分析选讲大纲

合集下载

数学分析方法选讲

数学分析方法选讲
• 数学分析的起源可以追溯到古希腊时期 • 17世纪,牛顿和莱布尼茨创立了微积分 • 19世纪,柯西等人建立了现代数学分析的基础
数学分析与其他数学分支的关系
数学分析与代数的关系
• 代数是数学分析的基础,数学分析 中的许多概念和定理都依赖于代数 • 数学分析中的许多方法也可以用于 解决代数问题
数学分析与几何的关系
数学分析在工程中的 应用
• 数学分析在工程中的应用 • 数学分析可以用于解决工程中的许多问题,如结构设计、系统 控制、信号处理等 • 数学分析在工程中的应用包括材料力学、结构力学、控制理论 等
数06学分析的发展趋势与展

数学分析的理论研究发展趋势
• 数学分析的理论研究发展趋势 • 数学分析的理论研究发展趋势包括非线性分析、概率论与数理 统计等 • 数学分析的理论研究发展趋势可以用于解决实际问题中的许多 问题,如复杂性科学、大数据分析等
• 微分方程的求解方法包括分离变量法、积分变换法等 • 微分方程的求解方法可以用于解决数学分析中的许多问 题,如运动学、动力学等
04
数学分析的经典定理
数列与级数的收敛性定理
数列的收敛性定理
• 数列的收敛性定理包括夹逼定理、单调有界定理等 • 数列的收敛性定理可以用于判断数列的收敛性、绝对收敛性和条件收敛性
极限方法的应用
• 极限方法可以用于求解函数的连续、可导和可积等性质 • 极限方法可以用于证明数学分析中的许多重要定理,如极限存在定理、夹逼定理等
微积分方法及其在数学分析中的应用
微分的定义和性质
• 微分是数学分析的基本概念,表示函数在某一点处的变化率 • 微分具有线性、局部性和可加性等性质
微积分方法的应用
• 连续函数的判定定理包括直接法、介值定理等 • 连续函数的判定定理可以用于判断函数的连续性

数学分析选讲教案

数学分析选讲教案

数学分析选讲教案教案-数学分析选讲一、教学目标1.了解数学分析选讲的内容和意义;2.掌握数学分析选讲中具体的知识点和方法;3.培养学生对数学问题的分析和解决能力。

二、教学内容1.极限与连续2.导数与微分3.积分与不定积分4.一元函数的级数展开5.二重积分与曲线积分三、教学过程1.首先介绍数学分析选讲的意义和重要性,引导学生对该学科的兴趣和学习动力。

2.然后分别介绍每个知识点的基本概念和定义,并通过一些具体的例子进行说明。

比如,对于极限与连续,可以通过函数在其中一点处的极限和函数的连续性来说明。

3.接着,讲解每个知识点的具体计算方法和应用。

比如,对于导数与微分,可以讲解导数的定义和性质,并介绍如何求导和微分的计算方法。

同时,通过一些实际问题的应用,如求速度、加速度等问题,来说明导数与微分的应用。

4.在讲解知识点的同时,可以穿插一些习题的讲解和训练,以检测学生对知识点的掌握情况,并培养学生的解题能力。

5.最后,总结每个知识点的要点和注意事项,并给出一些练习题供学生进行巩固和深化。

四、教学方法1.以讲授和演示为主,结合习题训练和实例分析,培养学生的数学分析思维和解题能力。

2.采用逐步推导和详细解释的方法,使学生更好地理解和掌握每个知识点。

3.灵活运用多种教学手段和教学资源,如课堂讨论、实验演示等,提高学生的主动参与和探索能力。

五、教学评价1.基于每个知识点的习题和问题进行评价,考察学生对知识点的掌握情况和解决问题的能力。

2.引导学生对学习过程进行自我评价和反思,发现自己的不足和提高的方法。

3.结合考试、小测验和作业等方式,全面评价学生的数学分析水平和综合能力。

六、教学反思1.整个教案的设计要简洁明了,符合学生的认知特点,避免内容过于冗杂和抽象,能够引起学生的学习兴趣和主动参与。

2.在教学过程中,要注意与学生的互动和沟通,帮助他们理解和解决问题,培养他们的逻辑思维和数学思维能力。

3.针对每个知识点的讲解,要重点讲解基本概念和计算方法,并给出一些典型的例子和习题,帮助学生加深对知识点的理解和掌握。

数学分析选讲教学大纲

数学分析选讲教学大纲

数学分析选讲教学大纲一、课程简介本课程是一门针对高年级本科生的数学分析选修课,旨在为学生提供更深入的数学分析知识和技能。

通过本课程的学习,学生将进一步拓宽对数学分析的理解,并掌握其在实际问题中的应用。

二、教学目标1.掌握数学分析的基本概念和原理;2.能够运用数学分析的方法和技巧解决实际问题;3.增强数学分析的逻辑思维能力和抽象推理能力;4.培养学生严谨的数学论证能力和问题解决能力。

三、教学内容1.实数和数列a.实数的性质和运算规律b.数列的收敛性和极限c. 数列的一致收敛性和Cauchy准则2.函数极限和连续性a.函数极限的定义和性质b.函数连续性的定义和性质c.中值定理和连续函数的性质3.函数导数和微分a.导数的定义和性质b.微分的定义和性质c.高阶导数与泰勒展开4.不定积分和定积分a.不定积分的定义和性质b.定积分的定义和性质c.积分计算的基本方法和技巧5.级数和幂级数a.级数的收敛性和性质b.幂级数的收敛半径和性质c.幂级数的求和和收敛域四、教学方法1.传统讲授:通过讲授理论知识和解题技巧,向学生介绍数学分析的基本概念和原理。

2.问题导向:通过提出问题和引导学生讨论,培养学生的抽象思维和问题解决能力。

3.探究式学习:引导学生通过实际例子和实验观察,发现数学分析中的规律和性质。

五、评估方式1.平时成绩:包括课堂参与和作业完成情况(占比30%);2.期中考试:对学生对前半学期内容的理解和掌握程度进行测试(占比30%);3.期末考试:对全学期内容进行综合测试,检验学生对数学分析的综合能力(占比40%)。

六、参考教材。

数学分析选讲课程设计

数学分析选讲课程设计

数学分析选讲课程设计一、选课背景和目的本课程为数学专业的本科生选修课,旨在通过精心设计的教学内容和教学方法,帮助学生深入理解数学分析中的重要概念和定理,提高数学思维能力和分析问题的能力,为将来从事数学研究打下坚实基础。

二、课程教学内容与大纲该课程内容包括数学分析中的重要概念和定理,如极限、连续性、导数和微积分等,课程大纲如下:1. 数列和极限•数列的性质及极限概念•数列极限的性质及判别法•极限的运算法则•无穷小量和无穷大量2. 函数连续性•函数连续性的基本概念•函数连续性的基本性质及判别法•函数间的运算法则3. 导数•导数的概念和性质•函数可导的条件及判别法•高阶导数及其应用•导数的运算法则4. 微分学及其应用•微分学的基本概念和理论•中值定理及其应用•极值及其应用•曲率及其应用三、课程教学方法为了提高学生的自主学习能力和科学研究能力,本课程采取以下教学方法:1. 理论授课通过多媒体演示、板书讲解和互动答疑等方式,对数学分析中的基本概念和定理进行深入讲解和探讨,协助学生理解和掌握各部分的内容。

2. 经典例题讲解通过引导学生独立思考和分析解题思路,巩固和加深学生对数学分析的理解和应用能力。

3. 作业批改和指导通过给予学生具有实际应用价值和难度的习题,帮助他们巩固和加强对知识点的掌握程度,在对其作业进行批改和指导,帮助他们发现和解决问题。

4. 学科竞赛指导针对数学专业学生,加强其科学研究和竞赛能力的培养,引导学生参加各类学科竞赛,并提供相应的指导和解析,提高学生的学科水平和创新能力。

四、课程评价与改进教学评价是促进教学发展和提高教学质量的有效手段,本课程采用以下方法对教学效果进行评价:1. 学生满意度调查通过定期对学生的满意度进行调查,了解学生对课程内容、教学方法、作业布置、与教师互动等方面的满意度和不满意度,及时发现和解决教学问题。

2. 课堂表现评价通过对学生上课情况、作业情况等进行评价,发现学生的不足之处和优势所在,及时给予指导和鼓励。

《数学分析方法选讲》

《数学分析方法选讲》

《数学分析方法选讲》《数学分析方法选讲》是一本为学生编写的教材,旨在介绍数学分析中的一些重要方法和技巧。

本书涵盖了数学分析的各个方面,包括实数、函数、极限、连续性、导数、积分等内容。

通过本书的学习,学生可以深入理解数学分析的基本概念和原理,并学会应用这些方法解决实际问题。

首先,本书首先介绍实数和实数集的性质和性质。

实数是数学分析的基础,本书通过引入实数的定义、大小关系和运算规则等内容,使学生对实数有一个全面的认识。

同时,本书还介绍了实数集的一些特殊性质,例如有界性和上界、下界的概念。

这些基本概念对学生进一步学习函数、极限等内容非常重要。

其次,本书介绍了函数的概念和性质。

函数是数学分析的核心概念之一,本书通过引入函数的定义和表示方法,让学生理解函数的本质和作用。

同时,本书还详细介绍了函数的连续性和导数的概念。

连续性是函数研究的基础,本书通过引入极限的概念,让学生理解连续性的数学意义和实际应用。

导数是函数微分学的基础,本书通过引入导数的定义和计算方法,让学生理解导数的作用和应用。

另外,本书还介绍了积分的概念和计算方法。

积分是函数的重要性质之一,本书通过引入定积分的定义和计算方法,让学生理解积分的意义和计算过程。

同时,本书还介绍了不定积分和定积分的相关性质和定理,让学生进一步了解积分的性质和应用。

通过学习积分,学生可以将函数的导数与积分进行对应,从而更好地理解函数的性质和变化规律。

最后,本书还介绍了一些数学分析的应用方法和技巧。

数学分析作为一门基础学科,具有广泛的应用价值。

本书通过引入一些数学分析在物理、经济和生物等领域中的应用案例,让学生了解数学分析在实际问题中的重要性和作用。

总之,《数学分析方法选讲》是一本为学生编写的教材,全面介绍了数学分析的各个方面。

本书内容丰富,结构清晰,既包含基本概念和原理的介绍,又提供大量的例题和习题供学生练习。

通过本书的学习,学生可以深入理解数学分析的方法和技巧,提高数学分析的应用能力。

现代数学选讲(分析)一讲

现代数学选讲(分析)一讲

物理应用
导数在物理学中也有许多应用, 如描述物体的运动状态(速度、 加速度等)、求解力学问题(如 牛顿第二定律)等。
经济应用
微分在经济学中有着广泛的应用, 如边际分析、弹性分析等。通过 微分可以研究经济变量之间的变 化关系,为经济决策提供科学依 据。
05
积分学基础
定积分概念及性质
01
定积分的定义
现代数学选讲(分析)一讲

