.147×10=11.47.故选C.【点评】本题考查了立方根的应用,要注意被开方数与立方根的小数点的移动变化规律.5.若,则2a+b﹣c等于()A.0 B.1 C.2 D.3【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出a、b、c的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则2a+b﹣c=﹣4+1+3=0.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲【考点】2A:实数大小比较.【分析】由4<<5<<<6,可得10<6+<11,7<2+<8,则可求得答案.【解答】解:∵4<<5<<<6,∴10<6+<11,7<2+<8,∴丙<乙<甲.故选D.【点评】此题考查了实数的大小比较.此题难度不大,解题的关键是确定各数在哪两个整数之间.7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.1【考点】24:立方根;22:算术平方根.【分析】如果一个数的立方等于a,那么这个数叫做a的立方根,如果一个数的平方等于a,那么这个数叫做a的平方根.【解答】解:=,故①正确.=4,故⑥正确.其他②③④⑤是正确的.故选A.【点评】本题考查立方根和平方根的概念,然后根据概念求解.8.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个【考点】27:实数.【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【解答】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故判断错误;②实数包括无理数和有理数,故判断正确;③是3的立方根,故判断正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故判断错误;⑤2的算术平方根是,故判断正确.故选B.【点评】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c【考点】29:实数与数轴.【专题】21 :阅读型.【分析】首先从数轴上a、b、c的位置关系可知:a<b,则b﹣a>0,c>b,则b﹣c<0.【解答】解:根据题意可知:a<b,则b﹣a>0,c>b,则b﹣c<0,原式=a+(b﹣c)+(c﹣b)=a+b﹣a+c﹣b=c.故选A.【点评】本题考查了实数与数轴的对应关系和利用绝对值的性质化简.10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.【考点】29:实数与数轴.【分析】点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,即可求得c 的值.【解答】解:点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,解得:c=6﹣.故选C.【点评】本题考查了实数与数轴的对应关系,正确理解c与3和之间的关系是关键.二、填空题11.的相反数是﹣1,的绝对值是3,的倒数是﹣.【考点】28:实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答;根据立方根的定义和绝对值的性质解答;根据立方根的定义和倒数的定义解答.【解答】解:1﹣的相反数是﹣1;∵=﹣3,∴的绝对值是3;∵=﹣4,∴的倒数是﹣.故答案为:﹣1,3,﹣.【点评】本题考查了实数的性质,主要利用了相反数的定义,立方根的定义,绝对值的性质和倒数的定义,熟记概念和性质是解题的关键.12.已知:,则x+17的算术平方根为3.【考点】24:立方根;22:算术平方根.【分析】首先利用求得x的值,然后在求x+17的算术平方根即可.【解答】解:∵,∴5x+32=﹣8,解得:x=﹣8,∴x+17=﹣8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为3.【点评】本题考查了立方根及算术平方根的意义,解题的关键是首先求得x的值,然后求x+17的算术平方根.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是4或100.【考点】21:平方根.【分析】2a﹣4、3a﹣1是同一个正数的平方根,则它们互为相反数或相等,即可列出关于a的方程,解方程即可解决问题.【解答】解:∵2a﹣4、3a﹣1是同一个正数的平方根,则这两个式子一定互为相反数或相等.即:(2a﹣4)+(3a﹣1)=0或2a﹣4=3a﹣1,解得:a=1或a=﹣3,则这个数是:(2a﹣4)2=4或(2a﹣4)2=100故答案为:4或100.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.14.一个负数a的倒数等于它本身,则=1;若一个数a的相反数等于它本身,则﹣5+2=﹣9.【考点】2C:实数的运算.【分析】因为一个负数a的倒数等于它本身,所以a=﹣1,由此即可求出的值;因为一个数a的相反数等于它本身,所以a=0,由此即可求出﹣5+2的值.【解答】解:∵一个负数a的倒数等于它本身,∴a=﹣1,∴==1;∵一个数a的相反数等于它本身,∴a=0,∴﹣5+2=0﹣5﹣4=﹣9.故答案为:1,﹣9.【点评】此题主要考查了实数的运算和学生的分析能力,解题的关键是根据已知条件找到a的值.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=1或3.【考点】2C:实数的运算.【分析】先根据平方根、立方根的定义解已知的两个方程求出x、y的值,然后再代值求解.【解答】解:方程(x﹣15)2=169两边开平方得x﹣15=±13,解得:x1=28,x2=2,方程(y﹣1)3=﹣0.125两边开立方得y﹣1=﹣0.5,解得y=0.5,当x=28,y=0.5时,=3;当x=2,y=0.5时,=1.故答案为:1或3.【点评】本题主要考查了直接开平方法,直接开立方法的运用,也考查了实数的运算,注意两种开方的结果的不同.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是3﹣2.【考点】29:实数与数轴.【分析】根据数轴的特点表示出AB的长,在表示出BC的长,然后用点B表示的数加上BC的长度计算即可.【解答】解:∵点A,B对应的实数分别为1,,∴AB=﹣1,∴BC=2AB=2(﹣1)=2﹣2,∴点C对应的数是+2﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了实数与数轴,主要利用了数轴上两点间的距离的表示,是基础题.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.【考点】2C:实数的运算.【专题】11 :计算题.【分析】①原式利用绝对值的代数意义化简,计算即可得到结果;②原式利用乘方的意义,平方根及立方根定义计算即可得到结果;③原式利用平方根,立方根,以及绝对值的代数意义化简,计算即可得到结果;④原式利用平方根,绝对值,以及乘方的意义计算即可得到结果.【解答】解:①原式=﹣1+﹣+2﹣+﹣2=﹣1;②原式=﹣8×4﹣4×﹣3=﹣32﹣1﹣3=﹣36;③原式=﹣+2.5﹣﹣1=;④原式=﹣1+﹣5+﹣=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.【考点】24:立方根.【分析】(1)先移项,然后将三次项的系数化为1,开立方即可得出x的值;(2)先开立方、开平方,然后移项合并,再开立方,可得出x的值;(3)直接开立方得出(x﹣2)的值,继而可得出x的值.【解答】解:(1):移项得:27x3=125,系数化为1得:x3=,开立方得:;(2)原方程可化为:x3=﹣8,开立方得:x=﹣2;(3)开立方得:x﹣2=﹣0.5,移项得:x=1.5.【点评】本题考查了立方根的知识,解答本题的关键是掌握开立方的运算,属于基础题.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.【考点】2C:实数的运算.【专题】11 :计算题.【分析】根据题意填写表格即可.【解答】解:根据题意得:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?。

2021年人教版七年级下学期期末考试数学试卷(带答案)

2021年人教版七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(本试卷满分150分,考试用时120分钟) 班级 姓名 得分 一、选择题(本大题共10小题,共40.0分)1. 如图,直线a//b ,直线c 分别交a 、b 于点A 、C ,∠BAC 的平分线交直线b 于点D ,若∠2=50°,则∠1的度数是( )A. 50°B. 60°C. 80°D. 100°2. 如图,数轴上点A 表示的数可能是( )A. √2B. √3C. √5D. √103. 已知点P(x,y)满足x 2−y 2=0,则点P 的位置在( ).A. 在x 轴或y 轴上B. 在第一、三象限坐标轴夹角的角平分线上C. 在第二、四象限坐标轴夹角的角平分线上D. 在坐标轴夹角的角平分线上4. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为( )A. {x +y =102x +y =16B. {x +y =102x −y =16C. {x +y =10x −2y =16D. {x +y =10x +2y =16 5. 某超市花费1140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为x 元/千克,根据题意所列不等式正确的是( )A. 100(1−5%)x ≥1140B. 100(1−5%)x >1140C. 100(1−5%)x <1140D. 100(1−5%)x ≤11406. 从某公司3000名职工随机抽取30名职工,每个职工周阅读时间(单位:min)依次周阅读时间(单位:min)61~70 71~80 81~90 91~100 101~110人数 3 6 9 10 2 则该公司所有职工中,周阅读时间超过一个半小时的职工人数约为( )A. 1200B. 1500C. 1800D. 21007. 下列依次给出点的坐标(0,3),(1,1),(2,−1),(3,−3)⋯,依此规律,则第2020个点的坐标为( )A. (2020,−2018)B. (2019,−2017)C. (2019,−4033)D. (2019,−4035)8. 用代入法解方程组{2x −5y =0①3x +5y −1=0②时,最简单的方法是 ( ) A. 先将①变形为x =52y ,再代入②B. 先将①变形为y =25x ,再代入②C. 先将②变形为x =1−5y 3,再代入①D. 先将①变形为5y =2x ,再代入②9. 方程组{3x +y =k +1,x +3y =3的解满足0<x +y <1,则k 的取值范围是( ) A. −4<k <0 B. −1<k <0 C. 0<k <8 D. k >−410. 如图是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数分布直方图(部分)和扇形统计图,那么下列说法正确的是( )A. 九(3)班外出的学生共有42人B. 九(3)班外出步行的学生有8人C. 在扇形图中,步行的学生人数所占的圆心角为82∘D. 如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人二、填空题(本大题共10小题,共30.0分)11. 一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD =150°,则∠ABC =______度.12. 与√14−2最接近的自然数是______.13. 五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A 所在点的坐标是(−2,2),黑棋B 所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C 的位置就获得胜利,点C 的坐标是______.14. 已知x 、y 满足方程组{x +3y =−1,2x +y =3,,则x +y 的值为______. 15. 已知关于x 的不等式组{x >a,x >b,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为______.16. 为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整视力<4.7 4.7 4.8 4.9 >4.9 人数 102 98 80 93 1274.8的人数是______.17. 把命题“平行于同一条直线的两条直线互相平行”改成“如果……那么……”形式:_______________. 18. 已知√13的整数部分为m ,小数部分为n ,则代数式m 2−m −n 的值为_______.19. 将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是______.20. 已知关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数,求k 的值是_________.三、解答题(本大题共6小题,共80.0分)21. (12分)(1)√4−√83+√−1273(2)−14−2×(−3)2+√−273÷(−13).22. (12分)如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.23. (12分)在如图所示的平面直角坐标系中描出下列各点:A(3,1),B(1,3),C(−3,1),D(−1,−1).(1)连接AB ,CD ,两线段有怎样的关系?(2)求四边形ABCD 的面积.24. (14分)甲地到乙地全程是25km ,一段上坡、一段平路、一段下坡.如果保持上坡每小时行3km ,平路每小时行4km ,下坡每小时行5km ,那么从甲地到乙地需行6小时,从乙地到甲地需行7.2小时.求从甲地到乙地时,上坡,平路、下坡的路程各是多少千米?25. (14分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如图所示的两幅不完整的统计图.根据以上信息解答下列问题:(1)这次共抽取________名学生进行调查,扇形统计图中的x =________;(2)请补全条形统计图;(3)在扇形统计图中“扬琴”所对应扇形的圆心角是________度;(4)若该校有3000名学生,估计该校喜爱“二胡”的学生有________名.26. (16分)对x ,y 定义一种新运算T ,规定:T(x,y)=ax+by x+y (其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a×0+b×10+1=b ,已知T(1,1)=2.5,T(4,−2)=4.(1)求a ,b 的值; (2)若关于m 的不等式组{T(4m,5−4m)≤3,T (2m,3−2m )>p恰好有2个整数解,求实数p 的取值范围.答案1.C2.C3.D4.A5.A6.A7.D8.D9.A10.B11.12012.213.(3,3)14.115.x >a16.720017.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 18.9−√1319.(6,5)20.−121.解:(1)√4−√83+√−1273=2−2−13=−13; (2)−14−2×(−3)2+√−273÷(−13) =−1−18+9=−10. 22.解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC=4x=80°,∴∠BOD=∠AOC=80°,∵OE⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE−∠BOD=10°,又∵OF平分∠DOB,∴∠DOF=12∠BOD=40°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.23.解:(1)如图所示:,则AB=CD且AB//CD;(2)如图,连接AC,BD,四边形ABCD的面积S是6×4−12×4×2−12×2×2−12×4×2−12×2×2=12.24.解:设甲地到乙地,上坡、平路、下坡路各是x千米,y千米,z千米,根据题意得:{ x +y +z =25,x 3+y 4+z 5=6,x 5+y 4+z 3=7.2. 解得{x =6,y =4,z =15..答:甲地到乙地,上坡路6千米、平路4千米、下坡路15千米. 25.(1)200;15%;(2)(3)36;(4) 90026.解:(1)根据题意得:{a +b =5①2a −b =4②, ①+②得:3a =9,即a =3,把a =3代入①得:b =2,故a ,b 的值分别为3和2;(2)根据题意得:{12m+10−8m 5≤3①6m+6−4m 3>p②, 由①得:m ≤54,由②得:m >32p −3,∴不等式组的解集为32p −3<m ≤54,∵不等式组恰好有2个整数解,即m =0,1,∴−1≤3p−3<0,2≤p<2,解得43≤p<2.即实数P的取值范围是43。

精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系综合训练试题(含答案解析)

精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系综合训练试题(含答案解析)

