立体几何线面平行周练
立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)
立体几何线面平行垂直、面面平行垂直专题一、解答题(本大题共27小题,共324.0分)1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.2.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.3.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.4.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=√6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF如果存在,求BM的值,如果不存在,请说明理BP由.5.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.6.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=√3,三棱锥P-ABD的体积V=√3,求A到平面PBC的距4离.9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.10.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.11.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.(I)求证:EM⊥AD;(II)求证:MN∥平面ADE;(III)求点A到平面BCE的距离.12.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设AB=√2AD,求直线AC与平面AEF所成角θ的正弦值.14.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45∘,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.15.如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=√2,点D为A1C1的中点.(I)求证:BC1∥平面AB1D;(II)求证:A1C⊥平面AB1D;(Ⅲ)求异面直线AD与BC1所成角的大小.16.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.(Ⅰ)求证:BD⊥平面APQ;(Ⅱ)求直线PB与平面PDQ所成角的正弦值.17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.(1)求证:A1C⊥平面C1EB;(2)求直线CC1与平面ABC所成角的余弦值.18.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AB=6,BC=2√3,AC=2√6,D为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;,求点B到平面PAC的距离.(2)若∠PAB=π419.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC为正三角形,D是BC边的中点,AA1=AB=1.(1)求证:平面ADB1⊥平面BB1C1C;(2)求点B到平面ADB1的距离.20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.(1)求证:平面BED⊥平面PAC;(2)求二面角F-DE-B的大小;(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.21.如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2√2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.22.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.=√2.23.如图,在直三棱柱ABC−A1B1C1中,∠ACB=90°,E为A1C1的中点,CC1C1E(Ⅰ)证明:CE⊥平面AB1C1;(Ⅱ)若AA1=√6,∠BAC=30°,求点E到平面AB1C的距离.24.如图,在四棱锥E-ABCD中,底面ABCD是边长为√2的正方形,平面AEC⊥平面CDE,∠AEC=90°,F为DE中点,且DE=1.(Ⅰ)求证:BE∥平面ACF;(Ⅱ)求证:CD⊥DE;(Ⅲ)求FC与平面ABCD所成角的正弦值.25.已知:平行四边形ABCD中,∠DAB=45°,AB=√2AD=2√2,平面AED⊥平面ABCD,△AED为等边三角形,EF∥AB,EF=√2,M为线段BC的中点.(1)求证:直线MF∥平面BED;(2)求证:平面BED⊥平面EAD;(3)求直线BF与平面BED所成角的正弦值.26.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AC=√2,AB=BC=1,E为AD中点.(Ⅰ)求证:PE⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求平面PAB与平面PCD所成的二面角.27.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.答案和解析1.【答案】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG ,∵N 为PC 的中点, ∴NG ∥BC ,且NG =12BC ,又AM =23AD =2,BC =4,且AD ∥BC , ∴AM ∥BC ,且AM =12BC ,则NG ∥AM ,且NG =AM ,∴四边形AMNG 为平行四边形,则NM ∥AG , ∵AG ⊂平面PAB ,NM ⊄平面PAB , ∴MN ∥平面PAB ; 法二、在△PAC 中,过N 作NE ⊥AC ,垂足为E ,连接ME , 在△ABC 中,由已知AB =AC =3,BC =4,得cos ∠ACB =42+32−322×4×3=23,∵AD ∥BC ,∴cos ∠EAM =23,则sin ∠EAM =√53,在△EAM 中,∵AM =23AD =2,AE =12AC =32,由余弦定理得:EM =√AE 2+AM 2−2AE ⋅AM ⋅cos∠EAM =√94+4−2×32×2×23=32,∴cos ∠AEM =(32)2+(32)2−42×32×32=19,而在△ABC 中,cos ∠BAC =32+32−422×3×3=19,∴cos ∠AEM =cos ∠BAC ,即∠AEM =∠BAC , ∴AB ∥EM ,则EM ∥平面PAB .由PA ⊥底面ABCD ,得PA ⊥AC ,又NE ⊥AC , ∴NE ∥PA ,则NE ∥平面PAB . ∵NE ∩EM =E ,∴平面NEM ∥平面PAB ,则MN ∥平面PAB ;(2)解:在△AMC 中,由AM =2,AC =3,cos ∠MAC =23,得CM 2=AC 2+AM 2-2AC •AM •cos ∠MAC =9+4−2×3×2×23=5.∴AM 2+MC 2=AC 2,则AM ⊥MC , ∵PA ⊥底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ∩平面PAD =AD , ∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF ⊥PM ,交PM 于F ,连接NF ,则∠ANF 为直线AN 与平面PMN 所成角.在Rt△PAC中,由N是PC的中点,得AN=12PC=12√PA2+PC2=52,在Rt△PAM中,由PA•AM=PM•AF,得AF=PA⋅AMPM =√42+22=4√55,∴sin∠ANF=AFAN =4√5552=8√525.∴直线AN与平面PMN所成角的正弦值为8√525.【解析】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=12BC,再由已知得AM∥BC,且AM=12BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)由勾股定理得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.2.【答案】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF∥AD,EF=12AD,AB=BC=12AD,∠BAD=∠ABC=90°,∴BC∥AD,EF∥BC,EF=BC,∴四边形BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:如图所示,取AD中点O,连接PO,CO,由于△PAD为正三角形,则PO⊥AD,因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO⊥CO. 因为AO=AB=BC=12AD,且∠BAD=∠ABC= 90∘,所以四边形ABCO是矩形,所以CO⊥AD,以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,不妨设AB=BC=12AD=1,则OA=OD=AB=CO=1.又因为△POC为直角三角形,|OC|=√33|OP|,所以∠PCO=60∘.作MN⊥CO,垂足为N,连接BN,因为PO ⊥CO ,所以MN //PO ,且PO ⊥平面ABCD ,所以MN ⊥平面ABCD ,所以∠MBN 即为直线BM 与平面ABCD 所成的角, 设CN =t ,因为∠PCO =60∘,所以MN =√3t ,BN =√BC 2+CN 2=√t 2+1. 因为∠MBN =45∘,所以MN =BN ,即√3t =√t 2+1,解得t =√22,所以ON =1−√22,MN =√62,所以A (0,−1,0),B (1,−1,0),M (1−√22,0,√62),D (0,1,0),则AB ⃗⃗⃗⃗⃗ =(1,0,0),AD⃗⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(1−√22,1,√62). 设平面MAB 和平面DAB 的法向量分别为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),n 2⃗⃗⃗⃗ =(x 2,y 2,z 2), 则{AB ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AM ⃗⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{x 1=0(1−√22)x 1+y 1+√62z 1=0, 可取z 1=−2,则n 1⃗⃗⃗⃗ =(0,√6,−2), 同理可得n 2⃗⃗⃗⃗ =(0,0,1),所以.因为二面角M -AB -D 是锐角,所以其余弦值为√105.【解析】本题考查直线与平面平行的判定定理的应用,空间向量求二面角夹角,考查空间想象能力以及计算能力,属于中档题.(1)取PA 的中点F ,连接EF ,BF ,通过证明CE ∥BF ,利用直线与平面平行的判定定理证明即可.(2)取AD 中点O ,连接PO ,CO ,作MN ⊥CO ,垂足为N ,以O 为原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,即可求出二面角M -AB -D 的余弦值.3.