第二章微波中继通信系统2-1

合集下载

无线通信—微波和卫星通信(现代通信技术课件)

无线通信—微波和卫星通信(现代通信技术课件)

• 频分多址 • 时分多址 • 空分多址 • 码分多址
卫星通信多址方式
卫星通信系统
• 卫星通信系统的线路
– 在一个卫星通信系统中,各地球站经过通信卫星转发器可以组成多条 单跳单工或双跳单工卫星通信线路。
– 单工是指通信的双方分别被固定为发信站和收信站。 发信站发送的信 号只经一次卫星转发后就被接收站接收的卫星通信线路叫做单跳单工 卫星通信线路。
– 发信站发送的信号经过两次卫星转发后被接收站接收的卫星通信线路 叫做双跳单工卫星通信线路。
卫星通信系统
卫星通信系统的分类
– 同步卫星通信系统(GEO)
• 卫星绕地球的运行周期与地球自转同步,而对地 球应相对静止,又称为静止轨道卫星系统。
– 非同步卫星通信系统
• 中轨道卫星系统(ICO或MEO) • 高轨道卫星系统(HEO) • 低轨道卫星系统(LEO)
同步通信卫星的设置和可通信区
• 通信卫星一般是指同步卫星, 同步卫星的轨道是圆形且在赤 道平面上,同步卫星离地面 35785.6公里,飞行方向与地 球自转方向相同时,从地面上 任意一点看,卫星都是静止不 动,这种对地静止的卫星称为 通信卫星。利用三或四颗同步 卫星,就能够使信号基本覆盖 地球的表面。
5.微波设备 微波设备主要由IDU、ODU、中频电缆、天线等部分组成
IDU是室内单元,Indoor Unit。ODU是室外单元, Outdoor Unit。 中频是指发射机将信号载 波变换成发射频率,或者 将接收频率变换成基带的 一个中间频率,一般由系 统架构决定。 而射频,就是天线发射出 去的、在空中传播的电磁 波信号频率。
微波通信
5.微波设备组成
IDU负责完成业务接入、复分接 和调制解调,在室内将业务信

微波通信原理--1

微波通信原理--1

分体式微波设备系统结构
避雷器
ODU
ODU的接地线应接到铁塔的角钢上, 其接地电阻小于10欧姆 接地装置
地线的接地电阻应小于10欧姆
铁塔的接地电阻应小于10欧姆 接地电阻小 于10欧姆 同轴电缆
IDU
地气
IDU的接地
拉线塔
抛物面天线
增益:
Ga=20lgDa+20lgf+20.4+10lgηA Ga为天线增益(dB); Da为天线口径(m); f为工作频率(GHz); ηA为天线效率,可取50%~70%。 实例: D=0.6M F=13GHz G=35dBi (VHP2-130,35.5dBi)
1.2.1 普通无线电波波段的划分
波段名称
超长波 长波 中波 短波 超短波
波长范围
105~ 104 m 104~ 103 m 103~ 102 m 102~ 10 m 10 ~ 1 m
频率范围
3k~30k Hz 30k~300k Hz 300k~3M Hz 3M~30M Hz 30M~300M Hz
高频段可以做 用户级传输
越高频段雨衰 越厉害!!
衰落的一般特性
1、波长越短、距离越长,衰落越严重 2、夜间比白天严重,夏季比冬季严重 3、晴天,宁静天气比阴天、风雨天气时严重 4、水上电路比陆上电路严重 5、平地电路比山区电路严重
工作频段用途 频率 用途
7G
8G 13G 15G 18G 23G 26G 28G
衰落类型
1.多径衰落 2. K型衰落 3.波导型衰落 4.雨衰
• 多径衰落 由 • 于折射波,反射波,散射波等多途径传播引起的衰落。多径衰落周期较短 一般为几秒。多径衰落又叫频率选择性衰落。合成波的电平比正常传输低称 为下衰落,比正常传输高称为上衰落。

微波通信系统概述

微波通信系统概述

旁瓣干扰示意图
解决方法:调整相邻各站天线指向的相对角度。为了 使同频邻站干扰低于60dB,要求线路拐弯、分支处的 夹角不小于90˚;或采用正交极化配置的方法来补偿, 但其夹角也不宜小于70˚。此外,在线路分支处,通过 采用不同的频率配置,可以使夹角的限制条件放宽或 不再受限制。
系统外部干扰
系统外部干扰包括其它无线电设备(如雷 达、卫星通信设备等)辐射的频段相近的 电磁波和工业设备的杂散辐射电磁波。
四频制单波道频率配置
采用四频制方案时,没有反向干扰问题,但仍 然存在越站同频干扰问题,且其占用频带比二 频制方案宽一倍。
交错制多波道频率配置
相邻波道的发信或收信频差(80MHz)是同一波道收发频差 (40MHz)的两倍,因而较易实现分波道滤波,但由于收发频差 不太大,为保持发射方向和接收方向之间有足够的衰减,对带 通滤波器的频带特性要求较高。此外,交错排列的6个收信频 率和6个发信频率布满整个频段,发射天线和接收天线很难做 到宽频带内的阻抗匹配,因而各中间站需要设置多副天线。
微波中继通信系统组成
微波中间站的转接方式
(1)基带转接方式 (2)中频转接方式 (3)微波转接方式
基带转接方式
基带转接方式可以直接上、下话路,是微波分 路站和枢纽站必须采用的转接方式。采用这种 转接方式的中间站的设备与终端站可以通用。
中频转接方式
中频转接不需调制、解调器,简化了设备,且没有调 制和解调引入的失真和噪声;其发本振和收本振采用 移频振荡方案,降低了对本振稳定度的要求。但中频 转接不能上、下话路,不能消除噪声积累。对于不需 要上、下话路的中继站,可以采用中频转接方式,如 模拟微波中继通信系统就常用这种方式。
短波天波传播示意图 微波传播示意图