初中数学七年级下册第七章平面直角坐标系综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,AB=5,且AB ∥y 轴,若点A 的坐标为(-4,3),点B 的坐标是( )A .(0, 0)B .(-4,8)C .(-4,-2)D .(-4,8)或(-4,-2)2、如图是某校的平面示意图的一部分,若用“()0,0”表示校门的位置,“()0,3”表示图书馆的位置,则教学楼的位置可表示为( )A .()0,5B .()5,3C .()3,5D .()5,3-3、在平面直角坐标系中,点A (0,3),B (2,1),经过点A 的直线l ∥x 轴,C 是直线l 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .(0,1)B .(2,0)C .(2,﹣1)D .(2,3)4、如图,在平面直角坐标系上有点A (1,0),点A 第一次跳动至点A 1(﹣1,1),第四次向右跳动5 个单位至点A 4(3,2),…,依此规律跳动下去,点A 第2020次跳动至点A 2020的坐标是( )A .(﹣2020,1010)B .(﹣1011,1010)C .(1011,1010)D .(2020,1010)5、岚山根——袁家村·运城印象全民健身游乐场,位处运城市黄金旅游路线上,南靠中条山,东临九龙山,西临凤凰谷和死海景区,是运城盐湖区全域旅游中项目最全,规模最大的标志性综合游乐场(图1).若利用网格(图2)建立适当的平面直角坐标系,表示冲浪乐园的点的坐标为()2,1A ,表示特色小吃米线的坐标为()4,2B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()6,2--D .()5,1--6、某气象台为了预报台风,首先需要确定台风中心的位置,则下列说法能确定台风中心位置的是( )A .北纬38°B .距气象台500海里C .海南附近D .北纬38°,东经136°7、若点B (m +1,3m ﹣5)到x 轴的距离与到y 轴的距离相等,则点B 的坐标是( )A .(4,4)或(2,2)B .(4,4)或(2,﹣2)C .(2,﹣2)D .(4,4)8、洞天福地、花海毕节,以下能准确表示毕节市某地地理位置的是( )A.在贵州的西北部 B.北纬27°36'C.乌蒙山腹地D.北纬27°36',东经105°39'9、在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为().A.(5,-4)B.(4,-5)C.(-5,4)D.(-4,5)10、在图中,所画的平面直角坐标系正确的是()A.B.C.D.二、填空题(5小题,每小题4分,共计20分)1、点A的坐标为(5,-3),点A关于y轴的对称点为点B,则点B的坐标是__________.2、在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为___________.3、若x轴上的点Q到y轴的距离为6,则点Q的坐标为______.4、如图,某吉祥物所处的位置分别为M(﹣2,2)、B(1,1),则A、C、N三点中为坐标原点的是______点.5、已知点(210,39)P m m --在第二象限,且离x 轴的距离为3,则|3||5|m m ++-=____.三、解答题(5小题,每小题10分,共计50分)1、在直角坐标系中,如果a ,b 都为正数,那么点()0,a ,(),0b 分别在什么位置?2、如图,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()()()2,2,3,1,0,2A B C --.点P (,)a b 是三角形ABC 的边AC 上任意一点,三角形ABC 经过平移后得到三角形A B C ''',已知点P 的对应点P '()2,3a b -+.(1)在图中画出平移后的三角形A B C ''',并写出点,,A B C '''的坐标;(2)求三角形ABC 的面积.3、(1)写出图中八边形各顶点的坐标;(2)找出图中几个具有特殊位置关系的点,说说它们的坐标之间的关系.4、已知A (-2,0),B (4,0),C (x ,y )(1)若点C 在第二象限,且44x y ==,,求点C 的坐标, (2)在(1)的条件下,求三角形ABC 的面积;5、如图,在平面直角坐标系中,点A (4,0),B (3,4),C (0,2).(1)求S 四边形ABCO ;(2)连接AC ,求S △ABC ;(3)在x 轴上是否存在一点P ,使S △PAB =8?若存在,请求点P 坐标.---------参考答案-----------一、单选题1、D【分析】根据AB ∥y 轴,点A 的坐标为(-4,3),可得点B 的横坐标为-4,设点B 的纵坐标为m ,由AB =5,可得35m -=,解绝对值方程即可.【详解】解:∵AB ∥y 轴,点A 的坐标为(-4,3),∴点B 的横坐标为-4,设点B 的纵坐标为m ,∵AB =5, ∴35m -=,解得8m =或2m =-,∴B 点坐标为(-4,-2)或(-4,8),故选D .【点睛】本题主要考查了平行于y 轴的直线的特点,解绝对值方程,解题的关键在于能够根据题意得到35m -=.2、B【分析】根据校门和图书馆的额坐标,可得出校门为坐标原点,过校门的水平方向为x 轴,竖直方向为y 轴,从而得出教学楼的坐标.【详解】解:∵校门()0,0,图书馆()0,3∴建立坐标系,如下图:∴教学楼的位置可表示为(5,3)故选:B【点睛】本题考查了坐标确定位置,平面位置对应平面直角坐标系,解题的关键是根据题意正确建立平面直角坐标系.3、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.4、C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…∴第2n 次跳动至点的坐标是(n +1,n ),∴第2020次跳动至点的坐标是(1010+1,1010)即(1011,1010).故选C .【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.5、C【分析】根据浪乐园的点的坐标为()2,1A ,特色小吃米线的坐标为()4,2B -建立直角坐标系即可求解.【详解】解:根据浪乐园的点的坐标为()2,1A ,表示特色小吃米线的坐标为()4,2B -建立平面直角坐标系,得,儿童游乐园所在的位置C的坐标应是(-6,-2)故选:C.【点睛】本题考查平面内点的坐标特点;能够根据已知的点确定原点的位置,建立正确的平面直角坐标系是解题的关键.6、D【分析】根据坐标确定位置的相关知识可直接进行排除选项.【详解】解:A、北纬38°不能确定台风中心的具体位置,故不符合题意;B、距气象台500海里,范围太广,不能确定台风中心位置,故不符合题意;C、海南附近,范围太广,不能确定台风中心位置,故不符合题意;D、北纬38°,东经136°,表示具体坐标,能确定台风中心位置,故符合题意;故选D.【点睛】本题主要考查坐标表示位置,解题的关键是判断是不是利用坐标来表示位置.7、B【分析】根据到x轴的距离与它到y轴的距离相等可得m+1=3m-5,或m+1+3m-5=0,解方程可得m的值,求出B 点坐标.【详解】解:由题意得:m+1=3m-5,或m+1+3m-5=0,解得:m=3或m=1;当m=3时,点B的坐标是(4,4);当m=1时,点B的坐标是(2,-2).所以点B的坐标为(4,4)或(2,-2).故选:B.【点睛】本题主要考查了点的坐标,关键是掌握到x轴的距离与它到y轴的距离相等时横坐标的绝对值=纵坐标的绝对值.8、D【分析】根据题意,准确表示毕节市地理位置,需要两个指标:经度和纬度即可得出结果.【详解】解:准确表示毕节市地理位置,需要两个指标:经度和纬度,A、C、两个选项都不能准确表示,B、只有纬度,无经度,故选:D.【点睛】题目主要考查位置的表示,理解题意,将坐标与实际相结合是解题关键.9、D【分析】根据点A既在x轴的上方,又在y轴的左边,即可判断点A在第二象限,再根据点A距离x轴,y轴分别为5个单位长度和4个单位长度,即可求出点A的坐标.【详解】解:∵点A既在x轴的上方,又在y轴的左边,∴点A在第二象限,又∵点A距离x轴,y轴分别为5个单位长度和4个单位长度,∴点A的坐标为(-4,5),故选D.【点睛】本题主要考查了点到坐标轴的距离,点所在的象限,解题的关键在于能够根据题意确定A在第二象限.10、C【分析】根据平面直角坐标系的定义判断即可.【详解】解:A、原点的位置错误,坐标轴上y的字母位置错误,错误;B、两坐标轴不垂直,错误;C、符号平面直角坐标系的定义,正确;D、x轴和y轴的方向有错误,坐标系无箭头,错误.故选:C.【点睛】本题考查平面直角坐标系,在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系,解题关键是掌握平面直角坐标系坐标轴的位置.二、填空题1、(-5,-3)【解析】【分析】关于y轴对称的点的特征:纵坐标不变,横坐标变为原来的相反数,据此可以求出B点坐标.【详解】解:点A的坐标为(5,-3),关于y轴对称的对称点B的坐标为(-5,-3).故答案为:(-5,-3).【点睛】本题考察直角坐标系、关于y轴对称的点的特征,是基础考点,掌握相关知识是解题的关键.2、5【解析】【分析】首先在坐标系中标出A、B两点坐标,由于B点在x轴上,所以面积较为容易计算,根据三角形面积的计算公式,即可求出△AOB的面积.【详解】解:如图所示,过A点作AD垂直x轴于D点,则h=2,∴1152522AOBS OB AD==⨯⨯=.故答案为:5.【点睛】本题主要考查的是坐标系中三角形面积的求法,需要准确对点位进行标注,并根据公式进行求解即可.3、 (6,0)或(-6,0)【解析】【分析】根据x轴上的点的坐标特征,可知点A的纵坐标为0;接下来根据点A到y轴的距离即可求出其横坐标,进而得到答案.【详解】解:根据题意可知点A的纵坐标为0.∵点A到y轴的距离为6,∴点A的横坐标为±6,∴点A的坐标为(6,0)或(-6,0).【点睛】本题主要考查坐标轴上的点的特征和点的坐标的定义,熟练掌握坐标轴上点的坐标的特点,平面直角坐标系内的点与有序实数对的关系是解题的关键.4、A【解析】【分析】根据点的平移规律将点B 移动到原点即可.【详解】解:∵B (1,1),∴点B 向左一个单位,向下一个单位为坐标原点,即点A 为坐标原点.故答案为:A .【点睛】本题考查了平面直角坐标系,点的平移规律,熟练掌握平面直角坐标系中点的坐标表示方法是解本题的关键.5、8【解析】【分析】根据题意可得393m -=,求出m 的值,代入|3||5|m m ++-计算即可.【详解】 解:点(210,39)P m m --在第二象限,且离x 轴的距离为3,393m ∴-=,解得4m =,|3||5|m m ∴++-71=+8=.故答案为:8.【点睛】本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出m 的值是解本题的关键.三、解答题1、点()0,a 在纵轴的正半轴上;(),0b 在横轴的正半轴上.【解析】【分析】根据坐标轴上点的特征解答.【详解】解:∵a ,b 都是正数,∴点(a ,0),(b ,0)分别在x 轴正半轴上,x 轴正半轴上.【点睛】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.2、(1)作图见解析,()()()4,1,1,4,2,5A B C '--;(2)7【解析】【分析】(1)直接利用P 点平移变化规律得出A ′、B ′、C ′的坐标;直接利用得出各对应点位置进而得出答案;(2)利用三角形ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)∵P (,)a b 到点P 的对应点P '()2,3a b -+,横坐标向左平移了两个单位,纵坐标向上平移了3个单位.∵()()()2,2,3,1,0,2A B C --,∴()()()4,1,1,4,2,5A B C '--,如图所示,三角形A ′B ′C ′即为所求,(2)三角形ABC 的面积为:4×5−12×1×3−12×2×4−12×3×5=7.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.3、(1)()6,3A ,()3,6B ,()2,6C -,()5,3D -,()5,2E --,()2,5F --,()3,5G -,()6,2H -;(2)见解析.【解析】【分析】(1)根据图形在平面直角坐标系中的位置即可得出各点坐标;(2)根据点的坐标特点,则可判断点的位置及关系.【详解】解:(1)由图知: ()6,3A ,()3,6B ,()2,6C -,()5,3D -,()5,2E --,()2,5F --,()3,5G -,()6,2H -;(2)具有特殊位置关系的点很多,如下表所示,只要学生能写出几组即可.【点睛】 本题考查了点的坐标及其规律,熟练掌握在平面直角坐标系中确定点的坐标和位置的方法是解题的关键.4、(1)点C 的坐标为(-4,4);(2)三角形ABC 的面积为12.【解析】【分析】(1)根据点C (x ,y )在第二象限,可得0,0x y <> ,再由44x y ==,,即可求解; (2)根据A (-2,0),B (4,0),可得AB =6,即可求解.【详解】解:(1)∵点C (x ,y )在第二象限,∴0,0x y <> , ∵44x y ==,, ∴4,4x y =-= ,∴点C 的坐标为(-4,4);(2)∵A (-2,0),B (4,0),∴AB =6, ∴146122ABCS =⨯⨯= . 【点睛】本题主要考查了平面直角坐标系内,各象限内点的坐标特征,三角形的面积,熟练掌握平面直角坐标系内,各象限内点的坐标特征是解题的关键.5、(1)11;(2)7;(3)存在,(0,0)或(8,0).【解析】【分析】(1)如图1,过点B 作BD ⊥OA 于点D ,根据 S 四边形ABCO =S 梯形CODB +S △ABD ,利用面积公式求解即可;(2)根据S △ABC =S 四边形ABCO -S △AOC ,利用面积公式求解即可;(3)设P(m,0),构建方程求出m即可.【详解】解:(1)如图1,过点B作BD⊥OA于点D,∵点A(4,0),B(3,4),C(0,2),∴OC=2,OD=3,BD=4,AD=4-3=1,∴S四边形ABCO=S梯形CODB+S△ABD=1(24)32⨯+⨯+1142⨯⨯=9+2=11;(2)如图2,连接AC,S△ABC=S四边形ABCO-S△AOC=11-1422⨯⨯=11-4=7;(3)设P(m,0),则有12×|m-4|×4=8,∴m=0或8,∴P(0,0)或(8,0).【点睛】本题考查了三角形的面积,坐标与图形的性质等知识,解题的关键是学会利用分割法求四边形面积,学会利用参数构建方程解决问题.。

2021人教版七年级数学下册单元测试卷:第九章不等式与不等式组(含答案)

2021人教版七年级数学下册单元测试卷:第九章不等式与不等式组(含答案)

一、选择题(每小题3分,共30分)1.下列式子中是一元一次不等式的有( B ) ①50x <x +3;②x -3≠0;③y +x >9;④6x <7. A .1个 B .2个 C .3个D .4个2.若x >y ,则下列不等式中不一定成立的是( D ) A .x +1>y +1 B .2x >2y C .x 2>y 2D .x 2>y 23.不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1 ②中,不等式①和②的解集在数轴上表示正确的是( B )4.某品牌电脑的成本价为2400元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,则下列不等式中能正确表示该商店的促销方式的是( D )A .2800x ≥2400×5%B .2800x -2400≥2400×5%C .2800×x10≥2400×5%D .2800×x10-2400≥2400×5%5.已知实数a >2,且a 是关于x 的不等式x +b ≥3的一个解,则b 不可能是( A ) A .0 B .1 C .2D .36.不等式组⎩⎪⎨⎪⎧x +5<5x +1,x -m >1的解集是x >1,则m 的取值范围是( D )A .m ≥1B .m ≤1C .m ≥0D .m ≤07.不等式x +12>2x +23-1的正整数解的个数是( D )A .1B .2C .3D .48.对于任意实数m 、n ,定义一种新运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:2※6=2×6-2-6+3=7.请根据上述定义解决问题:若a <4※x <8,且解集中有2个整数解,则a 的取值范围是( B )A .-1<a ≤2B .-1≤a <2C .-4≤a <-1D .-4<a ≤-19.某城区现行出租车的收费标准如下:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是( B )A .5千米B .7千米C .8千米D .9千米10.已知关于x 、y 的方程组⎩⎪⎨⎪⎧x +3y =4-a ,x -y =3a ,其中-3≤a ≤1,给出下列结论:①⎩⎪⎨⎪⎧x =5,y =-1是方程组的解; ②当a =-2时,x 、y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4-a 的解; ④若x ≤1,则1≤y ≤4. 其中正确的是( C ) A .①② B .②③ C .②③④D .①③④二、填空题(每小题3分,共18分)11.如果2x -5<2y -5,那么-x __>__-y .(填“>”“<”或“=”)12.已知不等式3x +a ≤0的正整数解为1,2,3,则a 的取值范围是__-12<a ≤-9__.13.已知点P (x ,y )在第一象限,它的坐标满足方程组⎩⎪⎨⎪⎧2x +3y =3m +7,x -y =4m +1,则m 的取值范围为 -23<m <1 .14.运行程序如图所示,从“输入实数x ”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x 的取值范围是143<x ≤8 .15.植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.某中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵.这批树苗共有__121__棵.16.已知四个有理数a 、b 、x 、y 同时满足以下关系式:b >a ,x +y =a +b ,y -x <a -b .将这四个有理数按从小到大的顺序用“<”号连接起来是__y <a <b <x __.三、解答题(共72分)17.(7分)解不等式x6-1>x -23,并把它的解集在数轴上表示出来.解:去分母,得x -6>2(x -2).去括号,得x -6>2x -4.移项、合并同类项,得-x >2.系数化为1,得x <-2.将解集在数轴上表示如下:18.(7分)解不等式组:⎩⎪⎨⎪⎧-3(x +1)-(x -3)<8,①2x +13-1-x 2≤1, ②并求它的整数解的和.解:由①,得x >-2.由②,得x ≤1.所以不等式组的解集为-2<x ≤1,所以不等式组的整数解的和为-1+0+1=0.19.(8分)已知关于x 、y 的方程组⎩⎪⎨⎪⎧2x +3y =3m +7,2x -3y =9m +1的解x 、y 的值是一对正数.(1)求m 的取值范围; (2)化简:|m -1|+⎪⎪⎪⎪m +23. 解:(1)解方程组⎩⎪⎨⎪⎧ 2x +3y =3m +7,2x -3y =9m +1,得⎩⎪⎨⎪⎧ x =3m +2,y =-m +1.根据题意,得⎩⎪⎨⎪⎧3m +2>0,-m +1>0,解得-23<m <1. (2)原式=1-m +m +23=53.20.(9分)一幢学生宿舍楼有一些空宿舍,现有一批学生要入住,若每间住5人,则有25人无法入住;若每间住10人,则有1间房不空也不满.空宿舍有多少间?这批学生有多少人?解:设空宿舍有x 间.根据题意,得⎩⎪⎨⎪⎧5x +25>10(x -1),5x +25<10x ,解得5<x <7.因为x 是整数,所以x =6,则5×6+25=55(人).即空宿舍有6间,这批学生有55人.21.(9分)某商店四月份购进70个篮球,由于供不应求,五月份又购进同种篮球60个,两次购进篮球的单价不同,已知四月份和五月份购进篮球的单价和为65元,并且四月份与五月份购进篮球的总费用相同.(1)求该商店四、五月份购进篮球的单价分别是多少元;(2)由于运输不当,五月份购进的篮球中有10%损坏,不能售卖,该商店将两批篮球按同一价格全部销售后,获利不低于2000元,求每个篮球的售价至少是多少元.解:(1)设该商店四月份购进篮球的单价是x 元,则五月份购进篮球的单价是(65-x )元.依题意,得70x =60(65-x ),解得x =30,所以65-x =35.即该商店四月份购进篮球的单价是30元,五月份购进篮球的单价是35元.(2)设每个篮球的售价是y 元.依题意,得[70+60×(1-10%)]y -30×70-35×60≥2000,解得y ≥50.即每个篮球的售价至少是50元.22.(10分)阅读材料:根据有理数乘法(除法)法则可知:(1)若ab >0⎝⎛⎭⎫或a b >0,则⎩⎪⎨⎪⎧ a >0,b >0或⎩⎪⎨⎪⎧ a <0,b <0;(2)若ab <0⎝⎛⎭⎫或a b <0,则⎩⎪⎨⎪⎧ a >0,b <0或⎩⎪⎨⎪⎧a <0,b >0. 根据上述知识,求不等式(x -2)(x +3)>0的解集.解:原不等式可化为①⎩⎪⎨⎪⎧ x -2>0,x +3>0或②⎩⎪⎨⎪⎧x -2<0,x +3<0.由①,得x >2.由②,得x <-3. 所以原不等式的解集为x <-3或x >2.请你运用所学知识,结合上述材料解答下列问题: (1)不等式x 2-2x -3<0的解集为__-1<x <3__; (2)求不等式x +41-x<0的解集.(要求写出解答过程)解:由x +41-x <0,可知①⎩⎪⎨⎪⎧ x +4>0,1-x <0 或②⎩⎪⎨⎪⎧x +4<0,1-x >0. 解不等式组①,得x >1;解不等式组②,得x <-4.所以不等式x +41-x<0的解集为x >1或x <-4.23.(10分)某工厂用如图1所示的长方形和正方形纸板,做成如图2所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162块,长方形纸板340块.若要做两种纸盒共100个,设做竖式纸盒x 个.①根据题意,完成以下表格:②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162块,长方形纸板a 块,做成上述两种纸盒,纸板恰好用完.已知290<a <306.求a 的值.解:(1)②由题意,得⎩⎨⎧x +2()100-x ≤162,4x +3()100-x ≤340,解得38≤x ≤40.又因为x 是整数,所以x=38,39,40.即有三种方案:生产竖式纸盒38个,横式纸盒62个;生产竖式纸盒39个,横式纸盒61个;生产竖式纸盒40个,横式纸盒60个.(2)设做了x 个竖式纸盒,y 个横式纸盒.依题意,可得⎩⎪⎨⎪⎧x +2y =162,4x +3y =a , 于是我们可得出y =648-a5.因为290<a <306,所以68.4<y <71.6.由于y 取正整数,所以当y =70,则a =298;当y =69时,a =303;当y =71时,a =293.所以a 的值为293或298或303(写出其中一个即可).24.(12分)已知甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36 000单位的维生素A 和40 000单位的维生素B .(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克? (2)若限定甲种食物用50千克,则研制这100千克食品的总成本S 的取值范围是多少? 解:设研制100千克食品用甲种、乙种和丙种食物各x 千克、y 千克和z 千克.(1)由题意,得⎩⎪⎨⎪⎧ x +y +z =100,300x +600y +300z ≥36 000,700x +100y +300z ≥40 000,即⎩⎪⎨⎪⎧x +y +z =100, ①x +2y +z ≥120, ②7x +y +3z ≥400. ③由①,得z =100-x -y ,代入②③,得⎩⎪⎨⎪⎧y ≥20,2x -y ≥50,所以2x ≥y +50≥70,x ≥35.将①变形为y =100-x -z ,代入②,得z ≤80-x ≤80-35=45.即至少要用甲种食物35千克,丙种食物至多能用45千克.(2)研制100千克食品的总成本S =6x +4y +3z .将z =100-x -y 代入,得S =3x +y +300.当x =50时,S =y +450,20≤y ≤50.所以470≤S ≤500.即研制这100千克食品的总成本S 的取值范围是470元≤S≤500元.。