【答案】证明:(1)因为BB 1⊥面ABC ,AE ⊂面ABC ,所以AE ⊥BB 1,由AB =AC ,E 为BC 的中点得到AE ⊥BC , ∵BC ∩BB 1=B ,BC 、BB 1⊂面BB 1C 1C , ∴AE ⊥面BB 1C 1C ,,∴AE ⊥B 1C ;解:(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,则AE ∥A 1E 1, ∴∠E 1A 1C 是异面直线AE 与A 1C 所成的角, 设AC =AB =AA 1=2,则由∠BAC =90°, 可得A 1E 1=AE =√2,A 1C =2√2,E 1C 1=EC =12BC =√2,∴E 1C =√E 1C 12+C 1C 2=√6,∵在△E 1A 1C 中,cos ∠E 1A 1C =2+8−62⋅√2⋅2√2=12, 所以异面直线AE 与A 1C 所成的角为π3;(3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,又∵平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ∴EP ⊥平面ACC 1A 1, 而PQ ⊥AG ∴EQ ⊥AG .∴∠PQE 是二面角C -AG -E 的平面角, 由(2)假设知:EP =1,AP =1, Rt △ACG ∽Rt △AQP ,PQ =CG·AP AG=1√5,故tan ∠PQE =PEPQ =√5,所以二面角C -AG -E 的平面角正切值是√5.【解析】本题考查异面直线的夹角,线线垂直的判定,属于中档题,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键,属于较难题.(1)由BB 1⊥面ABC 及线面垂直的性质可得AE ⊥BB 1,由AC =AB ,E 是BC 的中点,及等腰三角形三线合一,可得AE ⊥BC ,结合线面垂直的判定定理可证得AE ⊥面BB 1C 1C ,进而由线面垂直的性质得到AE ⊥B 1C ;(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,根据异面直线夹角定义可得,∠E 1A 1C 是异面直线A 与A 1C 所成的角,设AC =AB =AA 1=2,解三角形E 1A 1C 可得答案. (3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP ⊥平面ACC 1A 1,进而由二面角的定义可得∠PQE 是二面角C -AG -E 的平面角.4.【答案】(Ⅰ)证明:因为底面ABCD 是菱形,AC ∩BD =O ,所以O 为AC ,BD 中点.-------------------------------------(1分)又因为PA =PC ,PB =PD ,所以PO ⊥AC ,PO ⊥BD ,---------------------------------------(3分)所以PO ⊥底面ABCD .----------------------------------------(4分)(Ⅱ)解:由底面ABCD 是菱形可得AC ⊥BD , 又由(Ⅰ)可知PO ⊥AC ,PO ⊥BD .如图,以O 为原点建立空间直角坐标系O -xyz .由△PAC 是边长为2的等边三角形,PB =PD =√6,可得PO =√3,OB =OD =√3.所以A(1,0,0),C(−1,0,0),B(0,√3,0),P(0,0,√3).---------------------------------------(5分)所以CP ⃗⃗⃗⃗⃗ =(1,0,√3),AP ⃗⃗⃗⃗⃗ =(−1,0,√3). 由已知可得OF ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +14AP ⃗⃗⃗⃗⃗ =(34,0,√34)-----------------------------------------(6分) 设平面BDF 的法向量为n −=(x ,y ,z ),则{√3y =034x +√34z =0令x =1,则z =−√3,所以n ⃗ =(1,0,-√3).----------------------------------------(8分) 因为cos <CP ⃗⃗⃗⃗⃗ ,n ⃗ >=CP ⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CP ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=-12,----------------------------------------(9分) 所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30°.-----------------------------------------(10分)(Ⅲ)解:设BMBP =λ(0≤λ≤1),则CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +λBP ⃗⃗⃗⃗⃗ =(1,√3(1−λ),√3λ).---------------------------------(11分)若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,---------------------(12分) 解得λ=13∈[0,1],----------------------------------------(13分) 所以在线段PB 上存在一点M ,使得CM ∥平面BDF . 此时BM BP =13.-----------------------------------(14分)【解析】(Ⅰ)证明PO ⊥底面ABCD ,只需证明PO ⊥AC ,PO ⊥BD ;(Ⅱ)建立空间直角坐标系,求出直线CP 的方向向量,平面BDF 的法向量,利用向量的夹角公式可求直线CP 与平面BDF 所成角的大小;(Ⅲ)设BMBP =λ(0≤λ≤1),若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,即可得出结论.本题考查线面垂直,考查线面平行,考查线面角,考查向量知识的运用,正确求出向量的坐标是关键.5.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23.【解析】本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角. (I )先证线面垂直,再由线面垂直证明线线垂直即可; (II )作平行线,由线线平行证明线面平行即可;(III )先证明∠CED 为异面直线所成的角,再在三角形中利用余弦定理计算即可. 6.【答案】解:如图,在正三棱柱ABC -A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底, 建立空间直角坐标系O -xyz ,∵AB =AA 1=2,A (0,-1,0),B (√3,0,0), C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2). |cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|−1+4|√5×2√2=3√1020.∴异面直线BP 与AC 1所成角的余弦值为:3√1020; (2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),设平面AQC 1的一个法向量为n⃗ =(x ,y ,z ), 由{AQ ⃗⃗⃗⃗⃗ ·n ⃗ =√32x +32y =0AC 1⃗⃗⃗⃗⃗⃗⃗ ·n⃗ =2y +2z =0,可取n⃗ =(√3,-1,1), 设直线CC 1与平面AQC 1所成角的正弦值为θ, sinθ=|cos|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n⃗ |=2√5×2=√55, ∴直线CC 1与平面AQC 1所成角的正弦值为√55.【解析】本题考查了向量法求空间角,属于中档题.设AC ,A 1C 1的中点分别为O ,O 1,以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz ,(1)由|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |可得异面直线BP 与AC 1所成角的余弦值;(2)求得平面AQC 1的一个法向量为n⃗ ,设直线CC 1与平面AQC 1所成角的正弦值为θ,可得sinθ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ >|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |,即可得直线CC 1与平面AQC 1所成角的正弦值.7.【答案】(1)证明:如图,设AC ∩BD =O ,∵ABCD 为正方形,∴O 为BD 的中点,连接OM ,∵PD ∥平面MAC ,PD ⊂平面PBD ,平面PBD ∩平面AMC =OM , ∴PD ∥OM ,则BOBD =BM BP,即M 为PB 的中点;(2)解:取AD 中点G , ∵PA =PD ,∴PG ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,由G 是AD 的中点,O 是AC 的中点,可得OG ∥DC ,则OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系, 由PA =PD =√6,AB =4,得D (2,0,0),A (-2,0,0),P (0,0,√2),C (2,4,0),B (-2,4,0),M (-1,2,√22),DP ⃗⃗⃗⃗⃗ =(−2,0,√2),DB⃗⃗⃗⃗⃗⃗ =(−4,4,0). 设平面PBD 的一个法向量为m ⃗⃗⃗ =(x ,y ,z),则由{m ⃗⃗⃗ ⋅DP ⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得{−2x +√2z =0−4x +4y =0,取z =√2,得m ⃗⃗⃗ =(1,1,√2). 取平面PAD 的一个法向量为n ⃗ =(0,1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=12×1=12. ∴二面角B -PD -A 的大小为60°;(3)解:CM ⃗⃗⃗⃗⃗⃗ =(−3,−2,√22),平面BDP 的一个法向量为m ⃗⃗⃗ =(1,1,√2).∴直线MC 与平面BDP 所成角的正弦值为|cos <CM ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CM ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗|CM ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||=|−2√9+4+12×1|=2√69.【解析】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.(1)设AC ∩BD =O ,则O 为BD 的中点,连接OM ,利用线面平行的性质证明OM ∥PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG ⊥AD ,再由面面垂直的性质可得PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,再证明OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B -PD -A 的大小;(3)求出CM⃗⃗⃗⃗⃗⃗ 的坐标,由CM ⃗⃗⃗⃗⃗⃗ 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.8.【答案】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ∵ABCD 是矩形, ∴O 为BD 的中点 ∵E 为PD 的中点, ∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,∴V =16PA ⋅AB ⋅AD =√36AB =√34,∴AB =32,PB =√1+(32)2=√132.