CONTENCT

• 引言 • 实数与函数 • 极限与连续 • 导数与微分 • 积分学基础 • 级数理论初步 • 总结与展望
01
引言
课程目的与意义
加深对现代数学理论的理解
通过选讲现代数学中的核心概念和理论,帮助学生 更深入地理解现代数学的思想和方法,提高数学素 养。
拓展数学视野
定积分可以用来计算总收益、总成本、消费 者剩余、生产者剩余等。
06
级数理论初步
数项级数概念及性质
数项级数定义
由无穷多个数列项按一定顺序 排列而成的表达式,形如
$sum_{n=1}^{infty} a_n$。
收敛与发散
若数项级数的部分和数列有极 限,则称该级数收敛;否则称
该级数发散。
绝对收敛与条件收敛
ቤተ መጻሕፍቲ ባይዱ
对未来学习的建议
深入学习相关课程
对于有兴趣在现代数学分析领域 深造的学生,建议他们继续学习 相关的高级课程,如实变函数、 复变函数、泛函分析等,以进一 步巩固和扩展他们的知识体系。
关注前沿研究领域
鼓励学生关注现代数学分析领域 的最新研究进展和前沿问题,参 加学术研讨会和阅读相关学术论 文,以培养他们的学术视野和研 究能力。
不定积分的性质

数学分析专题选讲教案

数学分析专题选讲教案

数学分析专题选讲教案一、引言1.1 课程背景1.2 课程目标1.3 课程内容概述1.4 教学方法与手段二、函数极限与连续性2.1 函数极限的概念2.2 极限的性质与运算2.3 无穷小与无穷大2.4 函数的连续性2.5 连续函数的性质与应用三、导数与微分3.1 导数的概念3.2 导数的计算规则3.3 高阶导数3.4 隐函数与参数方程函数的导数3.5 微分学的基本定理与应用四、不定积分与定积分4.1 不定积分的基本概念与计算方法4.2 定积分的基本概念与计算方法4.3 定积分的性质与应用4.4 变限积分的导数4.5 定积分的推广与应用五、微分方程5.1 微分方程的基本概念5.2 常微分方程的解法5.3 线性微分方程5.4 微分方程的应用5.5 线性微分方程组六、级数6.1 级数的基本概念6.2 幂级数6.3 泰勒级数与麦克劳林级数6.4 级数的收敛性6.5 级数的应用七、多元函数微分学7.1 多元函数的基本概念7.2 多元函数的极限与连续性7.3 多元函数的偏导数7.4 全微分与高阶偏导数7.5 多元函数的极值及其判定八、重积分8.1 二重积分的基本概念与计算8.2 二重积分的性质与应用8.3 三重积分的基本概念与计算8.4 三重积分的性质与应用8.5 重积分的应用案例九、常微分方程组9.1 常微分方程组的概述9.2 常微分方程组的解法9.3 常微分方程组的解的存在性与唯一性9.4 常微分方程组的应用9.5 常微分方程组的数值解法十、泛函分析与线性空间10.1 泛函分析的基本概念10.2 线性空间与线性映射10.3 内积空间与正交关系10.4 希尔伯特空间与巴拿赫空间10.5 泛函分析在数学分析中的应用十一、微分几何11.1 微分几何基本概念11.2 曲线和曲面的切线与法线11.3 曲率、挠率和曲率张量11.4 测地线与测地线方程11.5 微分几何在物理学和工程学中的应用十二、偏微分方程12.1 偏微分方程的定义与分类12.2 偏微分方程的基本解法12.3 偏微分方程的解的存在性与唯一性12.4 偏微分方程的应用案例12.5 偏微分方程的数值解法十三、复变函数13.1 复数与复平面13.2 复变函数的基本概念13.3 复变函数的积分13.4 复变函数的级数13.5 复变函数在复平面上的应用十四、随机变量与概率积分14.1 随机变量及其分布14.2 随机变量的数字特征14.3 概率积分与变换14.4 随机过程的基本概念14.5 随机过程的应用十五、数值分析15.1 数值分析概述15.2 插值法与函数逼近15.3 数值微积分15.4 常微分方程的数值解法15.5 非线性方程与系统的数值解法重点和难点解析一、函数极限与连续性重点:函数极限的性质与运算,无穷小与无穷大的概念,函数的连续性及其性质。

数学分析方法选讲

数学分析方法选讲

数学分析方法选讲
数学分析是现代数学的一个重要分支,它涉及到无穷序列、极限理论、微积分等基本概念和方法。

下面是关于数学分析方法选讲的一些内容:
1.微积分:微积分是数学分析的基础,它涉及到导数、积分、微分方程等许多重要的概念和方法。

微积分的应用非常广泛,例如在物理、工程、经济学等各个领域都有应用。

2.点集拓扑:点集拓扑是现代分析中的一门重要学科,它研究的是空间和集合的性质及其变化规律。

点集拓扑主要研究空间的连续性、紧致性、度量空间等概念和其相关定理,以及连续映射和同胚等映射的性质。

3.函数分析:函数分析是数学分析中一个重要的分支,它主要研究无限维空间中的函数和算子。

函数分析不仅在数学中有广泛的应用,而且在物理、工程、计算机等学科中也有重要的应用。

4.常微分方程:常微分方程是微积分的一个重要分支,它主要研究描述物体运动、力学、电路等过程中变化率的方程。

常微分方程中的基本概念包括初值问题、线性化、自由振动等,常微分方程的应用非常广泛。

5.偏微分方程:偏微分方程是微积分的另一个重要分支,它主要研究描述变量连续变化的方程。

偏微分方程经常被用于描述和解决物理、工程、流体力学等复杂
问题。

以上是数学分析方法选讲的一些内容,需要对这些基础知识进行系统学习和掌握。

《数学分析方法选讲》讲义

《数学分析方法选讲》讲义

《数学分析方法选讲》讲义第一章介绍了数学分析的基本概念和思想。

首先介绍了实数和实数集,包括实数的有序性、稠密性和连续性等性质。

接着介绍了数列和数列极限的概念,包括数列的单调性、有界性和收敛性等重要性质。

最后介绍了函数和函数极限的概念,包括函数的连续性、极限存在性和极限唯一性等重要性质。

第二章介绍了函数的导数和微分的概念。

首先介绍了导数的定义和性质,包括导数的几何意义、导数的四则运算、导数的求法和导数的计算等。

接着介绍了微分的定义和性质,包括微分的几何意义、微分的计算和微分的应用等。

最后介绍了高阶导数和高阶微分的概念,包括高阶导数和高阶微分的计算和应用等。

第三章介绍了函数的积分和不定积分的概念。

首先介绍了不定积分的定义和性质,包括不定积分的基本性质、不定积分的计算和不定积分的应用等。

接着介绍了定积分的定义和性质,包括定积分的几何意义、定积分的计算和定积分的应用等。

最后介绍了变限积分和变限积分的计算和应用等。

第四章介绍了无穷级数和幂级数的概念。

首先介绍了收敛级数和发散级数的概念,包括级数的收敛性和级数的发散性等性质。

接着介绍了正项级数和交错级数的概念,包括正项级数的比较判别法和交错级数的莱布尼茨判别法等。

最后介绍了幂级数的概念和性质,包括幂级数的收敛区间和收敛半径等重要性质。

第五章介绍了微分方程和常微分方程的概念和基本方法。

首先介绍了微分方程的基本概念和分类,包括微分方程的定义、微分方程的阶数和微分方程的解等。

接着介绍了常微分方程的基本解法,包括一阶线性微分方程的解法、二阶常系数线性齐次微分方程的解法和二阶常系数线性非齐次微分方程的解法等。

最后介绍了常微分方程的应用,包括生物学、物理学和工程学等领域中的应用。

《数学分析方法选讲》讲义全面而详尽地介绍了数学分析的基本概念、定理和方法,对于学生理解和掌握数学分析的基本原理和基本技巧具有重要的指导作用。

读者通过学习这本讲义,将能够加深对数学分析的理解,提高解题能力,为进一步学习和研究数学奠定坚实的基础。

工作分析教学大纲

工作分析教学大纲

工作分析教学大纲课程名称:工作分析教学课程编号:xxx课程学分:x课程类型:必修/选修先修课程:无总学时:xx小时课程描述:本课程旨在介绍工作分析的基本原理、方法和应用,培养学生对各种工作的设计、评估和管理能力。

