2018年人教版八年级下册数学第十九章《一次函数》单元考试题含答案
人教版八年级数学下册第十九章《一次函数》单元测试附答案卷
第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。
人教版八年级下册数学第十九章 一次函数 单元测试卷(含答案解析)
人教版八年级下册数学第十九章 一次函数 单元测试卷一、 选择题 (本题共计 10 小题 ,共计29分 )1. (2分) 在函数y =√x−11−x 中,自变量x 的取值范围是( ) A.x ≥1 B.x >1 C.x <1 D.x ≤12. (3分) 在直角坐标系中,点M ,N 在同一个正比例函数图像上的是( )A.M(2, −3),N(−4, 6)B.M(−2, 3),N(4, 6)C.M(−2, −3),N(4, −6)D.M(2, 3),N(−4, 6)3. (3分) 若函数y =(2m +1)x 2+(1−2m)x (m 为常数)是正比例函数,则m 的值为( )A.m >12B.m =12C.m <12D.m =−12 4. (3分) 已知函数y ={−x +6(x ≤2),2x(x >2),则当函数值y =8时,自变量x 的值是( ) A.−2或4 B.4 C.−2 D.±2或±45. (3分) 已知方程kx +b =0的解是x =3,则函数y =kx +b 的图象可能是( )A. B. C. D.6. (3分) 某地某一时刻的地面温度为10∘C ,高度每增加1km ,温度下降4∘C ,则下列说法中:①10∘C 是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(∘C)与高度x(km)的关系式为y =10−4x ;正确的是( )A.①②③B.②③④C.①③④D.①②③④7. (3分) 如图,直线y 1=mx 经过P(2, 1)和Q(−4, −2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx 的解集为( )A.x >2B.x <2C.x >−4D.x <−48. (3分) 根据如图所示程序计算函数值,若输入的x 的值为12,则输出的函数值为( )A.−12B.14C.1D.2549. (3分)甲、乙两车在同一直线上从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早出发2ℎ,并且甲车途中休息了0.5ℎ,如图是甲、乙两车离开A地的距离y(km)与甲车行驶时间x(ℎ)的函数图像.根据图中提供的信息,有下列说法:(1)m的值为1;(2)a的值为40;(3)乙车比甲车早1.75ℎ到达B地.其中正确的有( )A.3个B.2个C.1个D.0个10. (3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是( )A.第24天的销售量为300件B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元D.第15天与第30天的日销售量相等二、填空题(本题共计 7 小题,每题 3 分,共计21分)11. 已知函数y=3+(m−2)x m2−3是一次函数,则m=________,此函数图象经过第________象限.12. 长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为________,则这个问题中,________是常量;________是变量.13. 用一根长16cm的细铁丝围成一个等腰三角形,设三角形的底边长为ycm,腰长为xcm,则底边长y与腰长x的函数关系式为________,自变量x的取值范围为________.14. 已知变量x与y的四种关系:①y=|x|;②|y|=x;③2x2−y=0;④x+y2= 1,其中,y是x的函数的有________.15. 如图是二次函数y1=ax2+bx+c和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.16. 已知点A(0, −4),B(8, 0)和C(a, −a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值等于________.17. 某超市,苹果的标价为3元/千克,设购买这种苹果xkg,付费y元,在这个过程中常量是________,变量是________,请写出y与x的函数表达式________.三、解答题(本题共计 7 小题,每题 10 分,共计70分)18. 如图,在平面直角坐标系中,一次函数y=kx+4的图象经过点A(1, 3),点B是一x的图象的交点.次函数y=kx+4与正比例函数y=13(1)求一次函数y=kx+4的表达式及点B的坐标;(2)求△AOB的面积.x+5的图像l1分别与x,y轴交于A,B 19. 如图,直角坐标系xOy中,一次函数y=−12两点,正比例函数的图像l2与l1交于点C(m, 4).(1)求m的值及l2的解析式;(2)求S△AOC−S△BOC的值;(3)一次函数y=kx+1的图像为l3,且l1,l2,l3不能围成三角形,请直接写出k的值.。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。
人教版数学八年级下册第19章一次函数单元测试卷4份含答案