精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系专题练习试题(含详解)

精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系专题练习试题(含详解)

初中数学七年级下册第七章平面直角坐标系专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)2、平面直角坐标系中,属于第四象限的点是( )A .()3,4--B .()3,4C .()3,4-D .()3,4-3、如图,每个小正方形的边长为1,在阴影区域的点是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(1,﹣2)4、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为( )A.(3,2) B.(3-,2)C.(3,2-) D.(3-,2-)5、点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度,则点A的坐标为()A.(0,4)B.(4,0)C.(0,﹣4)D.(﹣4,0)6、在平面直角坐标系中,点A的坐标为(-2,3)若线段AB∥y轴,且AB的长为4,则点B的坐标为()A.(-2,-1)B.(-2,7)C.(﹣2,-1)或(-2,7)D.(2,3)7、根据下列表述,不能确定具体位置的是()A.电影院一层的3排4座B.太原市解放路85号C.南偏西30D.东经108︒,北纬53︒8、根据下列表述,能确定位置的是()A.红星电影院2排 B.北京市四环路C.北偏东30D.东经118︒,北纬40︒9、在图中,所画的平面直角坐标系正确的是()A.B.C.D .10、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--二、填空题(5小题,每小题4分,共计20分)1、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.2、将点P (2,1)沿x 轴方向向左平移3个单位,再沿y 轴方向向上平移2个单位,所得的点的坐标是_______.3、如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号 0、1、2、3、4、5、6、7、8,将不同边上的序号和为 8 的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点 A 的坐标可表示为(1,2,5),点 B 的坐标可表示为(4,3,1),按此方法,若点 C 的坐标为(2,m ,m -2),则 m =__________.4、如图,在中国象棋棋盘上建立平面直角坐标系,若“帅”位于点(﹣1,﹣2)处,则“兵”位于点__________处.5、如图,将△AOB 沿x 轴方向向右平移得到△CDE ,点B 的坐标为(3,0),DB =1,则点E 的坐标为 ___.三、解答题(5小题,每小题10分,共计50分)1、长方形的两条边长分别为8,6,建立适当的直角坐标系,并写出它的四个顶点的坐标.2、(1)在平面直角坐标系中描出点()()()()()8,7,7,3,6,7,5,3,4,7A B C D E -----,并将它们依次连接;(2)将(1)中所画图形先向右平移10个单位长度,再向下平移10个单位长度,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?3、郑州市区的许多街道习惯用“经几纬几”来表示.小颖所乘的汽车从“经七纬五”出发,经过“经六纬五”到达“经五纬一”.(1)在图上标出“经五纬一”的位置;(2)在图上标出小颖所乘汽车可能行驶的一条路线图.还有其他可能吗?(3)你能说出图中“华美达广场”的位置吗?4、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.5、在平面直角坐标系中,△ABC的三个顶点的位置如图所示,将△ABC向左平移3个单位,再向下平移2个单位.(1)写出△ABC的三个顶点坐标;(2)请画出平移后的△A′B′C′,并求出△A′B′C′的面积.---------参考答案-----------一、单选题1、C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.2、D【分析】根据各象限内点的符号特征判断即可.【详解】解:A.(-3,-4)在第三象限,故本选项不合题意;B.(3,4)在第一象限,故本选项不合题意;C.(-3,4)在第二象限,故本选项不合题意;D.(3,-4)在第四象限,故本选项符合题意;故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).3、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.4、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5、D【分析】点A 在x 轴上得出纵坐标为0,点A 位于原点的左侧得出横坐标为负,点A 距离坐标原点4个单位长度得出横坐标为4-,故得出点A 的坐标.【详解】∵点A 在x 轴上,位于原点左侧,距离坐标原点4个单位长度,∴A 点的坐标为:(4,0)-.故选:D .【点睛】本题考查直角坐标系,掌握坐标的表示是解题的关键.6、C【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∵AB y ∥轴,∴A ()2,3-与点B 的横坐标相同,∴2x =-,∵4AB =, ∴34y -=,∴34y -=或34y -=-,∴1y =-或7y =,∴点B 的坐标为:()2,1--,()2,7-,故选:C .【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.7、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;故选C【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.8、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A 、红星电影院2排,具体位置不能确定,不符合题意;B 、北京市四环路,具体位置不能确定,不符合题意;C、北偏东30,具体位置不能确定,不符合题意;D、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D.【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.9、C【分析】根据平面直角坐标系的定义判断即可.【详解】解:A、原点的位置错误,坐标轴上y的字母位置错误,错误;B、两坐标轴不垂直,错误;C、符号平面直角坐标系的定义,正确;D、x轴和y轴的方向有错误,坐标系无箭头,错误.故选:C.【点睛】本题考查平面直角坐标系,在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系,解题关键是掌握平面直角坐标系坐标轴的位置.10、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:A、(2,1)-在第四象限,故本选项不合题意;B 、(2,1)-在第二象限,故本选项不合题意;C 、(2,1)在第一象限,故本选项符合题意;D 、(2,1)--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a 的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.2、(﹣1,3)【解析】根据点坐标的平移规律:左减右加,上加下减的变化规律运算即可.【详解】解:将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(2-3,1+2)即(-1,3).故答案为:(-1,3)【点睛】本题主要考查了根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的规律.3、4【解析】【分析】根据题目中定义的新坐标系中点坐标的表示方法,求出点C坐标,即可得到结果.【详解】2,4,2,解:根据题意,点C的坐标应该是()∴4m=.故答案是:4.【点睛】本题考查新定义,解题的关键是理解题目中新定义的坐标系中点坐标的表示方法.4、(-3,1)【解析】【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.如图所示:则“兵“位于点:(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了坐标位置的确定,解题的关键是正确建立平面直角坐标系.5、(5,0)【解析】【分析】先由点B坐标求得OB,进而求得OD,根据平移性质可求得点E坐标.【详解】解:∵点B的坐标为(3,0),∴OB=3,又∵DB=1,∴OD=OB-DB=3-1=2,∵△AOB沿x轴方向向右平移得到△CDE,∴BE=OD=2,∴点E坐标为(5,0),故答案为:(5,0).本题考查坐标与图形变换-平移,熟练掌握平移变换规律是解答的关键.三、解答题1、作图见解析;()4,3A -,()4,3B --,()4,3C -,()4,3D【解析】【分析】根据长方形的性质和边长建立平面直角坐标系即可得解;【详解】根据题意可设正方形ABCD 的长为8,宽为6,建立平面直角坐标系如下:∴四个顶点的坐标分别为()4,3A -,()4,3B --,()4,3C -,()4,3D ;【点睛】本题主要考查了建立平面直角坐标系和矩形的性质,准确作图计算是解题的关键.2、(1)见解析;(2)见解析;(3)将(1)中所画图形沿由A到A'的方向平移到(2)中所画图形.平移后的点与平移前的对应点相比,横坐标分别增加了10,纵坐标分别减少了10【解析】【分析】(1)利用点平移的坐标规律写出A、B、C、D、E的对应点的坐标,然后描点连接即可;(2)按照平移方式描出对应点,依次连接即可;(3)把(1)中所画图形沿A到A'方向平移2)中所画图形,利用(1)中的平移规律得到平移前后对应点的横坐标和纵坐标的关系.【详解】解:(1)(2)如图所示;(3)将(1)中所画图形沿由A到A'=2)中所画图形.平移后的点与平移前的对应点相比,横坐标分别增加了10,纵坐标分别减少了10.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.3、(1)“经五纬一”在广播大厦旁边的十字路口;(2)“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”;(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近【解析】【分析】(1)先在图中分别找出经七路和纬五路,两条路的交点位置即为“经七纬五"的位置,与上步同理可确定"经六纬五”、“经五纬一"的位置;(2)结合“市区图"即可画出路线图了;(3)根据“市区图”中“华美达广场”的位置确定其所在的“经"路与"纬"路,问题即可解答.【详解】解:(1)如图:“经五纬一”在广播大厦旁边的十字路口.(2)如图:从“经七纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”.(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.【点睛】本题旨在让学生感受平面内确定物体位置的方法,在平面内确定一个物体的位置一般需要两个数据.4、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析【解析】【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.(2)根据点的坐标的意义描出点E.【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C 的坐标为(4,3)、文化宫D的坐标为(2,﹣3).(2)如图,点E即为所求.【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.5、(1)A(2,4),B(1,1),C(3,0);(2)图见解析,3.5【解析】【分析】(1)根据图形即可写出三点的坐标;(2)把三个顶点A、B、C分别向左平移3个单位,再向下平移2个单位得到三个点A′、B′、C′,然后依次连接这三个点,即可得到平移后的△A′B′C′;由于平移不改变图形的面积,所以只要计算出△ABC的面积即可,用割补法即可计算出△ABC的面积.【详解】(1)A(2,4),B(1,1),C(3,0),(2)如图△A′B′C′为所求;由平移性质得,△A′B′C′的面积等于△ABC的面积即,11124-12-14-13222A B C ABCS S∆∆'''==⨯⨯⨯⨯⨯⨯⨯=3.5.【点睛】本题考查了点的坐标、平面直角坐标系中图形的平移及求图形的面积,掌握平移的性质是关键.。

2020-2021学年人教版七年级数学下册 第七章 平面直角坐标系 章末训练(含答案)

2020-2021学年人教版七年级数学下册 第七章 平面直角坐标系 章末训练(含答案)

