初二一次函数拔高练习题汇编
(完整word版)初二数学一次函数拔高训练题
初二数学一次函数拔高训练题1.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A 、k 〈31B 、31 < k 〈1 C 、k>1 D 、k 〉1或k<31 2.一次函数y=ax+b(a 为整数)的图象过点(98,19),交x 轴于(p,0),交y 轴于(0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )A 。
0 B.1 C.2 D.无数3.在直角坐标系中,横,纵坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k 的交点为整点时,k 的值可以取( )(A)2个 (B )4个 (C )6个 (D )8个4.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a <)b ;乙上山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t (分),离开点A 的路程为S (米).那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t (分)与离开点A 的路程S (米)之间的函数关系的是( )5.函数的自变量x 的取值范围是_____。
6.若直线1103457323=+y x 与直线897543177=+y x 的交点坐标是(a ,b ),则222004b a +的值是 7.若一次函数y =kx +b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,则一次函数的解析式为________________________.8.某矿泉水厂生产一种矿泉水,经测算,用一吨水生产的矿泉水所获利润y (元)与1吨水的价格x(元)的关系如图所示。
(A ) t (分) S (米) (B ) t (分) S (米) (C ) t (分) S (米)(D ) t (分)S (米)(1)求y与x的函数关系式及自变量x的取值范围;(2)为节约用水,特规定:该厂日用水量不超过20水价为每吨4元;日用水量超过20吨时,超过部分按每吨x40元收费。
初二一次函数拔高练习题
巩固练习1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6 (C )y=8x+6 (D )y=5x+32.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( ) A B . C . D .3. 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
4.过点(2,-3)且平行于直线y=2x 的直线是____ _____。
5.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________;6.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;7.若y=mx+n 的图象经过第一二四象限,则2m m n --的化简式为 .8.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t (分),离开点A 的路程为S (米),•那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t (分)与离开点A 的路程S (米)•之间的函数关系的是( )解答题:1.若y-2与x-3成正比例,且当x=4时,y=-1,则请写出y 与x 的函数关系式.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x ≤4,求y 的取值范围.3.在直角坐标系中,是否存在x轴上的动点,使得它到定点P(5,5)和到Q(0,1)的距离MP十MQ的值最小?若存在,求出点M的横坐标x;若不存在,请说明理由。
北师大版八年级第4章一次函数应用(图像综合)填空题拔高训练(一)
八年级第4章一次函数应用(图像综合)填空题拔高训练(一)1.甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为km(结果精确到1km).2.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.3.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行米.4.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)5.小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:日期x(日) 1 2 3 4成绩y(个)40 43 46 49小红的仰卧起坐成绩y与日期x之间近似为一次函数关系,则该函数表达式为.6.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.7.甲、乙两人分别从A,B两地相向而行,匀速行进甲先出发且先到达B地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了h.8.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.9.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为米.10.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.11.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.12.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.13.某商店今年6月初销售纯净水的数量如下表所示:日期 1 2 3 4数量(瓶)120 125 130 135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为瓶.14.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.16.A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.17.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.18.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.19.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.20.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有(请写出所有正确判断的序号)参考答案1.解:由题意可知,甲行驶的速度为:(km/h),A、B两地之间的距离为:25+50×2=125(km),乙的速度为:50﹣35=15(km/h),2+(125﹣15×2)÷(50+15)=,即乙出发小时后与甲相遇,所以B,C两地的距离为:(km).故答案为:73.2.解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得,x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为:12.3.解:当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350(米)∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故答案为:350.4.解:设甲种火龙果种植x亩,乙种火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.5.解:设该函数表达式为y=kx+b,根据题意得:,解得,∴该函数表达式为y=3x+37.故答案为:y=3x+37.6.解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).7.解:由图可得,甲的速度为:36÷6=6(km/h),则乙的速度为:=3.6(km/h),则乙由B地到A地用时:36÷3.6=10(h),故答案为:10.8.解:令150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).9.解:设小明原速度为x(米/分钟),则拿到书后的速度为1.25x(米/分钟),则家校距离为11x+(23﹣11)×1.25x=26x.设爸爸行进速度为y(米/分钟),由题意及图形得:.解得:x=80,y=176.∴小明家到学校的路程为:80×26=2080(米).故答案为:2080.10.解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V乙)×=120,解得:乙的速度V乙=80,∵乙的速度快,从图2看出乙用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.11.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.12.解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米),故答案为:6000.13.解:这是一个一次函数模型,设y=kx+b,则有,解得,∴y=5x+115,当x=7时,y=150,∴预测今年6月7日该商店销售纯净水的数量约为150瓶,故答案为150.14.解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.15.解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣x+6,当t=45时,y=﹣×45+6=1.5,故答案为:1.5.16.解:由题意可得,甲车的速度为:30÷=45千米/时,甲车从A地到B地用的时间为:240÷45=5(小时),乙车刚开始的速度为:[45×2﹣10]÷(2﹣)=60千米/时,∴乙车发生故障之后的速度为:60﹣10=50千米/时,设乙车发生故障时,乙车已经行驶了a小时,60a+50×()=240,解得,a=,∴乙车修好时,甲车行驶的时间为:=小时,∴乙车修好时,甲车距B地还有:45×(5)=90千米,故答案为:90.17.