现代通信系统新技术(第二版)课后答案

现代通信系统新技术(第二版)课后答案

2.1 SDH帧结构分哪几个区域?各自的作用是什么?分为信息净负荷、段开销和管理单元指针。

作用:信息净负荷负责对打包的货物(低阶通道)进行通道性能监视、管理和控制;段开销是为了保证信息净负荷正常传送;管理指针单元是用来指示净负荷中信息起始字节的位置。

2.2通过STM1帧结构计算STM-1、SOH和AU-PTR的速率。

2.3简述数字复接原理。

把若干个小容量低速数字流合并成一个大容量高速数字流,然后通过高速信道传到对方后再分开。

2.4数字复接器和分接器的作用是什么?复接器是把两个以上的低速数字信号合并成一个高速数字信号;分接器是把高速数字信号分解成相应的低速数字信号。

2.5准同步复接和同步复接的区别是什么?同步复接是输入端的各支路信号与本机定时信号是完全同步的;准同步复接是存在一个很小的容差。

2.6为什么数字复接系统中二次群的速率不是一次群(基群)的4倍?因为四个基群的码元速率存在偏差,在复接前必须进行码速调整,同时还需要加入同步码。

2.7采用什么方法可以形成PDH高次群?采用数字复接来形成PDH高次群。

2.8为什么复接前首先要解决同步问题?因为如果不解决同步问题的话,直接将几个低次群进行复接,就会产生重叠和错位,在接收端不可能完全恢复。

2.9数字复接的方法有哪几种?PDH采用的是哪一种?同步复接和异步复接。

PDH采用的是异步复接。

2.10为什么同步复接要进行码速变换?简述同步复接中的码速变换与恢复过程。

因为只有当几个低次群的数码率统一在主时钟的频率上才可实现同步复接,而进行码型变换,即在码流中插入附加码,可使系统码速相等。

二次群速率:8448 kb/s;基群变换速率:8448/4=2112 kb/s;码速变换:为插入附加码留下空位且将码速由2048 kb/s提高到2112 kb/s;插入码之后的子帧长度:=(2112×103)×T=(2112×103)×(125×10-6)=264 bit;插入比特数:256(原来码)=264 256=8 bit;插入8 bit的平均间隔时间(按位复接):256/8 = 32 bit;码速恢复:去掉发送端插入的码元,将各支路速率由2112 kb/s还原成2048 kb/s;2.11异步复接中的码速调整与同步复接中的码速变换有什么不同?码速调整插入脉冲要视具体情况,不同支路、不同瞬时数码率、不同的帧,可能插入也可能不插入脉冲(不插入脉冲时,此位置为原信息码),且插入的脉冲不携带信息。

第2章习题解答

第2章习题解答

第二章习题解答2.01 试给出数据通信系统的基本模型并说明其主要组成构件的作用。

答:1)信源和信宿信源就是信息的发送端,是发出待传送信息的设备;信宿就是信息的接收端,是接收所传送信息的设备,在实际应用中,大部分信源和信宿设备都是计算机或其他数据终端设备(data terminal equipment,DTE)。

2)信道信道是通信双方以传输媒体为基础的传输信息的通道,它是建立在通信线路及其附属设备(如收发设备)上的。

该定义似乎与传输媒体一样,但实际上两者并不完全相同。

一条通信介质构成的线路上往往可包含多个信道。

信道本身也可以是模拟的或数字方式的,用以传输模拟信号的信道叫做模拟信道,用以传输数字信号的信道叫做数字信道。

3)信号转换设备其作用是将信源发出的信息转换成适合于在信道上传输的信号,对应不同的信源和信道,信号转换设备有不同的组成和变换功能。

发送端的信号转换设备可以是编码器或调制器,接收端的信号转换设备相对应的就是译码器或解调器。

2.02 试解释以下名词:数据,信号,模拟数据,模拟信号,数字数据,数字信号。

答:数据:通常是指预先约定的具有某种含义的数字、符号和字母的组合。

信号:信号是数据在传输过程中的电磁波的表示形式。

模拟数据:取值是连续的数据。

模拟信号:是指幅度随时间连续变化的信号。

数字数据:取值是离散的数据。

数字信号:时间上是不连续的、离散性的信号2.03 什么叫传信速率?什么叫传码速率?说明两者的不同与关系。

答:传信速率又称为比特率,记作R b,是指在数据通信系统中,每秒钟传输二进制码元的个数,单位是比特/秒(bit/s,或kbit/s或Mbit/s)。

传码速率又称为调制速率、波特率,记作N Bd,是指在数据通信系统中,每秒钟传输信号码元的个数,单位是波特(Baud)。

若是二电平传输,则在一个信号码元中包含一个二进制码元,即二者在数值上是相等的;若是多电平(M电平)传输,则二者在数值上有R b=N Bd×log2 M的关系。

第一。通信系统概述

第一。通信系统概述
6
(4)数字图象通信 图象通信,信息量大,传输信道宽。 近年来已发展成熟的数字图象压缩技术解决了上述问 题,减小了传输信道的带宽。正是数字图象通信推进 了多媒体技术。 (5)移动卫星通信 通常是指:利用卫星中继站实现地 面、空中、海上移动用户间或移动用户与固定用户间 的相互通信。 (6)程控交换 系指由程序控制的信息交换,这是一项 交换和计算机技术相结合的信息交换新技术。 。电路交换 °分组交换
9
1.3 通信的发展趋势
(1)综合网络 电信网与计算机网和电视网融合成的 新通信网技术是一种发展趋势。 (2)通信网络是向数字化、综合化、宽带化发展 (3)大容量干线网 卫星通信、陆地微波接力通信和 光纤通信的发展与融合。 (4)移动通信和固定通信结合 组成个人通信网 (PCN),PCN将向全球化、综合化、智能化和多 媒体方向发展。 (5)广播电视技术的发展 是从数字化带来广播制式 的多元化。HDTV(高清晰度电视)在数字传输方 面已获成功;DAB(数字电声广播)当前已确认为 下一代的广播,大有发展前途。
10
(6)互联网络(internet) 高速发展,容入 语音(IP电话) (7)标准化 随着通信网的演变,不断制定或 修订网络标准的,通信网是一个复杂的大系 统,对一个国家和全球来说都应是全程全网 的,因而要有一个统一的标准。
11
2
通信的种类(1)
(1)按业务内容可分为: 电报、 电话、 数据通信(计算机数据) 传真,图象等。 (2)按所传送的信号形式可分为: 模拟通信——普通的电话、传真、电视电话。 数字通信——电报、数据通信信——电信号在导线、电缆、波导上传输的 通信,应分别称为:明线通信、电缆通信、波导通 信。 无线通信——电波在空间传播的通信。现有两种分 类法: 按传输方式又可分为: 移动通信 散射通信、 卫星通信 微波中继通信