作AH ⊥PB 交PB 于H , 由题意可知BC ⊥平面PAB , ∴BC ⊥AH ,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:AH =PA⋅AB PB=3√1313A 到平面PBC 的距离3√1313.【解析】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,求出AB ,作AH ⊥PB 角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 9.【答案】证明:(I )∵PA ⊥底面ABCD ,AD ⊥AB , 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AD =DC =AP =2,AB =1,点E 为棱PC 的中点. ∴B (1,0,0),C (2,2,0),D (0,2,0), P (0,0,2),E (1,1,1)∴BE⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(2,0,0) ∵BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0, ∴BE ⊥DC ;(Ⅱ)∵BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),PB ⃗⃗⃗⃗⃗ =(1,0,-2),设平面PBD 的法向量m⃗⃗⃗ =(x ,y ,z ), 由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,得{−x +2y =0x −2z =0, 令y =1,则m⃗⃗⃗ =(2,1,1), 则直线BE 与平面PBD 所成角θ满足: sinθ=m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BE ⃗⃗⃗⃗⃗⃗ |=2√6×√2=√33, 故直线BE 与平面PBD 所成角的正弦值为√33.(Ⅲ)∵BC⃗⃗⃗⃗⃗ =(1,2,0),CP ⃗⃗⃗⃗⃗ =(-2,-2,2),AC ⃗⃗⃗⃗⃗ =(2,2,0), 由F 点在棱PC 上,设CF⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ =(-2λ,-2λ,2λ)(0≤λ≤1), 故BF ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =(1-2λ,2-2λ,2λ)(0≤λ≤1), 由BF ⊥AC ,得BF ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF ⃗⃗⃗⃗⃗ =(-12,12,32), 设平面FBA 的法向量为n ⃗ =(a ,b ,c ), 由{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,得{a =0−12a +12b +32c =0令c =1,则n⃗ =(0,-3,1), 取平面ABP 的法向量i =(0,1,0), 则二面角F -AB -P 的平面角α满足: cosα=|i ⋅n ⃗⃗ ||i|⋅|n ⃗⃗ |=3√10=3√1010,故二面角F -AB -P 的余弦值为:3√1010【解析】本题考查的知识点是空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(I )以A 为坐标原点,建立空间直角坐标系,求出BE ,DC 的方向向量,根据BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0,可得BE ⊥DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值;(Ⅲ)根据BF ⊥AC ,求出向量BF ⃗⃗⃗⃗⃗ 的坐标,进而求出平面FAB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F -AB -P 的余弦值. 10.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF ∥PA ,EF ∥平面PAB ,在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点,∴四边形CBAF 为平行四边形,故CF ∥AB ,CF ∥平面PAB ,∵CF ∩EF =F ,EF ∥平面PAB ,CF ∥平面PAB , ∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF ∥BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD ∥BC ,故PF ⊥BC ,BF ⊥BC ,又BF ∩PF =F ,BF 、PF ⊂平面PBF ,BC ⊄平面PBF , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,MF ⊄平面PBC , ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF =12,D 到平面PBC 的距离应该和MF 平行且相等,均为12, E 为PD 中点,E 到平面PBC 的垂足也为所在线段的中点,即中位线, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2, 设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.11.【答案】证明:(Ⅰ)∵EA=EB,M是AB的中点,∴EM⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,EM⊂平面ABE,∴EM⊥平面ABCD,∵AD⊂平面ABCD,∴EM⊥AD;(Ⅱ)取DE的中点F,连接AF,NF,∵N是CE的中点,∴NF=//12CD,∵M是AB的中点,∴AM=//12CD,∴NF=//AM,∴四边形AMNF是平行四边形,∴MN∥AF,∵MN⊄平面ADE,AF⊂平面ADE,∴MN∥平面ADE;解:(III)设点A到平面BCE的距离为d,由(I)知ME⊥平面ABC,BC=BE=2,MC=ME=√3,则CE=√6,BN=√BE2−EN2=√102,∴S△BCE=12CE⋅BN=√152,S△ABC=12BA×BC×sin60°=√3,∵V A-BCE=V E-ABC,即13S△BCE×d=13S△ABC×ME,解得d=2√155,故点A到平面BCE的距离为2√155.【解析】本题考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到力、数据处理能力,考查数形结合思想,是中档题.(Ⅰ)推导出EM ⊥AB ,从而EM ⊥平面ABCD ,由此能证明EM ⊥AD ;(Ⅱ)取DE 的中点F ,连接AF ,NF ,推导出四边形AMNF 是平行四边形,从而MN ∥AF ,由此能证明MN ∥平面ADE ;(III )设点A 到平面BCE 的距离为d ,由V A -BCE =V E -ABC ,能求出点A 到平面BCE 的距离.12.【答案】(I )证明:∵AB ∥CD ,AD ⊥DC ,AB =AD =1,CD =2,∴BD =BC =√2, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ,∵EA ⊥平面ABCD ,BD ⊂平面ABCD , ∴EA ⊥BD ,∵EA ∥FC , ∴FC ⊥BD ,又BC ⊂平面BCF ,FC ⊂平面BCF ,BC ∩CF =C , ∴BD ⊥平面FBC , 又BD ⊂平面BDE ,∴平面BDE ⊥平面BCF .(II )解:过A 作AM ⊥DE ,垂足为M , ∵EA ⊥平面ABCD ,CD ⊂平面ABCD , ∴EA ⊥CD ,又CD ⊥AD ,EA ∩AD =A , ∴CD ⊥平面EAD ,又AM ⊂平面EAD , ∴AM ⊥CD ,又AM ⊥DE ,DE ∩CD =D , ∴AM ⊥平面CDE ,∵AD =AE =1,EA ⊥AD ,∴AM =√22,即A 到平面CDE 的距离为√22,∵AB ∥CD ,CD ⊂平面CDE ,AB ⊄平面CDE , ∴AB ∥平面CDE ,∴B 到平面CDE 的距离为√22.【解析】(I )先计算BD ,BC ,利用勾股定理的逆定理证明BD ⊥BC ,再利用EA ⊥平面ABCD 得出AE ⊥BD ,从而有CF ⊥BD ,故而推出BD ⊥平面FBC ,于是平面EBD ⊥平面BCF ;(II )证明AB ∥平面CDE ,于是B 到平面CDE 的距离等于A 到平面CDE 的距离,过A 作AM ⊥DE ,证明AM ⊥平面CDE ,于是AM 的长即为B 到平面CDE 的距离. 本题考查了线面垂直、面面垂直的判定与性质,空间距离的计算,属于中档题. 13.【答案】证明:方法一:(1)取PA 中点G ,连结DG 、FG . ∵F 是PB 的中点, ∴GF ∥AB 且GF =12AB ,又底面ABCD 为矩形,E 是DC 中点, ∴DE ∥AB 且DE =12AB∴GF ∥DE 且GF =DE ,∴EF ∥DG∵DG ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵PD ⊥底面ABCD ,AB ⊂面ABCD ∴PD ⊥AB又底面ABCD 为矩形 ∴AD ⊥AB 又PD ∩AD =D ∴AB ⊥平面PAD ∵DG ⊂平面PAD ∴AB ⊥DG∵AD =PD ,G 为AP 中点 ∴DG ⊥AP又AB ∩AP =A , ∴DG ⊥平面PAB又由(1)知EF ∥DG ∴EF ⊥平面PAB ,又EF ⊂面AEF ∴平面AEF ⊥平面PAB .证法二:(1)以D 为坐标原点,DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.设AB =a . ∵AD =PD =2,∴A (2,0,0),B (2,a ,0),C (0,a ,0),P (0,0,2), ∵E 、F 分别为CD ,PB 的中点 ∴E (0,a2,0),F (1,a2,0).∴EF ⃗⃗⃗⃗⃗ =(1,0,1), ∵DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =(0,0,2)+(2,0,0)=(2,0,2), ∴EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ , 故EF ⃗⃗⃗⃗⃗ 、DP ⃗⃗⃗⃗⃗ 、DA ⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ∴EF ∥平面PAD .(2)由(1)知EF ⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,a ,0),AP⃗⃗⃗⃗⃗ =(−2,0,2). ∴EF ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ •AP ⃗⃗⃗⃗⃗ =-2+0+2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ , 又AB ∩AP =A ,∴EF ⊥平面PAB , 又EF ⊂平面AEF ,∴平面AEF ⊥平面PAB , (3)AB =2√2由(1)知,∴AE ⃗⃗⃗⃗⃗ =(-2,√2,0),EF⃗⃗⃗⃗⃗ =(1,0,1)设平面AEF 的法向量n ⃗ =(x ,y ,z),则{n⃗ ⋅AE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =0即−2x +√2y =0令x =1,则y =√2,z =-1, ∴n⃗ =(1,√2,-1), 又AC⃗⃗⃗⃗⃗ =(-2,2√2,0), ∴cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >=−2+4+02√12=√36, ∴sinθ=|cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >|=√36.