解:乙提高后的速度为:(20﹣2)÷(4﹣1﹣1)=9,由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.18.解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.619.解:根据图象可得,甲车的速度为120÷3=40(千米/时).由题意,得,解得60≤v≤80.故答案为60≤v≤80.20.解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,故①正确;设y1=kx+b,将(0,300)、(3,0)代入,得:,解得:,∴y1=﹣100x+300,设y2=mx,将点(5,300)代入,得:5m=300,解得:m=60,∴慢车离乙地的距离y2解析式为:y2=60x;∴当y1=y2时,两车相遇,可得:﹣100x+300=60x,解得:x=h,故②正确;分两种情况考虑,相遇前两车相距60km,﹣100x+300﹣60x=60,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=60,解得,h,∴当x=h时,两车相距60km,故③正确;快车每小时行驶=100千米,慢车每小时行驶60千米,两地之间的距离为300千米,∴b=300÷(100+60)=,由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为300﹣3×60=120千米,∴C点坐标为(3,120),故④正确;分两种情况考虑,相遇前两车相距200km,﹣100x+300﹣60x=200,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=200,解得,h,∵,∴当h不合题意,舍去.∴当x=h时,两车相距200km,故⑤不正确.故答案为:①②③④.。
八年级数学一次函数提高训练题学生版
八年级数学《一次函数》能力提高训练题1、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .2、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、已知函数y=(k-1)x+k 2-1,当k_______时,它是一次函数,当k=_______•时,它是正比例函数.4、已知一次函数y kx b =+的图象经过点(2,5)-,且它与y 轴的交点和直线32xy =-+与y 轴的交点关于x 轴对称,那么这个一次函数的解析式为 .5、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .6、已知直线42y x =-与直线3y m x =-的交点在第三象限内,则m 的取值范围是 .7、无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 8、若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<13 (B )13<k<1 (C )k>1 (D )k>1或k<139、在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A )1个 (B )2个 (C )3个 (D )4个 10、若直线11y k x =+与24y k x =-的交点在x 轴上,那么12k k 等于( ) .4A .4B - 1.4C 1.4D -11、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A. 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b << 12、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限13、已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )A .7m >B .1m >C .17m ≤≤D .都不对14、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )15、如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P 处,若再向前行驶15分钟,使可到达距A 站22千米处.设甲从P 处出发x 小时,距A 站y 千米,则y 与x 之间的关系可用图象表示为( )16、如图4,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n),且2m +n =6,则直线AB 的解析式是( ).A 、y =-2x -3B 、y =-2x -6C 、y =-2x +3D 、y =-2x +617、已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )A .7m >B .1m >C .17m ≤≤D .都不对18、已知(0,0)b c a c a bk b a b c a b c+++===>++=,那么y kx b =+的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 19、当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是( ) A 、04<<-a B 、20<<a C 、24<<-a 且0≠a D 、24<<-a20、在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k的交点为整数时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个21、已知y 与x+1成正比例关系,当x=2时,y =1,求当x=-3时y 的值?22、已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .23、已知一次函数(63)(4),y m x n =++-求: (1)m 为何值时,y 随x 的增大而减小;(2),m n 分别为何值时,函数的图象与y 轴的交点在x 轴的下方?(3),m n 分别为何值时,函数的图象经过原点? (4)当1,2m n =-=-时,设此一次函数与x 轴交于A ,与y 轴交于B ,试求AOB 面积。
八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)
一次函数提高练习与常考题和培优难题压轴题( 含解析)9小题)一.选择题(共1.函数的自变量x的取值范围是()A.x≤ 2 B.x≥ 2 且x≠3C.x≥2D.x≤ 2 且x≠32.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x 轴的交点是(﹣2,0)③由图象可知y 随x 的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2 平行的直线,其中正确说法有()A.5 个B.4 个C.3 个D.2 个3.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y 与x的函数关系式为2x,那么自变量x的取值范围是()y=20﹣A.x>0 B.0<x<10 C.0<x<5 D.5<x<104.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a5.一辆慢车以50 千米/小时的速度从甲地驶往乙地,一辆快车以75 千米/小时发,则500 千米,两车同时出离为的速度从乙地驶往甲地,甲、乙两地之间的距图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B. C .D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x 关于的一次函数y=mx+n 的图象如上图,则| n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤ 1 时,﹣1≤y≤7,则k b 的值为()A.10 B.21 C.﹣10 或2 D.﹣2或102+(1﹣2m)x +1(m 为常数)是一次函数,则m的值为9.若函数y=(2m+1)x()二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣b x+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a b.(填“>”<“”或“=)”,且y随x的增大而减小,则m的值是.|m﹣2|13.已知正比例函数y=(1﹣m)x14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段A B最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,S与运动时间t(s)的函沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,⋯都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,⋯都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;2=OE2+AF2;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6 的图象分别与y 轴、x 轴交于点A、B,点P从点B出发,沿BA以每秒 1 个单位的速度向点 A 运动,当点P到达点A 时停止运动,设点P的运动时间为t 秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q 为y 轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t 为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线ADA D为一边向上作正方形ABCD.并以线段(1)填空:点B的坐标为,点C的坐标为.线DA 向上平移,直至正方形的(2)若正方形以每秒个单位长度的速度沿射顶点C落在y 轴上时停止运动.在运动过程中,设正方形落在y 轴右侧部分的面量t 的取值积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点 D 与点A 重合,将直尺沿AB方向平移,如图②.设平移0≤x≤10,直尺与直角三角形纸板重合部分的面积(即的长度为x cm,且满足图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、2+=0,C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=4°5,求点D的坐标.33.