《现代通讯系统》课件(第三章-微波中继通信系统)

《现代通讯系统》课件(第三章-微波中继通信系统)
现代通讯系统
本课件介绍微波通信及中继系统的基本概念,包括传输链路、参数设计、数 字化、应用领域等方面,旨在加深对现代通讯技术的理解。
微波通信的基本概念
微波通信的定义
微波通信是指利用微波电磁波进行通信的方法。
微波信道的特点
信道宽带大、传输速率快、免受电磁干扰等。
微波通信与其他通信方的比较
与有线通信比较,微波通信无需线路,安装方便;与卫星通信比较,微波通信无需面向卫星 天线,使用成本更低。
微波中继数字化的应用
主要应用在高速率通信和高质量 音频广播领域。
微波通信系统的应用领域
1 微波通信系统的应用领域
主要应用在军事通信、铁路通信、航空与航海通信、广播电视传输等。
2 微波通信系统的优势和短处
传输距离远,速度快,但受气象条件限制较大。
3 微波通信系统的未来发展方向
数字化技术的应用以及对天气干扰的优化处理等。
总结
1
微波通信的优越性
高速率、宽带、传输距离远。
2
微波中继系统的参数设计
需要综合考虑多种因素,如信道距离、频带等。
3
微波数字化在通信领域中的应用
在高速率通信及音频广播方面得到广泛使用。
需要多方面考虑,如信道距离、传输功 率、功率增益等。
中继站的功率放大器设计
需要根据传输信道特性以及信号的频带 和传输距离等因素进行设计。
微波中继通信系统的数字化
微波中继通信数字化的背 景和意义
数字化可以提高通信的可靠性和 数字处理的能力。
微波中继数字化的实现技 术和方法
主要有软件无线电、直接数字频 率合成和数字化下变频等。
微波中继系统的组成
微波中继系统的功能 和特点
实现超距离、高速率的通信。

现代通信系统 第2章 微波中继通信系统

现代通信系统 第2章 微波中继通信系统
11
现代通信系统
第2章 微波中继通信系统
地球表面是个曲面,且天线所架高度 有限,发信端发出的电磁波会受到地面的 阻挡。在一定天线高度的情况下,为了克 服地球的凸起而实现远距离通信,必须采 用中继接力的方式,两个通信点(信号转节 点)间设立中继站,即所谓的视距通信。否 则A站发射出的微波射线将远离地面而根 本不能被D站接收。
38
现代通信系统
第2章 微波中继通信系统
39
现代通信系统
第2章 微波中继通信系统
40
现代通信系统
第2章 微波中继通信系统
微波站的主要设备包括发信设备、收 信设备、天馈系统、电源设备以及保障 通信线路正常运行和无人维护所需要的 监测控制设备等。
41
现代通信系统
第2章 微波中继通信系统
发信设备的组成
交换 交换 中心 中心
端局 端局
终端 终端
交换 交换 中心 中心 光纤通信 光纤通信
交换 交换 中心 中心
卫星通信 卫星通信
微波中继通信系统在整个通信网中的位置
4
现代通信系统
第2章 微波中继通信系统
2.1 微波中继通信的概念
微波通信的发展与无线通信的发展是 分不开的。 微波中继通信是利用微波频率 (300MHz~300GHz)作载波携带信息, 通过无线电波空间,采用中继(接力) 通信方式在地面上进行的无线电通信。
20
现代通信系统
第2章 微波中继通信系统
(3)通信灵活性较大 微波中继通信采用中继方式,可以 实现地面上的远距离通信,并且可以跨越 沼泽、江河、湖泊和高山等特殊地理环境。 在遭遇地震、洪水、战争等灾祸时,通信 的建立、撤收及转移都比较容易,这些方 面比电缆通信具有更大的灵活性。

计算机网络知识精讲 第二章 物理层

计算机网络知识精讲	第二章	物理层

第二章物理层(一) 通信基础1. 信道、信号、带宽、码元、波特、速率、信源与信宿等基本概念2. 奈奎斯特定理与香农定理3. 编码与调制4. 电路交换、报文交换与分组交换5. 数据报与虚电路(二) 传输介质1. 双绞线、同轴电缆、光纤与无线传输介质2. 物理层接口的特性(三) 物理层设备1. 中继器2. 集线器2.1 通信基础2.1.1 信道、信号、带宽、码元、波特、速率、信源与信宿等基本概念(1)信道:向某一个方向传送信息的媒体。

(2)信号:数据的电磁或电气表现。

(3)带宽:媒介中信号可使用的最高频率和最低频率之差,或者说是频带的宽度,Hz;另一定义是信道中数据的传送速率,bps。

(4)码元:在使用时间域(简称时域)的波形表示数字信号时,代表不同离散数值的基本波形。

(5)波特:单位时间内传输的码元数。

(6)比特率:单位时间内传输的比特数。

(7)信源(8)信宿计算机网络的性能计算1. 速率比特(bit)是计算机中数据量的单位,也是信息论中使用的信息量的单位。

一个比特就是二进制数字中的一个1 或0。

速率即数据率(data rate)或比特率(bit rate)是计算机网络中最重要的一个性能指标。

速率的单位是b/s(bps),kb/s, Mb/s, Gb/s 等“带宽”(bandwidth)本来是指信号具有的频带宽度,单位是赫(或千赫、兆赫、吉赫等)。

现在“带宽”是数字信道所能传送的“最高数据率”的同义语,单位是“比特每秒”,或b/s (bit/s),bps。

更常用的带宽单位是千比每秒,即kb/s (103 b/s)兆比每秒,即Mb/s(106 b/s)吉比每秒,即Gb/s(109 b/s)太比每秒,即Tb/s(1012 b/s)请注意:在计算机界,K = 210 = 1024M = 220, G = 230, T = 240。