人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <2.下列各曲线中表示y 是x 的函数的是()A .B .C .D .3.一次函数24y x =+的图像与y 轴交点的坐标是()A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)4.已知一次函数y =kx +b ,当0≤x≤2时,对应的函数值y 的取值范围是-2≤y≤4,则k 的值为()A .3B .-3C .3或-3D .不确定5.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A .x=2B .x=0C .x=﹣1D .x=﹣37.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为()A .±1B .1-C .1D .28.一次函数()224y k x k =++-的图象经过原点,则k 的值为()A .2B .2-C .2或2-D .39.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是().A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <010.一辆汽车从甲地以50km/h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离s(km)与行驶时间t(h)之间的函数解析式是()A .s =150+50t(t≥0)B .s =150-50t(t≤3)C .s =150-50t(0<t <3)D .s =150-50t(0≤t≤3)11.如图,函数=2y x 和=+4y ax 的图象相交于A (m ,3),则不等式2+4x ax <的解集为()A .3x 2>B .x 3>C .3x 2<D .x 3<12.已知:将直线y =x ﹣1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是()A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小二、填空题13.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.14.若函数y =(k +1)x +k 2-1是正比例函数,则k 的值为________.15.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.16.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y _______2y .(填”>”,”<”或”=”)17.如图,矩形ABCO 在平面直角坐标系中,且顶点O 为坐标原点,已知点B(3,2),则对角线AC 所在的直线l 对应的解析式为___.三、解答题18.已知函数y =(m +1)x 2-|m |+n +4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?19.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.20.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.21.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.22.如图,直角坐标系xOy中,一次函数y=﹣1x+5的图象l1分别与x,y轴交于A,B2两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.参考答案1.B2.D3.B4.C5.C6.D7.B8.A9.C10.D 11.C12.C13.r c14.115.-116.<17.y=23-x+2解:∵四边形ABCO为矩形,BC x\轴,AB y∥轴,∵B(3,2),∴OA=BC=3,AB=OC=2,∴A(3,0),C(0,2),设直线AC解析式为y=kx+b,把A与C坐标代入得:30 {2k bb+==,解得:2 {32 kb=-=,则直线AC解析式为2 2.3y x=-+故答案为2 2.3y x=-+18.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.解:(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.19.(1)y=2x+1;(2)不在;(3)0.25.解:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P (-1,1)代入函数解析式,1≠-2+1,∴点P 不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12-,此函数与x 轴、y 轴围成的三角形的面积为:11110.25224´´-==20.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.解:(1)根据题意得:()()70203540203513035063000y x x x x éù=--´´+-´´=-+ëû(2)因为7035(20)x x ³-,解得203x ³,又因为为正整数,且20x £.所以720x ££,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-´+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.21.(1)(1,3)-;(2)9;(3)1³x 解:(1)联立两函数解析式可得方程组24y x y x =--ìí=-î,解得:13x y =ìí=-î,\点A 的坐标为(1,3)-;(2)当10y =时,20x --=,解得:2x =-,,0()2B \-,当20y =时,40x -=,解得:4x =,(4,0)C \,6CB \=,ABC D ∴的面积为:16392´´=;(3)由图象可得:12y y £时x 的取值范围是1³x .22.(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
人教版数学八年级下《第十九章一次函数》单元测试题含答案
14.当直线 y 2x b 与直线 y kx 1平行时,k__________,b___________.
15.汽车行驶前,油箱中有油 55 升,已知每百千米汽车耗油 10 升,油箱中的余油量 Q (升)与它行驶的距离 s(百千米)之间的函数关系式为___ ________;为了保证行车 安全,油箱中至少存油 5 升,则汽车最多可行驶____________千米.