如图,?ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P 作x轴的垂线交x轴于点E,若S△PBE=,求此时点P的坐标.34.在平面直角坐标系x oy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非:常距离”,给出如下定义若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).,0),B为y轴上的一个动点,(1)已知点A(﹣①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.4=02﹣39.已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程x的解,点C的纵坐标恰好是方程x2﹣4x+4=0的解,点P从C点出发沿y轴正方P A、PB,D为AC的中点.向以1个单位/秒的速度向上运动,连1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?3)如图2,若PA=AB,在第一象限内有一动点Q,连Q A、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不值.变,请说明理由并求其40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀为y(km),y与t 速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离了图1的部分正确信息,乙先出发1h,的函数关系如图1所示,方成思考后发现甲出发0.5h与乙相遇,⋯请你帮助方成同学解决以下问题:(1)分别求出线段B C,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.优难题压轴题数学初二一次函数提高练习与常考题和培( 含解析)参考答案与试题解析9小题)一.选择题(共1.(2016 春?重庆校级月考)函数的自变量x 的取值范围是()A.x≤ 2 B.x≥ 2 且x≠3C.x≥2D.x≤ 2 且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.3≠0,【解答】解:根据题意得:2﹣x≥0 且x﹣解得:x≤ 2 且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2016 春?南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x 轴的交点是(﹣2,0)③由图象可知y随x 的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2 平行的直线,其中正确说法有()A.5 个B.4 个C.3 个D.2 个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0 时,y=﹣x﹣2 中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y 随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2 与y=﹣x 的k 值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b 中,当k>0 时,y 随x 的增大而增大;当k<0 时,y 随x 的增大而减小.3.(2016 春?农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y 与x 的函数关系式为y=20﹣2x,那么自变量x 的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.4.(2012 秋?镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c 的符号,再根据直线越陡,则| k| 越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则| k| 越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0 时,图象经过一、三象限,y随x 的增大而增大;当k<0 时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则| k| 越大.5.(2016 春?重庆校级月考)一辆慢车以50 千米/小时的速度从甲地驶往乙地,一辆快车以75 千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500 千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B. C .D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春?浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春?无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣mm、n 的符号,然后由绝对值、【分析】根据一次函数图象与系数的关系,确定二次根式的化简运算法则解得即可.x的一次函数y=mx+n 的图象经过第一、二、四【解答】解:根据图示知,关于象限,∴m<0,n>0;∴| n﹣m| ﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.D.故选【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0 时,经过第一、二、四象限.8.(2015 秋?盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤ 1 时,﹣1≤y≤7,()则kb 的值为A.10 B.21 C.﹣10 或2 D.﹣2 或10解.【分析】由一次函数的性质,分k>0 和k<0 时两种情况讨论求【解答】解:由一次函数的性质知,当k>0 时,y 随x 的增大而增大,所以得,解得.即kb=10;当k<0 时,y 随x 的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.2+(1﹣2m)x+1(m为常数)9.(2015秋?西安校级月考)若函数y=(2m+1)x是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春?邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春?南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春?大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k (k为常数)上,则a与b的大小关系是a<b.(填“>”<“”或“=)”【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.|m﹣2|,且y随x13.(2015春?建瓯市校级月考)已知正比例函数y=(1﹣m)x 的增大而减小,则m的值是3.根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春?天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点.的坐标一定适合此函数的解析式是解答此题的关键15.(2015春?宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的是0≤a<.取值范围【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,负数.为非那么经过一三或一二三象限,那么此函数的常数项应【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象.限是解决本题的关键16.(2015秋?靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCPB C的长是2.t(s)的函数图象如图2所示,则的面积S与运动时间【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,D E=4,从而可求得DC=2,于是当点P在DE上时,三角形的面积不变,故此得到AC=2+2,从而可求得BC的长为2+.2)=4.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.出AD、DE的【点评】本题主要考查的是动点问题的函数图象,由函数图象判断.长度是解题的关键17.(2016春?盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,⋯都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,⋯都在同一条直点A2015的坐标是(a,a).线上,则【分析】根据题意得出直线B B1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.B1C,垂足为C,B1向x轴作垂线【解答】解:过由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60=°a,∴B1的坐标为:(a,a),∴点B1,B2,B3,⋯都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),⋯A n(a,).∴A2015(a,a).故答案为.,得出A 【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类点横纵坐标变化规律是解题关键.18.(2016春?泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春?武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋?兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.。
苏科版八年级上册 第六章 一次函数应用(图像综合)解答题题拔高训练(一)