通过本课程的学习,学生将了解工作分析的理论基础,掌握工作分析的方法和技巧,并能够运用工作分析的结果进行工作设计和绩效评估。

本课程通过理论讲授、案例分析和实践操作相结合的教学方式,帮助学生全面了解工作分析的概念、过程和应用。

课程目标:1.了解工作分析的概念、原理和方法。

2.掌握工作分析的过程和技巧。

3.理解工作设计和绩效评估的基础。

4.能够运用工作分析的结果进行工作设计和绩效评估。

5.培养学生的工作分析能力和解决问题的能力。

教学内容:第一章:工作分析概述1.工作分析的定义和基本概念。

2.工作分析的目的和意义。

3.工作分析的理论基础。

第二章:工作分析的方法1.工作分析的方法分类。

2.工作分析的数据收集方法。

3.工作分析的数据分析方法。

第三章:工作分析的步骤1.准备工作分析。

2.收集工作分析数据。

3.分析工作分析数据。

4.生成工作描述和工作规范。

5.审核和验证工作分析结果。

第四章:工作设计与工作分析1.工作设计的概念和目标。

2.工作设计的原则和方法。

3.工作设计与工作分析的关系。

第五章:绩效评估与工作分析1.绩效评估的概念和方法。

2.绩效评估与工作分析的关系。

3.运用工作分析结果进行绩效评估。

第六章:工作分析的应用1.工作分析在招聘和选拔中的应用。

2.工作分析在员工培训和发展中的应用。

3.工作分析在绩效管理中的应用。

4.工作分析在薪酬管理中的应用。

教学方法:1.理论讲授:通过讲解工作分析的基本理论和方法,帮助学生理解和掌握相关知识。

2.案例分析:通过分析实际案例,让学生运用工作分析的知识解决实际问题。

3.实践操作:组织学生进行实际的工作分析项目,培养他们的实际工作能力。

考核方式:1.平时成绩:包括课堂表现、课堂讨论和作业完成情况等。

数学分析选讲教案精选全文完整版

数学分析选讲教案精选全文完整版
2聚点与聚点定理
是 的聚点,
聚点是对数集而言,极限是对数列而言。聚点不一定是极限点,极限点也不一定是聚点。当收敛数列有无穷项相异时,则极限点比为聚点。
, 不是 的聚点,但数列有极限。
有聚点但不是没有极限点
20m
第3页共页
讲稿部分
教学过程
时间分配
聚点的等价定义: 是 的聚点,以下三个定义等价:
I 含有 的无穷多个点
而有限覆盖定理得作用与区间套定理相反,它是把函数在每点某邻域的性质拓展为函数在闭区间上所共有的性质。例如函数在闭区间上逐点连续推出函数在闭区间上一致连续。区间套与有限覆盖定理是同一事物的两个方面,可以相互转化,从反证法的观点来看,局部点的反面变成了整体,,反之亦然。
若函数 在 上有定义恒取正值,
= 则 在[a, b]上必有正的下界。
重点与难点
重点:函数的性质和实数理论。
难点:实数理论
教学方法
手段(教具)
讨论法,传统教学方法与使用多媒体相结合
参考资料
数学分析,高等数学,2005年数学研究生考题
2006年高等数学考试测试题
课后作业与
思考题
作业1.2.3.4.5.6
思考题:六个实数完备性定理的相互证明。
教学后记
讲稿部分
教学过程
时间分配
20m
第4页共页
讲稿部分
教学过程
时间分配
并记 显然 再由
这与 为 的唯一最值点矛盾。
4.多种方法证明
设函数 在 上只有第一类间断点(可以有无穷多个),证明
在 上有界
1. :(致密性定理)反证,若 在 上无界,存在 ,可找出 , 有界,必有收敛的子列
时 在 上无界。
小结:掌握函数的各种性质,理解初等函数的概念及复合运算。

数学分析专题选讲课程教学大纲

数学分析专题选讲课程教学大纲

《数学分析专题选讲》课程教学大纲一、课程基本信息课程中文名称:数学分析专题选讲课程英文名称:Selective Lectures of Mathematic Analysis课程类别:选修课使用专业:数学与应用数学专业、计算与信息科学专业、物理学、计算机科学等开设学时:24学时使用年级:20XX级、20XX级预修课程:数学分析或高等数学一并修课程:课程简介:数学分析专题系统拓展和加深讲授极限理论, 函数的连续性, 微分中值定理的及其应用, 一元函数积分学, 数值级数与无穷积分, 多元函数微分学,函数级数与含参变量的无穷积分, 多元函数积分学这八个专题的核心内容.建议教材: 自编讲义参考书:[1].毛羽辉编著《数学分析选论》,北京:科学出版社(第二版).[2].胡小敏李承家编著《数学分析考研教案》,西安:西北工业大学出版社(第二版).[3].王戈平编《数学分析选讲》,西安:中国矿业大学出版社.[4].裘兆泰王承国章仰文编《数学分析学习指导》,北京:科学出版社.[5].孙本旺汪浩《数学分析中的典型例题和方法》,长沙:湖南科学技术出版社.[6].周中群主编《数学分析方法选讲》,重庆:西南师范大学出版社.[7].刘玉琏扬奎元吕风编《数学分析讲义学习指导书》(上),北京:高等教育出版社(第二版).[8].刘玉琏扬奎元吕风编《数学分析讲义学习指导书》(下),北京:高等教育出版社(第二版).[9].谢惠民恽自求易法槐钱定边编《数学分析习题课讲义》(上),北京: 高等教育出版社.[10].谢惠民恽自求易法槐钱定边编《数学分析习题课讲义》(下),北京: 高等教育出版社.[11].钱吉林编《数学分析解题精粹》,武汉:崇文书局.[12].牟俊霖李青吉《洞穿考研数学》,北京:航空工业出版社.二、课程性质、目的及总体要求课程的基本特性:数学分析专题选讲是数学与应用数学专业,计算与信息科学专业重要的选修课,它是学生进一步学习分析数学的分支和科学研究必不可少的专业基础知识, 同时也可使其他理科专业学生进一步了解微积分学知识,是报考对数学要求较高的硕士学位研究生同学的必修课程.课程的教学目标:该课程主要系统拓展和加深学习极限理论, 函数的连续性, 微分中值定理的及其应用, 一元函数积分学,数值级数与无穷积分, 多元函数微分学, 函数级数与含参变量的无穷积分, 多元函数积分学这八个专题的核心内容.课程的总体要求:通过本课程的学习,主要要求学生系统拓展和加深极限理论, 函数的连续性, 微分中值定理的极其应用, 一元函数积分学,数值级数与无穷积分, 多元函数微分学, 函数级数与含参变量的无穷积分, 多元函数积分学的基本技能、基本思想和方法,主要培养学生分析论证问题的能力、抽象思维能力和科学研究的初步能力.三、章节教学内容与要求(进度表)第一章极限理论的应用(6学时)总的要求:极限理论是数学分析的基础理论,它是学习微分理论、积分理论、级数理论等的奠基理论,极限理论的基本思想和方法贯穿于数学分析始终.在本章中,主要进一步学习解决极限问题的若干基本方法.通过学习,主要培养学生分析论证问题的能力、抽象思维能力和解决实际问题的能力,培养学生科学研究的初步能力。

数学分析专题选讲教案

数学分析专题选讲教案

数学分析专题选讲教案一、第一章:极限与连续性1.1 极限的概念定义:函数f(x)当x趋近于某一值a时,如果存在一个实数L,使得f(x)趋近于L,称f(x)在x=a处极限为L。

性质:保号性、传递性、三角不等式性质。

1.2 极限的计算极限的基本性质:0.9^n→0(n→∞)、(1+1/n)^n→e(n→∞)。

极限的运算法则:lim (f(x)+g(x)) = lim f(x) + lim g(x)、lim (cf(x)) = c lim f(x)、lim (f(g(x))) = lim f(t) lim g(x)。

1.3 连续性的概念定义:函数f(x)在点x=a处连续,如果满足f(a)=lim f(x)(x→a)且对于任意ε>0,存在δ>0,使得当0<|x-a|<δ时,有|f(x)-f(a)|<ε。

1.4 连续性的性质与判定连续函数的基本性质:保号性、可积性、可微性。

连续函数的判定:函数在某一点的极限存在且等于函数在该点的函数值,则函数在该点连续。

二、第二章:导数与微分2.1 导数的定义定义:函数f(x)在点x=a处的导数,记为f'(a)或df/dx|_{x=a},表示函数在x=a 处的瞬时变化率。

导数的几何意义:函数图像在点x=a处的切线斜率。

2.2 导数的计算基本求导法则:常数倍法则、幂函数求导、指数函数求导、对数函数求导、三角函数求导。

高阶导数:f''(x)、f'''(x)等。

2.3 微分的概念与计算概念:微分表示函数在某一点的切线与x轴之间的距离,记为df(x)/dx|_{x=a}。

微分的计算:dx表示自变量的增量,微分的结果为切线的斜率乘以dx的值。

三、第三章:泰勒公式与微分中值定理3.1 泰勒公式的概念与计算概念:泰勒公式是一种将函数在某一点展开成多项式的公式,用于逼近函数在某一点的值。

泰勒公式:f(x)在某一点a处的泰勒公式为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2++f^n(a)(x-a)^n+R_n(x)。