【解析】方法一;(1)取PA 中点G ,连结DG 、FG ,要证明EF ∥平面PAD ,我们可以证明EF 与平面PAD 中的直线AD 平行,根据E 、F 分别是PB 、PC 的中点,利用中位线定理结合线面平行的判定定理,即可得到答案. (2)根据线面垂直的和面面垂直的判断定理即可证明.方法二:(1)求出直线EF 所在的向量,得到EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ ,即可证明EF ∥平面PAD .(2)再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直,即可证明平面AEF ⊥平面PAB(3)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.本题考查了本题考查的知识点是直线与平面平行的判定,面面垂直,直线与平面所成的角,解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离以及线面的位置关系等问题,属于中档题.14.【答案】解:(1)证明:∵PO ⊥平面ABCD ,且AD ⊂平面ABCD , ∴PO ⊥AD , ∵∠ADC =45°且AD =AC =2, ∴∠ACD =45°, ∴∠DAC =90°, ∴AD ⊥AC ,∵AC ⊂平面PAC ,PO ⊂平面PAC ,且AC ∩PO =O , ∴由直线和平面垂直的判定定理知AD ⊥平面PAC . (2)解:取DO 中点N ,连接MN ,AN , 由PO ⊥平面ABCD ,得MN ⊥平面ABCD , ∴∠MAN 是直线AM 与平面ABCD 所成的角, ∵M 为PD 的中点, ∴MN ∥PO ,且MN =12PO =3, AN =12DO =√52,在Rt △ANM 中,tan ∠MAN =MNAN =3√52=6√55, 即直线AM 与平面ABCD 所成角的正切值为6√55.【解析】(1)由PO ⊥平面ABCD ,得PO ⊥AD ,由∠ADC =45°,AD =AC ,得AD ⊥AC ,从而证明AD ⊥平面PAC .(2)取DO 中点N ,连接MN ,AN ,由M 为PD 的中点,知MN ∥PO ,由PO ⊥平面出直线AM 与平面ABCD 所成角的正切值.本题考查直线与平面垂直的证明,考查直线与平面所成角的正切值的求法.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题. 15.【答案】证明:(I )在三棱柱ABC -A 1B 1C 1中,连接A 1B ,交AB 1于O 点,连接OD∵在△A 1BC 1中,A 1D =DC 1,A 1O =OB , ∴OD ∥BC 1,又∵OD ⊂平面AB 1D ,BC 1⊄平面AB 1D ; ∴BC 1∥平面AB 1D ;(II )在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1; ∵B 1D ⊂平面A 1B 1C 1; ∴A 1A ⊥B 1D在△A 1B 1C 1中,D 为A 1C 1的中点 ∴B 1D ⊥A 1C 1又∵A 1A ∩A 1C 1=A 1,A 1A ,A 1C 1⊂平面AA 1C 1C , ∴B 1D ⊥平面AA 1C 1C , 又∵A 1C ⊂平面AA 1C 1C , ∴B 1D ⊥A 1C又∵A 1D AA 1=AA1AC =√22∴∠DA 1A =∠A 1AC =90°∴△DA 1A ∽△A 1AC ,∠ADA 1=∠CA 1A∵∠DA 1C +∠CA 1A =90° ∴∠DA 1C +∠ADA 1=90°∴A 1C ⊥AD又∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D ; ∴A 1C ⊥平面AB 1D ;解:(III )由(I )得,OD ∥BC 1, 故AD 与BC 1所成的角即为∠ADO在△ADO 中,AD =√3,OD =12BC 1=√62,AO =12A 1B =√62,∵AD 2=OD 2+AO 2,OD =AO∴△ADO 为等腰直角三角形故∠ADO =45°即异面直线AD 与BC 1所成角等于45°【解析】(I )连接A 1B ,交AB 1于O 点,连接OD ,由平行四边形性质及三角形中位线定理可得OD ∥BC 1,进而由线面平行的判定定理得到BC 1∥平面AB 1D ;(II )由直棱柱的几何特征可得A 1A ⊥B 1D ,由等边三角形三线合一可得B 1D ⊥A 1C 1,进而由线面垂直的判定定理得到B 1D ⊥平面AA 1C 1C ,再由三角形相似得到A 1C ⊥AD 后,可证得A 1C ⊥平面AB 1D .(III )由(I )中OD ∥BC 1,可得异面直线AD 与BC 1所成角即∠ADO ,解△ADO 可得答案.本题考查的知识点是直线与平面垂直的判定,异面直线及其所成的角,直线与平面平行的判定,(I )的关键是证得OD ∥BC 1,(II )的关键是熟练掌握线面垂直与线线垂直之间的转化,(III )的关键是得到异面直线AD 与BC 1所成角即∠ADO .16.【答案】(Ⅰ)证明:由P -ABD ,Q -BCD 是相同正三棱锥,且∠APB =90°,分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,垂足分别为E 、F ,则E 、F 分别为底面正三角形ABD 与BCD 的中心. 连接EF 交BD 于G ,则G 为BD 的中点,连接PG 、QG ,则PG ⊥BD ,QG ⊥BD ,又PG ∩QG =G ,∴BD ⊥平面PQG ,则BD ⊥PQ , 再由正三棱锥的性质可得PA ⊥BD , 又PQ ∩PA =P ,∴BD ⊥平面APQ ;(Ⅱ)∵正三棱锥的底面边长为1,且∠APB =90°,∴PQ =EF =2EG =2×13AG =2×13×√32=√33, PE =√(√22)2−(√33)2=√66,则V B−PQD =13×12×√33×√66×1=√236.△PDQ 底边PQ 上的高为√(√22)2−(√36)2=√156,∴S △PDQ =12×√33×√156=√512.设B 到平面PQD 的距离为h ,则13×√512ℎ=√236,得h =√105.∴直线PB 与平面PDQ 所成角的正弦值为√105√22=2√55.【解析】(Ⅰ)由题意分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,可得E 、F 分别为底面正三角形ABD 与BCD 的中心.连接EF 交BD 于G ,可得PG ⊥BD ,QG ⊥BD ,由线面垂直的判定及性质可得BD ⊥PQ ,再由正三棱锥的性质可得PA ⊥BD ,则BD ⊥平面APQ ;(Ⅱ)由已知求得PQ ,PE 的长,求得四面体B -PQD 的体积,利用等积法求出B 到平面PQD 的距离,则直线PB 与平面PDQ 所成角的正弦值可求.本题考查直线与平面所成的角,考查线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题. 17.【答案】(1)证明:如图:∵AB =BC ,E 为AC 的中点,∴BE ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , ∴BE ⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴BE ⊥A 1C .(2)解:∵面A1ACC1⊥面ABC,∴C1在面ABC上的射影H在AC上,∴∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,在Rt△C1CM中,CM=CC1cos∠C1CM=2cos60°=1.在Rt△CMH中,CH=CMcos∠ACB =2√33.∴在Rt△C1CH中,cos∠C1CH=CHCC1=23√32=√33.∴直线C1C与面ABC所成的角的余弦值为√33.【解析】(1)证明BE⊥平面A1ACC1,可得BE⊥A1C,即可证明:A1C⊥平面C1EB;(2)判断∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,即可求直线CC1与平面ABC所成角的余弦值.本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【答案】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC=2√36=√33,∴CD2=4+12−2×2×2√3cos∠ABC=8,∴CD=2√2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,CD⊂平面ABC,∴CD⊥平面PAB,∵PD⊂平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,CD、AC⊂平面ABC,∴PD⊥平面ABC.解:(2)∵∠PAB=π4,∴PD=AD=4,∴PA=4√2,在Rt△PCD中,PC=√PD2+CD2=2√6,∴△PAC是等腰三角形,∴S△PAC=8√2,设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,得13S△PAC×d=13S△ABC×PD,∴d==3,故点B到平面PAC的距离为3.【解析】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)连接CD,推导出CD⊥AB,CD⊥PD,由此能证明PD⊥平面ABC.(2)设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,能求出点B到平面PAC的距离.19.【答案】解:(1)证明:∵ABC-A1B1C1中,A1A⊥平面ABC,又BB 1⊂平面BB 1C 1C , ∴平面BB 1C 1C ⊥平面ABC ,∵△ABC 为正三角形,D 为BC 的中点, ∴AD ⊥BC ,又平面BB 1C 1C ∩平面ABC =BC , ∴AD ⊥平面BB 1C 1C , 又AD ⊂平面ADB 1,∴平面ADB 1⊥平面BB 1C 1C ;(2)由(1)可得△ADB 1为直角三角形, 又AD =√32,B 1D =√52,∴S △ADB 1=12×AD ×B 1D =√158,又S △ADB =12S △ABC =√38,设点B 到平面ADB 1的距离为d , 则V B−ADB 1=V B 1−ADB , ∴13S △ADB 1⋅d =13S △ADB ⋅BB 1, ∴点B 到平面ADB 1的距离d =S △ADB ⋅BB 1S △ADB 1=√3√15=√55.【解析】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)推导出BB 1⊥平面ABC ,从而平面BB 1C 1C ⊥平面ABC ,推导出AD ⊥BC ,从而AD ⊥平面BB 1C 1C ,由此能证明平面ADB 1⊥平面BB 1C 1C ;(2)设点B 到平面ADB 1的距离为d ,由V B−ADB 1=V B 1−ADB ,能求出点B 到平面ADB 1的距离.20.【答案】证明:(1)∵PA ⊥平面ABC ,BE ⊂平面ABC , ∴PA ⊥BE .∵AB =BC ,E 为AC 的中点, ∴BE ⊥AC ,又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A , ∴BE ⊥平面PAC ,又BE ⊂平面BED , ∴平面BED ⊥平面PAC .(2)∵D ,E 是PC ,AC 的中点, ∴DE ∥PA ,又PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵EF ⊂平面ABC ,BE ⊂平面ABC , ∴DE ⊥EF ,DE ⊥BE .∴∠FEB 为二面角F -DE -B 的平面角.∵E ,F 分别是AC ,AB 的中点,AB =AC , ∴EF =12BC =12AB =BF ,EF ∥BC .又AB ⊥BC ,∴BF ⊥EF ,∴△BEF 为等腰直角三角形,∴∠FEB =45°. ∴二面角F -DE -B 为45°.∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB.∴∠CPB为直线PC与平面PAB所成的角.∵PA=6,∴DE=12PA=3,又DF=5,∴EF=√DF2−DE2=4.∴AB=BC=8.∴PB=√PA2+AB2=10.∴tan∠CPB=BCPB =4 5.【解析】(1)通过证明BE⊥平面PAC得出平面BED⊥平面PAC;(2)由DE∥PA得出DE⊥平面ABC,故DE⊥EF,DE⊥BE,于是∠FEB为所求二面角的平面角,根据△BEF为等腰直角三角形得出二面角的度数;(3)证明BC⊥平面PAB得出∠CPB为所求角,利用勾股定理得出BC,PB,即可得出tan∠CPB.本题考查了线面垂直,面面垂直的判定,空间角的计算,做出空间角是解题关键,属于中档题.21.【答案】解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2√2,可得DH=CH=√22,BH=3√22在Rt△BHC中,tan∠CBH=CHBH =13,所以直线BC与平面PBD所成的角的正切值为13.【解析】(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)