人教版七年级数学下册第七章平面直角坐标系章末训练一、选择题1. 若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A. (-2,-1)B. (-1,0)C. (-1,-1)D. (-2,0)2. 若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限3. 已知三角形ABC的顶点坐标分别是A(0,6),B(-3,-3),C(1,0),将三角形ABC平移后顶点A的对应点A1的坐标为(4,10),则点B的对应点B1的坐标为()A.(7,1)B.(1,7)C.(1,1)D.(2,1)4. 如图,学校在李老师家的南偏东30°方向,距离是500 m,则李老师家在学校的()A.北偏东30°方向,相距500 m处B.北偏西30°方向,相距500 m处C.北偏东60°方向,相距500 m处D.北偏西60°方向,相距500 m处5. 已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC的面积为6,则点C的坐标为()A.(0,4)B.(0,2)C.(0,2)或(0,-2)D.(0,4)或(0,-4)6. 在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O 运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)8. 对于任意实数m,点P(m-2,9-3m)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题9. 将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.10. 点P(-6,-7)到x轴的距离为,到y轴的距离为.11. 在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.12. 如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1,则a+b 的值为.13. 指出下列各点所在的象限或坐标轴:(1)A(-1,-2.5)在;(2)B(3,-4)在;(3)C在;(4)D(7,9)在;(5)E(-π,0)在;(6)F在;(7)G(7.1,0)在;(8)H(0,10)在14. 如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为.15. 如图,在平面直角坐标系中,所有正方形的中心都在原点,且各边也都与x 轴或y轴平行,从内向外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4……表示,则顶点A2021的坐标为.16. 如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为.三、解答题17. 已知点A(-5,m+4)和点B(4m+15,-8)是平行于y轴的直线上的两点,求A,B两点的坐标.18. 如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4).(1)求四边形ABCD的面积;(2)如果把四边形ABCD先向左平移3个单位长度,再向下平移1个单位长度得四边形A'B'C'D',求点A',B',C',D'的坐标.19. 如图,在平面直角坐标系中,S三角形ABO=6,OA=OB,BC=12,求三角形ABC三个顶点的坐标.20. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.21. 如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.答案22. 小明绘制了市内几所学校相对于光明广场(点O)的位置简图(如图,图中1 c m表示5 km).东方红中学在广场的正南方向,测得OA=1.7 cm,OB=2 cm,O C=2 cm,OD=1.4 cm,∠AOC=123°18',∠AOB=68°24',∠AOD=88°28',请确定每个学校相对于光明广场的位置.人教版七年级数学下册第七章平面直角坐标系章末训练-答案一、选择题1. 【答案】C【解析】由点坐标的平移规律,点A(1,3)向左平移2个单位得到点(-1,3),再向下平移4个单位得到点B的坐标为(-1,-1).2. 【答案】D[解析] 由题意知m+1-2m=0,解得m=1,所以P(1,-1).故选D.3. 【答案】C[解析] 因为点A(0,6)平移后的对应点A1的坐标为(4,10),所以三角形ABC向右平移了4个单位长度,向上平移了4个单位长度,所以点B的对应点B1的坐标为(-3+4,-3+4),即(1,1).4. 【答案】B5. 【答案】D[解析] ∵点A(-1,0),B(2,0),三角形ABC的面积为6,点C的y轴上,∴S三角形ABC=AB·|y c|=×3|y c|=6,∴|y c|=4,则点C的坐标为(0,4)或(0,-4).故选D.6. 【答案】B7. 【答案】A[解析] 点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P的坐标是(2021,1).故选A.8. 【答案】C【解析】m-2≤0时,得m≤2,此时9-3m>0;m-2>0时,得m >2,此时9-3m的值可能大于0,也可能小于0,故点P不可能在第三象限.二、填空题9. 【答案】(1,3)10. 【答案】7611. 【答案】(5,1)12. 【答案】213. 【答案】(1)第三象限(2)第四象限(3)第二象限(4)第一象限(5)x轴的负半轴上(6)y轴的负半轴上(7)x轴的正半轴上(8)y轴的正半轴上14. 【答案】(a-2,b+3)[解析] 由图可知线段AB向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).15. 【答案】(-506,-506)[解析] 观察,发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,∴A4n+(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数). 1∵2021=505×4+1,∴A2021(-506,-506).16. 【答案】(-2,0)[解析] S三角形ABC=BC·4=10,解得BC=5,∴OB=5-3=2,∴点B的坐标为(-2,0).三、解答题17. 【答案】解:依题意,得4m+15=-5,解得m=-5.所以A (-5,-1),B (-5,-8).18. 【答案】解:(1)如图,过点D 作DE ⊥x 轴,垂足为E ,过点C 作CF ⊥x 轴,垂足为F , 则S 四边形ABCD =S 三角形ADE +S 四边形DEFC +S 三角形CFB .因为S 三角形ADE =×1×4=2,S 四边形DEFC =×(3+4)×1=,S 三角形CFB =×2×3=3,所以S 四边形ABCD =2++3=.(2)因为四边形ABCD 先向左平移3个单位长度,再向下平移1个单位长度得四边形A'B'C'D',所以平移后,各顶点的横坐标减小3,纵坐标减小1.因为A (1,0),B (5,0),C (3,3),D (2,4),所以A'(-2,-1),B'(2,-1),C'(0,2),D'(-1,3).19. 【答案】解:∵S 三角形ABO =OB ·OA=6,OA=OB ,∴OA=OB=, ∴A (0,),B (-,0).∵BC=12,∴OC=BC-OB=12-,∴C(12-,0).故三角形ABC三个顶点的坐标分别为A(0,),B(-,0),C(12-,0).20. 【答案】解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).21. 【答案】解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22. 【答案】[解析] 要确定每个学校的位置,应以光明广场所在的位置为参照点建立表示方向的平面图,然后通过确定各学校所在位置的方向,再用方向和与光明广场的距离来表示各学校的位置.解:∠BOC=∠AOC-∠AOB=123°18'-68°24'=54°54';∠NOD=180°-∠AOB-∠AOD =180°-68°24'-88°28'=23°8'.对光明广场来说,东方国际中学在南偏东68°24',距离为8.5 km处;东方红中学在正南方向,距离为10 km处;二十九中在南偏西54°54',距离为10 km处;三十七中在北偏东23°8',距离为7km处.。

精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系课时练习试题(含答案解析)

精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系课时练习试题(含答案解析)

初中数学七年级下册第七章平面直角坐标系课时练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、点P 在第二象限内,P 点到x 、y 轴的距离分别是4、3,则点P 的坐标为( )A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4)2、已知点P (﹣3,﹣3),Q (﹣3,4),则直线PQ ( )A .平行于x 轴B .平行于y 轴C .垂直于y 轴D .以上都不正确3、如图所示的象棋盘上,若“帅”位于点()1,2--.“马”位于点()3,2-,则位于原点位置的是( )A .炮B .兵C .相D .车4、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--5、平面直角坐标系中,将点A (2m ,1)沿着x 的正方向向右平移(23m +)个单位后得到B 点,则下列结论:①B 点的坐标为(223+m ,1);②线段AB 的长为3个单位长度;③线段AB 所在的直线与x 轴平行;④点M (2m ,23m +)可能在线段AB 上;⑤点N (22m +,1)一定在线段AB 上.其中正确的结论有( )A .2个B .3个C .4个D .5个6、已知点P (1+m ,2)在第二象限,则m 的取值范围是( )A .m >-1B .m <-1C .m ≤-1D .m ≥-17、点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(-4,3)B .(4,-3)C .(-3,4)D .(3,-4)8、在平面直角坐标系中,点()9,0A -在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上9、如图,在平面直角坐标系中,A 、B 、C 、D 四点坐标分别为:A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长度的速度运动,运动时间为t 秒,若t =2020秒,则点P 所在位置的点的坐标是( )A .(1,1)B .(﹣1,1)C .(﹣1,﹣1)D .(1,﹣1)10、如果点(3,1)P m m ++在直角坐标系的x 轴上,那么P 点坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,-4)二、填空题(5小题,每小题4分,共计20分)1、若点()P m n ,在第二象限,则点(),Q m n -在第______象限.2、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A 1,第二次移动到点A 2,…,第n 次移动到点An ,则点A 2022的坐标是__________.3、线段AB =5,AB 平行于x 轴,A 在B 左边,若A 点坐标为(-1,3),则B 点坐标为_____.4、平面直角坐标系中,点P (3,-4)到x 轴的距离是________.5、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.2、已知点P (a +1,2)关于y 轴的对称点为Q (3,b -1),求(a +b )2021的值.3、如图,在平面直角坐标系中,已知O 是原点,四边形ABCD 是长方形,且四个顶点都在格点上.(1)分别写出A ,B ,C ,D 四个点的坐标;(2)画出将长方形ABCD 先向下平移4个单位,再向右平移2个单位得到的四边形1111D C B A ,并写出其四个顶点的坐标.4、如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-2,4),B (-4,2),C (-1,1)(每个小方格都是边长为1个单位长度的正方形).请完成以下画图并填空.(1)画出△ABC 关于原点O 成中心对称的△A 1B 1C 1(点A ,B ,C 的对应点分别为A 1,B 1,C 1);(2)将△ABC 绕点O 顺时针旋转90°,画出旋转后得到的△A 2B 2C 2(点A ,B ,C 的对应点分别为A 2,B 2,C 2);(3)△ABC 的面积为 .(直接填结果)5、如图,在平面直角坐标系中,点A 的坐标为()2,4,点B 的坐标为()3,0.三角形AOB 中任意的一点()00,P x y 经平移的对应点为()1002,P x y +,并且点A、O B 、的对应点分别为,,D E F .(1)指出平移的方向和距离(2)画出平移后的三角形DEF ,并写出,,D E F 的坐标;(3)求线段OA 在平移过程中扫过的面积.---------参考答案-----------一、单选题1、C【分析】点P 到x 、y 轴的距离分别是4、3,表明点P 的纵坐标、横坐标的绝对值分别为4与3,再由点P 在第二象限即可确定点P 的坐标.【详解】∵P 点到x 、y 轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.2、B【分析】横坐标相同的点在平行于y轴的直线上,纵坐标相同的点在平行于x轴的直线上,由此分析即可.【详解】解:∵P(﹣3,﹣3),Q(﹣3,4),∴P、Q横坐标相等,∴由坐标特征知直线PQ平行于y轴,故选:B.【点睛】本题考查平面直角坐标系中点的特征,理解横坐标相同的点在平行于y轴的直线上,纵坐标相同的点在平行于x轴的直线上,是解题关键.3、A【分析】根据题意可以画出平面直角坐标系,从而可以写成炮所在点的坐标.【详解】解:由题可得,如下图所示,故炮所在的点的坐标为(0,0),故选:A.【点睛】本题考查了坐标确定位置,解题的关键是明确题意,画出相应的平面直角坐标系.4、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:A、(2,1)-在第四象限,故本选项不合题意;-在第二象限,故本选项不合题意;B、(2,1)C、(2,1)在第一象限,故本选项符合题意;--在第三象限,故本选项不合题意;D、(2,1)故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得AB的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤【详解】解:∵点A(2m,1)沿着x的正方向向右平移(23m+)个单位后得到B点,∴B点的坐标为(2m,1);+23故①正确;则线段AB的长为23m+;故②不正确;∵A(2m,1),B(2m,1);纵坐标相等,即点A,B到x轴的距离相等23+∴线段AB所在的直线与x轴平行;故③正确若点M(2m,23m+)在线段AB上;则231m=-m=-,不存在实数21m+=,即21故点M(2m,23m+)不在线段AB上;故④不正确同理点N(22m+,1)在线段AB上;故⑤正确综上所述,正确的有①③⑤,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.6、B【分析】令点P的横坐标小于0,列不等式求解即可.【详解】解:∵点P(1+m,2)在第二象限,∴1+m<0,解得:m<-1.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是4,∴点P的坐标为(-3,4).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.8、B【分析】依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点A (9-,0),纵坐标为0∴点A (9-,0)在x 轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x 轴上点的纵坐标为0,y 轴上点的横坐标为0.9、A【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由202020210=⨯可得出当2020t =秒时点P 与点A 重合,然后问题可求解.【详解】解:(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -,2AB CD ∴==,3AD BC ==,()210ABCD C AB AD ∴=+=矩形.∵202020210=⨯,∴当2020t =秒时,点P 与点A 重合,∴此时点P 的坐标为(1,1).故选A .【点睛】本题主要考查坐标规律问题,解题的关键是找到当t =2020时,点P 的位置.10、B【分析】因为点(3,1)P m m ++在直角坐标系的x 轴上,那么其纵坐标是0,即10m +=,1m =-,进而可求得点P的横纵坐标.【详解】 解:点(3,1)P m m ++在直角坐标系的x 轴上,10m ∴+=,1m ∴=-,把1m =-代入横坐标得:32+=m .则P 点坐标为(2,0).故选:B .【点睛】本题主要考查了点在x 轴上时纵坐标为0的特点,解题的关键是掌握在x 轴上时纵坐标为0.二、填空题1、三【解析】【分析】根据直角坐标系的性质,得0m <,0n >,从而得0n -<,根据坐标的性质分析,即可得到答案.【详解】∵点()P m n ,在第二象限∴0m <,0n >∴0n -<∴点(),Q m n -在第三象限故答案为:三.【点睛】本题考查了直角坐标系的知识;解题的关键是熟练掌握直角坐标系的性质,从而完成求解.2、(1011,-1).【解析】【分析】由点的移动规律发现每移动8次构成一个循环,一个循环相当于向右平移4个单位,用2022÷8即可解决问题.【详解】解:由题意知:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),可以发现每移动8次构成一个循环,一个循环相当于向右平移4个单位,∴2022÷8=252⋯6,∴252×4=1008,∴A2022(1011,-1),故答案为:(1011,-1).【点睛】本题考查了平面直角坐标系中的点的规律探索问题,仔细观察图形,得出每移动8次构成一个循环,一个循环相当于向右平移4个单位结论是解题的关键.3、(4,3)【解析】【分析】由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.【详解】解:∵AB∥x轴,A点坐标为(-1,3),∴点B的纵坐标为3,当A在B左边时,∵AB=5,∴点B的横坐标为-1+5=4,此时点B(4,3).故答案为:(4,3).【点睛】本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.4、4【解析】【分析】根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.5、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.三、解答题1、(1)见解析;(2)14【解析】【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.【详解】解:(1)如图,各点的坐标为:A (﹣3,2)、C (﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1; ∴1117272AC A S =⨯⨯= ;117272AC CS =⨯⨯=; ∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.2、 (a +b )2021=-1 【解析】【分析】根据关于y 轴对称点的特征确定出a 与b 的值,代入原式计算即可求出值.【详解】解:因为点P (a +1,2)关于y 轴的对称点为Q (3,b -1),所以a +1=- 3,b - 1=2,解得a =-4,b =3,所以(a +b )2021=(-4+3)2021=(-1)2021=-1.【点睛】此题考查了关于x 轴、y 轴对称的点的坐标,熟练掌握二次根式性质是解本题的关键.3、(1)A (-3,1),B (-3,3),C (2,3),D (2,1);(2)图见解析,四个顶点的坐标分别为:A1(-1,-3),()11,1B --,()14,1C -,()14,3D -【解析】【分析】(1)根据已知图形写出点的坐标即可;(2)求出A ,B ,C ,D 四个点向下平移4个单位,再向右平移2个单位的点,连接即可;【详解】(1)由图可知:A (-3,1),B (-3,3),C (2,3),D (2,1);(2)∵A (-3,1),B (-3,3),C (2,3),D (2,1),∴向下平移4个单位,再向右平移2个单位后对应点为()11,3A --,()11,1B --,()14,1C -,()14,3D -,作图如下,【点睛】本题主要考查了平面直角坐标系中写点的坐标,图形的平移,准确分析作图是解题的关键.4、 (1)见详解;(2)见详解;(3)4【解析】【分析】(1)根据中心对称图形的概念即可作出图形,求出对应点坐标;(2)根据旋转作图的方法即可.(3)利用三角形所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)如图所示, △A1B1C1为所求;(2)如图所示, △A2B2C2为所求;(3)S△ABC=3×3-12×2×2-12×1×3-12×1×3=9-2-1.5-1.5=4【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.5、(1)向右平移2个单位长度;(2)D点坐标为(4,4),E点坐标为(2,0),F点坐标为(5,0),画图见解析;(3)8【解析】【分析】(1)根据点平移的规律:上加下减,左减右加,进行求解即可;(2)根据平移方式下得到D、E、F的坐标,然后描点,最后顺次连接D、E、F即可;(3)根据线段OA在平移过程中扫过的面积即为平移四边形AOED的面积,进行求解即可.【详解】解:(1)∵三角形AOB 中任意的一点()00,P x y 经平移的对应点为()1002,P x y +,∴平移方式为向右平移2个单位长度;(2)∵△DEF 是△AOB 向右平移两个单位长度得到的,A (2,4),B (3,0),O (0,0), ∴D 点坐标为(4,4),E 点坐标为(2,0),F 点坐标为(5,0),如图所示,△DEF 即为所求:(3)如图所示,线段OA 在平移过程中扫过的面积即为平移四边形AOED 的面积,∵A 点坐标为(2,4),E 点坐标为(2,0),∴AE =4,OE =2,∠AEO =90°,∴线段OA 在平移过程中扫过的面积248OE AE =⋅=⨯=.【点睛】本题主要考查了根据点的坐标判断平移方式,根据平移方式确定点的坐标,画平移图形,坐标与图形等等,解题的关键在于能够熟练掌握点的平移坐标变化规律.。