《数学分析选讲》考研很有用的参考资料(共15章)第9章

《数学分析选讲》考研很有用的参考资料(共15章)第9章

第六章 级数理论§1 数项级数I 基本概念一 数项级数及其敛散性定义1 给定一个数列{,对它的各项依次用“+”号连结起来的表达式}n u ""++++n u u u 21 (1)称为数项级数或无穷级数,简称级数,记为,其中称为数项(1)的通项. ∑∞=1n nun u 数项级数(1)的前项之和,记为,称之为(1)的前项部分和,简称为部分和.n ∑==nk kn uS 1n 定义2 若级数(1)的部分和数列{}n S 收敛于(即S S S n n =∞→lim ),则称级数(1)收敛,并称为(1)的和,记为.若S ∑∞==1n nuS {}n S 是发散数列,则称级数(1)发散.二 收敛级数的基本性质1 收敛级数的柯西收敛准则级数(1)收敛的充要条件是:0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<++++++p n n n u u u "21.2 级数收敛的必要条件:若级数∑收敛,则∞=1n na0lim =∞→n n a .3 去掉、增加或改变级数的有限项并不改变级数的敛散性.4 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数亦如此),即收敛级数满足结合律.5 若级数适当加括号后发散,则原级数发散.6 在级数中,若不改变级数中各项的位置,只把符号相同的项加括号组成一新级数,则两级数具有相同的敛散性.7 线性运算性质若级数与都收敛,是常数,则收敛,且∑∞=1n nu∑∞=1n nvd c ,(∑∞=+1n n ndv cu)()∑∑∑∞=∞=∞=±=±111n n n n n n nv d u c dv cu.三 正项级数收敛性判别法1 正项级数收敛的充要条件是部分和数列∑∞=1n nu{}n S 有界.2 比较判别法 设与是两个正项级数,若存在正整数,当时,都有,则∑∞=1n nu∑∞=1n nvN N n >n n v u ≤(1)若收敛,则∑收敛;∑∞=1n nv∞=1n nu(2)若发散,则∑发散.∑∞=1n nu∞=1n nv3 比较原则的极限形式 设和是两个正项级数,且∑∞=1n n u ∑∞=1n n v l v u nnn =∞→lim,则(1)当+∞<<l 0时,和∑具有相同的敛散性;∑∞=1n nu∞=1n nv(2)当时,若∑收敛,则收敛;0=l ∞=1n nv∑∞=1n nu(3)当时,若发散,则发散.+∞=l ∑∞=1n nv∑∞=1n nu4 设∑和是两个正项级数,且∞=1n n a ∑∞=1n n b 0>∃N ,N n >∀,有nn n n b b a a 11++≤,则 (1)若收敛,则∑收敛;∑∞=1n nb∞=1n na(2)若发散,则发散.∑∞=1n na∑∞=1n nb5 比式判别法(达朗贝尔判别法) 设是正项级数,若及常数,有∑∞=1n nu00>∃N 0>q(1)当时,0N n >11<≤+q a a n n ,则级数收敛;∑∞=1n n u (2)当时,0N n >11≥+n n a a ,则发散.∑∞=1n n u 6 比式判别法极限形式 设为正项级数,且∑∞=1n n u q u u nn n =+∞→1lim,则(1)当时,收敛;1<q ∑∞=1n nu(2)当若时,∑发散;1>q +∞=q ∞=1n nu(3)当时失效.1=q 当比式极限不存在时,我们有 设为正项级数.∑∞=1n nu(1)若1lim1<=+∞→q u u n n n ,则级数收敛;(2)若1lim1>=+∞→q u u nn n ,则级数发散.7 根式判别法(柯西判别法) 设为正项级数,且存在某正整数及正常数l ,∑∞=1n nu0N (1)若对一切,成立不等式0N n >1<≤l u nn ,则级数收敛;∑∞=1n n u (2)若对一切,成立不等式0N n >1≥n n u ,则级数∑发散.∞=1n nu8 根式判别法极限形式 设为正项级数,且∑∞=1n nul u n n n =∞→lim ,则(1)当时级数收敛; 1<l (2)当时级数发散. 1>l 9 柯西积分判别法设为[上非负递减函数,那么正项级数与反常积分同时收f )∞+,1()∑∞=1n n f ()∫∞+1dx x f敛或同时发散.10 拉贝判别法 设为正项级数,且存在某正整数及常数∑∞=1n nu0N r ,(1)若对一切,成立不等式0N n >111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n ,则级数∑收敛;∞=1n n u (2)若对一切,成立不等式0N n >111≤⎟⎟⎠⎞⎜⎜⎝⎛−+n n u u n ,则级数发散.∑∞=1n n u 注 拉贝判别法中(1)111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n 可转化为nru u n n −≤+11,1>r 收敛; (2)r u u n n n ≤⎟⎟⎠⎞⎜⎜⎝⎛−+11可转化为nru u n n −≥+11,1≤r 发散. 11 拉贝判别法极限形式若r u u n n n n =⎟⎟⎠⎞⎜⎜⎝⎛−+∞→11lim ,则有 (1)当1>r 时,收敛;∑∞=1n nu(2)当1<r 时,发散.∑∞=1n nu四 一般项级数1 莱布尼兹判别法 若交错级数,,满足下列两个条件:()∑∞=−−111n n n u 0>n u (1)数列{单减; }n u (2),0lim =∞→n n u 则收敛.∑∞=1n nu注 若交错级数满足莱布尼兹判别法,则其余项满足()∑∞=−−111n n n u ()x R n ()1+≤n n u x R .2 绝对收敛级数及其性质 定义 对于级数,若∑∞=1n nu∑∞=1n nu收敛,则称绝对收敛;若收敛,而∑∞=1n nu∑∞=1n nu∑∞=1n nu发散,则称是条件收敛的.∑∞=1n nu显然,若绝对收敛,则一定收敛,反之不真.∑∞=1n nu∑∞=1n nu绝对收敛级数的性质: (1)重排性:若∑绝对收敛,其和为,则任意重排后所得级数亦绝对收敛,且有相同的和数.∞=1n nuS 此说明:绝对收敛级数满足交换律.对于条件收敛级数适当重排后,可得到发散级数,或收敛于任何事先指定的数(Riemann ).(2)级数的乘积 若和都绝对收敛,其和分别为∑∞=1n nu∑∞=1n nvA 和B ,则其乘积按任意方式排列所得的级数也绝对收敛,且其和为∑∞=1n n u ∑∞=⋅1n nvAB (柯西定理).乘积的排列方式通常有两种:正方形和对角线法.3 一般级数收敛判别法一般级数除应用前面正项级数方法判定其绝对收敛以外,莱布尼兹判别法和下面的狄利克雷判别法和阿贝尔判别法则是判定其可能条件收敛的主要方法.(1)狄利克雷判别法 若数列{单减收敛于零,的部分和数列有界,则级数收敛.}n a ∑∞=1n nbnn n ba ∑∞=1注 莱布尼兹判别法是狄利克雷判别法的特例,Abel 判别法亦可由狄利克雷判别法推证.(2)阿贝尔判别法:若数列{单调有界,∑收敛,则级数收敛.}n a ∞=1n nbnn n ba ∑∞=1五、常用于比较判别法的已知级数(1)几何级数∑,∞=1n nq1<q 收敛,1≥q 发散;(2)级数−p ∑∞=11n p n ,时收敛,1>p 1≤p 发散; (3)()∑∞=2ln 1n pn n ,时收敛,1>p 1≤p 发散.II 例题选解一 级数敛散性判别例1 讨论下列级数的敛散性. (1)∑∞=+111n nx,; 0>x (2)∑∞=1sinn nx,. R x ∈解(1)10<<x ,,0→n x 0111≠→+nx,发散; 1=x 时,02111≠→+nx,发散; 1>x 时,nn x x ⎟⎠⎞⎜⎝⎛<+111,∑∞=11n n x 收敛,故∑∞=+111n nx 收敛. (2)当时收敛,当时,发散. 0=x 0≠x 例2 已知∑收敛.∞=12n na(1)判定()∑∞=+−1211n n n n a 的敛散性;(2)证明:∑∞=2ln n n nn a 收敛.(武汉大学)解(1)()222221112111n a n a n a n nn+≤⎟⎠⎞⎜⎝⎛++≤+⋅−,与∑∞=12n n a ∑∞=121n n 均收敛,从而原级数收敛(绝对收敛).(2)仿(1),由五(3)知其收敛. 例3 判断下列级数的敛散性. (1)∑∞=+−1)]11ln(1[n n n ;(东北师大)(2)∑++++−)]!1!21!111([n e ";(东北师大) (3)∑∞=142sin3n n n ; (4)∑∞=⎟⎠⎞⎜⎝⎛−1cos 1n pn π,() 0>p (5)∑∞=1!n n n nn a ();e a a ≠>,0(6)()∑∞=−−+11312n n n ;(7)∑∞=−>−+111)0()2(n nna aa;(8)∑∫∞=+104411n n dxx ;(9)∑∞=⎟⎠⎞⎜⎝⎛−−−21111n n n n ; (10)()()∑∞=+2ln ln 1n n nn n ;(11)∑∞=3ln n pnn(); 0>p (12)()()∑∞=++11ln 11n pn n ();(0>p 1=p 为大连理工) (13)()∑∞=+++1!2!!2!1n n n "; (14)()∑∞=⎦⎤⎢⎣⎡−+111ln n p n n (); 0>p (15)()()∑∞=⋅−11!!2!!12n n n n ;(16)()∑∞=1ln ln 1n nn ; (17)∑∞=⎟⎠⎞⎜⎝⎛−2ln 1n nn n p (); 0>p(18)()()()∑∞=+++12111n nnx x x x "0≥x (); (19)()∑∞=+−⋅−+211ln1n pn n nn (); 0>p (20)()∑∞=⎟⎠⎞⎜⎝⎛++−110310021n nnn n ;(21)()()∑∞=−+−211n n n n ; (22)∑∞=1cos n pn nx(π<<x 0); (23)"+−−−+−−+−+2222222222; (24)()[]∑∞=−11n n n;(25)()()∑∞=2ln ln ln 1n qp n n n ;(大连理工1998) (26)∑∞=+−11n nn n;(中科院2002)(27)∑−nnnarctan )1((北京大学1999).解(1)由于)(1ln ln 1)1ln(1)]11ln(1[111∞→→++−=+−=+−=∑∑∑===n c n n n k n k k k S nk n k nk n ,其中c 为欧拉常数,所以级数收敛.(2)由于""++++=++++−<)!2(1)!1(1)!1!21!111(e 0n n n ))3)(2)(1(1)2)(1(111(!1"+++++++++=n n n n n n n 22)!1(2))3)(2(1)2)(1(111(!1nn n n n n n n <+=++++++++<", 由比较原则知其收敛.