第六章 一次函数应用(图像综合)解答题题拔高训练(一)1.某电话公司开设了两种手机通讯业务,甲种业务:使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;乙种业务:不交月租费,每通话1分钟,付话费0.6元(指市话).若一个月内通话x 分钟,两种方式的费用分别为y 1(元)和y 2(元).(1)分别求出y 1、y 2与x 之间的函数关系式.(2)根据每月可能的通话时间,作为消费者选用哪种缴费方式更实惠.2.某超市销售10套A 品牌运动装和20套B 品牌的运动装的利润为4000元,销售20套A 品牌和10套B 品牌的运动装的利润为3500元.(1)该商店计划一次购进两种品牌的运动装共100套,设超市购进A 品牌运动装x 套,这100套运动装的销售总利润为y 元,求y 关于x 的函数关系式;(2)在(1)的条件下,若B 品牌运动装的进货量不超过A 品牌的2倍,该商店购进A 、B 两种品牌运动服各多少件,才能使销售总利润最大?(3)实际进货时,厂家对A 品牌运动装出厂价下调,且限定超市最多购进A 品牌运动装70套,A 品牌运动装的进价降低了m (0<m <100)元,若商店保持两种运动装的售价不变,请你根据以上信息及(2)中的条件,设计出使这100套运动服销售总利润最大的进货方案.3.某地盛产樱桃,一年一度的樱桃节期间,很多果园推出了免费品尝和优惠采摘活动,其中甲、乙两家果园的樱桃品质相同,销售价格也相同,但推出了不同的采摘方案: 甲园 游客进园需购买20元/人的门票,采摘的樱桃六折优惠乙园 游客进园不需购买门票,采摘的樱桃在一定数量以内按原价购买,超过部分打折购买小明和爸爸、妈妈在樱桃节期间也来采摘樱桃,若设他们的樱桃采摘量为x (千克)(出园时将自己采摘的樱桃全部购买),在甲采摘园所需总费用为y 1(元)在乙采摘园所需总费用为y 2(元),图中的折线OAB 表示y 2与x 之间的函数关系.(1)①甲、乙两果园的樱桃单价为 元/千克;②直接写出y 1的函数表达式: ,并在图中补画出y 1的函数图象;(2)求出y 2与x 之间的函数关系式;(3)若小明一家当天所采摘的樱桃不少于30千克,选择哪个采摘园更划算?请说明理由.4.预防新型冠状病毒期间,某种消毒液广宁需要6吨,怀柔需要8吨,正好端州储备有10吨,四会储备有4吨,市预防新型冠状病毒领导小组决定将这14吨消毒液调往广宁和怀柔,消毒液的运费价格如下表(单位:元/吨)设从端州调运x 吨到广宁.起点\终点广宁 怀柔 端州60 100 四会 35 70(1)求调运14吨消毒液的总运费y 关于x 的函数关系式;(2)求出总运费最低的调运方案,最低运费的多少?5.一水果生态园种植有黑叶荔和妃子笑两种荔枝,某天安排50名工人采摘荔枝(每名工人只采摘一个品种的荔枝),且每人每天只能摘0.4吨黑叶荔或0.36吨妃子笑,若当天的黑叶荔售价每吨4000元,妃子笑售价每吨5000元,设安排其中x名工人采摘黑叶荔,两种荔枝当天全部售出,销售总额达y元.(1)求y随x变化的解析式,并指出自变量x的取值范围;(2)若要求当天采摘的黑叶荔数量不少于的妃子笑数量,求销售总额y的最大值.6.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到达乙地前,何时轿车在货车前30千米.7.某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y1(单位:元)与用电量x(单位:度)之间满足的关系如图1所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y2(单位:元)与用电量x(单位:元)之间满足如表1所示的一次函数关系.(1)求y2与x的函数关系式;并直接写出当0≤x≤180和x>180时,y1与x的函数关系式;(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度.低谷期用电量x度…80 100 140 …低谷期用电电费y2元…20 25 35 …8.抗击新冠疫情期间,一方危急,八方支援.当吉林市疫情严重时,急需大量医疗防护物资.现知A城有医疗防护物资200t,B城有医疗防护物资300t.现要把这些医疗物资全部运往C、D两市.从A城往C、D两市的运费分别为20元/t和25元/t;从B城往C、D 两市的运费分别为15元/t和24元/t.现C市需要物资240t,D市需要物资260t.若设从A城往C市运xt.请回答下列问题:(1)用含x的式子表示从A往D市运物资的数量为t,从B往C市运物资的数量为t,从B往D市运物资的数量为t(写化简后的式子).(2)求出怎样调运物资可使总运费最少?最少运费是多少?9.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h ,然后按原路原速返回,快车比慢车晚1h 到达甲地,快慢两车距各自出发地的路程y (km )与所用的时x (h )的关系如图所示.(1)甲乙两地之间的路程 km ;快车的速度为 km /h ;慢车的速度为 km /h ;(2)出发 小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km ?10.图书馆与学校相距600m ,明明从学校出发步行去图书馆,亮亮从图书馆骑车去学校两人同时出发,匀速相向而行,他们与学校的距离S (m )与时间t (s )的图象如图所示: 根据图象回答:(1)明明步行的速度为 m /s ;亮亮骑车的速度为 m /s .(2)分别写出明明、亮亮与学校的距离S 1、S 2与时间t 的关系式.(3)通过计算求出a 的值.参考答案1.解:(1)由题意可知:y 1=50+0.4x ,y 2=0.6x ;(2)y 1=50+0.4x ,y 2=0.6x ,当y 1>y 2即50+0.4x >0.6x 时,x <250,当y 1=y 2即50+0.4x =0.6x 时,x =250,当y 1<y 2即50+0.4x <0.6x 时,x >250,所以,当通话时间小于250分钟时,选择乙种通信业务更优惠,当通话时间等于250分钟时,选择两种通信业务一样,当通话时间大于250分钟时,选择甲种通信业务更优惠.2.解:(1)设每套A 种品牌的运动装的销售利润为a ,每套B 品牌的运动装的销售利润为b 元.得,解得:,所以y =100x +150(100﹣x ),即y =﹣50x +15000(2)根据题意得:100﹣x ≤2x ,解得:x ≥33,∵y =﹣50x +15000,﹣50<0,∴y 随x 的增大而减小.∵x 为正整数,∴当x =34时,y 取得最大值,此时100﹣x =66,即超市购进34套A 品牌运动装和66套B 品牌运动装才能获得最大利润;(3)根据题意得:y =(100+m )x +150(100﹣x ),即y =(m ﹣50)x +15000,(33≤x ≤70).①当0<m <50时,m ﹣50<0,y 随x 的增大而减小.∴当x =34时,y 取得最大值,超市购进34套A 品牌运动装和66套B 品牌运动装才能获得最大利润;②当m =50时,m ﹣50=0,y =15000,即超市购进A 品牌的运动装数量满足33≤x ≤70的证书是,均获得最大利润;③当50<m <100时,m ﹣50>0,y 随x 的增大而增大,∴x =70时,y 取得最大值,即超市购进70套A 品牌运动装和30套B 品牌运动装才能获得最大利润.3.解:(1)①300÷10=30(元/千克);故答案为:30;②y 1=30×0.6x +20×3=18x +60;y 1的函数图象如图所示.故答案为:y 1=18x +60;(2)由图可得,当0≤x ≤10时,y 2=30x ,当x >10时,设y 2=kx +b .将(10,300)和(20,450)代入y 2=kx +b ,得,解得,∴当x >10时,y 2=15x +150.∴;(3)令y 1<y 2,即18x +60<15x +150,解得x <30;令y 1=y 2,即18x +60=15x +150,解得x =30;令y 1>y 2,即18x +60>15x +150,解得x >30.答:当樱桃采摘量x =30千克时,两家采摘园所需费用相同;当樱桃采摘量x 的范围为x >30千克时,乙采摘园更划算.4.解:(1)设从端州调运x 吨到广宁,则从端州调运(10﹣x )吨到怀柔,从四会调运(6﹣x )吨到广宁,从四会调运8﹣(10﹣x )=(x ﹣2)吨到怀柔,依题意,得:y =60x +100(10﹣x )+35(6﹣x )+70(x ﹣2)=﹣5x +1070.(2)依题意,得:,解得:2≤x≤6.∵在一次函数y=﹣5x+1070中,k=﹣5<0,∴y随x增大而减小,∴当x=6时,y取得最小值,最小值=﹣5×6+1070=1040,∴从端州调运6吨到广宁,从端州调运4吨到怀柔,从四会调运4吨到怀柔时,总运费最低,最低运费为1040元.5.解:(1)设安排其中x名工人采摘黑叶荔,则按(50﹣x)名工人采摘妃子笑,y=4000×0.4x+5000×0.36×(50﹣x)=﹣200x+90000,即y与x的函数关系式为y=﹣200x+90000(0≤x≤50);(2)∵当天采摘的黑叶荔数量不少于的妃子笑数量,∴0.4x≥0.36×(50﹣x),解得,x≥23,∵y=﹣200x+90000,∴y随x的增大而减小,又∵x为整数,∴当x=24时,y取得最大值,此时y=85200,答:若要求当天采摘的黑叶荔数量不少于的妃子笑数量,销售总额的最大值是85200元.6.解:(1)设线段CD对应的函数表达式为y=kx+b.将C(2,100)、D(4.5,400)代入y=kx+b中,得解方程组得所以线段CD所对应的函数表达式为y=120x﹣140(2≤x≤4.5).(2)根据题意得,120x﹣140﹣80x=30,解得.答:当x=时,轿车在货车前30千米.7.解:(1)设y 2与x 的函数关系式为y =k 2x +b 2,根据题意得, 解得,∴y 2与x 的函数关系式为y 2=0.25x ;当0≤x ≤180时,y 1与x 的函数关系式为y =0.5x ;当x >180时,设y 1=k 1+b 1,根据题意得,解得,∴y 1与x 的函数关系式为y 1=0.6x ﹣18;∴;(2)设王先生一家在高峰期用电x 度,低谷期用电y 度,当0≤x ≤180时,, 解得,不合题意,舍去;当x >180时,, 解得.答:王先生一家在高峰期用电230度,低谷期用电120度.8.解:(1)用含x 的式子表示从A 往D 市运 ( 200﹣x )t ,从B 往C 市运 (240﹣x )t ,从B 往 D 市运 (60+x )t ,(2)设总运费为W 元,则有W =20x +25( 200﹣x )+15(240﹣x )+24(60+x )=4x +10040,∵0≤x ≤200,W 随x 的增大而增大,∴当x =0时,W 有最小值,即从A 往D 调200t ,从B 往D 调60t ,从B 往C 调240t 时,总运费最少为10040元.9.解:(1)由函数图象可得,甲乙两地之间的路程是560km ,快车的速度为:560÷(5﹣1)=140(km /h ),慢车的速度为:560÷(5+4﹣1)=70(km /h ),故答案为:140,70;(2)设出发a 小时时,快慢两车相遇,140a +70a =560,解得,a =,即出发小时后,快慢两车相遇,故答案为:;(3)快慢两车出发b 小时后第一次相距150km ,140b +70b =560﹣150,解得,b =,即快慢两车出发小时后第一次相距150km 10.解:(1)由图象可知:学校和图书馆之间的距离为600米,亮亮用200秒骑车从图书馆到学校,而明明用300秒从到图书馆,因此亮亮速度为:600÷200=3米/秒,明明的速度为600÷300=2米/秒,故答案为:2,3.(2)设明明的S 1与t 的关系式为S 1=k 1t ,把(300,600)代入得:k 1=2∴S 1=2t ,设亮亮的S 2与t 的关系式为S 2=k 2t +b ,把(0,600)(200,0)代入得:,解得:k 2=﹣3,b =600,∴S 2=﹣3t +600,答:明明、亮亮与学校的距离S 1、S 2与时间t 的关系式分别为S 1=2t ,S 2=﹣3t +600.(3)当S 1=S 2时,即2t =﹣3t +600,解得t =120,即a =120s .答:a 的值为120秒.。