立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
立体几何中线面平行经典方法经典题附详细解答
FG GCDECDEFDEB 1A 1C 1CABM 高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC=2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线EFBACDP(第1题A BCD EF G MPEDCBA6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。
立体几何文科经典题证明线面平行精选题
立体几何经典题精选题重点复习题型篇(一)平行的问题一“线线平行”与“线面平行”的转化问题(一)中位线法:当直线上没有中点,平面内有一个中点的时候,(如例1求证:PB//平面AEC P、B为顶点,平面AEC内E为中点)采用中位线法。
具体做法:如例1,平面AEC的三个顶点,除中点E夕卜,取AC的中点0,连接EQ再确定由直线PB和中点E、O D确定的PBD(连接PBD的第三边BD),在PBD中,E0为PB的中位线。
a规范写法:a//b,a ,b , b//例1如图,在底面为平行四边形的四棱锥P 求证:PB//平面AEC ;例2三棱柱ABC ABiG中,D为AB边中点。
求证:AG //平面CDB!;【习题巩固一】1. (2011天津文)如图,在四棱锥P ABCD中,底面ABCD为平行四边形,0为AC中点M为PD中点.(I)证明:PB//平面ACM; AB1B21. (2013年高考课标U卷(文))如图,直三棱柱ABC-ABG中,D是AB的中点.(1)证明BC// 平面A i CD;3. (2011 四川文)如图,在直三棱柱ABC —A1B1C1 中,/ BAC=90° AB=AC=AA i=1,延长A i C i 至点P,使C1P = A1C1,连接AP交棱CC1于D. (I)求证:PB1 //平面BDA1;(二)平行四边形法:当直线上有一个中点(如例1证明:FO//平面CDE ;O为中点)采用平行四边形法。
具体做法:FO先与E连接(原因是ECD的三个顶点E、C D中只有E与已知平行条件EF//BC 有关),再与ECD的另两个顶点CD的中点M相连,构成平行四边形FOE(原因是EF//OM,EF=OM,从而FO//EM。
规范写法(如图):EF//GH,EF GH , EFGH 是平行四边形EH//FG,EH , FG , EH //例1【天津高考】如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE 1是等边三角形,棱EF //丄BC . (1)证明:FO//平面CDE ;例2 (2013年高考福建卷(文))如图,在四棱锥P ABCD, AB//DC若M为PA的中点,求证:DM //面PBC ;例3(2010陕西文)如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA丄平面ABCD,AP=AB, BP=BC=2, E, F 分别是PB,PC 的中点.(I )证明:EF//平面FAD; (II)若H 是AD 的中点,证明:EA//平面PHC【习题巩固二】1. 【2010 •北京文数】如图,正方形ABCD和四边形ACEF所在的平面互相垂直EF//AC,AB=/2 ,CE=EF=1 (I)求证:AF// 平面BDE2. (2013年高考山东卷(文))如图,四棱锥P ABCD中,AB// CD, AB 2CD ,E为PB的中点(I )求证:CE //平面PAD •J3. (2012广东)如图5所示,在四棱锥P ABCD 中,AB 平面PAD , AB//CD,PD AD , 1E 是PB 中点,F 是DC 上的点,且DF AB , PH 为 PAD 中AD 边上的高。
线面平行和垂直专题练习
线面平行和垂直专题练习:
1、如图,在四棱锥ABCD P -中,四边形ABCD 为正方形,P 点在平面ABCD 内的射影为A ,且AB PA =,E 为PD 中点.(1)证明:PB //平面AEC ;
2.如图所示,在棱长为a 的正方体1111ABC D A B C D -中,E ,F ,P ,Q 分别是B C ,
11C D ,1AD ,B D 的中点.
(1)求证:PQ //平面11D C C D (2)求证:EF //平面11BB D D 。
3. 如图所示,在正方体1111A B C D ABC D -中,,,,E F G H 分别是1111,,,BC C C C D A A 的中点。
求证:(1) B F ∥1HD ; (2) E G ∥平面11BB D D ; (3) 平面B D F ∥平面11B D H 。
4、如图,四面体ABCD 中,O 分别是BD
的中点,2,C A C B C D BD AB AD ======
求证:A O ⊥平面BCD ;
5、如图,已知斜三棱柱'''C B A ABC -的底面是直角三角形, 90=∠ACB ,'B 在底面上的射影D 落在BC 上,求证:⊥AC 面C C BB ''
6、如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱P A 垂直于底面,E 、F 分别是AB 、PC 的中点,(1)求证 CD ⊥PD ;(2)求证 EF ∥平面PAD ;(3)当PDA ∠等于多
少度时,直线EF ⊥平面PCD ?
7、如图,已知正四棱柱1111D C B A ABCD -中,过点B 作B 1C 的垂线交侧棱CC 1于点E ,交B 1C 于点F ,求证:A 1C ⊥平面BDE ;。
立体几何中线面平行的经典方法 经典题(附详细解答)
DB A 1A F高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA(第1题图)4、如图所示, 四棱锥P -ABCD 底面是直角梯形,,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点,证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。
专题3:立体几何中平行关系的证明基础练习题
(1)连接 ,则 也为 的中点,由 可证 平面 ;
(2)存在, 为 的中点时,平面 平面 ,利用平面与平面平行的判定定理可证结论.
【详解】
(1)连接 ,则 也为 的中点,
因为 为 的中点,所以 为△ 的中位线,
所以 ,又 平面 , 平面 ,
所以 平
∴ 是 的中点,
又 是 的中点,
∴ ,
又 平面 , 平面 ,
∴ 平面 .
4.(1) 见解析;(2) 见解析;(3)见解析.
【分析】
(1)取BB1的中点M,连接HM、MC1,四边则HMC1D1是平行四边形,即可证明BF∥HD1;(2)取B1D1的中点O,易证四边形BEGO为平行四边形,故有OB∥GE,从而证明EG∥平面BB1D1D.(3)由正方体得BD∥B1D1,由四边形HBFD1是平行四边形,可得HD1∥BF,可证平面BDF∥平面B1D1H.
7.证明详见解析.
【解析】
【分析】
利用中位线,分别证明 ,由此证得平面内两条相交直线和另一个平面平行,从而证得两个平面平行.
【详解】
因为EF是△PAB的中位线,所以EF∥PA.
又EF 平面PAC,PA 平面PAC,所以EF∥平面PAC.
同理得EG∥平面PAC.
又EF 平面EFG,EG 平面EFG,EF∩EG=E,
5.(1)证明见解析;(2)
【分析】
(1)连接 ,通过证明 平面 与 平面 ,可得平面 平面 ;
(2)找到 为异面直线 和 所成角,求 即可.
【详解】
证明:(1)由题意可得,点 分别是 和 的中点,连接 ,
,
又 平面 平面 ,
平面 ,
同理: ,则 平面 ,
又 平面 平面 ,
立体几何中线面平行地经典方法+经典的题目(附详细解答)
高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(第1题图)FGGCDECDEFDE B 1A 1C 1C AB M (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG。
分析:连MD交GF于H,易证EH是△AMD的中位线6、如图,ABCD是正方形,O是正方形的中心,E是PC 的中点。
(完整版)高考专题线面平行练习题.docx
线面平行练习题11.三棱柱 ABC— A1B1C1中,若 D 为 BB1上一点, M 为 AB 的中点, N 为 BC 的中点 .求证: MN∥平面 A1C1D;y2、如图,在底面为平行四边形的四棱锥P—ABCD中,点E是PD的中点.求证: PB//平面 AEC;PEABD C3.四棱锥 P-ABCD 中,底面 ABCD 是矩形, M 、N 分别是 AB 、PC 的中点,求证: MN ∥平面 PAD;线面平行练习题24.在四棱锥 P— ABCD中,底面 ABCD是矩形, M,N分别是 AB,PC的中点.求证: MN∥平面 PAD;PNADMB C5、如图,在三棱柱ABC — A1B1C1 中, D 是 AC 的中点。
求证: AB1// 平面 DBC1A1C1B1DA CB4、如图,在正方体 ABCD—— A1 B1C1D1中, O是底面ABCD 对角线的交点 . 求证: C1O// 平面 AD1B1.线面平行练习题37.已知 ABC - A1 B1C1是底面是正三角形的棱柱,D 是 AC 的中点,求证:AB1 // 平面 DBC 1.A1ADC1CB1B8.正四棱锥 S ABCD 中,E 是侧棱 SCS 的中点 . 求证:直线 SA // 平面 BDEECDA B9.已知四棱锥 P-ABCD 中,底面 ABCD 是矩形, E、F 分别是 AB 、PD 的中点.求证: AF// 平面 PECPFDCA E B线面平行练习题410.ABCD-A 1B1C1D1是正四棱柱, E 是棱 BC 的中点。
求证:BD 1//平面 C1 DE11. 在三棱柱ABC A1B1C1中,D 为 BC 中点 . 求证:A1B //平面ADC1;C1A1CB1AD.B12.在三棱柱 ABC- A1B1C1中, M,N 分别是 CC1,AB 的中点.求证: CN //平面 AB1M.C1B1A 1MC BNA。
立体几何证明方法——证线面平行
如图,在正方体 ABCD-A1B1C1D1 中, 点 M、N 在分别是 BC1、B1D1 的中点。 求证:MN//平面 AA1B1B
D1
A1
面面平行 则线面平行
D A
N
C1 G
B1
M C
B
.
7
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
关键:构造三角形平面 D1 A1 四边形平面
面面平行
D
A
构造三角形平面 .
N
C1
B1
M C
B
5
方法演练二:
如图,在正方体 ABCD-A1B1C1D1 中,
点 M、N 在分别是 BC1、B1D1 的中点。
求证:MN//平面 AA1B1B
D1
构造平行
A1
G
四边形平面
D
A
N
C1
B1
HM C
B
.