(3)24342sin 3→⎟⎠⎞⎜⎝⎛nnn⇒ 收敛;(4)21021~cos 12≤<⇒⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛−p n n pp ππ发散,21>p 收敛; (5)()()e a n n a n n a n n a nn n n n →⎟⎠⎞⎜⎝⎛+⋅=⋅++⋅++1!1!111e a <<⇒0收敛,发散; e a >(6)()131312<→−+n n n⇒收敛;或()()∑∑∑∞=−∞=∞=−−+=−+111113131232n n n n n n n n ,收敛;或()1131312−−≤−+n nn ,收敛;(此乃正项级数)(7)220222121211)ln 2((lim )21()(lim )21()2(lim a x a a na a n a a x x x nnn nnn =−=−=−+−+→−∞→−∞→⇒收敛; 注:利用的Maclaurin 展开式估计分子的阶. x a (8)204421110nxdxdxx a n n n =≤+=<∫∫⇒ 收敛; (9)()nn n nn n n n n n −=−−=−−−111111=n n −231⇒收敛; 或⎟⎟⎠⎞⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛+++=⎟⎠⎞⎜⎝⎛−=−−n o n n n n n n 11111111111⎟⎠⎞⎜⎝⎛+++=23231111n o n n n ⇒⎟⎠⎞⎜⎝⎛+=−−−=2323111111n o n n n n a n (∞→n )收敛;∑∞=⇒1n n a (10)()()()()nenn n n nn n nn nnnln ln 1ln 11ln ln ln ln +⋅=+=+,而()01ln ln →+⋅nn n ,从而上式极限为零,⇒收敛;(11)当10≤<p 时,nn n p 1ln ≥()发散; 3>n ⇒ 当时,1>p ()()21211ln 1ln −−+⋅=p p p nnn n n ,当充分大时, n ()1ln 21<−p n n ⇒ ()2111ln −+≤p p nn n ⇒收敛.或当时,1>p 0ln 1ln 1ln 121<−=⋅−⋅=′⎟⎠⎞⎜⎝⎛+−p p p pp x x p x xpx x x x x (),即单减.由柯西积分判别法知原级数收敛.3>x (12)()()()pn n n u 1ln 11++=单减,故可用柯西积分判别法,令()()()1ln 11++=x x x f p ,,易知当1≥x 1=p 时,发散,时亦发散,而时收敛.()∫∞+1dx x f 10<<p 1>p (13)()()()2121!2!!2!!2!1+≤⋅≤+++n n n n n n "()收敛; 3≥n ⇒(14)由泰勒公式(皮亚诺余项形式)得:()()()⎟⎠⎞⎜⎝⎛+⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+p p n p n p n n o n n n 221121111ln ()⎟⎠⎞⎜⎝⎛+⋅−−=p p p nn o n n 2211211,当绝对收敛,1>p 121≤<p 条件收敛,210≤<p 发散. 注 能否利用()()p np n n n 1~11ln −⎟⎟⎠⎞⎜⎜⎝⎛−+⇒()∑∞=⎟⎟⎠⎞⎜⎜⎝⎛−+111ln n p n n 收敛?(此法仅用于正项级数).(15)()()()()⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛+−=+⋅++=⋅−+⋅++=+1112211122121!!2!!1211!!22!!121n n n n n n nn n n n n a a n n()⎟⎠⎞⎜⎝⎛+++−=+++−=11123112112312n o n n n 由拉贝判别法知其收敛.(16)+∞→n ln ,则当较大时,,n 2ln e n >()()2ln 2ln 11ln 1n en n n =<⇒收敛; (17)根式判别法失效.先估计它的阶,⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=n n p n nn e n n p u ln 1ln ln 1,n npn n p ln ~ln 1ln −⎟⎠⎞⎜⎝⎛−(), ∞→n 从而可以估计,于是可讨论pn nu −~n p p nu n nu =的极限,为此()⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−+=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=∞→∞→∞→n n p n n p n n p n u n n np n n pn ln 1ln ln lim ln 1ln lim ln lim ⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛++−=−∞→n n p n p n n n 1ln 1ln 1ln 11lim1()[]x px x px xx ln ln 1ln 1lim0−+=→ ()0ln 1ln ln lim 220=++−=→xpx x x x x p x 故,,所以当时收敛,当1lim =∞→n pn u n p n n u −~1>p 1≤p 时发散.(18)当时级数显然收敛; 0=x 当时,,故收敛;10<<x n n x u <当时,1=x nn u ⎟⎠⎞⎜⎝⎛=21,收敛;当时,1>x ()()()112111111−−<+<+++=n n n nn x x x x x x u ",收敛.(19)()()())(12121~1112∞→⋅=++=−+n nn nn nn p p ppp, )(2~12~121ln 11ln∞→−+−⎟⎠⎞⎜⎝⎛+−+=+−n n n n n n , 所以,211121~p p n n a +−⋅−)(∞→n ,由此易得:时收敛,0>p 0≤p 时发散. 注 等价无穷小替换法仅适用于同号级数.(20)()132103100210310021<→++=⎟⎠⎞⎜⎝⎛++−n n n n n nn,绝对收敛. (21)()()()()()111111111−+−−=−−−−=−+−=n n n n n n u nnnnn n , ()()()0121112112221<−−−=−−−⋅=′⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−x x x x x x xx x () 1>x 由莱布尼兹判别法,()∑∞=−−211n nn n 收敛,而∑∞=−111n n 发散,故原级数发散. (22)当,发散,,绝对收敛,当0≤p 1>p 10≤<p 时,由狄利克雷判别法知其收敛.事实上,212sin 21sin cos 3cos 2cos cos −⎟⎠⎞⎜⎝⎛+=++++x xn nx x x x ",()π,0∈x ,有界.(23)法一:212sin24sin24cos22πππ====a ,322sin 24cos 1222ππ=⎟⎠⎞⎜⎝⎛−=−=a ,4332sin 22cos 224cos 122222πππ=−=⎟⎠⎞⎜⎝⎛+−=−−=a ,……12sin2+=n n a π,……于是原级数可表为∑∞=+=⎟⎠⎞⎜⎝⎛++++21322sin 22sin 2sin 2sin 2n n n ππππ"",收敛.法二:记21=A ,222+=A ,2223++=A ,……则,于是2→n A 121222lim 222lim 222lim lim 22111<=−+−=−+−=−+−=→→−−∞→+∞→x x x x A A a a x x n n n nn n ,收敛.(24)将级数中相邻且符号相同的项合并为一项,得一新级数()()∑∞=⎭⎬⎫⎩⎨⎧−++++−12221111111n nn n n " 注意到通项中共有项,其中前项之和和后12+n n 1+n 项之和分别夹在11+n 与n1之间, n n n n n n n n n n n n n 11111122222=<−+++<−+<+=" ()nn n n n n n n n n n n n n 11211211122222=++<++++<+<+=+" 因此()nn n n n 211111112222<−+++++<+" 由此得其单减,从而为收敛级数,而原级数的部分和总是夹在新级数某相邻的二部分和之间,所以原级数也收敛.(25)当时,则当时收敛,1=p 1>q 1≤q 时发散,此时级数的敛散性等同于无穷积分()∫∞+2ln ln ln qx x x dx的敛散性.由无穷积分立得 ()∫∞+2ln ln ln q x x x dx ()∫+∞→=A q A x x x dx2ln ln ln lim ()⎪⎪⎩⎪⎪⎨⎧<∞+>−=+∞==−+∞→+∞→1,1,ln ln 11lim 1,ln ln ln lim 212q q x q q x A qAA A 收敛, 当时发散,时收敛,事实上,1<p 1>p 当时,1<p ()()()()n n n n n n n n n q pqp ln 1ln ln ln ln 1ln ln ln ln 11>⋅=−(n 充分大) 当时,1>p ()()()()()()()2121211ln 1ln ln ln 1ln 1ln ln ln ln 1+−−+<⋅=p q p p q p n n n n n n n n n . (26)由 及发散知级数发散.∑−1n(27)由于{单调有界,}n arctan ∑−nn)1(收敛,由阿贝尔判别法知其收敛.思考题1 判别下列级数的敛散性: (1)∑∞=+−−++122)11(1n n n n n n ;(复旦大学1997) (2)∑∞=123ln n nn;(复旦大学1998) (3)∑∞=122sinn nn π;(复旦大学1999)(4)∑∞=−122sin)53(n n n n π;(复旦大学1999)(5))0()1()2ln(1>++∑∞=a n a n n n;武汉理工大学2004) (6)∑∞=−11sin 1(n n n α.(南京理工2004) 提示:(1)分子有理化,发散; (2)收敛;(3)仿上例(3),收敛;(4)当为偶数时,通项为0,去掉这些为0的项以后所得级数为交错级数,收敛,n从而原级数收敛(考察它们部分和数列之间的关系).(5)由级数收敛的必要条件知当1≤a 时发散;当由比式判别法知其收敛; 1>a (6)利用的Taylor 公式讨论. x sin 例4 讨论级数∑∞=11n pn的敛散性.分析:,柯西准则,发散;1=p 1>p ,柯西积分判别法,收敛; 1<p ,比较判别法,发散.例5 证明 (1)若级数收敛,则∑∞=12n n a ∑∞=1n nn a 收敛;(淮北煤师院2004) (2)若,则发散,而∑收敛;(南开大学2001)0lim ≠=a na n n∑∞=1n na∞=12n na(3)若是收敛的正项级数,则当∑∞=1n n a 21>p 时,级数∑∞=1n p n na 收敛(中科院2002). 分析:(1)⎟⎠⎞⎜⎝⎛+≤22121n a n a n n ; (2)01≠→=a na na n n ,发散,而∑收敛; ∑∞=1n n a ∞=12n na (3)同(1).或:由Cauchy 不等式211221111⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛≤∑∑∑===nk p nk k nk pk k a k a ; 知其部分和有界,从而收敛.例6(兰州大学2000)设是单调递减数列,试证明: 0>n u (1)若0lim ≠=∞→c u n n ,则∑∞=+−11)1(n nn u u 收敛; (2)若0lim =∞→n n u ,则∑∞=+−11)1(n nn u u 发散. 证(1)由单调有界定理知,再由极限的柯西收敛准则知:0>≥c u n 0,0>∃>∀N ε,当,有+∈∀>Z p N n ,εc u u p n n <−+,又单调递减,所以,当时,有n u +∈∀>Z p N n ,ε<−≤−++−+−+−+++++np n n p n p n n n n n u u u u u u u u u )1()1()1(1121",由级数的柯西收敛准则知其收敛.