3. 时延(delay 或latency)传输时延(发送时延)发送数据时,数据块从结点进入到传输媒体所需要的时间。

现代通信概论(本)教学大纲

现代通信概论(本)教学大纲

现代通信概论(本)教学⼤纲现代通信概论课程教学⼤纲编写⼈:审核⼈:⼀、课程基本信息开课单位:机电⼯程学院适⽤专业:电⼦信息⼯程课程名称:现代通信概论课程代码:016032课程类型:专业⽅向课程学分:2总学时:32 理论学时:32 实验(上机)学时:0考核⽅式:考查先修课程:模拟电⼦技术、数字电⼦技术、微机原理与接⼝技术、信号与系统后续课程:移动通信、光纤通信、现代计算机⽹络⼆、课程简介(⼀)课程性质和任务本课程是电⼦信息⼯程专业的基础课程,它是⼀门理论性强,但有⼀定的实践性和较强实⽤性的专业基础课程。

课程主要介绍模拟信号和数字信号的传输。

要求学⽣通过本课程的学习,能掌握通信的基本原理,熟悉各种典型现代通信系统的构成及基本⼯作过程,了解各种现代通信技术的发展及趋势。

(⼆)课程⽬标通过本课程的理论学习,使学⽣理解计算机⽹络的体系结构和⽹络协议,掌握组建局域⽹和接⼊Internet的关键技术,培养学⽣初步具备局域⽹组⽹及⽹络应⽤能⼒,从⽽为后续信号⽹络课程的学习打下良好的基础。

三、教学内容及要求(⼀)教学内容第⼀章概论(总学时:2)第⼀节基本概念(学时:1)第⼆章数字通信技术(总学时:6)第⼀节模拟信号数字化(学时:2)第⼆节时分多路复⽤及PCM30/32路系统(学时:2)第三节数字复接技术(学时:1)第四节同步数字系列(SDH)(学时:1)第三章程控交换技术(总学时:6)第⼀节概述(学时:1)第⼆节程控数字交换的基本原理(学时:2)第三节程控数字交换机的构成(学时:2)第四节呼叫接续过程分析与控制原理(学时:1)第四章信息传输技术与系统(总学时:6)第⼀节光纤通信(学时:2)第⼆节数字微波中继通信(学时:2)第三节卫星通信(学时:1)第四节移动通信(学时:0.5)第五节图像通信(学时:0.5)第五章通信⽹(总学时:2)第⼀节电话⽹(学时:1)第⼆节⽀撑⽹(学时:0.5)第三节智能⽹(学时:0.5)第六章数据通信与数据⽹(总学时:4)第⼀节数据通信概念(学时:0.5)第⼆节差错控制(学时:1)第三节物理层接⼝(学时:1)第四节数据链路传输控制规程(学时:0.5)第五节数据交换⽅式(学时:0.5)第六节数据通信⽹(学时:0.5)第七章 ISDN与ATM技术(总学时:2)第⼀节 N-ISDN(学时:1)第⼋章宽带IP技术(总学时:2)第⼀节 IP⽹络的基本概念(学时:0.5)第⼆节宽带IP技术的发展(学时:0.5)第三节宽带IP⾻⼲⽹技术(学时:0.5)第四节下⼀代⽹络(NGN)技术(学时:0.5)第九章接⼊⽹与接⼊技术(总学时:2)第⼀节接⼊⽹简介(学时:0.5)第⼆节有线接⼊⽹技术(学时:1)第三节⽆线接⼊技术(学时:0.5)(⼆)主要知识点,重点难点,基本要求:第⼀章绪论基本要求:掌握通信系统的分类及通信⽅式。

第二章微波中继通信系统

第二章微波中继通信系统

交换机的作用
数字微波通信系统设备中交换机的作用是实现本 地用户终端之间的业务互通,如实现本地话音用户之 间的通话,又可通过微波中继通信线路实现本地用户 终端与远地(对端交换机所辖范围)用户终端之间的业 务互通。交换机配置在微波终端站或微波分路站。
终端复用设备的基本功能
数字微波通信系统设备中终端复用设备的基本功 能是将交换机送来的多路信号或群路信号适当变换, 送到微波终端站或微波分路站的发信机;将微波终端 站或微波分路站的收信机送来的多路信号或群路信号 适当变换后送到交换机。
合标准的标准系列数字复用设备,每组数字复用设备都包 含一套并路设备和一套分路设备;
4) 包含两次64Kb/s的数字信号转接,其它为群转接; 5) 适用于国际和国内的远距离微波干线通信。
2. 中级假设参考电路 1) 传输容量二次群以上; 2) 基本长度为1220km; 3) 由4类质量不同的假设参考数字微波段组成,第一类
因为信号从中间站的某一中继机的收信机转接到另 一中继机的发信机时,接口频带为中频,所以称作中频 转接又称为外差转接。中频转接省去了调制、解调器, 简化了设备,且没有调制和解调引入的失真和噪声。中 频转接的发信本振和收信本振采用移频振荡方案,降低 了对本振稳定度的要求。但中频转接不能上、下话路, 不能消除噪声积累。对于不需要上、下话路的中继站, 可以采用中频转接方式,如模拟微波中继通信系统的中 继站就常用这种方式。
数字微波中继通信系统的终端复用设备是时分多 路数字终端机,包括增量调制(DM)和脉冲编码调制 (PCM)两种制式。增量调制数字终端机常用在军事数 字微波中继通信中,脉冲编码调制终端机常用在民用 数字微波中继通信中。终端复用设备配置在微波终端 站或微波分路站。
微波站的基本功能