A.2
B.0
C.-2
11. 根据如图的程序,计算当输入 x 3 时,输出的结果 y
y x 5(x 1)
输
输
入
出
y x 5(x ≤1)
y
D. ±2 .
12.已知直线 y1=2x与直线 y = -2x+4相交于点 A.有以下结论:①点 A 的坐标为 A(1,2);② 2 当 x=1时,两个函数值相等;③当 x<1 时,y1<y2④直线 y =2x与直线 y =2 2x-4在平面 1 直角坐标系中的位置关系是平行.其中正确的是
是, A C 10 台, A D 2 台, B C 0 台, B D 6 台,此时总运费为 8600 元.
C.向上平移
5 3
个单位
B.向下平移 5 个单位
).
D.向下平移
5 3
个单位
8.经过一、二、四象限的函数是
A.y=7
B.y=-2x
C.y=7-2x
D.y=-2x-7
9.已知正比例函数 y=kx(k≠0)的函数值 y 随 x 的增大而减小,则函数 y=kx-k的图象大致 是
10.若方程 x-2=0的解也是直线 y=(2k-1)x+10与 x 轴的交点的横坐标,则 k 的值为
八年级数学(下)第十九章《一次函数》测试卷含答案
八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。
人教版数学八年级下册 第十九章 一次函数单元测试卷(含简单答案)
人教版数学八年级下册 第十九章 一次函数一、单选题1.下列函数中,是正比例函数的是( )A .y =7−xB .y =−4xC .y =2x−3D .y =2x 2+x−12.对于直线y =−12x−1的描述,正确的是( )A .y 随x 的增大而增大B .图象不经过第二象限C .经过点(−2,−2)D .与y 轴的交点是(0,−1)3.在平面直角坐标系中,将函数y =−2x +1的图象向下平移2个单位长度,所得函数图象的表达式是( )A .y =−2x +3B .y =−2x−3C .y =−2x +1D .y =−2x−14.如图,直线l 1:y =x +2与直线l 2:y =kx +b 相交于点P ,则方程组{y =x +2y =kx +b的解是( )A .{x =2y =0B .{x =1y =4C .{x =4y =2D .{x =2y =45.点A(2,y 1)和点B(−1,y 2)在直线y =−3x +b 上,则y 1,y 2的关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定6.一蓄水池中有50m 3的水,打开排水阀门开始放水后水池中的水量与放水时间有如下关系:放水时间/分1234…水池中的水量/m 348464442…下列说法不正确的是( )A .蓄水池每分钟放水2m 3B .放水18分钟后,水池中的水量为14m 3C .放水25分钟后,水池中的水量为0m 3D .放水12分钟后,水池中的水量为24m 37.如图,直线y =kx +b 与x 轴的交点的坐标是(﹣3,0),那么关于x 的不等式kx +b >0的解集是( )A .x >﹣3B .x <﹣3C .x >0D .x <08.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晩,乌龟还是先到达了终点.下图中与故事情节相吻合的是( )A .B .C .D .9.小丽和小明相约一起去体育公园锻炼身体.小丽从学校出发,小明从家里出发,学校、体育公园和小明家在同一直线步道上,两人同时出发,相向而行,同时到达体育公园,小明锻炼了半小时后,以原速度的23继续去学校,小丽锻炼了35分钟后,以原速度的56也返回学校,结果小明比小丽早7分钟到达学校.两人之间的距离s (m )与小丽出发的时间t (min )函数图象如图所示,则下列说法中错误的是( )A .小丽的原速度为60m/minB .小明的原速度是小丽的原速度的1.5倍C.点A的坐标是(52,0)D.当小明到达学校时,小丽距离小明家1150m 10.如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、…、A n B n C n C n−1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=x+1的图象上,点C1、C2、C3、…、C n均在x轴上,则点A2021的坐标为()A.(22021−1,22021)B.(22020−1,22020)C.(22021−1,22020)D.(22020−1,22021)二、填空题11.若函数y=(m−3)x|m−2|+3是一次函数,则m的值为.12.在平面直角坐标系xOy中,若正比例函数y=kx(k≠0)的图象经过A(1,3)和B(﹣1,m),则m的值为.13.若一次函数y=kx+b(k,b为常数,k≠0)的图像经过点A(−2,−1)和点B(1,2),则不等式kx+b≥2的解集为.14.已知点A(6,0)及在第一象限的动点P(x,y),且x+y=8.设△OPA的面积为S,则S关于x的函数解析式为.15.如图,在平面直角坐标系中,点P坐标(3,0),有一长度为2的线段AB在直线y=x+1的图象上滑动,则PA+PB的最小值为.16.如图1,已知长方形ABCD,动点P沿长方形ABCD的边以B→C→D的路径运动,记△ABP 的面积为y,动点P运动的路程为x,y与x的关系如图2所示,则图2中的m的值为.17.如图,在平面直角坐标系中,点A,B的坐标分别为(1,1),(1,4),直线y=2x+b与线段AB有公共点,则b的取值范围是.18.在某中学一次趣味运动会50米托盘乒乓球接力项目中(即乒乓球放入托盘内,参赛队员用手托住托盘运送乒乓球),初一(1)班和初一(2)班同台竞技,某时刻,1班的小敏和2班的小文分别位于50米赛道的起点A地和终点B地,他们同时出发,相向而行,分别以各自的速度匀速直线奔跑,过程中的某时刻,小敏不慎将乒乓球落在C地(A、B、C在同一直线上且乒乓球落在C地后不再移动),第6秒时小敏才发现并迅速掉头以原速去捡乒乓球,捡到球后,小敏将速度提升到小文速度的两倍迅速往B地匀速跑去,小敏掉头和捡球的时间忽略不计,如图是两人之间的距离y(米)与小敏出发的时间x(秒)之间的函数图象,则当小敏到达B地时,小文离A地还有米.