6
方法演练二:
a
的一条平行于一个平面,
b
那么另一条直线也平行于这个平面。
a // b
推理过程: a //
b //
b
.
3
方法演练一:
如图,在三棱锥 S ABC 中,
E,F 分别是侧棱 SA,SB 的中点。
求证: EF // 平面ABC .
S
E A
F C
关键点:找三角形平面 B
.
4
方法演练二:
如图,在正方体 ABCD-A1B1C1D1 中, 点 M、N 在分别是 BC1、B1D1 的中点。 求证:MN//平面 AA1B1B
二如何证明直线与平面平行:
方法一:线线平行,则线面平行。
线面平行证明经典练习题
线面平行证明经典练习题1、在底面为平行四边形的四棱锥P-ABCD中,点E是PD的中点。
证明:连接AE和PC,由于底面ABCD为平行四边形,所以AE和PC平行。
又因为PE=ED,所以三角形PED 为等腰三角形,所以PE和CD平行。
因此,PB//平面AEC成立。
2、在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别是AB、PC的中点。
证明:连接PN和AD,由于底面ABCD为矩形,所以PN和AD平行。
又因为MN=NA=ND,所以三角形MND为等腰三角形,所以MN和PD平行。
因此,MN//平面PAD成立。
3、在三棱柱ABC-A1B1C1中,D是AC的中点。
证明:连接DB1和BC,由于三棱柱ABC-A1B1C1的底面为等边三角形ABC,所以AB1和BC平行。
又因为D是AC的中点,所以DB1和BC平行。
因此,AB1//平面DBC1成立。
4、在正方体ABCD-A1B1C1D1中,O是底面ABCD对角线的交点。
证明:连接C1O和AD1,由于O为对角线的交点,所以C1O和AD1平行。
又因为底面ABCD为正方形,所以AC1和BD1平行。
因此,C1O//平面AD1B1成立。
5、已知棱柱ABC-A1B1C1的底面为正三角形,D是AC的中点。
证明:连接A1B1和DC,由于底面为正三角形,所以AB1和DC平行。
又因为D是AC的中点,所以AB1和A1C1平行。
因此,AB1//平面DBC1成立。
6、正四棱锥S-ABCD中,E是侧棱SC的中点。
证明:连接SE和BD,由于E是侧棱SC的中点,所以SE和BD平行。
又因为三角形SBD和SCE共顶点S,所以它们在S处的角相等。
因此,直线SA//平面BDE成立。
7、已知四棱锥P-ABCD中,底面ABCD是矩形,E、F分别是AB、PD的中点。
证明:连接AF和PC,由于底面ABCD是矩形,所以AF和PC平行。
又因为PE=ED,所以三角形PED为等腰三角形,所以PE和CD平行。
因此,AF//平面PEC成立。
高中数学第八章立体几何初步 直线与直线平行 直线与平面平行课后提能训练新人教A版必修第二册
第八章 8.5 8.5.1 8.5.2A级——基础过关练1.若两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形( ) A.全等B.不可能全等C.仅有一个角相等D.全等或相似【答案】D【解析】由等角定理知,这两个三角形的三个角分别对应相等.2.(多选)下列命题中,错误的有( )A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行【答案】AC【解析】这两个角相等或互补,选项A错误;由等角定理知选项B正确;在空间中,这样的两个角大小关系不确定,选项C错误;由基本事实4知选项D正确.3.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH∥平面SCD,则( )A.GH∥SA B.GH∥SDC.GH∥SC D.以上均有可能【答案】B【解析】因为GH∥平面SCD,GH⊂平面SBD,平面SBD∩平面SCD=SD,所以GH∥SD,显然GH与SA,SC均不平行.故选B.4.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有( )A.0条B.1条C.0条或1条D.无数条【答案】C【解析】过直线a与n条直线的交点作平面β,设平面β与α交于直线b,则a∥b.若所给n条直线中有1条是与b重合的,则此直线与直线a平行,若没有与b重合的,则与直线a 平行的直线有0条.5.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α的位置关系是________.【答案】平行【解析】因为AB∥CD,AB⊂平面α,CD⊄平面α,由线面平行的判定定理可得CD∥α.6.给出下列四个命题,其中正确命题的序号是________.①在空间,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线的一条相交,那么它也和另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.【答案】②④【解析】①错,可以异面;②正确,基本事实4;③错误,和另一条可以异面;④正确,由平行直线的传递性可知.7.如图,在正方体ABCD-A1B1C1D1中,BD和B1D1分别是正方形ABCD和A1B1C1D1的对角线.(1)∠DBC的两边与________的两边分别平行且方向相同;(2)∠DBC的两边与________的两边分别平行且方向相反.【答案】(1)∠D1B1C1(2)∠B1D1A1【解析】(1)因为B1D1∥BD,B1C1∥BC且方向相同,所以∠DBC的两边与∠D1B1C1的两边分别平行且方向相同.(2)B1D1∥BD,D1A1∥BC且方向相反,所以∠DBC的两边与∠B1D1A1的两边分别平行且方向相反.8.如图,已知在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD,AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.证明:(1)如图,连接AC.因为在△ACD中,M,N分别是CD,AD的中点,所以MN是△ACD的中位线.所以MN ∥AC ,MN =12AC .由正方体的性质得AC ∥A 1C 1,AC =A 1C 1.所以MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1.所以四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1.又因为ND ∥A 1D 1,所以∠DNM 与∠D 1A 1C 1相等或互补. 而∠DNM 与∠D 1A 1C 1均为锐角, 所以∠DNM =∠D 1A 1C 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,求证:EF ∥平面BDD 1B 1.证明:如图,取D 1B 1的中点O ,连接OF ,OB .因为OF 綉12B 1C 1,BE 綉12B 1C 1,所以OF 綉BE .所以四边形OFEB 是平行四边形. 所以EF ∥BO .因为EF ⊄平面BDD 1B 1,BO ⊂平面BDD 1B 1,所以EF ∥平面BDD 1B 1.B 级——能力提升练10.如图所示,在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,EH ∥FG ,则EH 与BD 的位置关系是( )A .平行B .相交C .异面D .不确定【答案】A【解析】因为EH ∥FG ,FG ⊂平面BCD ,EH ⊄平面BCD ,所以EH ∥平面BCD .因为EH ⊂平面ABD ,平面ABD ∩平面BCD =BD ,所以EH ∥BD .11.(2021年武汉模拟)对于直线m ,n 和平面α,下面命题中的真命题是( ) A .如果m ⊂α,n ⊄α,m ,n 是异面直线,那么n ∥α B .如果m ⊂α,n 与α相交,那么m ,n 是异面直线 C .如果m ⊂α,n ∥α,m ,n 共面,那么m ∥n D .如果m ∥α,n ∥α,m ,n 共面,那么m ∥n 【答案】C【解析】对于A,如果m ⊂α,n ⊄α,m ,n 是异面直线,则n ∥α或n 与α相交,故A 错误;对于B,如果m ⊂α,n 与α相交,则m ,n 相交或是异面直线,故B 错误;对于C,如果m ⊂α,n ∥α,m ,n 共面,由线面平行的性质定理,可得m ∥n ,故C 正确;对于D,如果m ∥α,n ∥α,m ,n 共面,则m ∥n 或m ,n 相交,故D 错误.12.如图,四棱锥S -ABCD 的所有的棱长都等于2,E 是SA 的中点,过C ,D ,E 三点的平面与SB 交于点F ,则四边形DEFC 的周长为( )A .2+ 3B .3+ 3C .3+2 3D .2+2 3【答案】C【解析】由AB =BC =CD =DA =2,得AB ∥CD ,即AB ∥平面DCFE ,∵平面SAB ∩平面DCFE =EF ,∴AB ∥EF .∵E 是SA 的中点,∴EF =1,DE =CF = 3.∴四边形DEFC 的周长为3+2 3.13.(多选)如图所示,在四面体ABCD 中,M ,N ,P ,Q ,E 分别是AB ,BC ,CD ,AD ,AC 的中点,则下列说法正确的是( )A .M ,N ,P ,Q 四点共面B .∠QME =∠CBDC .△BCD ∽△MEQ D .四边形MNPQ 为矩形【答案】ABC【解析】由条件易得MQ ∥BD ,ME ∥BC ,QE ∥CD ,NP ∥BD ,所以MQ ∥NP .对于A,由MQ ∥NP ,得M ,N ,P ,Q 四点共面,故A 正确;对于B,根据等角定理,得∠QME =∠DBC ,故B 正确;对于C,由等角定理知∠QME =∠DBC ,∠MEQ =∠BCD ,则△BCD ∽△MEQ ,故C 正确;对于D,没有充分理由推证四边形MNPQ 为矩形,故D 不正确.14.(2021年安庆期末)如图,P 为□ABCD 所在平面外一点,E 为AD 的中点,F 为PC 上一点,当PA ∥平面EBF 时,PFFC=________.【答案】12【解析】连接AC 交BE 于G ,连接FG ,因为PA ∥平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面BEF =FG ,所以PA ∥FG ,所以PF FC =AG GC .又因为AD ∥BC ,E 为AD 的中点,所以AG GC =AE BC =12,所以PFFC=12.15.(2021年哈尔滨月考)如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q在CD 上,则PQ =________.【答案】223a【解析】∵MN ∥平面AC ,平面PMN ∩平面AC =PQ ,∴MN ∥PQ .∵MN ∥A 1C 1∥AC ,∴PQ ∥AC .∵AP =a 3,∴DP =DQ =2a 3.∴PQ =2×2a 3=223a .16.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB =90°,EF ∥AB ,FG ∥BC ,EG ∥AC ,AB =2EF ,M 是线段AD 的中点,求证:GM ∥平面ABFE .