2-1 物理层基本概念和传输媒体

2-1 物理层基本概念和传输媒体

27
物理层的传输媒体(1)
v交叉方式:联线一边是568A标准,另一边568B 标准 v适用场合:两主机或交换机直接相连
EIA/TIA568A连接标准
工作站 工作站
针号: 1 一端:白绿 另端:白橙
2 绿 橙
3 白橙 白绿
4 蓝 蓝
5 6 白蓝 橙 白蓝 绿
7 白棕 白棕
8 棕 棕
(b)采用EIA/TIA568A连接标准交叉方式
功能特性
过程特性
物理层的基本概念
【物理层标准举例—EIA-232接口标准】
r1960年美国电子工业协会EIA提出RS-232,1963年提 出RS-232-A,1965年提出RS-232-B,1969年提出 RS-232-C。用于DTE/DCE之间的接口。RS—推荐标 准,232—标识号码,E—标准已被修改过的次数。
DCE-A
EIA-232/V.24 接口
调制解调器
网络 串行比特传输
调制解调器
EIA-232/V.24 接口
rDCE将DTE传过来的数据按比特顺序逐个发往传输线路, 或从传输线路收下串行的比特流交给DTE。 r为了减轻数据处理设备用户的负担,必须对DCE与DTE 的接口进行标准化。这种接口标准就是物理层协议。
注意:有些网卡或交换机能自适应直通和交叉方式
28
物理层的传输媒体(1)
物理层的传输媒体(1)
屏蔽双绞线:内部与非屏蔽双绞线电缆一样是双绞铜
线,外层由铝箔包着。
rSTP在抗干扰方面优于UTP,但相对要贵一些。 r屏蔽双绞线除了用于IBM网络产品安装,并未普遍
流行起来。
物理层的传输媒体(2)
【同轴电缆】 【结构】:
物理层的传输媒体(3)

无线通信基础知识

无线通信基础知识

(五)网络间的干扰 在同一区域内,往往存在着隶属于不同系 统的许多通信网,每个网络自成体系。这 些网络之间的相互影响就形成了网间干扰。
第十节 天线
无线电发射机输出的射频信号功率,通过 馈线(电缆)输送到天线,由天线以电磁 波形式辐射出去。电磁波到达接收地点后, 由天线接下来(仅仅接收很小很小一部分 功率),并通过馈线送到无线电接收机。 可见,天线是发射和接收电磁波的一个重 要的无线电设备,没有天线也就没有无线 电通信。
(一)工作频率范围 (二)频率间隔(频率分辨率) 频率间隔(频率分辨率) (三)频率转换时间(越小越好) 频率转换时间(越小越好) (四)频率稳定度与准确度 (五)频谱纯度
二、锁相环(PLL)基本原理 锁相环(PLL)
锁相环PLL是一个相位反馈控制系统。它 锁相环PLL是一个相位反馈控制系统。它 由鉴相器PD、环路滤波器LF和压控振荡 由鉴相器PD、环路滤波器LF和压控振荡 器VCO三个基本部件组成。 VCO三个基本部件组成。
第九节 噪声和干扰
一、噪声 噪声是一种随机信号,其频谱分布于整个 无线电工作频率范围,因此它是影响各类 收信机性能的主要因素之一。 一般可分为:① 内部噪声;②自然噪声; ③ 人为噪声。
二、干扰
在无线电通信网中,由于众多电台之间的 相互作用,相互影响,可产生互调干扰、 阻塞干扰、邻道干扰和同频干扰,其中互 调干扰、阻塞干扰和同频干扰对通信网影 响较严重,应格外注意。
(一)对无线电接收机的主要技术要 求
1.应工作于规定的波段和采用适当的解调方式, 并应根据系统设计与实际情况决定。 2.应具有高的接收灵敏度。 3.应有好的选择性。 4.应有好的保真度。 5.应有高的工作稳定度。
(二)无线电接收机的工作过程

现代通信系统第2章微波中继通信系统

现代通信系统第2章微波中继通信系统

现代通信系统 第2章 微波中继通信系统
➢微波中继通信主要用来传送长途电话信 号、宽频带信号(如电视信号)、数据 信号、移动通信系统基地站与移动业务 交换中心之间的信号等,还可用于通向 孤岛等特殊地形的通信线路以及内河船 舶电话系统等移动通信的入网线路。
15
现代通信系统 第2章 微波中继通信系统
微波通信自第二次世界大战后期开始应 用,历经由模拟到数字,使用频段由低频 段向高频段的发展,其频谱利用率也不断 由于技术的进步而得到不断的提高,应用 领域也由长途电信、彩色电视传输,拓展 到一点多址、无线接入、无线局域网等领 域,微波通信的发展应用历程,是它特点 的充分体现。
微 分米波(特高频) 厘米波(超高频)
波 毫米波(极高频)
300MHz—3(GHz) 3—30(GHz) 30—300(GHz)
100—10cm 10—1cm 1cm—1mm
红外线(光波)
>300(GHz)
<1mm
9
现代通信系统 第2章 微波中继通信系统
• 分米波(特高频):用于电视广播,飞机 导航、着陆,警戒雷达,卫星导航,卫星 跟踪、数传及指令网,蜂窝无线电通信。
6
现代通信系统 第2章 微波中继通信系统
• 米波:用于语音广播,移动(包括卫星移 动)通信,接力(~50km跳距)通信,航 空导航信标,以及容易实现具有较高增益 系数的天线系统。 微波频段是在较高频段,通常人们所 说的微波是指频率在0.3~300GHz范围的 电磁波,微波通信利用此频段的电磁波来 传递信息。
微波中继站和分路站统称微波中间 站。任务是完成微波信号的转发和分路。
35
现代通信系统 第2章 微波中继通信系统
36
现代通信系统 第2章 微波中继通信系统