八年级数学一次函数之应用求解(一次函数)拔高练习(含答案)
八年级数学一次函数之应用求解(一次函数)拔高练习试卷简介:本卷共5道选择题,时间为30分钟,满分100分。
主要考察一次函数在实际问题中的应用。
学习建议:本卷立足基础,又有一定的难度。
练习本卷需要对一次函数的定义及一次函数图象的性质非常熟悉,才能灵活运用。
一、单选题(共5道,每道20分)1.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴表示父亲与儿子行进中离家的距离,用横轴表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是()A.B.C.D.答案:C解题思路:首先是父亲先到达车站,等到儿子回来,在这段时间里父亲离家的距离不变儿子离家距离变小。
到后细端详故离家的距离仍不变,把家还说明离家越来越近。
易错点:父亲与儿子到达车站的先后关系试题难度:二颗星知识点:一次函数的应用2.自来水公司欲调整价格:现行居民用水1.8元/m3,调整后月用水量少于30m3,价格为2.3元/m3;超过部分2.5元/m3,则调整后用水量x与应缴水费y(元)的函数图象是()A.B.C.D.答案:C解题思路:当x<30时,需出水费2.3x,为正比例函数;当x≥30时,需出水费为:30×2.3+(x-30)×2.5=2.5x-6,为一次函数.故选C.易错点:k的值与倾斜程度的关系是k的绝对值越大倾斜程度越大试题难度:二颗星知识点:一次函数的应用3.如图,点P按A→B→C→M的顺序在边长为1的正方形边上运动,M是CD边上的中点.设点P经过的路程为自变量,△APM的面积为y,则函数y的大致图象是()A.B.C.D.答案:A解题思路:由于AM不变,所以将AM作为底,则面积的大小与P到AM的距离有关。
当P 在AB上运动时面积变大,而在BC上运动时面积变小,在CM上运动时面积继续减小。
易错点:BC上的运动状态试题难度:二颗星知识点:一次函数的应用4.小敏从地出发向地行走,同时小聪从地出发向地行走,如图所示,相交于点的两条线段分别表示小敏、小聪离地的距离与已用时间之间的关系,则小敏、小聪的速度分别是()A.3km/h和4km/hB.3km/h和3km/hC.4km/h和4km/hD.4km/h和3km/h答案:D解题思路:设小敏的速度为:m,函数式则为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=-2.4,由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h.故选D.易错点:根据图像读出时间和路程试题难度:二颗星知识点:一次函数的应用5.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是()A.他离家8 km共用了30 minB.他等公交车时间为6minC.他步行的速度是100m/minD.公交车的速度是350m/min答案:D解题思路:A、依题意得他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;C、他步行10min 走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选D.易错点:函数图形的几何意义试题难度:三颗星知识点:一次函数的应用。
(完整word版)初二数学一次函数拔高训练题
初二数学一次函数拔高训练题1.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A 、k<31B 、31 < k <1 C 、k>1 D 、k>1或k<31 2.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p,0),交y 轴于(0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )A. 0B.1C.2D.无数3.在直角坐标系中,横,纵坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个4.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a <)b ;乙上山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t (分),离开点A 的路程为S (米).那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t (分)与离开点A 的路程S (米)之间的函数关系的是( )5.函数的自变量x 的取值范围是_____。
6.若直线1103457323=+y x 与直线897543177=+y x 的交点坐标是(a ,b ), 则222004b a +的值是7.若一次函数y =kx +b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,则一次函数的解析式为________________________.8.某矿泉水厂生产一种矿泉水,经测算,用一吨水生产的矿泉水所获利润y (元)与1吨水的价格x (元)的关系如图所示。
(1)求y 与x 的函数关系式及自变量x 的取值范围; (2)为节约用水,特规定:该厂日用水量不超过20吨时, 水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费。
已知该厂日用水量不少于20吨。
北师大版八年级第4章一次函数应用(图像综合)选择题拔高训练(二)
第4章一次函数应用(图像综合)选择题拔高训练(二)1.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3 B.4 C.5 D.62.鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆.离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是()A.第一班车离入口处的路程y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x ≤38)B.第一班车从入口处到达花鸟馆所需的时间为10分钟C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)3.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32 B.34 C.36 D.384.有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系5.在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从A,B两地同时出发,相向而行.快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图表示的是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算a、b的值分别为()A .39,26B .39,26.4C .38,26D .38,26.46.一条公路旁依次有A ,B ,C 三个村庄,甲乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲乙之间的距离s (km )与骑行时间t (h )之间的函数关系如图所示,下列结论:①A ,B 两村相距10km ; ②出发1.25h 后两人相遇; ③甲每小时比乙多骑行8km ;④相遇后,乙又骑行了15min 或65min 时两人相距2km . 其中正确的个数是( )A .1个B .2个C .3个D .4个7.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的. 施工时间/天 1 2 3 4 5 6 7 8 9 累计完成施工量/米3570105140160215270325380下列说法错误的是( ) A .甲队每天修路20米B.乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲,乙两队修路长度相等8.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢9.小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.y=x B.y=xC.y=x+5 D.y=x+510.如图1,甲、乙两人沿湟水河滨水绿道同向而行,甲步行的速度为100米/分,乙骑公共自行车的速度为v米/分,起初甲在乙前a米处,两人同时出发,当乙追上甲时,两人停止前行.设x分钟后甲、乙两人相距y米,y与x的函数关系如图2所示,有以下结论:①图1中a表示为1000;②图1中EF表示为1000﹣200x;③乙的速度为200米/分;④若两人在相距a米处同时相向而行,分钟后相遇.其中正确的结论是()A.①②B.③④C.①②③D.①③④11.小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份 1 2 3 4 成绩(s)15.6 15.4 15.2 15 体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界纪录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠12.