三、解答题19.如图,在平面直角坐标系中,直线y=−x+8分别交x轴、y轴于A、B两点,点C(a,4)是直线上一点,点D在线段OA上,且AD=6.(1)求点D的坐标;(2)求CD所在直线的解析式;(3)在直线AB上是否存在一点P,使得S△ADP=18?若存在,求出点P的坐标;若不存在,请说明理由.20.如图,是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据函数图象,蓄电池剩余电量为35千瓦时汽车已经行驶的路程为____千米.当0≤x≤150时,消耗1千瓦时的电量,汽车能行驶的路程为_____千米.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶160千米时,蓄电池的剩余电量.21.上党腊驴肉是山西长治的传统名吃,其肉质肥而不腻、瘦而不柴,香味四溢、回味无穷.某特产专卖店购进一批袋装上党腊驴肉,进价为40元/袋.经市场调研发现,当销售单价为60元时,每天可售出300袋;销售单价每降低1元,每天可多售出20袋.设销售单价降低x元时,每天的销售量为y袋.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)该特产专卖店考虑房租、人工费等因素,计划销售这种腊驴肉的利润率不得低于40%,那么当销售单价定为多少元时,每天的销售量最大?最大销售量为多少袋?22.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)23.描点画图是探究未知函数图象变化规律的一个重要方法,下面是通过描点画图感知函数y=−|x+2|+1图象的变化规律的过程:2(1)化简函数解析式,当x≥−2时,y=,x<−2时,y=;(2)根据表中的数据,完成如表,并画出该函数的图象:x…−301…y……(3)若另一个一次函数y=kx+b过点(−2,2),且与y=−|x+2|+1的图象有交点,则k的2范围是24.某公司为了计算游客游览,设置了观光接驳车,如图1所示,公园设计的其中一条观光路线上设有A,B,C,D四个站点,相邻两个站点的距离是相同的,游客只能在站点上下车,一两接驳车在A,D之间匀速往返行驶,某时刻这辆接驳车从点A站出发,当运行时间为t分钟时(游客上下车的时间忽略不计),这辆接驳车与A站的距离为y千米,y与t的函数图象如图2所示.综合上面信息,回答问题:(1)这辆接驳车的运行速度为千米/分钟,站点A,B之间的距离为千米;(2)当这辆接驳车运行到B站时,其对应的运行时间t为分钟;(3)小宇沿观光路线徒步游览,当他到达站点B,D之间的M处时,正好遇到开往D站的接驳车,此时他临时有事要赶回A站,于是他决定先返回走到B站,等待刚才那辆接驳车从D站开回,已知小宇步行的平均速度为0.1千米/分钟,若他能够不晚于这辆接驳车到达B 站,则M处离A站的最远距离为千米.参考答案1.B2.D3.D4.D5.B6.D7.A8.C9.C10.B11.112.-313.x ≥114.S =-3x +2415.3416.1217.−1≤b ≤218.1219.(1)点D 的坐标为(2,0)(2)y =2x−4(3)存在,点P 的坐标为(2,6)或(14,−6)20.(1)150,6;(2)y =−12x +110,3021.(1)y =300+20x (2)当销售单价定为4元时,每天的销售量最大,最大销售量为380袋22.(1)1280,6;(2)小华的速度为80米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次23.(1)−x−32;x +52;(3)k <−1或k >1.24.(1)0.5;5;(2)10分钟和50分钟;(3)253。
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25004.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7 5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.16.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+17.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是.12.当m=时,函数y=(m﹣1)x+m是常值函数.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为.14.已知函数,则自变量x的取值范围.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.16.若函数y=(m﹣2)是正比例函数,则m的值是.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb0(填“>”、“=”或“<”).18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y =0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为cm;当AC=2AD时,AB的长度约为cm.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x时,y>2.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.参考答案与试题解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y【分析】根据函数的定义进行解答即可.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、一天的气温和时间的关系是函数关系,故本选项不合题意;B、y2=x中的y与x的关系不是函数关系,故本选项符合题意;C、在银行中利息与时间是函数关系,故本选项不合题意;D、正方形的周长与面积是函数关系,故本选项不合题意;故选:B.3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+2500【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.4.