通信原理第二章(信道)习题及其答案

通信原理第二章(信道)习题及其答案

第二章(信道)习题及其答案【题2-1】设一恒参信道的幅频特性和相频特性分别为0()()d H K t ωϕωω⎧=⎨=-⎩其中,0,d K t 都是常数。

试确定信号()s t 通过该信道后的输出信号的时域表达式,并讨论之。

【答案2-1】 恒参信道的传输函数为:()0()()d j t j H H e K e ωϕωωω-==,根据傅立叶变换可得冲激响应为:0()()d h t K t t σ=-。

根据0()()()i V t V t h t =*可得出输出信号的时域表达式:000()()()()()()d d s t s t h t s t K t t K s t t δ=*=*-=-讨论:题中条件满足理想信道(信号通过无畸变)的条件:()d d H ωωφωωτττ⎧=⎨⎩常数()=-或= 所以信号在传输过程中不会失真。

【题2-2】设某恒参信道的幅频特性为[]0()1cos d j t H T e ωω-=+,其中d t 为常数。

试确定信号()s t 通过该信道后的输出表达式并讨论之。

【答案2-2】 该恒参信道的传输函数为()0()()(1cos )d j t j H H e T e ωϕωωωω-==+,根据傅立叶变换可得冲激响应为:0011()()()()22d d d h t t t t t T t t T δδδ=-+--+-+根据0()()()i V t V t h t =⊗可得出输出信号的时域表达式:0000011()()()()()()()2211 ()()()22d d d d d d s t s t h t s t t t t t T t t T s t t s t t T s t t T δδδ⎡⎤=⊗=⊗-+--+-+⎢⎥⎣⎦=-+--+-+讨论:和理想信道的传输特性相比较可知,该恒参信道的幅频特性0()(1cos )H T ωω=+不为常数,所以输出信号存在幅频畸变。

其相频特性()d t ϕωω=-是频率ω的线性函数,所以输出信号不存在相频畸变。

计算机网络技术第二章知识点

计算机网络技术第二章知识点

第二章知识点1.数据通信是计算机技术与现代通信技术相结合而产生的一种新的通信方式和通信业务。

2.数据通信是计算机网络的基础,也是计算机网络的主要功能之一。

3.数据通信是依照通信协议,利用数据传输技术在两个功能单元之间传递数据信息。

(数据通信的定义)4.数据通信的基本作用是完成两个实体间数据的交换,实现计算机与计算机、计算机与终端以及终端与终端间的数据信息的传递。

5.通信的目的是为了交换数据。

6.数据是传送信息的载体,是信息的数字化形式,所表示的内容就是信息。

7.信息是对数据的解释,即对数据蕴含内容的说明。

8.数据的结构和格式可以是不同的,但信息不随载荷符号的形式不同而改变。

9.信号是数据在传输过程中电信号的表现形式,或称数据的电编码或电磁编码。

10.通信双方产生的数据可以分为模拟数据和数字数据。

11.模拟信号是在一定范围内可以连续取值的信号,是一种连续变化的电信号(波形),它可以以不同频率在介质上传输。

12.数字信号是一种离散的脉冲序列,它的取值是有限个数。

13.数据是信息的载体,信息是数据的内容和解释,而信号是数据的编码。

14.信道是指两地间传输数据信号的通路,即信号的传输通道,包括通信设备和传输介质。

15.信道按传输介质分为有线信道和无线信道;按使用权限分为专用信道和公用信道;按传输信号的形式可以分为模拟信道和数字信道。

16.数字通信系统的基本组成一般包括发送端、接收端以及收发两端之间的信道三个部分。

17.模拟通信系统利用模拟信号来传递信息,如普通的电话、广播和电视。

通常由信源、调制器、信道、解调器、信宿及噪声源组成。

18.数字通信系统利用数字信号来传递信息,如计算机通信、数字电话、数字电视等,通常由信源、信源编码器、信道编码器、调制器、信道、解调器、信道译码器、信源译码器、信宿以及噪声源组成。

19.为了获得更远距离的传输,模拟通信系统需要使用放大器,数字通信系统需要使用中继器。

20.用数字信号承载数字或模拟数据,称为编码。

通信系统

通信系统
低频:使用的频段范围为 20KHz ~ 1MHz ,波长大致在2500m内, 使用距离小于1m。常见的工作频率有125KHz、135KHz;低频的 RFID电子标签一般为被动的无源标签,其通过电感耦合方式进行 能量供应和数据传输。优点是能够很好穿透物品而不缩短它的读取 距离而且没有特殊的限制。
高频:使用的频段范围为 3MHz~200MHz,波长大致在22m内,使 用距离也小于1.5m。常见的工作频率 13.56MHz。这个频段的标签 能量供应和数据传输、穿透性都和低频基本一致,没有任何特殊的 限制。优点是可以同时读取多个的RFID 标签、传输速率快、安全 性高,数据信息储存量较大和无需电感线圈绕制成本价格较低。
调制方式
表 1- 1常见的调制方式 用途
连 线性调制 续 调 制
常规双边带调制
广播
抑制载波双边带调幅 立体声广播
单边带调幅SSB
载波通信、无线电台、数传
残留边带调幅VSB 非线性调制 频率调制FM
电视广播、 数传、 传真 微波中继、卫星通信、广播
数字调制
相位调制PM 幅度键控ASK 相位键控
中间调制方式 数据传输 数据传输
60 km
电离层 平流层 对流层
10
km 0
km
地面
第一节 无线信道
一、基本问题 电离层对于传播的影响 吸收(衰减) 反射 散射 大气层对于传播的影响 吸收 散射
图1、大气衰减
第二节 有线信道
一、明线:
明线是指平行而相互 绝缘的架空裸线线路。
与电缆相比,它的优 点是传输损耗低。
续表(2) 调制方式
用途
数字调制
相位键控PSK、 DPSK、 数据传输、 数字微波、