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t (单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是()A.第24天的销售量为300件B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元D.第15天与第30天的日销售量相等13.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个14.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A .①②B .①②③C .①③④D .①②④16.公式L =L 0+KP 表示当重力为P 时的物体作用在弹簧上时弹簧的长度,L 0代表弹簧的初始长度,用厘米(cm )表示,K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm )表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( ) A .L =10+0.5PB .L =10+5PC .L =80+0.5PD .L =80+5P17.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min 到家,再过5min 小东到达学校,小东始终以100m /min 的速度步行,小东和妈妈的距离y (单位:m )与小东打完电话后的步行时间t (单位:min )之间的函数关系如图所示,下列四种说法: ①打电话时,小东和妈妈的距离为1400米; ②小东和妈妈相遇后,妈妈回家速度为50m /min ; ③小东打完电话后,经过27min 到达学校; ④小东家离学校的距离为2900m . 其中正确的个数是( )A .1个B .2个C .3个D .4个18.在一次自行车越野赛中,出发mh 后,小明骑行了25km ,小刚骑行了18km ,此后两人分别以akm /h ,bkm /h 匀速骑行,他们骑行的时间t (单位:h )与骑行的路程s (单位:km )之间的函数关系如图,观察图象,下列说法: ①出发mh 内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,其中正确的说法有()A.1个B.2个C.3个D.4个19.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t (单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的个数是()A.4个B.3个C.2个D.1个20.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同参考答案1.解:设y与x的函数关系式为y=kx+b,将点(0,6),(9,10.5)代入上式得,,解得,,即y与x的函数关系式是y=0.5x+6,当y=7.5时,7.5=0.5x+6,得x=3,即a的值为3,故选:A.2.解:由题意得,可设第一班车离入口处的路程y(米)与时间x(分)的解析式为:y=kx+b(k≠0),把(20,0),(38,3600)代入y=kx+b,得,解得,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=200x﹣4000(20≤x ≤38);故选项A不合题意;把y=2000代入y=200x﹣4000,解得x=30,30﹣20=10(分),∴第一班车从入口处到达花鸟馆所需时间10分钟;故选项B不合题意;设小聪坐上了第n班车,则30﹣25+10(n﹣1)≥40,解得n≥4.5,∴小聪坐上了第5班车,故选项C符合题意;等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),步行所需时间:1600÷(2000÷25)=20(分),20﹣(8+5)=7(分),∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.故选项D不合题意.故选:C.3.解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.4.解:设容器内的水面高度为h,注水时间为t,根据题意得:h=0.2t+10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.故选:B.5.解:速度和为:24÷(30﹣18)=2米/秒,由题意得:,解得:b=26.4,因此慢车速度为:=0.8米/秒,快车速度为:2﹣0.8=1.2米/秒,快车返回追至两车距离为24米的时间:(26.4﹣24)÷(1.2﹣0.8)=6秒,因此a=33+6=39秒.故选:B.6.解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b 代入得,解得∴s=8t﹣10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.7.解:由题意可得,甲队每天修路:160﹣140=20(米),故选项A正确;乙队第一天修路:35﹣20=15(米),故选项B正确;乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C正确;前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D错误;故选:D.8.解:A、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选:C.9.解:根据题意可得咖啡豆每公克的价钱为:(295+5)÷250=(元),∴y与x的关系式为:.故选:B.10.解:由图可知,a=1000,故①正确;乙的速度为:=300米/分钟,故③错误;图1中,EF表示为1000+100x﹣300x=1000﹣200x,故②正确;令1000=300x+100x,得x=2.5,即两人在相距a米处同时相向而行,2.5分钟后相遇,故④错误;故选:A.11.解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=60时,y=﹣0.2×60+15.8=3.8.因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,故选:D.12.解:A、根据图①可得第24天的销售量为300件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,z=﹣10+25=15,故正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:,∴y=﹣t+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选:D.13.解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.14.解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.15.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选:D.16.解:∵10<80,0.5<5,∴A和B中,L=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选:A.17.解:①当t=0时,y=1400,∴打电话时,小东和妈妈的距离为1400米,结论①正确;②2400÷(22﹣6)﹣100=50(m/min),∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③∵t的最大值为27,∴小东打完电话后,经过27min到达学校,结论③正确;④2400+(27﹣22)×100=2900(m),∴小东家离学校的距离为2900m,结论④正确.综上所述,正确的结论有:①②③④.故选:D.18.解:由图象可知,出发mh内小明的速度比小刚快,故①正确;由图象可得,,解得,,故②正确;小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2km>43km,故③错误;此次越野赛的全程是:36×(0.5+2)=36×2.5=90km,故④正确;故选:C.19.解:∵小刚从家出发7分钟时与家的距离是1200米,即小刚从家出发7分钟时距离学校3500﹣1200=2300m,∴公交车的速度为:=400米/分钟,故①正确;由①知公交车速度为400米/分钟,∴公交车行驶的时间为=7分钟,∴小刚从家出发乘上公交车是在第12﹣7=5分钟时,故②正确;∵从上公交车到他到达学校共用10分钟,∴小刚下公交车后跑向学校的速度是=100米/分钟,故③正确;∵小刚从下车至到达学校所用时间为5+10﹣12=3分钟,而小刚下车时发现还有4分钟上课,∴小刚下车较上课提前1分钟,故④错误;故选:B.20.解:由图象可得,甲园的门票为60元,故选项A正确;乙园草莓优惠前的销售价格是:200÷5=40(元/千克),故选项B正确;=0.5,即乙园超过5kg后,超过的部分价格优惠是打5折,故选项C正确;若顾客采摘12kg草莓,甲园花费为:60+12×40×0.6=344(元),乙园的花费为:40×5+(12﹣5)×40×0.5=340(元),∵344>340,∴若顾客采摘12kg草莓,那么到甲园比到乙园的总费用高,故选项D错误;故选:D.。
人教版八年级一次函数提高练习题(附详解)
OC=8, CB=10 的矩
形纸片 ABCO.将纸片翻折后,点 B 恰好落在 x 轴上,记为 B′,折痕为 CE
( 1)求 B′点的坐标;
( 2)求折痕 CE所在直线的解析式.
13.如图, 已知函数 y
1 x b 的图像与 2
图像交于点 M,点 M的横坐标为 2.
x 轴、y 轴分别交于点
A、B,与函数 y = x的
把 x=- 4, y= 0 代人上式,得- 4k+3= 0,
k3 ∴ 4,
3 y x3 ∴4
3
3
m 13 m3
( 2)由已知得点 P 的坐标是 (1 , m),∴
4
,∴
4.
(3) 以下分三种情况讨论. i) 若∠ AP'C= 90°, P'A= P'C (如图 1),过点 P' 作 P'H⊥x轴于点 'H ,
( 1)甲乙两地之间的距离为
千米;
( 2)求快车和慢车的速度;
( 3)求线段 DE所表示的 y 与 x 之间的函数关系式,并写出自变量
x 的取值范围.