(2)由于1)1()1()1(1121−=−≥−++−+−+++−+++++pn n p n p n n p n p n n n n n u uu u u u u u u u u ",令得上式右端的极限为,由柯西准则知∞→p ∞+∑∞=+−11)1(n nn u u 发散. 例7(华东师大1997)设级数∑∞=1n nn a收敛.试就∑n a 为正项级数和一般项级数两种情形分别证明:级数n n an n+∑∞=1也收敛.证 当为正项级数时,∑na1lim=+∞→nn a n a n n n ,由比较判别法知n n an n+∑∞=1收敛.当∑∞=1n n n a 为一般项级数时,nn a n n a n n n n 1111+=+∑∑∞=∞=,由阿贝尔判别法知它是收敛的.思考题2(华东师大1998)已知为发散的一般项级数,试证明∑∞=1n n a ∑∞=+1)11(n n n a 也是发散级数.提示:用反证法.假设∑∞=+1)11(n n n a 收敛,则∑∑∞=∞=++=11)1)(11(n n n n n n n a a ,由阿贝尔判别法知收敛,矛盾.∑∞=1n na例8(北京工业大学2000)设和正项数列{}n a 单调减少,且级数发散.令n n na ∑∞=−1)1(nn a a a u ++⋅+=11111121",.,2,1"=n试问级数∑是否收敛,并说明理由.∞=1n nu证 级数收敛.这是因为:由级数发散和正项数列单调减少知,且由单调有界定理知,于是∑∞=1n nun n na ∑∞=−1)1({}n a 0lim >=∞→a a n n a a n ≥nn n n aa a a a u )11()1(111111121+=+≤++⋅+=", 由比较原则知收敛.∑∞=1n nu例9(北方交通大学1999)已知.,2,1,,01"=≤>+n a a a n n n 讨论级数"""++++na a a a a a 21211111 的敛散性.解 由单调性假设知存在极限0lim ≥=∞→a a n n ,则a a a a n n n =∞→"21lim ,由柯西根式判别法知,当时收敛,当时发散,当1>a 1<a 1=a 时,例10(中国矿大北研部)设,0>n a n n a a a S +++="21,级数.试证:∞=∑∞=1n na(1)∑∞=1n nnS a 发散;(武汉大学) (2)∑∞=12n nnS a 收敛.(东北师大) 证 (1),,于是0>n a ↑n S pn n p n pn n k kpn n k k k S S S a S a ++++=++=−=≥∑∑111. 而,故,从而当充分大时,∞=∑∞=1n n a +∞=++∞→p n p S lim p 21<+pn n S S , 211≥∑++=pn n k kk S a .由柯西收敛准则知其发散.(2)11211211122121111a S S S S a S S a a S a n nk k k n k k k k nk kk ≤−=⎟⎟⎠⎞⎜⎜⎝⎛−+=+≤∑∑∑=−=−=,部分和有界,故收敛.例11(华中科技大学) 若0lim 1=+∞→n n a ,()0lim 21=+++∞→n n n a a ,…,()0lim 21=++++++∞→p n n n n a a a ",…,试问是否一定收敛?为什么?∑∞=1n n a 解 不一定.如级数∑∞=11n n,有 )(01121110∞→→+<++++++<n n p p n n n "; 但∑∞=11n n 发散.例12(上海交大) 若 1lim 1sin 2=⎟⎟⎠⎞⎜⎜⎝⎛⋅∞→n nn n a n ,则级数是否收敛?试证之.∑∞=1n n a 解 由于11sin2→−nn n na (∞→n ),而()432sin 21sin2110−⋅−−≤=<−−nnn n n nn (n 充分大),由比较判别法知∑∞=−11sin2n nn n收敛,再由比较判别法知收敛.∑∞=1n na例13 设且单减,试证与同时敛散.0>n a ∑∞=1n na∑∞=122n nn a 证 因为对正项级数任意加括号不改变敛散性,因此由∑∞=1n na()()()""++++++++++=1587654321a a a a a a a a a∑∞==++++≤02232221222232n n n a a a a a "和∑∞=1n na()()()"""++++++++++=169854321a a a a a a a a∑∞=+=+++++≥02116842122121842n nn a a a a a a a "知两级数具有相同的敛散性.例14 若正项级数收敛,且(∑∞=1n nan n nb a n a e a e++=",2,1=n ).证明 (1)∑收敛;(华东师大)∞=1n nb(2)∑∞=1n nna b 收敛.(北京理工大学2003)证 解出得:n b ()0ln lim >−=∞→n a n n a eb n,而收敛,故当n 充分大时,∑∞=1n n a nnn a b b <,从而(2)收敛立得(1)收敛.由收敛的必要条件得)(0∞→→n a n .又因为()⎟⎟⎠⎞⎜⎜⎝⎛−++++=−n nn n n a a a a a a e n"!3!21ln ln 32()n n n a o a a =++"32!3121~, 即 0lim=∞→nn n a b ,由级数收敛得∑∞=1n n a ∑∞=1n nn a b收敛. 例15 研究级数∑∞=121n nx 的敛散性,这里是方程n x x x tan =的正根,并且按递增的顺序编号.解 解方程得:()⎟⎠⎞⎜⎝⎛+−+∈ππππn n x n 2,12,()22111−<n x n ,,收敛. 1>n 例16 设,,11=u 22=u 21−−+=n n n u u u ().问收敛吗?3≥n ∑∞=−11n nu解 由于03323233211211111<−=−=−=−+−−+−+++n n n n n n n n n n n u u u u u u u u u u u (); 3>n 所以 321111≤=+−−+n n n n u u u u (由的前若干项预测);由比式判别法知其收敛. n u 例17 设,证明级数 0>n a ()()()∑∞=+++121111n nna a a a " 收敛. 解 由于()()()()()()()()n n n a a a a a a a a a a a a a S +++++++++++++=<111111111021321321211""()()()()()()()"""++++++++−=+++++=321321212121111111111a a a a a a a a a a a a()()()()()()n n a a a a a a a ++++++++−=1111111121321"" ()()()1111121<+++−=n na a a a "即部分和有界,所以收敛.例18(上海师大)证明:级数:"+⎟⎠⎞⎜⎝⎛+++−⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛+−4131211713121151211311是收敛的.解 这是交错级数,且()()⎟⎠⎞⎜⎝⎛++++−+=⎟⎠⎞⎜⎝⎛+++−=n n n n n n a n 12111212121211121""111121112112111221121+=⎟⎠⎞⎜⎝⎛++++++>⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛−++=n a n n n n n n "", ()()0ln 1211211121→++−=⎟⎠⎞⎜⎝⎛+++−=n n n c n n n a ε". 由莱布尼兹判别法知收敛.∑∞=1n na例19(合肥工大2001)已知正项级数∑na 和∑nb 都发散,问下列级数收敛性如何?(1)∑; (2)),min(nnb a ∑),max(nnb a .解(1)可能收敛,也可能发散,例如,取,则1−==n b a n n ∑),min(nn b a 发散;若取,,则n n a )1(1−+=1)1(1+−+=n n b 0),min(≡n n b a ,∑),min(nn b a 收敛.(2)一定发散,这是因为. n n n a b a ≥),max(思考题3(复旦大学1997)证明:如果任意项级数∑nu和∑nv都收敛,且成立.1,≥≤≤n v w u n n n则收敛.∑nw提示:利用柯西收敛准则.思考题4(上海交大2004)设.,2,1,1,11212"+==∫+−n dx x x n x n nn n 证明收敛.∑∞=−−11)1(n nn x 提示:12212111−+=<<+=n n n x n x n x ,应用Leibniz 判别法即可.例20(华东师大2000)设收敛,∑∞=1n na0lim =∞→n n na .证明:.∑∑∞=∞=+=−111)(n n n n na a an 证 记级数的前n 项和为,则∑∞=−−11)(n n na an n S 12113221)()(2)(++−+++=−++−+−=n n n n n na a a a a a n a a a a S "",而0])1(1[lim lim 11=+⋅+=+∞→+∞→n n n n a n n nna ,所以∑∑∞=∞=+=−111)(n n n n na a an .思考题5(合肥工大2000)设数列{}n a 单调,且级数收敛于A .证明:级数收敛,并求其和.∑∞=1n na∑∞=+−11)(n n na an 思考题6(北京工业大学2001)设数列{}n na 收敛,00=a ,级数收敛,证明:级数收敛.∑∞=−−11)(n n na an ∑∞=1n na思考题7(安徽大学2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−+1212)(n n n a a证明:收敛.∑∞=1n na思考题8(华东师大2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−−1212)(n n n a a证明:收敛.∑∞=1n na例21(吉林大学)证明级数"+−++−++−+611119141715121311发散到正无穷.证 记.,2,1,141241341"=−−−+−=n n n n a n 则nnna n 1)331(3142−=−>,而∑n1发散到正无穷,所以,+∞=∞→n n S 3lim .又因为,故.n n n S S S 31323>>+++∞=∞→n n S lim 注(1)若要证明级数发散,则只需证明+∞=∞→n n S 3lim 即可.(2)在证明{收敛或发散时,有时通过求其子列的敛散性而使问题变得简单. }n S 思考题9(武汉大学1999)级数""+−−+++−+−nn 21)12(1514131211222 是否收敛?为什么?提示:考察. n S 2例22 证明:级数收敛的充分必要条件是:对于任意的正整数序列{和正整数数任意子序列{,都有∑∞=1n na}k p }k n .0)(lim 11=++++++∞→k k k k p n n n k a a a "证 必要性.