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得x﹣3≥0且7﹣x≥0,解得x≥3且x≤7,所以3≤x≤7.故选:C.5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.1【分析】把x的值代入函数关系式计算,得到答案.【解答】解:当x=3时,函数y=x﹣2=3﹣2=1,故选:D.6.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+1【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.根据一次函数的定义条件进行逐一分析即可.【解答】解:A、y=不是一次函数,是反比例函数,不合题意;B、y=3x+1是一次函数,符合题意;C、y=不是一次函数,不合题意;D、y=3x2+1不是一次函数,是二次函数,不合题意.故选:B.7.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化【分析】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A、S=x2是二次函数,故A错误;B、C=4x是正比例函数,故B正确;C、V=10﹣0.5t,是一次函数,故C错误;D、a=,是反比例函数,故D错误.故选:B.8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【分析】根据一次函数图象的性质加以分析即可,一次项系数决定直线的走向,常数项决定直线与y轴的交点位置.【解答】解:根据一次函数的图象与性质分析如下:A.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a<0,b<0.A错误;B.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a>0,b<0.B正确;C.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a<0,b<0.C错误;D.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a>0,b<0.D错误;故选:B.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,kb<0;正比例函数y=kbx的图象可知kb<0,故此选项正确;B、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与正比例函数y=kbx的图象可知kb<0,矛盾,故此选项错误;C、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;D、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;故选:A.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限【分析】利用一次函数的性质逐一判断后即可确定正确的选项.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∵y的值随着x增大而减小,∴当x>0时,y<2,∴选项B符合题意;C、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项C不符合题意;D、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项D不符合题意;当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:B.二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是5.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解答】解:单价5元固定,是常量.故答案为:5.12.当m=1时,函数y=(m﹣1)x+m是常值函数.【分析】直接利用常值函数的定义分析得出答案.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为y=0.25x+6.【分析】根据题意可得等量关系:话费=月租费16元+超出40分钟部分话费,根据等量关系列出函数解析式即可.【解答】解:由题意得:y=16+(x﹣40)×0.25=16+0.25x﹣10=0.25x+6,故答案为:y=0.25x+6.14.已知函数,则自变量x的取值范围x>.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣3>0,解得x>.故答案为:x>.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.16.若函数y=(m﹣2)是正比例函数,则m的值是﹣2.【分析】直接利用正比例函数的定义直接得出答案.【解答】解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故答案为:﹣2.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb<0(填“>”、“=”或“<”).【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴kb<0.故答案为:<18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=60千米代入剩余油量公式,计算即可;(3)计算出35﹣3=32升油能行驶的距离,与200千米比较大小即可得.