证明:因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以△ABC ∽△EFG ,∠EGF =90°. 由于AB =2EF ,因此BC =2FG .如图,连接AF .由于FG ∥BC ,FG =12BC ,在□ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC .因此FG ∥AM 且FG =AM .所以四边形AFGM 为平行四边形. 因此GM ∥FA .又FA ⊂平面ABFE ,GM ⊄平面ABFE , 所以GM ∥平面ABFE .C 级——探索创新练17.如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由. (1)证明:∵D ,E 分别为AP ,AC 的中点,∴DE ∥PC . ∵DE ⊄平面BCP ,PC ⊂平面BCP , ∴DE ∥平面BCP .(2)解:∵D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, ∴DE ∥PC ∥FG ,DG ∥AB ∥EF . ∴四边形DEFG 为平行四边形.∵PC ⊥AB ,∴DE ⊥DG ,∴四边形DEFG 为矩形.(3)解:存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点,由(2)知DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN ,与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG ,∴Q 为满足条件的点.。
高中数学立体几何之线面平行的判定与性质讲义及练习
线面平行的判定与性质练习一、基本内容 1.线面平行的判定2.线面平行的性质二、练习题题型一:概念性习题1.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行D 一直线与平面平行,则平面内任意直线都与已知直线异面2.若直线l 与平面α的一条平行线平行,则l 和α的位置关系是 ( ) A. α⊂l B.α//l C.αα//l l 或⊂ D.相交和αl3.若直线a 在平面α内,直线a,b 是异面直线,则直线b 和α平面的位置关系是 ( ) A .相交 B.平行 C.相交或平行 D.相交且垂直4.下列各命题中假命题的个数为 ( )(1) 经过两条平行直线中一条直线的平面必平行于另一条直线; (2) 若一条直线平行于两相交平面,则这条直线和交线平行;(3) 空间四边形中三条边的中点所确定平面和这个空间四边形的两条对角线都平行。
A 0B 1C 2D 35.若直线上有两点P 、Q 到平面α的距离相等,则直线l 与平面α的位置关系是 ( ) A 平行 B 相交 C 平行或相交 D 或平行、或相交、或在内 6.a,b 为两异面直线,下列结论正确的是 ( ) A 过不在a,b 上的任何一点,可作一个平面与a,b 都平行 B 过不在a,b 上的任一点,可作一直线与a,b 都相交 C 过不在a,b 上任一点,可作一直线与a,b 都平行 D 过a 可以并且只可以作一个平面与b 平行 7.判断下列命题是否正确:(1)过平面外一点可作无数条直线与这个平面平行 ( )(2)若直线α⊄l ,则l 不可能与α内无数条直线相交 ( ) (3)若直线l 与平面α不平行,则l 与α内任一直线都不平行 ( ) (4)经过两条平行线中一条直线的平面平行于另一条直线 ( )(5)若平面α内有一条直线和直线l 异面,则α⊄l ( ) 题型二:证明题8.P 为平行四边形ABCD 外一点,E 是PA 的中点,O 是AC 和BD 的交点,求证:OE//平面PBC 。
线面平行练习题
线面平行练习题第一篇:线面平行练习题线面平行练习题11.三棱柱ABC—A1B1C1中,若D为BB1上一点,M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;2、如图,在底面为平行四边形的四棱锥P—ABCD 中,点E 是PD 的中点.求证:PB//平面 AEC;3.四棱锥P-ABCD中,底面ABCD是矩形,M、N分别是AB、PC的中点,求证:MN∥平面PAD;线面平行练习题24.在四棱锥P—ABCD中,底面ABCD是矩形,M,N分别是AB,PC的中点.求证:MN∥平面PAD;PNADB5、如图,在三棱柱ABC—A1B1C1中,D是 AC的中点。
求证:AB1//平面DBC14、如图,在正方体ABCD——A1B1C1D1中,O是底面ABCD 对角线的交点.求证:C1O//平面AD1B1.线面平行练习题37.已知ABC-A1B1C1是底面是正三角形的棱柱,D是AC的中点,求证:AB1//平面DBC1.CB 18.正四棱锥S ABCD中,E是侧棱SC 的中点.求证:直线SA//平面BDESC9.已知四棱锥P-ABCD中,底面ABCD是矩形,E、F分别是AB、PD的中点.求证:AF//平面PECPCAEB线面平行练习题410.ABCD-A1B1C1D1是正四棱柱,E是棱BC的中点。
求证:BD1//平面C1DE11.在三棱柱ABC A1B1C1中,D为BC中点.求证:A1B//平面ADC1;C11B1CA. B12.在三棱柱ABC-A1B1C1中,M,N分别是CC1,AB的中点.求证:CN //平面AB1M.C1B1A1MCBA第二篇:线面平行证明经典练习题1、在底面为平行四边形的四棱锥P—ABCD中,点E是PD的中点。
求证:PB//平面 AECED C2、在四棱锥P—ABCD中,底面ABCD是矩形,M,N分别是AB,PC的中点。
求证:MN//平面PADDB3、在三棱柱ABC—A1B1C1中,D是 AC的中点。
立体几何中线面平行的经典方法经典题(附详细解答)
FGGABCDECA BDEFDEB 1A 1C 1CM高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ;(Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点,M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ;(Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EAE FBACDP(第1题图)4、如图所示, 四棱锥P ABCD 底面是直角梯形,,,AD CD AD BA CD=2AB, E 为PC 的中点,证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC的中点。
立体几何中线面平行的经典方法经典题附详细解答
高中立体几何证明平行专题(基本方法)立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下一些方法:(1)通过“平移”。
(2)利用三角形中位线性质。
(3)利用平行四边形性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形性质1.如图,四棱锥P-ABCD底面是平行四边形,点E、F 分别为棱AB、PD中点.求证:AF∥平面PCE;分析:取PC中点G,连EG.,FG,则易证AEGF是平行四边形(第1题图)2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,G、F分别为AD、CE中点,现将△ADE沿AE折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD;分析:取DB中点H,连GH,HC则易证FGHC是平行四边形3、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB中点,M为BE中点, AC⊥BE. 求证:(Ⅰ)C1D⊥BC;(Ⅱ)C1D∥平面B1FM.分析:连EA,易证C1EAD是平行四边形,于是MF//EA4、如图所示, 四棱锥P ABCD 底面是直角梯形,CD=2AB, E 为PC 中点, 证明:;分析::取PD 中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线性质5、如图,已知、、、分别是四面体棱、、、中点,求证:∥平面。
分析:连MD 交GF 于H ,易证EH 是△AMD 中位线6、如图,ABCD 是正方形,O 是正方形中心,E 是PC 中点。
求证: PA ∥平面BDE7.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 中点. 求证:AB 1//面BDC 1;分析:连B 1C 交BC 1于点E ,易证ED 是△B 1AC 中位线8、如图,平面平面,四边形与都是直角梯形, ,,分别为中点(Ⅰ)证明:四边形是平行四边形;(Ⅱ)四点是否共面?为什么?ABCDEF G MPEDCBA(.3) 利用平行四边形性质9.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 中心,M 为BB 1中点, 求证: D 1O//平面A 1BC 1;分析:连D 1B 1交A 1C 1于O 1点,易证四边形OBB 1O 1 是平行四边形10、在四棱锥P-ABCD 中,AB ∥CD ,AB=DC ,. 求证:AE ∥平面PBC ;分析:取PC 中点F ,连EF 则易证ABFE 是平行四边形11、在如图所示几何体中,四边形ABCD 为平行四边形,∠ ACB=,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C大小.(I )证法一:因为EF//AB ,FG//BC ,EG//AC ,,所以∽由于AB=2EF ,因此,BC=2FC , 连接AF ,由于FG//BC ,在中,M 是线段AD 中点,则AM//BC ,且因此FG//AM 且FG=AM ,所以四边形AFGM 为平行四边形,因此GM//FA 。
辽宁省沈阳市二十一中高二数学《立体几何》练习 线面平行专题
一、线面平行专题1.如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,求证: EF ∥平面ABC ;2.如图,正三棱柱111ABC A B C -中,D 是BC 的中点, 求证:1A B //平面1ADC .3.如图,在底面为平行四边行的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC4.如图,E F O 、、分别为PA ,PB ,AC 的中点,G 是OC 的中点,求证://FG 平面BOE ;二、垂直专题1.如图,在直三棱柱111ABC A B C -中,点D 在11B C 上,11A D B C ⊥。