设级数收敛,则由柯西收敛准则得:∑∞=1n na,0,0>∃>∀N ε当时,,都有N n >+∈∀Z p ε<++++++p n n n a a a "21,从而当时,,于是对于任意的正整数序列N k >N n k >{}k p ,有ε<++++++k k k k p n n n a a a "11,即 .0)(lim 11=++++++∞→k k k k p n n n k a a a "充分性.反证法.若发散,则,使得∑∞=1n na+∈∃>∃>∀>∃Z p N n N ,,0,00ε021ε≥++++++p n n n a a a ",特别地,分别取,,1,1111+∈∃>∃=Z p n N 使得 0211111ε≥++++++p n n n a a a ",{}+∈∃>∃>Z p N n n N 22212,,,2max ,使得 0212222ε≥++++++p n n n a a a ",如此下去,得一正整数子序列{和正整数序列}k n {}k p ,恒有011ε≥++++++k k k k p n n n a a a ",这与已知条件矛盾.二 绝对收敛与条件收敛例23 判别下列级数是条件收敛,还是绝对收敛: (1)()∑∞=+−−1111n np n n(南京师大2002,1=p 为武汉大学1995);(2)∑∞=−1sin)1(n nnx(内蒙古大学); (3))0()23()1(12>−+−∑∞=x n n n xn(复旦大学1997). 解(1)当时,不趋于0,发散; 0≤p n u 当时,原级数绝对收敛; 1>p 当时,10≤<p ()∑∞=−−1111n p n n收敛,nn 11单调有界,由阿贝尔判别发知其收敛,但 ()1111→−−+−p np n n n(∞→n );故原级数条件收敛.(2)当时绝对收敛,当0=x 0≠x 时,不妨设,则0>x 0>∃N ,当时,有N n >20π<<x ,且nxsin关于单减趋于0,由莱布尼兹判别法知其收敛. n 又因为)(1sin)1(∞→→−n nx n xn ,而∑∞=1n n x发散,故原级数条件收敛.(3)当时,数列0>x ⎭⎬⎫⎩⎨⎧−+x n n )23(12单减趋于0,由莱布尼兹判别法知其收敛.又因为 ,所以222423n n n n <−+<xx n x x nn n n 2221)23()1(41≤−+−<,从而,当21>x 时,绝对收敛,当21≤x 时,条件收敛. 思考题10(武汉大学2005)判别级数∑∞=2sin ln ln ln n n nn是否绝对收敛或条件收敛. 思考题11(南京大学2001)设1,0,1,111≥>>++=+n x k x x k x nnn .(1)证明:级数绝对收敛;∑∞=+−01)(n n n x x(2)求级数之和.∑∞=+−11)(n n n x x例24(北京大学1999,中国矿大1999,安徽大学2000,2001)设()x f 在的某邻域内有二阶连续导数,且0=x ()0lim 0=→x x f x .证明:级数∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛.证 由()0lim=→xx f x 得,()00=f ()00=′f ,()x f 在0=x 某邻域内的二阶泰勒展式为()()()()()22212100x x f x x f x f f x f θθ′′=′′+′+=,10<<θ 由连续知,,有()x f ′′0>∃M ()M x f ≤′′,从而有2121nM n f ⋅≤⎟⎠⎞⎜⎝⎛ 故∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛. 思考题12 证明:(1)(华南理工大学2005)设是偶函数,在)(x f 0=x 的某个领域中有连续的二阶导数, 则级数.2)0(,1)0(=′′=f f ∑∞=−1)11((n n f 绝对收敛.(2)(浙江大学2004)设函数在区间)(x f )1,1(−内具有直到三阶的连续导数,且,0)0(=f .0)(lim 0=′→x x f x 则∑∞=2)1(n n nf 绝对收敛.例25 设()单调,且级数0>n a ",2,1=n ∑∞=11n n a 收敛,讨论级数()∑∞=++−111n nn a a n"是条件收敛还是绝对收敛.解 由于且单调,故0>n a 01→na ↑⇒n a ()()()()⎪⎪⎩⎪⎪⎨⎧<++<++++⋅−=<+++⋅−++,2112121,22211221122212n n n n nn n n a a n n a a a n a na n a a a n "" 由已知条件,∑∞=12n na 收敛,故原级数绝对收敛. 例26 (哈尔滨工大2000)证明:若级数∑收敛,且级数绝对收敛,则级数收敛.∞=1n nb(∑∞=−−11n n na a)∑∞=1n nn ba 证 设n nb b b S +++="21,则1−−=n n n S S b ,于是由收敛知:,∑∞=1n nb0>∃M M S n ≤,.由收敛知:",2,1=n (∑∞=−−11n n n a a )0>∀ε,01>∃N ,1,N m n >∀,有ε<−++−+−−+−111m m n n n n a a a a a a ",又收敛,对上述{}n S 0>ε,,02>∃N 2N n >∀,,有2N m >ε<−m n S S ,取{}1,max 21+=N N N ,于是,当时,N m n >,m m n n n n b a b a b a +++++"11()()()1111−++−−++−+−=m m m n n n n n n S S a S S a S S a "[]()11121−−+++−+−+−++−+−≤n m n n m m m n n n n S S a a a M a a a a a a M "εM 3<.由柯西收敛准则知级数∑收敛.∞=1n nn ba 另证收敛⇒∑∞=1n nb0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<∑++=pn n k kb1.记,,则∑++==in n k ki bS 1p i ,,2,1"=ε<i S ,p i ,,2,1"=.由绝对收敛得其部分和有界,即,有(∑∞=−−11n n na a)0>∃MM a aS mn n nm ≤−=′∑=−11,",2,1=m .由阿贝尔定理得p n p p n p n p n n n n pn n k kk a S a a S a a S a a S ba ++−+−++++++=+−++−+−≤∑113222111"p n p a S M ++≤ε又M a a a a a a a p n p n p n +<−++−+=−+++01010",从而()012a M ba pn n k kk +≤∑++=ε.由柯西收敛准则知其收敛.例27(华东师大2001)证明:若级数绝对收敛,则级数也绝对收敛.∑∞=1n na∑∞=+++121)(n n na a a a"证 记,则由绝对收敛知收敛,所以{有界,即,有n n a a S ++="1∑∞=1n na∑∞=1n na}n S 0>∃M .,2,1,"=≤n M S n 于是有n n n a M a a a a ≤+++)(21",由绝对收敛知级数∑也绝对收敛.∑∞=1n na∞=+++121)(n n na a a a"思考题14(华中科技2004)设,求级数之和.)(),1(,010∞→→≥==∑=n b x n ax x n nk kn ∑−+)(1n n nx x a提示:1−−=n n n x x a .例28 证明:若对任意收敛于0的数列{}n x ,级数∑都收敛,则级数绝对收敛.∞=1n n nx a∑∞=1n n a 分析 问题等价于:若级数∑na发散,则至少存在一个收敛于0的数列{,使得级数发散,于是问题转化为:从}n x ∑n nx a∑+∞=n a 出发,构造出满足条件的数列{.联想例10中(1)的结论立明.}n x证 假设∑∞=1n n a 发散,记其前项和为,则n n S +∞=∞→n n S lim .取210=ε,,,由0>∀N N n >∃+∞=∞→n n S lim 得 210lim<=∞→mn m S S ,从而当充分大()时,有m n m >21<m n S S ,于是0221121ε=>−≥+++++=++m n m m m n n n n S S S S a S a S a ", 由柯西收敛准则知级数 ∑∞=1n n n S a 发散,取1,1≥=n S x nn ,则0lim =∞→n n x ,且发散,这与题目的条件矛盾,故命题成立.∑∞=1n n n x a 思考题15(中国人民大学2000)若正项级数发散,则存在收敛于0的正数序列,使得级数发散.∑∞=1n na{}n b ∑∞=1n n n b a 例29 研究级数∑∞=1sin n n n的收敛性.记其前n 项和为,将其分成两项 n S −++=nn n S S S , 其中分别表示前n 项和中所有正项之和与负项之和.证明:极限−+nnS S ,−+∞→nnn S S lim 存在,并求其值.证 由Dirichlet 判别法知其收敛.又因为∑∑∑∑∞=∞=∞=∞=−=≥111212cos 21121sin sin n n n n n n n n n n ,右端第一个级数发散,第二个级数收敛(利用Dirichlet 判别法),从而∑∞=1sin n n n非绝对收敛. 由于)(sin 2122)(1∞→−∞→−=−−+=∑=−+−+−n k k S S S S S S n k n n n n n n,所以,1)1(lim lim lim −=−=−+=−∞→−−−+∞→−+∞→nnn n n n n n n n n S S S S S S S S . 注 此例给出了条件收敛与绝对收敛的一个本质区别,且这个结论对一切条件收敛级数都成立.三 构造级数例30 试构造一级数,使它满足:∑∞=1n na(1)∑收敛; (2)∞=1n na ⎟⎠⎞⎜⎝⎛≠n o a n 1. 解 ∑∞=121n n ,∑∞=11n n 满足(2),将两者结合起来,构造级数如下: "+++++=∑∞=22221514131211n n a 即当n 是整数平方时,n a n 1=,否则21n a n =,显然⎟⎠⎞⎜⎝⎛≠n o a n 1,同时 +∞<≤+≤=∑∑∑∑=≤==nk n k nk nk k n k kk a S 12212112112故此级数收敛.例31 举出一个发散的交错级数,使其通项趋于零. 分析 交错级数""+−++−+−−n n a a a a a a 2124321 ()0>n a 部分和为,可见只要构造一个级数,使得,同时使和一个收敛,另一个发散即可.为此可构造级数如下:∑∑==−−=n k k nk k n a aS 121122∑∞=1n n a 0→n a ∑∞=−112k k a∑∞=12k ka()""+−−+−+−+−nn 21121514131211222. 例32(南开大学1999)已知级数收敛,问级数和是否必收敛?说明理由.∑∞=1n na∑∞=12n na∑∞=13n na解 未必收敛.如级数∑∞=−1)1(n nn收敛,但发散.令∑∞=12n na"+−−−+−−+−=∑∞=33333331331331331312212212111n n a""+−−−−+项k k k k k k k k k k k11113。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析选讲大纲
《数学分析方法选讲Ⅰ》教学大纲
数学与应用数学专业(师范类)专业用
一、说明部分
(一)本课程的性质、教学目的和教学任务
1.本课程的性质、教学目的
本课程是数学专业的专业选修课,是在学习了数学分析这门基础课后开设的。