无线通信技术基础_02无线通信系统

无线通信技术基础_02无线通信系统
无线通信技术基础
第2章、无线通信系统
内容介绍
无线通信是利用电磁波信号可以在自由空间中传播的特性进行信息交换 的一种通信方式。近年来,在信息通信技术领域中发展最快、应用最广的就 是无线通信技术。无 线通信的应用已深入到人们生活和工作的各个方面,移动通信系统、无 线局域网、蓝牙、卫星通信系统、微波通信系统、数字广播和电视等都是最 热门的无线通信技术应用。 无线通信系统是以无线通信技术为核心组成的通信设施,无线通信系统 具有和有线通信系统不同的特点,可以为人类提供更加灵活的、无处不在的 通信服务。
需要双工器来完成收信和发信的隔离。收信与发信也可以使用相同的频率,
在不同的时间发送信号,称为时分双工(TDD),这时通信双方的设备需 要射频开关来完成收信和发信的隔离。典型应用:蜂窝移动通信系统。
送话器
A T f1 双工器或 射频开关 R f2(f1) 双工器或 射频开关 f1 f2(f1)
B T
送话器
信源
发信机
天馈
天馈
收信机
信宿
第2.3节、无线通信系统的组成
发信机:发信机的主要作用是将需要传送的信源信号发送出去。 首先,用信源信号对高频载波(正弦波)进行调制形成调制载波。 然后,调制载波经过中频放大、变频和滤波后成为射频载波。 最后,将射频载波送到功率放大器经过放大后再送至天线发射出去。
收发信机B 发信机
天馈
天馈
收信机
收信机
第2.4节、无线通信系统的数字化
早期的无线通信系统基本都是采用模拟调频技术。模拟无线通信系统的 产生是由它的时代背景决定的,20世纪70 ~ 80年代,采用模拟无线通 信技术是一个必然的选择。模拟蜂窝移动通信系统发展迅速,获得了很 大成功,但是由于受到模拟技术的限制,暴露出了很多问题。 频率利用率较低。 提供的业务种类有限,特别是不能提供高速数据业务。 保密性差,易被窃听。 移动设备成本高,体积大。 网络管理与控制存在很多问题。 这些问题很难在模拟技术的框架内得到解决,必须突破模拟技术束缚。 随着数字通信技术的日趋成熟,为蜂窝系统从模拟系统发展到数字系统奠 定了基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.微波转接方式

微波转接与中频转接类似,但其转接接口是微波 接口,且为了使同中继站的转发信号不干扰接收信号, 转信载频f2,相对于收信载频f1;需要移频,即移频振 荡器的频率等于f2与f1之差。另外,为了克服传播衰落 引起的电平波动,还需在微波放大时采取自动增益控 制措施。微波转接电路技术实现起来比中频转接困难, 但微波转接方案简单,设备体积小、功耗低,对于不 需要上、下话路的中继站可采用这种转接方式。
22
第二章 微波中继通信系统
数字微波中继站
数字微波中继站指的是位于线路中间的微波站。 根据对信号的处理方式不同,又可将中继站分 为中间站和再生中继站,再生中继站又包括上 下话路和不上下话路两种结构。
23
第二章 微波中继通信系统
数字微波分路站
数字微波分路站指的是位于线路中间的微波站, 既可以上、下某收、发信波道的部分支路,也 可以沟通干线上两个方向之间的通信。由于在 此站上能够完成部分波道信号的再生,因此该 站应配备有微波传输设备和分插复用设备。
第二章 微波中继通信系统
一、基本概念
(二)微波中继通信的概念 问:为什么利用微波进行远距离传输必须采 用中间站转发的方式? 2、由于地球表面为球面,再加上地物地貌的 影响使得视距传播距离受限。
第二章 微波中继通信系统
措施? 增加天线高度,增大发射功率?
第二章 微波中继通信系统
中继方式
第二章 微波中继通信系统
用户终端
直接为用户所使用的终端设备。如电话机、传真机、计算 机、调度电话机等。
交换机
用户可通过交换机进行呼叫连接,建立暂时的通信信道或电 路。这种交换可以是模拟交换,也可以是数字交换。目前, 大容量干线绝大部分采用数字程控交换机。
数字终端机
实际上是一个数字电话终端复用/分接设备,其基本功能是 把来自交换机的多路信号模拟变换成时分多路数字信号,复 接信号送往数字微波传输信道。同时把来自微波终端站的复 接信号进行分接,分接信号送往交换机。
第二章 微波中继通信系统
一、基本概念
二、微波中继线路的组成
第二章 微波中继通信系统
微波线路 发信设备 收信设备 中继方式
第二章 微波中继通信系统
数字微波通信线路
18
第二章 微波中继通信系统
数字微波通信系统组成
用户终端;交换机 ;数字终端机;微波站
19
第二章 微波中继通信系统
第二章 微波中继通信系统
一、基本概念
(三)微波中继通信的特点 5.建设成本低、周期短 在通信容量和质量基本相同的条件下,按话 路千米计算,微波中继通信线路建设费用不到同 轴电缆通信线路的一半,还可以节约大量的有色 金属,建设时间也比较短。
第二章 微波中继通信系统
一、基本概念
(四)微波中继通信的应用 微波中继通信主要用于长途电话、电视广播、 数据以及移动通信系统基地站与移动业务交换中 心之间的信号传输,还可用于跨越河流、峡谷等 特殊地形的通信线路。
第二章 微波中继通信系统
一、基本概念
(三)微波中继通信的特点 2.抗电磁干扰能力强 微波频段基本不受工业干扰、天电干扰及太 阳黑子活动的影响,因地,微波中继通信系统工 作稳定,通信的可靠性高。
第二章 微波中继通信系统
一、基本概念
(三)微波中继通信的特点 3.通信机动性好
微波中继通信采用中继方式,即可以跨越沼泽、江河、 湖泊和高山等特殊地域,实现地面上的远距离通信,又能 在遭遇地震、洪水、战争等灾祸时,迅速建立和组织有效 的通信,而且微波通信系统的撤收和转移都较容易。因此, 它比光缆、电缆等固定通信信道具有更好的机动性。
一、基本概念
(一)微波通信的概念 微波通信是利用微波作为载波来携带信息, 并通过自由空间电波传送信息。 微波的频率范围?
微波的传输特性?
第二章 微波中继通信系统
一、基本概念
(一)微波通信的概念
微波通信是利用微波作为载波来携带信息, 并通过自由空间电波传送信息。 微波的频率范围?300MHz~300GHz 微波的传输特性?视距传输特性(直线传播)
2 2 ' r
43
2.1.2.2 自由空间传播损耗
若不考虑发射天线增益Gt和接收天线增益Gr, 电波的自由空间损耗定义为发射功率与接收功率之比, 2 即 2
Pt (4d ) 4 2 2 Lf d f 2 Pr c
通常用分贝表示自由空间传播损耗,即
Lf 32.44 20 lg d 20 lg f
收信设备组成一般采用超外差接收方式,由射频系统、中频 系统和解调系统组成。
2.1.1.4 中间站的转接方式
微波中继通信系统中间站的转接方式一般是 按照收发信机转接信号时的接口频带划分的, 分为3种:再生转接方式、中频转接方式和 微波转接方式。