部编数学七年级下册数学(人教版七年级下册全部)(全解全析)含答案

部编数学七年级下册数学(人教版七年级下册全部)(全解全析)含答案

2022-2023学年下学期期末考前必刷卷七年级数学·全解全析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版七下全部。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列每组图形中,左边的图形平移后可以得到右边图形的是()A.B.C.D.【答案】D【解析】【解答】解:选项A中的两个图形,左边的图形平移后不能得到右边的图形,故该选项不符合题意;选项B中的两个图形,左边的图形平移后不能得到右边的图形,故该选项不符合题意;选项C中的两个图形,左边的图形平移后不能得到右边的图形,故该选项不符合题意;选项D中的两个图形,左边的图形平移后能得到右边的图形,故该选项符合题意;故答案为:D.【分析】根据平移的性质对每个选项一一判断即可。

,,,2.1212212221中,是有理数的个数是( )2.0,2π,3A.2B.3C.4D.5【答案】C【解析】【解答】解:= 43 ,所以在0, 2π , 37 ,, , 2.1212212221 中,有理数是:0, 37 , , 2.1212212221 ,共4个.故答案为:C .【分析】整数和分数统称为有理数,根据有理数的定义进行判断即可。

3.如图,明明和乐乐下棋,明明执圆形棋子,乐乐执方形棋子,若棋盘中心的圆形棋子位置用(-1,1)表示,乐乐将第4枚方形棋子放入棋盘后,所有棋子构成轴对称图形,则乐乐放方形棋子的位置可能是( )A .(−1,−1)B .(−1,3)C .(0,2)D .(−1,2)【答案】D【解析】【解答】解:如图:正确的点为(-1,2),故答案为:D .【分析】先确定坐标轴,再确定对称轴即可。

2020-2021学年七年级数学人教版下册第5-9章综合复习训练题 含答案

2020-2021学年七年级数学人教版下册第5-9章综合复习训练题    含答案

2021年人教版七年级下册数学第5-9章综合复习训练题一.选择题1.如图,AB∥CD,点E是直线AB上的点,过点E的直线l交直线CD于点F,EG平分∠BEF交CD于点G.在直线l绕点E旋转的过程中,图中∠1,∠2的度数可以分别是()A.30°,110°B.56°,70°C.70°,40°D.100°,40°2.如图,在直角三角形ABC中,∠BAC=90°,将△ABC沿直线BC向右平移得到△DEF,连接AD,AE,下列结论:①AC∥DF;②AD∥BE,AE=BE;③∠ABE=∠DEF;④ED ⊥AC,其中正确的结论有()A.1个B.2个C.3个D.4个3.已知,,则x2﹣x的值为()A.0 或1B.0 或2C.0 或6D.0、2 或64.已知正方形的面积为50,则该正方形的边长介于()A.6与7之间B.7与8之间C.8与9之间D.9与10之间5.横、纵坐标均为整数的点称为整点.如图,一列有规律的整点,其坐标依次为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2019个整点的坐标为()A.(45,6)B.(45,13)C.(45,22)D.(45,0)6.在平面直角坐标系xOy中,A(2,4),B(﹣2,3),C(4,﹣1),将线段AB平移得到线段CD,其中点A的对应点是C,则点B的对应点D的坐标为()A.(﹣4,8)B.(4,﹣8)C.(0,2)D.(0,﹣2)7.为了奖励疫情期间线上学习表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()A.2种B.3种C.4种D.5种8.甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可以列方程组是()A.B.C.D.9.妈妈将某服饰店的促销活动内容告诉爸爸后,爸爸假设某一商品的定价为x元,并列出关系式为0.7(2x﹣100)<1500,则下列哪一项可能是妈妈告诉爸爸的内容()A.买两件等值的商品可减100元,再打3折,最后不到1500元B.买两件等值的商品可减100元,再打7折,最后不到1500元C.买两件等值的商品可打3折,再减100元,最后不到1500元D.买两件等值的商品可打7折,再减100元,最后不到1500元。

2020—2021学年人教版七年级下册数学第5-9章综合复习训练卷 含答案

2020—2021学年人教版七年级下册数学第5-9章综合复习训练卷    含答案

2021年人教版七年级下册数学第5-9章综合复习训练卷一.选择题1.下列命题中的真命题是()A.在同一平面内,a、b、c是直线,如果a∥b,b⊥c,则a∥cB.在同一平面内,a、b、c是直线,如果a⊥b,b⊥c,则a⊥cC.在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥cD.在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a⊥c2.如图,矩形纸片ABCD.沿着BE折叠,使C、D两点分别落在C1、D1处,若∠ABC1=45°,则∠ABE的度数为()A.21°B.21.5°C.22°D.22.5°3.将一个矩形纸片折叠成如图所示的图形,若∠ABC=25°,则∠ACD的度数为()A.125°B.130°C.135°D.150°4.若有+=0,则x和y的关系是()A.x=y=0B.x﹣y=0C.xy=1D.x+y=05.下列整数中,与9﹣最接近的是()A.4B.5C.6D.76.下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个7.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q不在第()象限.A.一B.二C.三D.四8.如图,已知点A1(1,1),将点A1向上平移1个单位长度,再向右平移2个单位长度得到点A2;将点A2向上平移2个单位长度,再向右平移4个单位长度得到点A3;将点A3向上平移4个单位长度,再向右平移8个单位长度得到点A4,…按这个规律平移下去得到点A n(n为正整数),则点A n的坐标是()A.(2n,2n﹣1)B.(2n﹣1,2n)C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)9.已知点P的坐标为(2﹣a,3a+6),且P到两坐标轴的距离相等,P点的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(6,﹣6)或(3,3)10.若(a+b)2011=﹣1,a﹣b=1,则a2011+b2011的值是()A.2B.1C.0D.﹣111.某运输队接到给武汉运输物资的任务,该队有A型卡车和B型卡车,A型卡车每次可运输6t物资,每天可来回6次,B型卡车每次可运输10t物资,每天可来回4次,若每天派出20辆卡车,刚好运输860t物资,设该运输队每天派出A型卡车x辆,B型卡车y 辆,则所列方程组正确的是()A.B.C.D.12.二元一次方程2x+5y=25的正整数解个数是()A.1个B.2个C.3个D.4个13.下列变形中不正确的是()A.由a>b,得b<aB.若a>b,则ac2>bc2(c为有理数)C.不等式x≤9的解一定是不等式x<10的解D.由﹣x<y得x>﹣2y14.若方程组的解满足x+y>1,则k的取值范围是()A.k>2B.k<2C.k>0D.k<015.某闹市区新建一个小吃城,设计一个进口和一个出口,内设n个摊位,预估进口和出口的客流量都是每分钟10人,每人消费25元,摊位的毛利润为40%,若平均每个摊位一天(按10个小时计)的毛利润不低于1000元,则n的最大值为()A.30B.40C.50D.60二.填空题16.如图,直线m与∠AOB的一边射线OB相交,∠1=30°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2+∠3=.17.如图,同旁内角有对.18.如果一个角的两边分别与另一个角的两边平行,且其中一个角大小是52°,那么另一个角的度数是°.19.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=.20.比较下列各数的大小关系:①2;②2;③.21.已知≈0.6993,≈1.507,则≈.22.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是.23.在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=.24.在平面直角坐标系中,已知A(1,4),B(5,2)将线段AB平移后得线段CD,若C (3,﹣1),则D的坐标是.25.在国新办4月2日举行的疫情期间中国海外留学人员安全问题新闻发布会上,外交部副部长马朝旭透露,3月份全球疫情加速扩散后,中国已经安排A与B两种型号的包机9架次,从伊朗、意大利等国接回包括留学人员在内的中国公民1457人.其中A型包机每架次坐满158人,B型包机每架次坐满163人,则A型包机有架,B型包机有架.26.有甲,乙,丙三种不同重量的重物,它们的重量分别为a,b,c,天平一端放2个甲,另一端放一个乙和一个丙天平平衡;或者天平一端放一个甲和一个乙,另一端放一个丙,天平平衡.问a:b:c的值为.27.A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时千米.28.若关于x的不等式组恰有两个整数解,则a的取值范围是.29.把一些书分给几个学生,如果每人分3本,那么余8本:如果每人分5本,那么恰有一人分不到3本,则这些书有本,学生有人.30.若方程组的解为x、y,且x+y>0,则k的取值范围是.31.已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是;(2)若m2x+(m+b)2x=4,则x=.32.已知点P(2x,3x﹣1)是平面直角坐标系内的点.(1)若点P到两坐标轴的距离相等,则x的值是;(2)若点P在第三象限,且到两坐标轴的距离之和为16,则x的值.三.解答题33.如图,在方格纸内将△ABC经过一次平移得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定的方格纸中画出平移后的△A′B′C′;(2)画出BC边上的高AE;(3)如果P点在格点上,且满足S△P AB=S△ABC(点P与点C不重合),满足这样条件的P点有个.34.已知:如图,点C在∠AOB的一边OA上,过点C作DE∥OB,CF平分∠ACD,CG 平分∠DCO.(1)若∠O=50°,求∠DCF的度数;(2)当∠O为多少度时,CD平分∠OCF,并说明理由.35.如图,已知AM∥BN,∠A=58°,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是度;②∵AM∥BN,∴∠ACB=∠.(2)求∠CBD的度数.(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.(直接写出结果)36.解方程:(1)(x+3)2=25;(2)x3+1=﹣3.37.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案.38.若m是不等式组的最大整数解,求:1+m+m2+…+m2020的值.39.某商店销售A、B两种商品,每件的售价分别为20元、30元.五一期间,该商店决定对这两种商品进行促销活动,如图所示,若小红打算到该商店购买m件A商品和20件B 商品,根据以上信息,请(1)分别用含m的代数式表示按照方案一和方案二所需的费用w1和w2;(2)就m的不同取值,说明选择哪种方案购买更实惠(两种优惠方案不能同时享受)?40.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?参考答案一.选择题1.解:A、在同一平面内,a、b、c是直线,如果a∥b,b⊥c,则a⊥c,原命题是假命题;B、在同一平面内,a、b、c是直线,如果a⊥b,b⊥c,则a∥c,原命题是假命题;C、在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥c,是真命题;D、在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥c,原命题是假命题;故选:C.2.解:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=45°+x,∵∠ABC=90°,∴45°+x+x=90°,解得x=22.5°.故选:D.3.解:延长DC至E,由题意可得:∠ABC=∠BCE=∠BCA=25°,则∠ACD=180°﹣25°﹣25°=130°.故选:B.4.解:∵+=0,∴=﹣,∴x=﹣y,∴x与y的关系是x+y=0.故选:D.5.解:∵16<17<25,∴4<<5,∴最接近的整数为4,∴9﹣最接近的整数为5.故选:B.6.解:①3是27的立方根,原来的说法错误;②的算术平方根是,原来的说法错误;③﹣=2是正确的;④=4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.7.解:如图所示,过点P(﹣2,1)作平行于坐标轴的直线,分别取线段PQ1=PQ2=PQ3=PQ4=5,点Q不在第四象限.故选:D.8.解:由题意知,A1(1,1),A2(3,2),A3(7,4),A4(15,8),…A n(2n﹣1,2n﹣1).故选:D.9.解:∵点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,∴2﹣a=3a+6或(2﹣a)+(3a+6)=0;解得:a=﹣1或a=﹣4,∴P点坐标为(3,3)或(6,﹣6),故选:D.10.解:∵(a+b)2011=﹣1,a﹣b=1,∴,解得:,则原式=0﹣1=﹣1.故选:D.11.解:依题意,得:.故选:B.12.解:∵2x+5y=25,∴y=,当x=5时,y=3;当x=10时,y=1;故选:B.13.解:A、∵a>b,∴b<a,原变形正确,故本选项不符合题意;B、∵a>b,∴ac2≥bc2,原变形不正确,故本选项符合题意;C、不等式x≤9的解一定是不等式x<10的解,原说法正确,故本选项不符合题意;D、∵﹣x<y,∴x>﹣2y,原变形正确,故本选项不符合题意;故选:B.14.解:将两个方程相加可得3x+3y=3﹣3k,则x+y=1﹣k,∵x+y>1,∴1﹣k>1,解得k<0,故选:D.15.解:依题意,得:•n≤10×60×10×25,解得:n≤60.故选:D.二.填空题16.解:作OC∥m,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴OC∥n,∴∠1=∠OBC=30°,∠2+∠AOC=180°,∴∠2+∠3=180°+30°=210°.故答案为210°.17.解:∠1和∠2,∠1和∠6,∠2和∠6,∠3和∠7是同旁内角,共4对,故答案为:4.18.解:∵一个角的两边与另一个角的两边分别平行,∴这两个角相等或互补,∵一个角为52°,∴另一角为128°或52°.故答案为:128°或52.19.解:方程(x﹣15)2=169两边开平方得x﹣15=±13,解得:x1=28,x2=2,方程(y﹣1)3=﹣0.125两边开立方得y﹣1=﹣0.5,解得y=0.5,当x=28,y=0.5时,=3;当x=2,y=0.5时,=1.故答案为:1或3.20.解:①2<;②<2;③<.故答案为:<,<,<.21.解:∵≈0.6993,∴≈0.06993,故答案为:0.06993.22.解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.OA•OB=AB•OP.∴OP===.故答案为.23.解:∵MN∥y轴,∴点M(a﹣3,a+4)与点N(5,9)的横坐标相同,∴a﹣3=5,∴a=8.故答案为:8.24.解:若A与C对应,则D(7,﹣3),若B与C对应,则D(﹣1,1).故答案为(7,﹣3)或(﹣1,1).25.解:设A型包机有x架,B型包机有y架,依题意,得:,解得:.故答案为:2;7.26.解:由题意,得.解得,,∴a:b:c=2b:b:3b=2:1:3.故答案是:2:1:3.27.解:设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,依题意得,解得:,答:这艘船在静水中的速度为17千米/小时,故答案为:17.28.解:,由①得:x>﹣,由②得:x<2a,不等式组的解集为:﹣<x<2a,∵不等式组只有两个整数解为0、1,∴1<2a≤2,∴<a≤1.故答案为<a≤1.29.解:设学生有x人,则这些书有(3x+8)本,依题意,得:,解得:5<x≤.又∵x为正整数,∴x=6,∴3x+8=26.故答案为:26;6.30.解:将两个方程相加可得6x+6y=k+3,即6(x+y)=k+3,∵x+y>0,则6(x+y)=k+3>0,解得k>﹣3,故答案为:k>﹣3.31.解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.故答案为:(1)4;(2).32.解:(1)根据题意知2x=3x﹣1或﹣2x=3x﹣1,解得x=1或x=0.2,故答案为:1或0.2;(2)根据题意知﹣2x+1﹣3x=16,解得x=﹣3,故答案为:﹣3.三.解答题33.解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE即为所求;(3)如图所示,满足这样条件的点P有8个,故答案为:8.34.解:(1)∵DE∥OB,∴∠ACE=∠O,∵∠O=50°,∴∠ACE=50°,∴∠DCA=130°,∵CF平分∠ACD,∴∠DCF=65°;(2)结论:当∠O=60°时,CD平分∠OCF,法1:当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°,∴∠ACD=120°,又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF;法二:若CD平分∠OCF,∴∠DCO=∠DCF,∵∠ACF=∠DCF,∴∠ACF=∠DCF=∠DCO,∵∠AOC=180°,∴∠DCO=60°,∵DE∥OB,∴∠O=∠DCO,∴∠O=60°.35.解:(1)①∵AM∥BN,∠A=58°,∴∠A+∠ABN=180°,∴∠ABN=122°;②∵AM∥BN,∴∠ACB=∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣58°=122°,∴∠ABP+∠PBN=122°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=122°,∴∠CBD=∠CBP+∠DBP=61°;(3)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=122°,∠CBD=61°,∴∠ABC+∠DBN=61°,∴∠ABC=30.5°.故答案为:122,CBN;30.5°.36.解:(1)(x+3)2=25,,x+3=±5,x+3=5或x+3=﹣5,解得x=2或x=﹣8;(2)x3+1=﹣3,,x3=﹣8,,x=﹣2.37.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:.答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴,,,∴共3种购买方案,方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆.38.解:,由不等式①,得x≥﹣2,由不等式②,得x<0,所以不等式组的解集为:﹣2≤x<0,解集中最大的整数为:﹣1,则m=﹣1,所以1+m+m2+…+m2018=1+(﹣1)+(﹣1)2+…+(﹣1)2020=1﹣1+1﹣1+…+1=1.39.解:(1)如果m≤15,那么w1=20m+30×0.9×20=20m+540,如果m>15,那么w1=20×15+20×0.5(m﹣15)+30×0.9×20=10m+690.综上,可知w1=;w2=(20m+30×20)×0.8=16m+480;(2)当m≤15时,20m+540>16m+480,故应该按方案二购买,选择方案二购买更实惠;当m>15时,10m+690>16m+480时,解得m<35;10m+690<16m+480时,解得m>35;10m+690=16m+480时,解得m=35,故当m<35时,按方案二购买;当m=35时,两种方案都一样;当m>35时,按方案一购买.40.解:(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,依题意,得:,解得:,答:每辆车A型车的售价为18万元,每辆车B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得:,解得:3.5≥m≥2.∵m为整数,∴m=2或3,答:有2种购车方案:购进A型车2辆,购B型5辆;购进A型车3辆,购B型4辆.。