本课程是对学生已学过的数学分析知识进一步系统化,并作适当的拓宽与补充,对于常用的数学分析解题方法与技巧加以总结和探讨,旨在使选修的学生,特别是准备报考研究生的学生得到提高.本课程的教学目的和要求是通过这门课的学习,使学生不仅能掌握一些处理问题的基本方法,而且能使他们对于数学分析的基础理论有一个深刻系统地了解,为学生将来进入更高级阶段的学习和科研,打下良好的基础。

同时,还培养学生独立思维能力和解决实际问题能力。

2.本课程的教学任务
(1)掌握数列、函数极限的定义、性质、存在条件以及相关的基本知识与基本理论;孰知计算极限常用的各种方法,熟练应用各种方法计算不同形式的极限。

深刻理解一元函数连续性及一致连续性的定义、性质以及相关论论,会依定义讨论连续性、一致连续性及相关的命题,无穷大(小)量的相关知识.。

(2)熟练掌握一元函数导数和微分的定义,性质,计算方法,几何应用,以及微分学基本定理。

熟练掌握二元以及多元函数偏导数及全微分的定义、性质,计算;掌握偏导数存在性、可微性,以及偏导数连续性之间的关系。

(3)掌握一元函数定积分的定义、性质、几何意义;可积的充分与充要条件;掌握积分的计算方法,能够应用定积分计算一些实际问题。

掌握反常积分的定义、性质、收敛的判别方法,熟练判断反常积分的敛散性。

(4)熟练掌握数项级数的定义、性质、收敛的充要条件以及充分条件,尤其是正项级数收敛的判别;掌握函数项级数点收敛、一致收敛的定义、性质以及判别方法,尤其注意他们之间的关系以及一致收敛的函数项级数的性质;掌握幂级数的相关理论。

(5)理解并掌握二重积分的定义;几何意义,掌握二元函数可积的充要条件以及几类可积函数;应用重积分计算平面图形的面积,空间立体的体积。

理解并掌握曲线积分、曲面积分的定义、基本性质掌握计算方法。

(6)能够对部分院校的大学生数学竞赛试题有一定的了解。

(二)本课程的教学原则和方法
1.教学原则:理论课与习题课并重的原则;基本的内容与现代数学的方法尽量结合的原则。

2.教学方法:以教师讲解为主的课堂教学方式
(三)本课程的教学内容和学时分配
本课程为一学期课程,每周2学时,总学时为32学时。

第一讲数列极限4学时
第二讲函数极限、连续4学时
第三讲一元函数微分学4学时
第四讲二元函数微分学4学时
第五讲不定积分、定积分、反常积分、含参变量积分
4学时第六讲级数4学时
第七讲重积分4学时
第八讲曲线、曲面积分4学时
(四)本课程大纲编写的执笔人
执笔人葛丽萍黑河学院数学系函数论教研室审定
二、正文部分
第一讲数列极限4学时
(一)教学目的和要求
掌握数列极限的定义、性质、存在条件以及相关的基本知识
与基本理论;孰知计算数列极限常用的各种方法,熟练应用各种方法计算不同形式的极限。

能够对部分院校的大学生数学竞赛试题有一定的了解。

(二)教学重点
数列极限的各种计算方法数
(三)教学难点
列极限各种计算方法的应用
第二讲函数极限、连续4学时
(一)教学目的和要求
掌握函数极限的定义、性质、存在条件以及相关的基本知识与基本理论;孰知计算函数极限常用的各种方法,熟练应用各种方法计算不同形式的极限。

能够对部分院校的大学生数学竞赛试题有一定的了解。

(二)教学重点
函数极限的各种计算方法函数
(三)教学难点
极限各种计算方法的应用
第三讲一元函数微分学4学时
(一)教学目的和要求
深刻理解一元函数连续性及一致连续性的定义、性质以及相关论论,会依定义讨论连续性、一致连续性及相关的命题,无穷大(小)量的相关知识,熟练掌握一元函数导数和微分的定义,性质,计算方法,几何应用,以及微分学基本定理。

能够对部分院校的大学生数学竞赛试题有一定的了解。

(二)教学重点
一元函数连续、一致连续的定义、性质及其应用;一元函数的导数、微分以及微分学基本定理的应用;
(三)教学难点
一致连续的判断与应用
第四讲二元函数微分学4学时
(一)教学目的和要求
熟练掌握二元函数偏导数及全微分的基本定义、性质,掌握求简单函数偏导数的基本技巧;掌握二元函数的偏导数存在性、可微性,以及偏导数连续性之间的关系;掌握二阶混合偏导数与求导顺序无关的条件等相关基本知识。

能够对部分院校的大学生数学竞赛试题有一定的了解。

(二)教学重点
二元函数的偏导数、全微分概念、计算以及存在性、可微性(三)教学难点
二元函数的可微性与连续性判断及综合应用
第五讲不定积分、定积分、反常积分、含参变量积分
4学时(一)教学目的和要求
熟练计算不定积分,掌握一元函数定积分的定义、性质、几何意义;可积的充分与充要条件,几类常见的可积函数;掌握积分的计算方法,熟练能够应用定积分计算平面图形的面积,空间物体体积,旋转体表面积,曲线弧长等问题。

掌握反常积分的定义、性质、收敛的判别方法,熟练判断反常积分的敛散性。

能够对部分院校的大学生数学竞赛试题有一定的了解。

(二)教学重点
不定积分的计算、定积分、反常积分的基本知识理论
(三)教学难点
可积的充分与充要条件,反常积分敛散性的判断
第六讲级数4学时
(一)教学目的和要求
熟练掌握数项级数的定义、性质、收敛的充要条件以及充分条件,尤其是正项级数收敛的判别;掌握函数项级数点收敛、一致收敛的定义、性质以及判别方法,尤其注意他们之间的关系以及一致收敛的函数项级数的性质;掌握幂级数的相关理论。

能够
对部分院校的大学生数学竞赛试题有一定的了解。

(二)教学重点
各种级数的定义、性质、收敛的判别方法
(三)教学难点
各种级数收敛的判别
第七讲重积分4学时
(一)教学目的和要求
理解并掌握二重积分的定义;几何意义,掌握二元函数可积的充要条件以及几类可积函数;注意与一元函数进行比较,记忆。

熟练掌握重积分的计算方法从而培养学生的计算能力以及几何作图能力。

应用重积分计算平面图形的面积,空间立体的体积。

能够对部分院校的大学生数学竞赛试题有一定的了解。

(二)教学重点
重积分的定义、性质、几何意义而、计算方法
(三)教学难点
重积分的计算与应用
第八讲曲线、曲面积分4学时
(一)教学目的和要求
理解并掌握曲线积分的定义;掌握积分的基本性质;熟练对曲线积分进行计算;掌握第一型曲线积分与第二型曲线积分之间
的联系;掌握曲面积分、的定义;掌握积分的基本性质;熟练对曲面积分进行计算;掌握曲线积分、曲面积分与重积分之间的联系以及第二型曲线积分与第二型曲面积分之间的关系。

能够对部分院校的大学生数学竞赛试题有一定的了解。

(二)教学重点
曲线积分、曲面积分的计算以及与重积分之间的联系
(三)教学难点
曲线积分、曲面积分的计算以及与重积分之间的联系
教材:
华东师范大学数学系编,《数学分析》,北京:高等教育出版社,,2004.
主要参考书目:
徐新亚、夏海峰编,《数学分析选讲》,北京:同济大学出版社,2008.
部分院校大学生数学竞赛试题。

相关文档
最新文档