试卷第 4 页,总 4 页
参考答案
1. B
【解析】解:∵ C、D 两点坐标分别为( 1, 0)、( 2, 0).
∴按题中滚动方法点 E 经过点( 3, 0),点 A 经过点( 4,0),点 B 经过点( 5, 0), ∵点( 75,0)的横坐标是 5 的倍数,而该正五边形滚动 5 次正好一周,
FPN 90 o.
∵
2 FPN 90o
,
∴ 1 2 .∴△ PMF ≌△ PNE .
∴ PF PE .
解:②∵ CP 2 ,∴ CN CM 1.
八年级数学一次函数提高题专项练习(含答案)
八年级数学一次函数提高题专项练习一、单选题1.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .2.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <03.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .4.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A.2k <B.2k >C.0k >D.k 0<5.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .二、填空题6.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_____.三、解答题7.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.8.如图,把矩形OABC 放入平面直角坐标系xO 中,使OA 、OC 分别落在x 、y 轴的正半轴上,其中AB =15,对角线AC 所在直线解析式为y =﹣x +b ,将矩形OABC 沿着BE 折叠,使点A 落在边OC 上的53点D 处.(1)求点B 的坐标;(2)求EA 的长度;(3)点P 是y 轴上一动点,是否存在点P 使得△PBE 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.9.如图,直线l 1的函数解析式为y=﹣2x+4,且l 1与x 轴交于点D ,直线l 2经过点A 、B ,直线l 1、l 2交于点C .(1)求直线l 2的函数解析式;(2)求△ADC 的面积;(3)在直线l 2上是否存在点P ,使得△ADP 面积是△ADC 面积的2倍?如果存在,请求出P 坐标;如果不存在,请说明理由.11.如图,直线1l 的解析式为33y x =-,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l ,2l 相交于点C .()1求点D 的坐标;()2求ADC 的面积.13.如图,直线l:364y x=+交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足BPQ BAO∠=∠.(1)点A坐标是 ,BC= .(2)当点P在什么位置时,APQ CBP∆≅∆,说明理由.(3)当PQB∆为等腰三角形时,求点P的坐标.17.如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).(1)求m的值及一次函数的解析式;(2)求△ACD的面积。
八年级一次函数提高题(含详细解题)
八年级一次函数提高题(含详细解题)1、已知一次函数y=kx+b,kb<0,则这样的一次函数的图象必经过的公共象限有2个,即第一、四象限。
分析:根据k,b的取值范围确定图象在坐标平面内的位置.解:∵kb<0,∴k、b的符号相反;∴当k>0 b<0 时,一次函数y=kx+b的图象经过一、三、四象限.当k<0 b>0 时,一次函数y=kx+b的图象经过一、二、四象限.所以一次函数y=kx+b的图象必经过的公共象限有2个,即第一、四象限.故答案是:2,一、四.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2、直线y=2x+3沿x轴平移后经过点(2,-1)。
(1)求平移后直线的解析式;(2)此时直线沿y轴平移了多少单位?解:无论直线怎么样平移,直线的斜率是不变的,所以设平移后的方程为y=2x+b,把(2,-1)代入得b=-5,即平移后的解析式为y=2x-5,2,因为y=2x+3的直线与y轴的交点为(0,3)而直线y=2x-5与y轴的交点为(0,-5)所以直线沿y轴平移了8个单位。
3、直线Y=2X—1沿Y轴向下平移2个单位后,再沿X轴向左平移1个单位,则得直线解析式是多少?解:直线Y=2X—1沿Y轴向下平移2个单位后为y=2x-3再沿X轴向左平移1个单位后为y=2x-1则得直线解析式Y=2X—14、y=kx+b的图像是由y=2x向右平移1个单位而得到的,求该一次函数的解析是多少?解:y=2x向右平移1个单位而得到Y=2(X-1)=2X-2所以一次函数的解析式是Y=2X-2函数y=2x的图像向右平移一个单位而得到的是:y=2(x-1)=2x-2这种题目很容易,只要记住左加右减上面如果向右平移k个单位,则是:y=2(x-k)向右移就在X上减向左移就在X上加向上移就在Y上加向下移就在Y上减比如y=3x+5 向右移动3个单位y=3(x-3)+5即y=3x-45、一次函数y=kx+b与y轴交点A的纵坐标是-2,且于两坐标轴围成的三角形面积是1,求k的值。
初二下的数学拔高试卷答案
一、选择题(每题3分,共30分)1. 已知a > b,下列不等式中正确的是()A. a + b > b + aB. a - b < b - aC. a × b > b × aD. a ÷ b < b ÷ a答案:C解析:由不等式的性质,a > b,则a × b > b × a。
2. 已知x² - 4x + 3 = 0,则x的值为()A. 1,3B. 2,2C. 1,2D. 3,3答案:A解析:将方程因式分解得:(x - 1)(x - 3) = 0,解得x = 1或x = 3。
3. 下列函数中,图象是一条直线的是()A. y = x²B. y = 2x + 1C. y = x - 1D. y = x³答案:B解析:一次函数的图象是一条直线,所以选B。
4. 已知等差数列{an}中,a₁ = 3,公差d = 2,则第10项a₁₀的值为()B. 20C. 21D. 22答案:C解析:等差数列的通项公式为an = a₁ + (n - 1)d,代入a₁ = 3,d = 2,n = 10,得a₁₀ = 3 + (10 - 1) × 2 = 21。
5. 已知一个三角形的三边长分别为3、4、5,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形答案:C解析:根据勾股定理,若一个三角形的三边长分别为a、b、c,且满足a² + b² = c²,则这个三角形是直角三角形。
将3、4、5代入得3² + 4² = 5²,满足条件,所以选C。
二、填空题(每题5分,共20分)6. 若x² - 5x + 6 = 0,则x的值为______。
答案:x₁ = 2,x₂ = 3解析:将方程因式分解得:(x - 2)(x - 3) = 0,解得x = 2或x = 3。
八级数学上册同步(北师版)一次函数图象应用拔高练习
八年级数学上册同步(北师版)一次函数图象应用拔高练习试卷简介:本试卷考察同学们一次函数图象的应用,要能从图像中提取出有用信息,以及要能将文字转化成图象来表达,属于同学们新接触的知识,要做完题后重新再看一遍题目,感悟一下。
学习建议:先将一次函数的性质搞清楚一、单选题(共5道,每道20分)1.小敏从地出发向地行走,同时小聪从地出发向地行走,如图所示,相交于点的两条线段分别表示小敏、小聪离地的距离与已用时间之间的关系,则小敏、小聪的速度分别是()A.3km/h和4km/hB.3km/h和3km/hC.4km/h和4km/hD.4km/h和3km/h2.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(小时),航行的路程为s(千米),则s与t的函数图象大致是()A.B.C.D.3.(2009成都)某航空公司规定,旅客乘机所携带行李的质量(kg)与其运费(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )A.20kgB.25kgC.28kgD.30kg4.如图OB、AB分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8秒钟后,甲超过了乙,其中正确的说法是()A.①②B.②③④C.②③D.①③④5.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。
用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事相吻合的是()A..B.C.D.。
数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)
数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)一.选择题(共9小题)1.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x 的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<102.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a3.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠34.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个5.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或109.若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a 与b的大小关系是a b.(填“>”“<”或“=”)13.已知正比例函数y=(1﹣m)x|m﹣2|,且y随x的增大而减小,则m的值是.14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C 为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.三.解答题(共22小题)19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线AD 并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为,点C的坐标为.(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图②.设平移的长度为x cm,且满足0≤x≤10,直尺与直角三角形纸板重合部分的面积(即图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)2+=0,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=45°,求点D的坐标.33.如图,?ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P 作x轴的垂线交x轴于点E,若S△PBE=,求此时点P的坐标.34.在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ 为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.39.已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程x2﹣4=0的解,点C的纵坐标恰好是方程x2﹣4x+4=0的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5h与乙相遇,…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)参考答案与试题解析一.选择题(共9小题)1.(2016春?农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.2.(2012秋?镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x 的增大而减小.同时注意直线越陡,则|k|越大.3.(2016春?重庆校级月考)函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(2016春?南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5.(2016春?重庆校级月考)一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春?浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春?无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m【分析】根据一次函数图象与系数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.