2021年初一数学(下)学期总复习答案

2021年初一数学(下)学期总复习答案

(b 2)2 (c 3)2 0 ,

b 2 , c 3 ,
a b 4 2 4 2 ,
a b c 2 2 3 3 ;
故答案为:3.
7.利用拼图可以解释等式的正确性,也可以解释不等式的正确性.
(1)如图,4 块完全相同的长方形围成一个正方形.
① ≤
2 +2
2
;②(
+ 2
)
2

2 +2
2

2
2
【解答】解(1)① 4ab (a b) (a b)
②右边 a 2 b 2 2ab a 2 b 2 2ab 4ab 左边
③4 ≤ ( + )2
④∵(a+b)2﹣4ab=a2+b2+2ab﹣4ab=(a﹣b)2≥0
4
3
1 64
5
【解答】解:
(1)原式 4 ( ) 1 ,
2 25
4
2

16
1,
5
1

5
1
(2)原式 a 2b3 a 2b2 .
4
ห้องสมุดไป่ตู้
18.先化简,再求值:
(a 2b)2 (a b)(a b) 2(a b)(a 3b) ,其中 a
∴( + )2 ≥ 4
(2)①如图 1 作等腰直角 ABC 边长为 a ,作等腰直角 DEC ,边长为 b ,
则 S ABC
a2
b2
, S DEC
,长方形 BCDF 的面积为 ab
2
2
由图形可得:长方形 BCDF 的面积比 ABC 和 DEC 的面积和少了 AEF 的面积