求证:平面1A CD ⊥平面11BB C C .2.如图,正三棱柱111ABC A B C -中,D 是BC 的中点,AB a =. 求证:直线111A D B C ⊥;PABCDE3.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上. 求证:平面AEC PDB ⊥平面;4.如图,直三棱柱111ABC A B C -中,AB =1,13AC AA ==,∠ABC=600.求证:1AB A C ⊥;5. 直三棱柱111ABC A B C -中,90BAC ∠=,12AB AC AA ===,M N 、分别是1BC CC 、的中点,求证:1B M ⊥平面AMN ;6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形, ∠PAC =∠PBC =90º。
求证:AB ⊥PC7. 如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥EC ,且EC=AC=2BD ,M 是AE 的中点,求证:(1)DE=AD ;(2)平面BDM ⊥平面ECA 。
8.如图,矩形ABCD 中,AD ⊥平面ABE ,AE=EB=BC=2,F 为CE 上的点,PBACDE PBCA且BF⊥平面ACE。
(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)设AC,BD交于点G,求三棱锥C-BGF的体积。
立体几何中线面平行的方法题附详细解答
(基本方法)立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
⑵利用三角形中位线的性质。
(3)利用平行四边形的性质。
⑷利用对应线段成比例。
(5)利用面面平行,等等。
(1)通过“平移”再利用平行四边形的性质1.如图,四棱锥 P— ABCD的底面是平行四边形,点 E、F分另I」为棱AB PD 的中点.求证:AF//平面PCE分析:取PC的中点G连EG.,FG贝踢证AEGF是平行四边形 2、如图,已知直角梯形 ABCD中, AB// CD AB丄BC AB=1, BO 2, C01+ 3,(第1题过A作AE!CD 垂足为E, G F分别为AD CE的中点,现将△ ADE沿AE折叠, 使得DEL EC.(I)求证:BC L面 CDE (U)求证:FG//面 BCD高中立体几何证明平行分析:取DB的中点H,连GH,HC贝易证D 3、已知直三棱柱 ABC— A1B1C1中,D, E, FGHC是平行四边形DE F CM为BE的中点,AC L BE.求证: 分别为AA, CC1, AB/的AC(I) CD丄BC (U) CD//平面B1FM.分析:连EA,易证GEAD是平行四边形,于是MF BA AD,CD AD, EB//平面 PAD E F G MAD CD BD BC AM EFG 求证:C1PFDAECB1 1 AB ABEF ABCD ABEF ABCD BAD FAB 90°, BC 〃 —AD BE 〃 - AF G,H2 2求证: DO ^E 为PD 中点 求证:AE//平面PBC 2 分析:取PC 的中点F,连EF 则易证ABFE 是平行四边形 11、在如图所示的几何体中,四边形 AEBABCD 为平行四边形,/ ACB 90 ,EA 丄平面ABCD, EF /AB,FG/BC,EG/AC . AB =2EF .(I)若M是线段AD 的中点,求证:GM //平面ABFE(U)若AC = BC =2AE ,求二面角A-BF-C的大小. (I) 证法 EF ACB EGF FG 1 BC2 BN P ND 90 0ABCD AM90 , ABC 〔BC FA 2 AM SM M AB F PA AF 2FP (1)求证:BE (2)求证:CM //平面BEF ; ABC PB ABC BCA 90“为EFG. GM平面PAC D分析:取AF 的中点N,连CN MN 易证平面CMN1C a, b,c , a//b a// ,b a// ,b// C ABCD M,N AB,CD MN 1 AC BC MN2ECCE PC 八EMABFr:N 『/\ EQ, 训\ -_F\XCb a//c,b//c a //1AC BC MN2AC BCMN1 -AC 2BC8.如下图所示,四个正方体中, P 分别为其所在棱的中点底面边长是2,侧棱长是 『3,D 是AC 的中点.求证:B 1C//平面A 1BD .11.如图,在平行六面体 ABCDABCD 中,E ,M ,N, G 分别是AA ,CD CB CC 的 中点,求证:(1)MN参考答案一、选择题 1 . D 【提示】当I 时,内有无数多条直线与交线I 平行,同时这些直线也与平面 平行.故A, B ,C 均是错误的 2. C【提示】棱AC, BD 与平面EFG 平行,共2条. 3. C【提示】a 〃 ,b,则a//b 或a,b 异面;所以A 错误;a 〃,b 〃 ,则a//b 或a, b 异面或a,b 相交,所以B 错误;a//,口 b,则a//b 或a, b 异面,所以D 错误;a//c,b//c , 则a//b ,这是公理4,所以C 正确. 4. B【提示】若直线 m 不平行于平面 ,且m ,则直线m 于平面 相交, 内不存 在与m 平行的图,正三棱柱ABCA 1B 1C 1 的A B 为正方体的两个顶点, ,能得到M N,直线.5. B【提示】②③④错误•②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行•③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边二、填空题7.平面ABC平面ABD【提示】连接AM并延长,交CD于 E,连结BN并延长交CD于F,由重心性质可知,E、F重合为一点,且该点为 CD的中点E,由EM=EN=1得MN/ AB因此,MN/平MA NB 2面ABC且MN/平面ABD8.①③【提示】对于①,面 MNP T③,MP9平行【提示】连接BD交AC于0,连OE二0曰B D,,OEC平面 ACE二B D1//平面ACE.三、解答题10.证明:设AB1与A i B相交于点P,连接PD,则P为AB i中点,D为 AC中点,PD B i C A i B B1CA1B 明:(1) M、N分别是 CD CB的中点,MN //所以 BDMNQ QC QAC 面 EBD,E0 面 EBD,所以 AGg// AG 面AHC,所以 AG// // // 所以 BD BD DG=G 面 EBD// 面 BDG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学周练 9.13
1空间三点,可以确定平面的个数是 2. 下列命题正确的是( )
A . 若βα⊂⊂b a ,,则直线b a ,为异面直线
B . 若βα⊄⊂b a ,,则直线b a ,为异面直线
C . 若∅=⋂b a ,则直线b a ,为异面直线
D . 不同在任何一个平面内的两条直线叫异面直线
3 已知//a 平面α,直线α⊂b ,则直线a 与直线b 的关系是
4.分别和两条异面直线平行的两条直线的位置关系是
5.若空间两条直线a ,b 没有公共点,则其位置关系是____________.
6.若a 和b 是异面直线,b 和c 是异面直线,则a 和c 的位置关系是______________ 7.在正方体ABCD —A 1B 1C 1D 1中,与对角线AC 1异面的棱共有________条. 8.给出下列四个命题:
①垂直于同一直线的两条直线互相平行; ②平行于同一直线的两直线平行;
③若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ;
④若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线. 其中假命题的个数是________.
9 在三角形、四边形、梯形和菱形中,一定是平面图形的有 个.
10.已知直线,a b 和平面α,且,,a b a α⊥⊥则b 与α的位置关系是 . 11.已知正方体ABCD-A 1B 1C 1D 1中: (1)B C 1与C D 1所成的角为________; (2)AD 与B C 1所成的角为 .
12.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论: ①AB ⊥EF ; ②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD . 以上结论中正确结论的序号为________.
13.下列命题正确的个数是
①若直线l 上有无数个点不在平面α内,则l ∥
α
②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行
③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行
A
B C
D
A 1
D 1
C 1
B 1
④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点
14.a ,b 为异面直线,且a ,b 所成角为40°,过空间点O 的直线c ,且与b a ,所成角均为0
70,则这样的直线c 的条数是 二.解答题:
15.(14)(1)在正方体1111D C B A ABCD -中,E 为1DD 的中点,求证:1BD ∥面AEC (2)已知三棱柱111C B A ABC -中,D 为线段11C A 中点。
求证:1BC ∥平面D AB 1
16.(15)如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E ,F ,P ,
Q 分别是BC ,11C D ,1AD ,BD 的中点.
(1)求证:PQ //平面11DCC D ; (2)求PQ 的长; (3)求证:EF //平面
11BB D D 。
A
1
A P D Q
B
E
C
F
1
D 1
C 1
B
17.(14)在正方体ABCD—A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,
(1)求证:PQ∥平面DCC1D1。
(2)若Q
P,分别是中点,求PQ与BC所成的角。
D1C1
B1
A1
A B C
D
P
Q
18.(15)如图,在三棱锥P-ABC中,已知AB=AC=2,PA=1,∠
PAB=∠PAC=60°,点D、E分别
为AB、PC的中点.
(1)在AC上找一点M,使得PA∥面DEM;(2)求证:PA⊥面PBC;
19(16)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 、P 、Q 、M 、N 分别是棱AB 、AD 、DD 1、BB 1、A 1B 1、A 1D 1的中点,求证: (Ⅰ)直线BC 1∥平面EFPQ ; (Ⅱ)直线AC 1⊥平面PQMN .
20.(16)已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 上的点 (1)若E,F 为中点,
2
1
==GC DG HA DH ,求证:EH ,FG ,BD 交于一点。
(2)若四边形EFGH 是平行四边形,求证://AC 平面EFGH.
A
H G F
E D
C
B。