【解答】解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0;∴|n﹣m|﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.故选D.【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0时,经过第一、二、四象限.8.(2015秋?盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或10【分析】由一次函数的性质,分k>0和k<0时两种情况讨论求解.【解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得.即kb=10;当k<0时,y随x的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.9.(2015秋?西安校级月考)若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春?邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春?南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春?大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k (k为常数)上,则a与b的大小关系是a<b.(填“>”“<”或“=”)【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.(2015春?建瓯市校级月考)已知正比例函数y=(1﹣m)x|m﹣2|,且y随x 的增大而减小,则m的值是3.【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春?天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(2015春?宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是0≤a<.【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象限是解决本题的关键.16.(2015秋?靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP 的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是2.【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,当点P在DE上时,三角形的面积不变,故此DE=4,从而可求得DC=2,于是得到AC=2+2,从而可求得BC的长为2+.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣2)=4.∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.【点评】本题主要考查的是动点问题的函数图象,由函数图象判断出AD、DE的长度是解题的关键.17.(2016春?盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是(a,a).【分析】根据题意得出直线BB1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60°=a,∴B1的坐标为:(a,a),∴点B1,B2,B3,…都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),…A n(a,).∴A2015(a,a).故答案为.【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.18.(2016春?泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春?武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋?兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巩固练习1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6 (C )y=8x+6 (D )y=5x+32.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )(A )一象限 (B )二象限 (C )三象限 (D )四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A )4 (B )6 (C )8 (D )164.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )(A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能确定5.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,•则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过第( )象限.(A )一 (B )二 (C )三 (D )四7.一次函数y=kx+2经过点(1,1),那么这个一次函数( )(A )y 随x 的增大而增大 (B )y 随x 的增大而减小 (C )图像经过原点 (D )图像不经过第二象限8.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9.要得到y=-32x-4的图像,可把直线y=-32x ( ). (A )向左平移4个单位 (B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位10.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( )(A )m>-14 (B )m>5 (C )m=-14(D )m=5 11.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<13 (B )13<k<1 (C )k>1 (D )k>1或k<1312.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作( )(A )4条 (B )3条 (C )2条 (D )1条13.已知abc ≠0,而且a b b c c a c a b+++===p ,那么直线y=px+p 一定通过( ) (A )第一、二象限 (B )第二、三象限 (C )第三、四象限 (D )第一、四象限14.当-1≤x ≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2 (C )-4<a<2且a ≠0 (D )-4<a<215.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A )1个 (B )2个 (C )3个 (D )4个16.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p ,0),交y 轴于(•0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )(A )0 (B )1 (C )2 (D )无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取(A )2个 (B )4个 (C )6个 (D )8个18.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取(A )2个 (B )4个 (C )6个 (D )8个19.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t (分),离开点A 的路程为S (米),•那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t (分)与离开点A 的路程S (米)•之间的函数关系的是( )20.若k 、b 是一元二次方程x 2+px-│q │=0的两个实根(kb ≠0),在一次函数y=kx+b 中,y 随x 的增大而减小,则一次函数的图像一定经过( )(A )第1、2、4象限 (B )第1、2、3象限 (C )第2、3、4象限 (D )第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x ≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.5.函数y=-3x+2的图像上存在点P ,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________. 7.y=23x 与y=-2x+3的图像的交点在第_________象限. 8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b ≠a ),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、•q•)表示______元.9.若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________.10.设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______. 11.据有关资料统计,两个城市之间每天的电话通话次数T•与这两个城市的人口数m 、n (单位:万人)以及两个城市间的距离d (单位:km )有T=2kmn d 的关系(k 为常数).•现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话次数为_______次(用t 表示).三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x ≤4,求y 的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察(1(不要求写出x 的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?(第4题) (第5题) (第6题) (第9题)5.已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B•在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y 轴上的点A (0,1)出发,经过x 轴上点C 反射后经过点B (3,3),求光线从A 点到B 点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y 中,一次函数的图象与x 轴,y 轴,分别交于A 、B 两点,•点C 坐标为(1,0),点D 在x 轴上,且∠BCD=∠ABD ,求图象经过B 、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.10.已知直线y=43x+4与x 轴、y 轴的交点分别为A 、B .又P 、Q 两点的坐标分别为P (•0,-1),Q (0,k ),其中0<k<4,再以Q 点为圆心,PQ 长为半径作圆,则当k 取何值时,⊙Q•与直线AB 相切?11.某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30•台派往A 地,20台派往B(1)设派往A 地x y (元),请用x 表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f (x )=(800)20%(130%),400(120%)20%(130%),400x x x x --≤⎧⎨-->⎩其中f (x )表示稿费为x 元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x 个,乙商品y 个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x 、y 的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x ,y 的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am 3时,只付基本费8元和定额损耗费c 元(c ≤5);若用水量超过am 3时,除了付同上的基本费和损耗费外,超过部分每1m 3付b 元的超额费.根据上表的表格中的数据,求a 、b 、c 15.A 市、B 市和C 市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B•市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值.。