2021人教版七年级数学下册单元测试卷汇总有答案

2021人教版七年级数学下册单元测试卷汇总有答案

2021人教版七年级数学下册单元测试卷一、选择题(每小题3分,共30分)1.下列语句:①两条直线相交,只有一个交点;②若a=b,则a2=b2;③不是对顶角不相等;④作∠AOB的平分线;⑤明天是晴天吗?其中是命题的有(C) A.1个B.2个C.3个D.4个2.在数学课上,老师让同学们画对顶角∠1与∠2,其中正确的是(D)A B C D3.如图所示,与∠α构成同位角的角有(C)A.1个B.2个C.3个D.4个4.如图,已知直线AB、CD相交于点O,OE⊥AB于点O,∠BOD=35°.则∠COE的度数为(B)A.35°B.55°C.65°D.70°5.同桌读了“子非鱼,安知鱼之乐”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是(D)6.如图,a∥b,下列选项中,可以用来说明命题“相等的角是内错角”是假命题的反例是(D)A.∠1+∠3=180°B.∠2=∠4C.∠2=∠3D.∠4=∠67.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=30°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(B)A.15°B.30°C.45°D.60°8.如图,下列条件中,不能判断AD∥BC的是(B)A.∠1=∠3B.∠2=∠4C.∠EAD=∠B D.∠D=∠DCF9.如图,AB∥CD,直线EF分别与直线AB、CD相交于点G、H,已知∠3=50°,GM 平分∠HGB交直线CD于点M,则∠1等于(B)A.60°B.80°C.50°D.130°10.如图,已知直线a∥b,且c、d和a、b分别交于M、N、A、B四点,点P是d上一动点.下列说法:①∠MPN=∠AMP+∠BNP;②点P在A、B两点之间运动时,∠MPN =∠AMP+∠BNP;③当点P在线段AB的延长线上运动时,∠AMP=∠BNP+∠MPN;④当点P在线段BA的延长线上运动时,∠BNP=∠AMP+∠MPN.其中正确的有(C)A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.下列命题中:①一个角小于它的补角;②一个锐角大于它的余角;③两条直线被第三条直线所截,同位角相等.其中是假命题的是__①②③__.(填序号)12.如图,按角的位置关系填空:∠1与∠2是__同旁内__角,∠1与∠3是__内错__角,∠2与∠3是__邻补__角.13.如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm,则BD的长度取值范围是 4 cm<BD<6 cm.14.如图是一条街道的两个拐角,∠ABC与∠BCD均为140°,则街道AB与CD的位置关系是__平行__,这是因为__内错角相等,两直线平行__.15.如图,在△ABC中,AB=4,BC=6,将△ABC沿射线BC方向平移2个单位后,得到△A′B′C′,连接A′C.若A′C=4,则△A′B′C的周长为__12__.16.如图,已知AD∥CB,AE、BE分别平分∠DAC和∠ABC,若∠E=4∠BAC,则∠BAC=__20°__.三、解答题(共72分)17.(6分)如图,直线AB、CD相交于点O,OM平分∠AOD,且∠1∶∠2=1∶8,ON 平分∠AOC,求∠BON的度数.解:设∠1=x °,则∠2=8x °.因为OM 平分∠AOD ,所以∠AOD =2∠1=2x °.因为∠2+∠AOD =180°,所以8x °+2x °=180°,解得x =18,所以∠AOD =36°,所以∠AOC =180°-∠AOD =180°-36°=144°.又因为ON 平分∠AOC ,所以∠CON =12∠AOC =72°.因为∠BOC=∠AOD =36°,所以∠BON =∠BOC +∠CON =36°+72°=108°.18.(6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1; (2)图中AC 与A 1C 1的关系是__平行且相等__;(3)能使△ABQ 的面积等于△ABC 的面积的格点Q 共有几个?在图中分别用Q 1、Q 2、…表示出来.(1)解:如图所示.(3)解:如图所示,共有4个.19.(7分)完成下面的推理过程:如图,AB ∥CD ,∠1=∠2,试说明∠B =∠D . 解:∵∠1=∠2(已知),∴__AD ∥BC __(内错角相等,两直线平行), ∴∠BAD +∠B =180°(两直线平行,同旁内角互补). ∵AB ∥CD (__已知__),∴__∠BAD __+__∠D __=180°(__两直线平行,同旁内角互补__), ∴∠B =∠D (__等量代换或同角的补角相等.__).20.(8分)指出下列命题的题设和结论,并将其改写成“如果……,那么……”的形式. (1)内错角相等;(2)内错角相等,两直线平行.解:(1)题设:两个角是内错角 结论:这两个角相等 改写:如果两个角是内错角,那么这两个角相等.(2)题设:两直线被第三条直线所截,截得的内错角相等结论:这两条直线平行改写:两直线被第三条直线所截,如果截得的内错角相等,那么这两条直线平行.21.(8分)如图,直线AB、CD相交于点O,∠BOC=60°,点P在直线CD上.(1)过点P画PE∥AB;(2)过点P画AB的垂线段PF,垂足为点F;(3)过点P画CD的垂线,与AB相交于点G;(4)比较PF、PG、OG三者的大小,其依据是什么?解:(1)(2)(3)所作如题图所示.(4)根据垂线段最短可知PF<PG<OG.22.(8分)如图,CD⊥AB,点E、F、G分别在BC、AB、AC上,且EF⊥AB,DG∥BC.(1)若∠B=35°,求∠1的度数;(2)试判断∠1,∠2的数量关系,并说明理由.解:(1)因为EF⊥AB,所以∠BFE=90°.又因为∠B=35°,所以∠1=90°-35°=55°.(2)∠1=∠2.理由如下:因为EF⊥AB,CD⊥AB,所以EF∥CD,所以∠1=∠BCD.因为DG∥BC,所以∠2=∠BCD,所以∠1=∠2.23.(8分)如图,已知∠EFC+∠BDC=180°,∠DEF=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠BDC=3∠B,求∠EFC的度数.解:(1)DE∥BC.理由如下:因为∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,所以∠EFC=∠ADC,所以AD∥EF,所以∠DEF=∠ADE.又因为∠DEF=∠B,所以∠B=∠ADE,所以DE∥BC.(2)因为DE 平分∠ADC ,所以∠ADE =∠CDE .又因为∠ADE =∠B ,∠BDC =3∠B ,所以∠BDC =3∠ADE =3∠CDE .又因为∠BDC +∠ADC =180°,3∠ADE +2∠ADE =180°,解得∠ADE =36°,所以∠ADF =72°.又因为AD ∥EF ,所以∠EFC =∠ADC =72°.24.(9分)如图,已知EF ⊥AC ,垂足为点F ,DM ⊥AC ,垂足为点M ,DM 的延长线交AB 于点B ,且∠1=∠C ,点N 在AD 上,且∠2=∠3,试说明AB ∥MN .证明:因为EF ⊥AC ,DM ⊥AC ,所以∠CFE =∠CMD =90°,所以EF ∥DM ,所以∠3=∠CDM .因为∠3=∠2(已知),所以∠2=∠CDM ,所以MN ∥CD ,所以∠AMN =∠C .又因为∠1=∠C ,所以∠1=∠AMN ,所以AB ∥MN .25.(12分)如图1,点E 在直线AB 上,点F 在直线CD 上,EG ⊥FG . (1)若∠BEG +∠DFG =90°,请判断AB 与CD 的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG ⊥FG 保持不变,EG 上有一点M ,使∠MFG =2∠DFG ,则∠BEG 与∠MFG 存在怎样的数量关系?并说明理由;(3)如图2,若移动点M ,使∠MFG =n ∠DFG ,请直接写出∠BEG 与∠MFG 的数量关系.解:(1)AB ∥CD .理由如下:如题图1,延长EG 交CD 于点H .所以∠HGF =∠EGF =90°,所以∠GHF +∠GFH =90°.因为∠BEG +∠DFG =90°,所以∠BEG =∠GHF ,所以AB ∥CD .(2)∠BEG +12∠MFG =90°.理由如下:如题图2,延长EG 交CD 于点H .因为AB ∥CD ,所以∠BEG =∠GHF .因为EG ⊥FG ,所以∠GHF +∠GFH =90°.因为∠MFG =2∠DFG ,所以∠BEG +12∠MFG =90°.(3)∠BEG +1n ∠MFG =90°.理由如下:因为AB ∥CD ,所以∠BEG =∠GHF .因为EG ⊥FG ,所以∠GHF +∠GFH =90°.因为∠MFG =n ∠DFG ,所以∠BEG +1n ∠MFG =90°.一、选择题(每小题3分,共30分)1.下列各数:1.414,π,-13,0,其中是无理数的为( B )A .1.414B .πC .-13D .02.如图,下列各数中,数轴上点A 表示的数可能是( C )A .4的算术平方根B .4的平方根C .8的算术平方根D .10的算术平方根3.估计5-12介于( C ) A .0.4与0.5之间 B .0.5与0.6之间 C .0.6与0.7之间D .0.7与0.8之间 4.(-8)2的立方根是( C ) A .-2 B .±2 C .4D .±45.下列计算不正确的是( A ) A .4=±2 B .(-9)2=9 C .30.064=0.4D .3-216=-66.下列各组数互为相反数的是( D ) A .22和(-2)2 B .-38和3-8 C .(2)2和(-2)2D .38与3-87.下列说法正确的是( C )A .一个数的平方根有两个,它们互为相反数B .一个数的立方根,不是正数就是负数C .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1中的一个D .如果一个数的平方根是这个数本身,那么这个数是1或者08.若a =2,b =1-|-5|,c =3(-3)3,则a 、b 、c 的大小关系是( D ) A .a <b <c B .b <a <c C .b <c <aD .c <b <a9.实数a 、b 、c 在数轴上对应点的位置如图所示,以下结论正确的是( C )A .ac <0B .|a +b |=a -bC .|c -a |=a -cD .|a |>|b |10.有一个数值转换器,原理如下:当输入的数值为256时,输出的y 等于( D ) A .16 B .4 C .2D .2二、填空题(每小题3分,共18分) 11.-5⎪⎪-2= -2 .12.若一个正数的两个平方根分别是2a +1和a -4,则a 的值是__1__. 13.已知m 、n 为两个连续的整数,且m <18<n ,则m +n =__3__. 14.若实数m 、n 满足(m -1)2+n +2=0,则(m +n )5=__-1__.15.下列实数:12,-π3,|-1|,327,0.101 001 000 1…,(2)2,其中有m 个有理数,n个无理数,则nm =__2__.16.定义:形如a +b i 的数称为复数(其中a 和b 为实数,i 为虚数单位,规定i 2=-1),a 称为复数的实部,b 称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如:(1+3i)2=12+2×1×3i +(3i)2=1+6i +9i 2=1+6i -9=-8+6i ,因此,(1+3i)2的实部是-8,虚部是6.已知复数(3-m i)2的虚部是12,则实部是__5__.三、解答题(共72分)17.(8分)将下列各数填入相应的集合内:1 415 926,-2.1,⎪⎪⎪⎪-312,0,π3,-2.626 626 662…,-1113,0.060 606…,-[-(-9)]. 正数集合:{1 415 926,⎪⎪⎪⎪-312,π3,0.060 606…,…}; 负数集合:{-2.1,-2.626 626 662…,-1113,-[-(-9)],…};有理数集合:{1 415 926,-2.1,⎪⎪⎪⎪-312,0,-1113,0.060 606…,-[-(-9)],…}; 无理数集合:{π3,-2.626 626 662…,…}.18.(8分)解方程. (1)9x 2-16=0;解:整理,得9x 2=16,所以x 2=169,所以x =±169=±43. (2)-(x +1)3-125=0.解:整理,得(x +1)3=-125,所以x +1=3-125,所以x +1=-5,所以x =-6.19.(8分)计算. (1)9-|-3|+(-3)2-318+(-1)2020; 解:原式=3-3+3-12+1=312.(2)-12-(-2)3×18-327×⎪⎪⎪⎪-13+2÷(2)2. 解:原式=-1-(-8)×18-3×13+2÷2=0.20.(8分)已知5a +2的立方根是3,3a +b -1的平方根是±4,c 是57的整数部分,求a +2b +c 的算术平方根.解:因为5a +2的立方根是3,3a +b -1的平方根是±4,所以5a +2=27,3a +b -1=16,解得a =5,b =2.因为49<57<64,所以7<57<8,所以c =7.因为a +2b +c =5+2×2+7=16,16的算术平方根是4,所以a +2b +c 的算术平方根是4.21.(9分)已知a 、b 、c 为实数,且它们在数轴上的对应点的位置如图所示,化简:2(b -a )2+|b +c |-(a -c )2-2|a |.解:由数轴,知a <b <0<c ,且|b |<|c |,所以b -a >0,b +c >0,a -c <0,所以原式=2|b -a |+b +c -|a -c |+2a =2(b -a )+b +c -(c -a )+2a =2b -2a +b +c -c +a +2a =3b +a .22.(9分)已知一个正方体铁块的体积是1000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488 cm 3.(1)截去的每个小正方体的棱长是多少?(2)若把余下的铁块重新锻造成一个新的正方体铁块,那么这个新的正方体的棱长是多少?(用根号表示)解:(1)设截去的每个小正方体的棱长是x cm.由题意,得8x 3=1000-488,解得x =4,故小正方体的棱长是4 cm.(2)由于重新锻造的体积不变,所以新正方体的棱长是3488 cm.23.(10分)如图,数轴上有A 、B 、C 三点,且AB =3BC ,若B 为原点,点A 表示的数为6.(1)求点C 表示的数;(2)若数轴上有一动点P ,以每秒1个单位的速度从点C 向点A 匀速运动,设运动时间为t 秒,请用含t 的代数式表示PB 的长;(3)在(2)的条件下,点P 运动的同时有一动点Q 从点A 以每秒2个单位的速度向点C 匀速运动,当P 、Q 两点相距2个单位长度时,求t 的值.解:(1)因为AB =3BC ,若B 为原点,A 点表示的数为6,所以C 点表示的数为-2. (2)设运动时间为t 秒.若t =2时,点P 与点B 重合,此时PB =0;若0<t <2时,PB 的长为2-t ;若t >2时,PB 的长为t -2.(3)AC =AB +BC =6+2=8.因为动点P 从点C 向点A 匀速运动,动点Q 从点A 向点C 匀速运动,所以(8+2)÷(2+1)=103(秒)或(8-2)÷(2+1)=2(秒),所以t 的值为103或2.24.(12分)小明同学在学习了本章的内容后设计了如下问题:定义:把形如a +b m 和a -b m (a 、b 为有理数,且b ≠0,m 为正整数且开方开不尽)的两个实数称为共轭实数.(1)请你写出一对共轭实数;(2)32与23是共轭实数吗?-23与23是共轭实数吗? (3)共轭实数a +b m ,a -b m 是有理数还是无理数? (4)你发现共轭实数a +b m 与a -b m 的和、差有什么规律? 解:(1)答案不唯一,如3+22与3-2 2.(2)因为32与23的被开方数不相同,所以32与23不是共轭实数;而-23与23的被开方数都是3,且a 、b 、m 的值对应相等,所以-23与23是共轭实数.(3)因为共轭实数中m 为正整数且开方开不尽,所以m 是无理数,而b 是有理数,所以b m 是无理数.因为有理数a 加上或减去无理数b m ,其结果仍是一个无理数,所以a +b m ,a -b m 都是无理数.(4)由于a +b m +(a -b m )=2a ,a +b m -(a -b m )=2b m ,所以它们的和是一个有理数,等于2a ;它们的差仍是一个无理数,等于2b m .一、选择题(每小题3分,共30分)1.能确定某学生在教室中的具体位置的是( D ) A .第3排 B .第2排以后 C .第2列D .第3排第2列2.如图,小颖从家到达学校要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( D )A .(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)D.(0,4)→(3,4)→(4,2)→(4,0)3.已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是(A)4.小明住在学校正东200米处,从小明家出发向北走150米就到了李华家,若选取李华家为原点,分别以正东、正北方向为x轴,y轴正方向建立平面直角坐标系,则学校的坐标为(B)A.(-150,-200)B.(-200,-150)C.(0,-50)D.(150,200)5.已知直角坐标系中,点P(x,y)满足|x-2|+(y+3)2=0,则点P的坐标为(C)A.(2,3)B.(-2,3)C.(2,-3)D.(2,-3)或(-2,-3)6.若|a-b|·|a+b|=0,则点P(a,b)在(C)A.第一、三象限内B.第一、三象限角平分线上C.第一、三象限角平分线或第二、四象限角平分线上D.第二、四象限角平分线上7.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1 km(小圆半径是1 km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A、B的位置,正确的是(C)A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)A.O1B.O2C.O3D.O49.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是(C)A.2B.1C.4D.310.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,3)=(-1,3);②g(a,b)=(b,a),如g(1,3)=(3,1);③h(a,b)=(-a,-b),如h(1,3)=(-1,-3).按照以上变换有f(g(h(2,-3)))=f(g(-2,3))=f(3,-2)=(-3,-2),那么f(g(h(-3,5)))等于(B)A.(-5,-3)B.(5,3)C.(5,-3)D.(-5,3)二、填空题(每小题3分,共18分)11.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下角的坐标是(0,0),右下角的坐标是(32,0),左上角的坐标是(0,28),则右上角的坐标是__(32,28)__.12.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,2),(1,3),(1,4),(5,1),则这个英文单词为LOVE.13.如图,已知∠AOC=30°,∠BOC=150°,OD为∠BOA的平分线,则∠DOC=90°.若点A可表示为(30°,1),点B可表示为(150°,4),则点D可表示为__(90°,5)__.14.如图,半径为1的圆,在x轴上从原点O开始向右滚动一周后,落定点M的坐标为__(2π,0)__.15.在平面直角坐标系内,将点P(m+2,n-4)先向左平移1个单位长度,再向上平移3个单位长度得到点P′(2018,-2019),则m=__2017__,n=__-2018__.16.如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示;第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2019的坐标是__(1010,1)__.三、解答题(共72分)17.(8分)如图,长方形ABCD在坐标平面内,点A的坐标是(2,1),且边AB、CD与x轴平行,边AD、BC与y轴平行,AB=4,AD=2.(1)求B、C、D三点的坐标;(2)怎样平移,才能使点A与原点O重合?解:(1)因为A(2,1),AB=4,AD=2,所以BC到y轴的距离为4+2,CD到x轴的距离2+1=3,所以点B的坐标为(4+2,1),点C的坐标为(4+2,3),点D的坐标为(2,3).(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度),能使点A与原点O重合.18.(8分)一长方形住宅小区长400 m,宽300 m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50 m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5)、B(-2,2)、C(0,3.5)、D(-3,2)、E(-4,4).在平面直角坐标系中标出这些违章建筑的位置,并说明哪些在小区内,哪些不在小区内.解:如题图:在小区内的违章建筑有B 、D ,不在小区内的违章建筑有A 、E 、C .19.(8分)如图是小明家和学校所在地的简单地图,已知OA =2 km ,OB =3.5 km ,OP =4 km ,C 为OP 的中点.解答下列问题:(1)图中哪些地方距小明家的距离相同?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.解:(1)因为C 为OP 的中点,所以OC =12OP =12×4=2(km).因为OA =2 km ,所以图中学校和公园距小明家的距离相同.(2)学校在小明家北偏东45°的方向上,且到小明家的距离为2 km ;商场在小明家北偏西30°的方向上,且到小明家的距离为3.5 km ;停车场在小明家南偏东60°的方向上,且到小明家的距离为4 km.20.(8分)如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D 、点B 与点E 、点C 与点F 分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D 、点B 与点E 、点C 与点F 的坐标,并说出△DEF 是由△ABC 经过怎样的变换得到的;(2)若点Q (a +3,4-b )是点P (2a,2b -3)通过上述变换得到的,求a -b 的值.解:(1)A (2,4)、D (-1,1)、B (1,2)、E (-2,-1)、C (4,1)、F (1,-2).△DEF 是由△ABC 先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(2)由题意,得2a -3=a +3,2b -3-3=4-b ,解得a =6,b =103,所以a -b =83.21.(9分)已知点P (a -2,2a +8),分别根据下列条件求出点P 的坐标. (1)点P 在x 轴上; (2)点P 在y 轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.解:(1)因为点P(a-2,2a+8)在x轴上,所以2a+8=0,解得a=-4,故a-2=-4-2=-6,则P(-6,0).(2)因为点P(a-2,2a+8)在y轴上,所以a-2=0,解得a=2,故2a+8=2×2+8=12,则P(0,12).(3)因为点Q的坐标为(1,5),直线PQ∥y轴,所以a-2=1,解得a=3,故2a+8=14,则P(1,14).(4)因为点P到x轴、y轴的距离相等,所以a-2=2a+8或a-2+2a+8=0,解得a=-10或a=-2.当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述,点P的坐标为(-12,-12)或(-4,4).22.(9分)在如图所示的平面直角坐标系中描出下面各点:A(0,3)、B(1,-3)、C(3,-5)、D(-3,-5)、E(3,5)、F(5,7)、G(5,0).(1)将点C向x轴的负方向平移6个单位,它与点____重合;(2)连接接CE,则直线CE与y轴是什么关系?(3)顺次连接接D、E、G、C、D得到四边形DEGC,求四边形DEGC的面积.解:描点如题图.(1)D(2)如题图,连接CE.因为C、E两点的横坐标相同,故直线CE平行于y轴.(3)设CE与x轴相交于点H,则DC=6,EC=10,GH=2,所以S四边形DEGC=S△EDC+S△GEC =12DC×EC+12EC×GH=12×6×10+12×10×2=40.23.(10分)在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P向上或向右运动,运动时间(s)与整点(个)的关系如下表:根据上表中的规律,解答下列问题:(1)当整点P 从点O 出发4 s 时,求可以得到的整点P 的个数;(2)当整点P 从点O 出发8 s 时,在直角坐标系中描出可以得到的所有整点; (3)当整点P 从点O 出发多少秒时,可以达到整点(16,4)的位置?解:(1)根据表中所示的规律,点的个数比时间数多1,可计算出整点P 从点O 出发4 s 时,可以得到整点P 的个数为5.(2)由表中所示规律,可知横、纵坐标的和等于时间,则所有整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).如题图.(3)由表中规律,可知整点的横、纵坐标的和等于到达该点的时间,则当点P 从点O 出发16+4=20(s)时,可以达到整点(16,4)的位置.24.(12分)如图,在平面直角坐标系中,AB ∥CD ∥x 轴,BC ∥DE ∥y 轴,且AB =CD =4 cm ,OA =5 cm ,DE =2 cm ,动点P 从点A 出发,沿A →B →C 路线运动到点C 停止;动点Q 从点O 出发,沿O →E →D 路线运动到点D 停止.若P 、Q 两点同时出发,且点P 的运动速度为1 cm/s ,点Q 的运动速度为2 cm/s.(1)直接写出B 、C 、D 三个点的坐标;(2)当P 、Q 两点出发112s 时,试求△PQC 的面积;(3)设两点运动的时间为t s ,用含t 的式子表示运动过程中△OPQ 的面积S .(单位:cm 2)解:(1)B (4,5)、C (4,2)、D (8,2).(2)当t =112时,点P 运动的路程为112 cm ,点Q 运动到点D 处停止.由已知条件可得BC=OA -DE =5-2=3(cm).因为AB +BC =7 cm >112 cm ,AB =4 cm <112 cm ,所以当t =112时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32(cm),所以S △CPQ =12CP ·CD =12×32×4=3(cm 2).(3)当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图1所示.因为OA =5 cm ,OQ =2t cm ,所以S △OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);当4≤t ≤5时,点P 在BC 上,点Q 在ED上,如图2所示.过点P 作PM ∥x 轴交ED 延长线于点M ,则OE =8 cm ,EM =(9-t )cm ,PM =4 cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,所以S △OPQ =S 梯形OPME -S △PMQ -S △OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);当5<t ≤7时,点P 在BC 上,点Q 停在点D ,如图3所示,过点P 作PM ∥x 轴交ED 的延长线于点M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,所以S △OPQ =S梯形OPME -S △PDM -S △DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎪⎨⎪⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).图1 图2 图3一、选择题(每小题3分,共30分)1.下列方程:①3x +13=8;②x -23+2y =4;③3x +3y =1;④x 2=5y +1;⑤y =x ;⑥2(x-y )-3⎝⎛⎭⎫x +y2=x +y .其中是二元一次方程的有( B ) A .2个 B .3个 C .4个D .5个2.已知方程mx +(m +1)y =4m -1是关于x 、y 的二元一次方程,则m 的取值范围是( D ) A .m ≠0 B .m ≠-1 C .m ≠0且m ≠1D .m ≠0且m ≠-13.下列说法正确的是( D )A .x =-2,y =-1是方程2x +3y =1的解B .方程2x +y =1可能无解C .x 、y 取任意数所组成的数组都是方程2x -3y =1的解D .a 取任何数时,⎩⎪⎨⎪⎧x =a ,y =-2a +5都是方程2x +y =5的解4.解方程组⎩⎪⎨⎪⎧2x +3y =1,①3x -6y =7,②用加减消元法消去y ,变形正确的是( C )A .①×2-②B .①×3-②×2C .①×2+②D .①×3+②×25.若单项式2x 2y a +b与-13x a -b y 4是同类项,则a 、b 的值分别为( A )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-16.若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( B )A .-34B .34C .43D .-437.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( D )A .⎩⎪⎨⎪⎧x +y =783x +2y =30B .⎩⎪⎨⎪⎧x +y =782x +3y =30C .⎩⎪⎨⎪⎧x +y =302x +3y =78D .⎩⎪⎨⎪⎧x +y =303x +2y =788.某次足球联赛的前12轮(场)比赛后,前三名比赛成绩如下表:则每队胜一场,平一场,负一场各得分数是( B ) A .3,2,1 B .3,1,0 C .2,1,0D .4,3,29.若方程组⎩⎪⎨⎪⎧ 2a -3b =13,3a +5b =30.9的解是⎩⎪⎨⎪⎧ a =8.3,b =1.2,则方程组⎩⎪⎨⎪⎧2(x +2)-3(y -1)=13,3(x +2)+5(y -1)=30.9的解是( C )A .⎩⎪⎨⎪⎧x =8.3y =1.2B .⎩⎪⎨⎪⎧x =10.3y =1.2C .⎩⎪⎨⎪⎧x =6.3y =2.2D .⎩⎪⎨⎪⎧x =10.3y =0.210.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m 长的彩绳截成2 m 或1 m 长的彩绳,在不造成浪费的前提下,不同的截法有( C )A .1种B .2种C .3种D .4种二、填空题(每小题3分,共18分)11.已知x =-6+t, y =6-t ,用含x 的式子表示y 为__y =-x __.12.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?译文:假设有5头牛、2只羊,价值10两金子;2头牛、5只羊,价值8两金子.问:每头牛、每只羊各值多少两金子?设每头牛价值x 两金子,每只羊价值y 两金子,可列方程组为 ⎩⎪⎨⎪⎧5x +2y =10,2x +5y =8 .13.已知二元一次方程2x -3y -5=0的一组解为⎩⎪⎨⎪⎧x =a ,y =b ,则6b -4a +3=__-7__.14.对于X 、Y 定义一种新运算“¤”:X ¤Y =aX +bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知5¤2=27,3¤4=19,那么7¤3=__38__.15.如图,已知前两架天平两端保持平衡.要使第三架天平两端保持平衡,则应在天平的右托盘上放__3__个圆形物品.16.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2020根火柴棍,并且正三角形的个数比正六边形的个数多8个,那么能连续搭建正三角形的个数是__294__.三、解答题(共72分) 17.(6分)解方程组.(1)⎩⎪⎨⎪⎧x +2y =3, ①3x -4y =4; ② (2)⎩⎪⎨⎪⎧x ∶y =1∶2, ①x ∶z =2∶3, ②x +y +z =18. ③解:(1)①×2,得2x +4y =6.③ ③+②,得5x =10.解得x =2.将x =2代入①,得2+2y =3,解得y =12,所以方程组的解是⎩⎪⎨⎪⎧x =2,y =12.(2)由①,得2x -y =0.④ 由②,得3x -2z =0.⑤ ④+③,得3x +z =18.⑥ ⑥×2+⑤,得9x =36,解得x =4.把x =4代入④,得y =8.把x =4代入⑤,得z =6,所以方程组的解为⎩⎪⎨⎪⎧x =4,y =8,z =6.18.(7分)已知方程组⎩⎪⎨⎪⎧ax -by =5,ay -13bx =6的解是⎩⎪⎨⎪⎧x =3,y =2,求代数式(a -b )2-2(a -b )的值. 解:把⎩⎪⎨⎪⎧ x =3,y =2代入方程组,得⎩⎪⎨⎪⎧ 3a -2b =5,2a -b =6,解得⎩⎪⎨⎪⎧a =7,b =8.所以(a -b )2-2(a -b )=(7-8)2-2×(7-8)=3.19.(7分)已知关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧3x -4y =m ,x +2y =2m +3的解都大于1,试求m 的取值范围.解:⎩⎪⎨⎪⎧3x -4y =m , ①x +2y =2m +3. ② ①+②×2,得5x =5m +6.解得x =m +1.2.把x =m +1.2代入②,得y =12m +0.9.因为关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧3x -4y =m ,x +2y =2m +3的解都大于1,所以⎩⎪⎨⎪⎧m +1.2>1,12m +0.9>1,解得m >0.2.即m 的取值范围是m >0.2. 20.(9分)阅读下列材料,解答后面的问题.下面是求二元一次方程2x +3y =12的正整数解的过程: ∵2x +3y =12,∴y =12-2x 3=4-23x .∵x 、y 为正整数,∴⎩⎪⎨⎪⎧x >0,12-2x >0,∴0<x <6.∵y =4-23x 为正整数,∴23x 为正整数,∴x 为3的倍数.∵0<x <6,∴x =3,∴y =4-23×3=2,∴2x +3y =12的正整数解为⎩⎪⎨⎪⎧x =3,y =2.问题:七年级某班为了奖励学习进步的学生,花费35元购买了笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?解:设购买了笔记本x 本,钢笔y 支.根据题意,得3x +5y =35,则y =35-3x 5=7-35x .因为x 、y 为正整数,所以⎩⎪⎨⎪⎧x >0,7-35x >0,所以0<x <353.因为y =7-35x 为正整数,所以35x 为正整数,所以x 为5的倍数.又因为0<x <353,所以x =5或10,所以y =4或1.故有两种购买方案:(方案一)购买笔记本5本,钢笔4支;(方案二)购买笔记本10本,钢笔1支.21.(10分)有两个比40大的两位数,它们的差是20,大数的4倍与小数的和能被29整除,求原来的这两个两位数.解:设原来的这两个两位数分别为x 、y .根据题意,得⎩⎪⎨⎪⎧x -y =20,4x +y =29n ,解得⎩⎨⎧x =4+295n ,y =295n -16.因为n 、x 、y 均为正整数且x 、y 都比40大,比100小,因为n 是5的倍数,所以⎩⎪⎨⎪⎧x 1=33,y 1=13;(舍去)⎩⎪⎨⎪⎧x 2=62,y 2=42;⎩⎪⎨⎪⎧x 3=91,y 3=71;⎩⎪⎨⎪⎧x 4d =120,y 4=100.(舍去)即原来的这两个两位数为62、42或91、71.22.(10分)用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,应怎样安排,才能使盒身和盒底配套?解:设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒.由题意,得⎩⎪⎨⎪⎧x +y =36,2×25x =40y . 解得⎩⎪⎨⎪⎧x =16,y =20. 即用16张制盒身,20张制盒底才能使盒身和盒底配套. 23.(11分)下表是某校七年级小朋友小敏这学期第一周和第二周做家务事的时间统计表,已知小敏每次在做家务事中洗碗的时间相同,扫地的时间也相同.(1)小敏每次洗碗的时间和扫地的时间各是多少?(2)为鼓励小敏做家务,小敏的家长准备洗碗一次付12元,扫地一次付8元,总费用不超过100元.请问小敏如何安排洗碗与扫地的次数,既能够让花费的总时间最少,又能够全部拿到100元?解:(1)设小敏每次洗碗的时间为x 分钟,每次扫地的时间为y 分钟.根据题意,得⎩⎪⎨⎪⎧ 2x +3y =44,x +4y =42,解得⎩⎪⎨⎪⎧x =10,y =8.即小敏每次洗碗的时间为10分钟,每次扫地的时间为8分钟. (2)设小敏安排a 次洗碗,b 次扫地.根据题意,得12a +8b =100.化简,得3a +2b =25.因为a 、b 为非负整数,所以⎩⎪⎨⎪⎧a 1=1,b 1=11;⎩⎪⎨⎪⎧a 2=3,b 2=8;⎩⎪⎨⎪⎧a 3=5,b 3=5;⎩⎪⎨⎪⎧a 4=7,b 4=2,所以对应的时间分别为10+8×11=98(分钟);10×3+8×8=94(分钟);10×5+8×5=90(分钟);10×7+8×2=86(分钟),所以小敏应该安排7次洗碗,2次扫地.24.(12分)一方有难,八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载量和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车来运送,需运费8200元,问分别需甲、乙两种车几辆? (2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车的辆数吗?(3)在(2)的条件下哪种方案的运费最省?最省运费是多少元?解:(1)设需甲型车x 辆,需乙型车y 辆.根据题意,得⎩⎪⎨⎪⎧ 5x +8y =120,400x +500y =8200,解得⎩⎪⎨⎪⎧x =8,y =10.故分别需甲、乙两种车8辆和10辆.(2)设甲车有a 辆,乙车有b 辆,则丙车有(16-a -b )辆.由题意,得5a +8b +10(16-a -b )=120,化简得5a +2b =40,即a =8-25b .因为a 、b 、16-a -b 均为正整数,所以b 只能取5或10.当b =5时,a =6,16-a -b =5;当b =10时,a =4,16-a -b =2.因此有两种运送方案:①调用甲种车6辆,乙种车5辆,丙种车5辆;②调用甲种车4辆,乙种车10辆,丙种车2辆.(3)由(2)中的结论可得,两种方案的运费分别是:①400×6+500×5+600×5=7900(元);②400×4+500×10+600×2=7800(元).因为7800<7900,所以方案②运费最省,即调用甲种车4辆,乙种车10辆,丙种车2辆可使运费最省,最省运费为7800元.一、选择题(每小题3分,共30分)1.下列式子中是一元一次不等式的有( B )①50x <x +3;②x -3≠0;③y +x >9;④6x <7. A .1个 B .2个 C .3个D .4个2.若x >y ,则下列不等式中不一定成立的是( D ) A .x +1>y +1 B .2x >2y C .x 2>y 2D .x 2>y 23.不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1 ②中,不等式①和②的解集在数轴上表示正确的是( B )4.某品牌电脑的成本价为2400元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,则下列不等式中能正确表示该商店的促销方式的是( D )A .2800x ≥2400×5%B .2800x -2400≥2400×5%C .2800×x10≥2400×5%D .2800×x10-2400≥2400×5%5.已知实数a >2,且a 是关于x 的不等式x +b ≥3的一个解,则b 不可能是( A ) A .0 B .1 C .2D .36.不等式组⎩⎪⎨⎪⎧x +5<5x +1,x -m >1的解集是x >1,则m 的取值范围是( D )A .m ≥1B .m ≤1C .m ≥0D .m ≤07.不等式x +12>2x +23-1的正整数解的个数是( D )A .1B .2C .3D .48.对于任意实数m 、n ,定义一种新运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:2※6=2×6-2-6+3=7.请根据上述定义解决问题:若a <4※x <8,且解集中有2个整数解,则a 的取值范围是( B )A .-1<a ≤2B .-1≤a <2C .-4≤a <-1D .-4<a ≤-19.某城区现行出租车的收费标准如下:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是( B )A .5千米B .7千米C .8千米D .9千米10.已知关于x 、y 的方程组⎩⎪⎨⎪⎧x +3y =4-a ,x -y =3a ,其中-3≤a ≤1,给出下列结论:①⎩⎪⎨⎪⎧x =5,y =-1是方程组的解; ②当a =-2时,x 、y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4-a 的解; ④若x ≤1,则1≤y ≤4. 其中正确的是( C ) A .①② B .②③ C .②③④D .①③④二、填空题(每小题3分,共18分)11.如果2x -5<2y -5,那么-x __>__-y .(填“>”“<”或“=”)12.已知不等式3x +a ≤0的正整数解为1,2,3,则a 的取值范围是__-12<a ≤-9__.13.已知点P (x ,y )在第一象限,它的坐标满足方程组⎩⎪⎨⎪⎧2x +3y =3m +7,x -y =4m +1,则m 的取值范围为 -23<m <1 .14.运行程序如图所示,从“输入实数x ”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x 的取值范围是143<x ≤8 .15.植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.某中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵.这批树苗共有__121__棵.16.已知四个有理数a 、b 、x 、y 同时满足以下关系式:b >a ,x +y =a +b ,y -x <a -b .将这四个有理数按从小到大的顺序用“<”号连接起来是__y <a <b <x __.三、解答题(共72分)。