1.再生转接方式
对应中继机(微波收发信机)的天线馈电系统、微波低 噪声放大器后,与该中继机的接收机本振信号混频, 混频输出信号经中放后送到解调器解调输出基带信号, 再转接到该中继站的另一中继机调制其发信机的中频 或直接对微波振荡器进行调制。已调信号经过变频输 出载频为f2的微波信号,该信号经微波功放、天线馈 电系统后向中继站的另一个通信方向发送出去。
第二章 微波中继通信系统
第二章 微波中继通信系统
一、基本概念
接力通信-接力赛跑 起点-交接-交接-终点
信源-中继-中继-信宿
简易接力通信:烽火传信、击鼓传音、驿站等。 无线电接力通信:是指利用超短波或微波的视距传输 特性,采用中间站转发的方式达成的远距离多路无线电通 信。
第二章 微波中继通信系统
第二章 微波中继通信系统
一、基本概念
(三)微波中继通信的特点 4.天线增益高、方向性强
由于微波频率高,工作波长短,所以其天线尺寸,容 易制成高增益的面式天线,降低发信机的输出功率。另外, 微波电磁波具有直线传播特性,可以利用微波天线把电磁 波聚集成很窄的波束,使微波天线具有很强的方向性,减 少通信中的相互干扰和被截获的概率。
一、基本概念
(三)微波中继通信的特点 微波通信具有频带宽、容量大、传输稳定可靠等优点。 1.通信频带宽 微波频段(300MHz~300GHz)占用的频带约300GHz, 大约是整个长波、中波和短波频段总和的10000倍。由于占用的频带 宽,可容纳更多的无线电设备同时工作,通信容量大。通常,一套短 波通信设备只能容纳几个话路同时工作,而一套微波中继通信设备可 以容纳几千甚至上万条话路同时工作,还可以传输电视图像等宽频带 信号。
24
第二章 微波中继通信系统
数字微波枢纽站
数字微波枢纽站指的是位于干线上的、需要完成多 个方向通信任务的微波站。在系统多波道工作 的情况下,此类站应能完成对某些波道信号或 部分支路的转接和话路的上、下功能,同时也 能完成对某些波道STM-4信号的复接和分接操 作,如果需要,还能对某些波道的信号进行再 生处理后的再继续传播。
当h1=h2=50m时,d=50km

2.1.2.2 自由空间传播损耗
实际微波通信中采用的天线均有方向性, 对于发射天线而言,天线增益Gt表示天线在最 大辐射方向上单位立体角的发射功率与无方向 天线单位立体角的发射功率的比值。此时,与 发射源相距d的单位面积所接收的功率为
Pt Gt Pr 2 4d
20
第二章 微波中继通信系统
微波站
数字微波终端站 数字微波中继站 数字微波分路站 数字微波枢纽站
21
第二章 微波中继通信系统
数字微波终端站
数字微波终端站指的是位于线路两端或分支线 路终点的微波站,它对一个方向收、发,且收 发射频不同。微波终端站设备中包括发信端和 收信端两大部分。
中 频 功 放
上 变 频 器
微 波 功 放
信码
码型 变换
微波振 荡器
中频单元
射频单元
2.1.1.2 发信设备-微波调制发射机 信码经码型变换后,首先在中频调制器对 中频载频(70MHz/140MHz)进行调制; 只要更换调制、解调单元,就可以传输模 拟/数字信号,实现数字模拟系统兼容。
2.1.1.3 收信设备
A
R2 R2
2
d1
d2
B
h2
2
h1
R
R h2
2
d d1 d 2
R h1
R
2
R h2
2
R
2
考虑到 R h1, R h2 ,上式可以写成:
d 2Rh1 2Rh2 2R ( h1 h2 ) 3.57 ( h1 h2 )
第二章 微波中继通信系统
2中频转接中继方式
36
2.中频转接方式 因为信号从中间站的某一中继机的收信机转接到另
一中继机的发信机时,接口频带为中频,所以称作中频 转接又称为外差转接。中频转接省去了调制、解调器, 简化了设备,且没有调制和解调引入的失真和噪声。中 频转接的发信本振和收信本振采用移频振荡方案,降低 了对本振稳定度的要求。但中频转接不能上、下话路, 不能消除噪声积累。对于不需要上、下话路的中继站, 可以采用中频转接方式,如模拟微波中继通信系统的中 继站就常用这种方式。
经对应中继机(微波收发信机)的天线馈电系统、微波 低噪声放大器后,与该中继机接收机本振信号混频, 混频输出信号经中放后转接到该中继站的另一中继机 的发信机功率中放,将信号放大到上变频器所需的功 率电平,然后与发信机本振信号进行上变频,输出载 频为f2的微波信号。该信号经微波功放、天线馈电系 统后,向中继站的另一通信方向发送出去。
第二章 微波中继通信系统
3微波转接中继方式
39
2.1.2 微波传播特性
2.1.2.1天线高度与传播距离 2.1.2.2 自由空间传播损耗 2.1.2.3天气效应 2.1.2.4地面效应 2.1.2.5衰落、电平储备与分集接收
相关文档
最新文档