【解答】解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米),∴行驶路程x(千米)与剩余油量Q(升)的关系式为Q=35﹣0.125x;(2)当x=60时,Q=35﹣0.125×60=27.5(升),答:当x=60(千米)时,剩余油量Q的值为27.5升;(3)他们能在汽车报警前回到家,(35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.【分析】(1)解方程得到y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时当a<0时,根据题意求出结论即可;(2)解方程得到y=(x2﹣4)a+2,根据一次函数的性质解答即可..【解答】解:(1)∵y﹣ax2+2a﹣1=0,∴y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时,﹣3a+2≤y≤5a+2,∴y的最大值是5a+2,对应的x的取值﹣1,最小值是﹣3a+2,对应的x的取值是3,当a<0时,5a+2≤y≤﹣3a+2,∴y的最大值是﹣3a+2,对应的x的取值3,最小值是5a+2,对应的x的取值是﹣1;(2)∵y﹣ax2+2a﹣1=0,∴y=(x2﹣4)a+2,当x2﹣4>0时,y随a的增大而增大,即x<﹣2或x>2时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:当0<x<1时,y随x的增大而减小.【分析】(1)根据表中x,y的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是 5.5;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为 5.7cm;当AC=2AD时,AB的长度约为 4.2cm.【分析】(1)由位置可知,AB=0时,即AB两点重合,此时AC=BC=8,AD=BD=2.5,再根据当y1=AC时,即A与重合即可求出表格中m=CD.(2)根据表中数据描点连线即可.(3)根据函数图象分别找出y1=y2和y1=2y2时对应的x即可.【解答】解:(1)∵当x=0时,y1=8,y2=2.5,∴BC=8cm,BD=2.5,∴当x=8.0时,即A点与C点重合,∴y2=AB=CD=BC﹣BD=8﹣2.5=5.5(cm),故答案为:5.5(2)(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为5.7cm;当AC=2AD时,AB的长度约为4.2cm.故答案为:5.7;4.2.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数【分析】(1)直接利用一次函数的定义得出答案;(2)直接利用正比例函数的定义得出答案.【解答】解:(1)∵函数y=(m﹣1)x+n,∴当m﹣1≠0时,该函数是一次函数,即m≠1;(2)当m≠1,且n=0时,该函数是正比例函数.24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x<1时,y>2.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象可直接得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).函数图象如图所示.(2)由图象可得,当x<1时,y>2.故答案为:<1.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.【分析】(1)根据一次函数的图象是直线,画出图象即可;(2)根据图象过定点,代入得出k的值即可.【解答】(1)解:如图:共同特点是:此组直线均经过(2,4),∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4;∴验证发现此组直线均经过(2,4);(2)把(2,4)代入y=kx+5得4=2k+5,得k=﹣.。
人教版八年级下册数学 第十九章 一次函数 单元测试卷(含答案)
第十九章 一次函数 单元测试卷一.选择题(每小题3分,共30分)1.函数y=21-x 中,自变量x 的取值范围是( ) A.x >2 B.x <2C.x ≠2D.x ≠-22.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1)B.图形经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 3.如图,一次函数y=kx+b(k ≠0) 的图象经过A,B 两点,则关于x 的不等式kx+b <0的解集是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤14.直线y=-2x+m 与直线y=2x-1的焦点在第四象限,则 m 的取值范围是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤15.若一次函数y=(1-2m)x+m 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则 m 的取值范围是( ) B.m < 21 A.m >0 C.0<m <21 D. .m >216.若函数y= 则当函数值y=8时,自变量x 的值是( ) A. 6± B.4C. 6±或4D.4或-67.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为 5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )C8.一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是()A.-2<y<0B. -4<y<0C. y<-2D. y<-49.将直线y=-2x向右平移2个单位所得直线的解析式为()A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2)10.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与x之间关系的函数图象是()二. 填空题(每小题3分,共24分)11.将直线y=-2x+3向下平移2个单位得到的直线为。