2021-2021人教版七年级数学下册各单元测试题及答案

2021-2021人教版七年级数学下册各单元测试题及答案

2021-2021人教版七年级数学下册各单元测试题及答案人教版七年级数学下册各单元测试题及答案第五章《相交线与平行线》测试卷一、选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是()A12B1112C2D22、如图AB∥CD可以得到()A、∠1=∠2B、∠2=∠3C、∠1=∠4D、∠3=∠4 A2c1 12D1234bB34365(第2题)C(第三题)78a(第4题)3、直线AB、CD、EF相交于O,则∠1+∠2+∠3=() A、90° B、120° C、180° D、140° 4、如图所示,直线a 、b被直线c所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠ 3=∠8,其中能判断是a∥b的条件的序号是()A、①②B、①③C、①④D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°B、第一次右拐50°,第二次左拐130° DCC、第一次右拐50°,第二次右拐130°D、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的()A(第7题)BABCD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A、3:4B、5:8C、9:16D、1:2 8、下列现象属于平移的是()① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤汽车在一条笔直的马路上行走 A、③ B、②③ C、①②④ D、①②⑤ AB9、下列说法正确的是() EA、有且只有一条直线与已知直线平行 C(第10题)DB、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章平面直角坐标系基础训练题
一、填空题
1、原点O 的坐标是 ,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M(a ,0)在 轴上。

2、点A(﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。

点A 关于x 轴对称的点的坐标为
3、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。

4、已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,则___________==b a 。

5、点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 。

6、线段CD 是由线段AB 平移得到的。

点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D 的坐标为______________。

7、在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。

8、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________ 。

9、已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 。

10、A(– 3,– 2)、B(2,– 2)、C(– 2,1)、D(3,1)是坐标平面内的四个点,则线段AB 与CD 的关系是_________________。

11、在平面直角坐标系内,有一条直线PQ 平行于y 轴,已知直线PQ 上有两个点,坐标分别为(-a ,-2)和(3,6),则=a 。

12 、点A 在x 轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为 ;
13、在Y 轴上且到点A(0,-3)的线段长度是4的点B 的坐标为___________________。

14、在坐标系内,点P(2,-2)和点Q(2,4)之间的距离等于 个单位长度。

线段PQ 的中点的坐标是________________。

15、已知P 点坐标为(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是_________________________________________________。

16、已知点A(-3+a ,2a+9)在第二象限的角平分线上,则a 的值是____________。

17、已知点P(x ,-y)在第一、三象限的角平分线上,由x 与y 的关系是_____________。

18、若点B(a ,b)在第三象限,则点C(-a+1,3b -5) 在第____________象限。

19、如果点M(x+3,2x -4)在第四象限内,那么x 的取值范围是______________。

2021知点P 在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P 。

点K 在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 。

21、已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是________________。

22、已知0=mn ,则点(m ,n )在 。

二、选择题
1、在平面直角坐标系中,点()1,12+-m 一定在( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
2、如果点A(a.b)在第三象限,则点B(-a+1,3b -5)关于原点的对称点是( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限
3、点P(a ,b)在第二象限,则点Q(a-1,b+1)在( )
(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限 4、若4,5==b a ,且点M(a ,b)在第二象限,则点M 的坐标是( ) A 、(5,4) B 、(-5,4) C 、(-5,-4) D 、(5,-4)
6、△DEF(三角形)是由△ABC 平移得到的,点A(-1,-4)的对应点为D(1,-1),则点B(1,1)的对应点E 、点C(-1,4)的对应点F 的坐标分别为( ) A 、(2,2),(3,4) B 、(3,4),(1,7) C 、(-2,2),(1,7)D 、(3,4),(2,-2)
7、过A(4,-2)和B(-2,-2)两点的直线一定( ) A .垂直于x 轴 B .与Y 轴相交但不平于x 轴 B . 平行于x 轴 D .与x 轴、y 轴平行
8、已知点A ()b a 2,3在x 轴上方,y 轴的左边,则点 A 到x 轴、y 轴的距离分别为( )
A 、b a 2,3-
B 、b a 2,3-
C 、a b 3,2-
D 、a b 3,2- 9、如图3所示的象棋盘上,若○帅位于点(1,-2)上,

相位于点(3,-2)上,则○炮位于点( ) A(-1,1) B(-1,2) C(-2,1) D(-2,2)
10、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为( )
A .(2,2)
B .(3,2)
C .(3,3)
D .(2,3)
11、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )
A .(3,0)
B .(3,0)或(–3,0)
C .(0,3)
D .(0,3)或(0,–3) 12、在直角坐标系内顺次连结下列各点,不能得到正方形的是( ) A 、(-2,2) (2,2) (2,-2) (-2,-2) (-2,2); B 、(0,0) (2,0) (2,2) (0,2) (0,0); C 、(0,0) (0,2) (2,-2) (-2,0) (0,0); D 、(-1,-1) (-1,1) (1,1) (1,-1) (-1,-1)。

13、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )
A 、(-2,2),(3,4),(1,7);
B 、(-2,2),(4,3),(1,7);
C 、(2,2),(3,4),(1,7);
D 、(2,-2),(3,3),(1,7)
14、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )
A.向右平移了3个单位
B.向左平移了3个单位
C.向上平移了3个单位
D.向下平移了3个单位 14、若点P(m -1, m )在第二象限,则下列关系正确的是( )
图3



A 10<<m
B 0<m
C 0>m
D 1>m
三、解答题
1、在图所示的平面直角坐标系中表示下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0)
(1)A 点到原点O 的距离是 。

(2)将点C 向x 轴的负方向平移6个单位,它与点 重合。

(3)连接CE ,则直线CE 与y 轴是什么关系? (4)点F 分别到x 、y 轴的距离是多少?
2、如图所示的直角坐标系中,三角形ABC 的顶点坐标分别是A(0,0),B(6,0),C(5,5)。

(1)求三角形ABC 的面积;
(2)如果将三角形ABC 向上平移1个单位长度,得三角形A 1B 1C 1,再向右平移2个单位长度,得到三角形A 2B 2C 2。

试求出A 2、B 2、C 2的坐标; (3)三角形A 2B 2C 2与三角形ABC 的大小、形状有什么关系。

3、如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1
变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3。

(1)观察每次变换前后的三角形的变化规律,若将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是____,B 4的坐标是____。

(2)若按第(1)题找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标是_____,B n 的坐标是_____。

4、在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来: (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(-9,3),(-9,0),(-3,0),(-3,3);
(3)(3.5,9),(2,7),(3,7),(4,7),(5,7), (3.5,9); (4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

观察所得的图形,您觉得它象什么?
A
C
X
Y
B x 8
171615141312111019876543210543
2
1B A A 2A 3B 1B 2B 3。

相关文档
最新文档