八年级数学(下)第十九章《一次函数》单元测试卷含答案
八年级数学(下)第十九章《一次函数》单元测试卷一、选择题(每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)米)和行驶时间t(小时)的关系的是()C2.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时3.在函数12yx=-+中,自变量x的取值范围是()A.2x≠B.2x-≤C.2x≠-D.2x-≥4.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A、a>1B、a<1C、a>0D、a<06.函数y=x-2+31-x中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的/分O xy解析式为( )A .2--=x yB .6--=x yC .10+-=x yD .1--=x y 8.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(31)--,B .(11),C .(32),D .(43),9.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <10. 2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )二、填空题(每题3分,共30)11.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 12.函数34x y x -=-的自变量x 的取值范围是 . 13.某函数的图象经过(1、-1),且函数y 的值随自变量的值增大而增大,请你写出一个符合上述条件的函数关系式:14.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y __ _____。
人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)(含答案)
第十九章《一次函数》测试题一、选择题(每小题只有一个正确答案)1.下列函数中是正比例函数的是( )A .8y x =B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( )A .一次函数是正比例函数B .正比例函数是一次函数C .函数y =|x |+3不是一次函数D .在y =kx +b (k 、b 都是不为零的常数)中, y -b 与x 成正比例4.一次函数y =-x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.函数y =kx -2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( )A .322y x =-B .122y x =-C .122y x =+D .322y x =+7.若函数y =kx +b (k 、b 都是不为零的常数)的图象如图2所示,那么当y >0时,x 的取值范围为( )A .x >1B .x >2C .x <1D .x <28.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题9.正比例函数12y x =-中,y 值随x 的增大而 .10.已知y=(k-1)x+k2-1是正比例函数,则k=11.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= .12.直线y=7x+5,过点(,0),(0,).13.已知直线y=ax-2经过点(-3,-8)和12b⎛⎫⎪⎝⎭,两点,那么a= ,b= .14.写出经过点(1,2)的一次函数的解析式为(写出一个即可).15.在同一坐标系内函数112y x=+,112y x=-,12y x=的图象有什么特点.16.下表中,y是x三、简答题17.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.18.已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.19、已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.20、如图3,在边长为2的正方形ABCD 的一边BC 上的点P 从B 点运动到C 点,设PB =x ,梯形APCD 的面积为S .(1)写出S 与x 的函数关系式;(2)求自变量x 的取值范围;(3)画出函数图象.21、小芳同学在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的函数关系式.(2)小芳从批发市场共购进多少千克西瓜?(3)小芳这次卖瓜赚了多少钱?参考答案:一、1.D 2.D3.A 4.A 5.D 6.A 7.D 8.B二、9.减小 10.1-11.17 12.57-,5 13.2,1- 14.略(答案不惟一) 15.三条直线互相平行16.22y x =+,表格从左到右依次填2-,0,4三、17.y x =-(答案不惟一)18.(1)2y x =+(2)419.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+(2)图略;(3)420.(1)4S x =-;(2)02x <<;(3)图略21.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章《一次函数》单元检测题
一、选择题
1.把多项式3m(x−y)−2(y−x)2分解因式的结果是( )
A. (x−y)(3m−2x−2y)
B. (x−y)(3m−2x+2y)
C. (x−y)(3m+2x−2y)
D. (y−x)(3m+2x−2y)
−k的图象大致是( )
2.在同一坐标系中,函数y=kx与y=x
2
A. B.
C. D.
)=()
3.已知函数f(x)=ln(1+9x2−3x)+1,则f(lg2)+f(lg1
2
A. −1
B. 2
C. 0
D. 1
4.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的
AB,BC,CA,OA,OB,OC组成.为记录寻宝者的进行路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()
A. A→O→B
B. B→A→C
C. B→O→C
D. C→B→O
5.下列函数中,自变量x的取值范围为x<1的是( )
A. y=1
1−x B. y=1−1
x
C. y=1−x
D. y=
1−x
6.若存在过点O(0,0)的直线l与曲线f(x)=x3−3x2+2x和y=x2+a都相切,则a
的值为()
A. 1
B. 1
64C. 1或−1
64
D. 1或1
64
7.已知函数f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有
,记a=f(20.2)
2,b=f(0.22)
0.2
,c=f(log25)
log25
,则()
A. a<b<c
B. b<a<c
C. c<a<b
D. c<b<a
8.下列对函数的认识正确的是( )
A. 若y是x的函数,那么x也是y的函数
B. 两个变量之间的函数关系一定能用数学式子表达
C. 若y是x的函数,则当y取一个值时,一定有唯一的x值与它对应
D. 一个人的身高也可以看作他年龄的函数
9.下列曲线中表示y是x的函数的是( )
A. B.
C. D.
二、填空题
10.已知正比例函数,点(2,−3)在函数上,则随的增大而(
增大或减小).
11.将函数的图象向上平移2个单位,所得函数图象的解析式为___________.
12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的
解集为.
13.直线与的位置关系为;
14.函数是y关于x的正比例函数,则m=______.
三、解答题
15.已知一次函数的图象过点A(3,0),B(—1,2),
(1)求直线AB的解析式;
(2)在给出的直角坐标系中,画出和的图象,并根据图象写出方
程组的解.
16.求下列函数中当x=4时的函数值:
(1)y=−4x2;
(2)y=1
;
3x−2
(3)y=x−4.
17.如图是一辆汽车的速度随时间变化而变化的图象,回答下面的问题:
(1)汽车从出发到最后停止共经过了多长时间?最高速度是多少?
(2)A,B两点分别表示什么?
(3)说一说速度是怎样随时间变化而变化的.
18.求下列函数中自变量的取值范围.
(1)y=−3x+5;
(2)y=3x
;
x−4
(3)y=2x−4;
(4)y=
;
x+3
(5)y=x−1+36−2x.
【答案】
1. D
2. B
3. B
4. C
5. D
6. B
7. B
8. D
9. C
10. 减小
11. y=3x+2
12. x≥
13. 平行
14. 1
15. 解:(1)根据题意得,解得,
所以直线AB的解析式为y=−x+;
(2)画出函数y=x和函数y=−x+的图象,它们的交点坐标为(1,1),所以方程组的解为.
16. 解:(1)y=−4×42=−64;
(2)y=1
3×4−2=1
10
;
(3)y=4−4=0.
17. 解:(1)汽车从出发到最后停止共经过了35分钟,最高速度是90千米/时;
(2)A点表示10分时的速度为60km/ℎ,B点表示30分时的速度是30km/ℎ;
(3)在0到10分速度在逐渐增大;在10到15分速度保持不变;在15到20分时速度在逐渐增加;在20分到25分时速度保持不变;在25分到35分时速度在逐渐减小.18. 解:(1)x的取值范围为全体实数;
(2)解不等式x−4≠0,得x≠4,故x的取值范围为x≠4;
(3)解不等式2x−4≥0,得x≥2,故x的取值范围为x≥2;
(4)解不等式x+3>0,得x>−3,故x的取值范围为x>−3;
(5)解不等式组x−1≥0
6−2x≥0得1≤x≤3,故x的取值范围为1≤x≤3.。