浙江省金华市义乌市中考数学模拟试卷(含解析)

合集下载

浙江省金华市金东区2021-2022学年中考数学押题试卷含解析

浙江省金华市金东区2021-2022学年中考数学押题试卷含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O 的直径,且AB ⊥CD .入口K 位于AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )A .A→O→DB .C→A→O→ BC .D→O→CD .O→D→B→C2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .3.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A.B.C.D.4.下列实数中,结果最大的是()A.|﹣3| B.﹣(﹣π)C.7D.35.下列说法正确的是()A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是8D.若甲组数据的方差S=" 0.01" ,乙组数据的方差s=0 .1 ,则乙组数据比甲组数据稳定6.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×1047.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.18.下列说法中,正确的是( )A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形9.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°10.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧B.点A点B之间C.点B点C之间D.点C的右侧二、填空题(共7小题,每小题3分,满分21分)11.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.12.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.13.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.14.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.15.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.16.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。

中考数学考试模拟卷(含答案解析)

中考数学考试模拟卷(含答案解析)

中考数学考试模拟卷(含答案解析)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(3分)﹣3的绝对值是()A.﹣B.3 C.D.﹣32.(3分)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.3.(3分)节肢动物是最大的动物类群,目前已命名的种类有120万种以上,将数据120万用科学记数法表示为()A.0.12×106B.1.2×107C.1.2×105D.1.2×1064.(3分)正多边形的每个内角为108°,则它的边数是()A.4 B.6 C.7 D.55.(3分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.6.(3分)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM =35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°7.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣18.(3分)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为()A.B.C.D.9.(3分)若关于x的分式方程:2﹣=的解为正数,则k的取值范围为()A.k<2 B.k<2且k≠0 C.k>﹣1 D.k>﹣1且k≠010.(3分)下列命题:①(m•n2)3=m3n5②数据1,3,3,5的方差为2③因式分解x3﹣4x=x(x+2)(x﹣2)④平分弦的直径垂直于弦⑤若使代数式在实数范围内有意义,则x≥1其中假命题的个数是()A.1 B.3 C.2 D.4二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.[来源:学,科,网]18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是°;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与解析一、选择题1.【分析】应用绝对值的计算方法进行计算即可得出答案.【解答】解:|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120万用科学记数法表示为:1.2×106.故选:D.4.【分析】方法一:根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解;方法二:设多边形的边数为n,然后根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:方法一:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,方法二:设多边形的边数为n,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形的边数为5.故选:D.5.【分析】根据“每人出8钱,会多出3钱;每人出7钱,又差4钱”,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:依题意得:.故选:C.6.【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.7.【分析】根据图象的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.8.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.9.【分析】先解分式方程可得x=2﹣k,再由题意可得2﹣k>0且2﹣k≠2,从而求出k的取值范围.【解答】解:2﹣=,2(x﹣2)﹣(1﹣2k)=﹣1,2x﹣4﹣1+2k=﹣1,2x=4﹣2k,x=2﹣k,∵方程的解为正数,∴2﹣k>0,∴k<2,∵x≠2,∴2﹣k≠2,∴k≠0,∴k<2且k≠0,故选:B.10.【分析】利用幂的运算性质、方差的计算公式、因式分解的方法、垂径定理及二次根式有意义的条件分别判断后即可确定正确的选项.【解答】解:①(m•n2)3=m3n6,故原命题错误,是假命题,符合题意;②数据1,3,3,5的方差为2,故原命题正确,是真命题,不符合题意;③因式分解x3﹣4x=x(x+2)(x﹣2),正确,是真命题,不符合题意;④平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,符合题意;⑤若使代数式在实数范围内有意义,则x≥1,正确,是真命题,不符合题意,假命题有2个,故选:C.二、细心填一填11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b 是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S=AC•BC=m2+6,利用二次函数的性质即可△ABC求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.【分析】先化简各式,然后再进行计算即可解答.【解答】解:•+4|1﹣|sin60°﹣()﹣1=2+4×(﹣1)×﹣2=2+2(﹣1)﹣2=2+6﹣2﹣2=4.【点评】本题考查了特殊角的三角函数值,负整数指数幂,绝对值,估算无理数的大小,二次根式的乘除法,实数的运算,准确熟练地化简各式是解题的关键.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.【分析】先算括号里的异分母分式的减法,再算括号外,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(a﹣)÷=•=•=a(a+2)=a2+2a,,解得:﹣1<a≤2,∴该不等式组的整数解为:0,1,2,∵a≠0,a﹣2≠0,∴a≠0且a≠2,∴a=1,∴当a=1时,原式=12+2×1=1+2=3.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)【分析】(1)直接根据概率公式求解即可;(2)画出树状图,共有12个等可能的结果,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的结果有8个,再由概率公式求解即可.【解答】解:(1)吉祥物“冰墩墩”放在区域①的概率是;故答案为:;(2)根据题意画图如下:共有12种等可能的情况数,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域有8种,则吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).【分析】在Rt△BDE中求出ED,再在Rt△ACM中求出AM,最后根据线段的和差关系进行计算即可.【解答】解:如图,过点C、D分别作BE的平行线交BA的延长线于点M、N,在Rt△BDE中,∠BDE=90°﹣45°=45°,∴DE=BE=14m,在Rt△ACM中,∠ACM=60°,CM=BE=14m,∴AM=CM=14(m),∴AB=BM﹣AM=CE﹣AM=20+14﹣14≈10.2(m),答:AB的长约为10.2m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有200 人;在扇形统计图中,B所对应的扇形的圆心角的度数是108 °;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.【分析】(1)根据A项目的人数和所占的百分比,求出调查的总人数,再用360°乘以B所占的百分比即可得出答案;(2)用总人数减去其它项目的人数,求出C选项的人数,从而补全统计图;(3)用全校的总人数乘以选修篮球和跳绳两个项目的总人数所占的百分比即可.【解答】解:(1)本次调查的学生共有:30÷15%=200(人),在扇形统计图中,B所对应的扇形的圆心角的度数是:360°×=108°;故答案为:200,108;(2)C项目的人数有:200﹣30﹣60﹣20=90(人),补全统计图如下:(3)根据题意得:1200×=900(人),答:估计该校选修篮球和跳绳两个项目的总人数有900人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.【分析】(1)根据题意和题目中的数据,可以分别写出y甲,y乙关于x的函数关系式;(2)根据(1)中的结果和题意,令0.85x=0.7x+90,求出x的值,再求出相应的y的值,即可得到点A的坐标.(3)根据函数图象和(2)中点A的坐标,可以写出选择去哪个体育专卖店购买体育用品更合算.【解答】解:(1)由题意可得,y=0.85x,甲当0≤x≤300时,y乙=x,当x>300时,y乙=300+(x﹣300)×0.7=0.7x+90,则y乙=;(2)令0.85x=0.7x+90,解得x=600,将x=600代入0.85x得,0.85×600=510,即点A的坐标为(600,510);(3)由图象可得,当x<600时,去甲体育专卖店购买体育用品更合算;当x=600时,两家体育专卖店购买体育用品一样合算;当x>600时,去乙体育专卖店购买体育用品更合算.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a ≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,[来源:Z。

浙江省金华市2022年中考数学真题试题(含解析)

浙江省金华市2022年中考数学真题试题(含解析)

2022年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数﹣的绝对值是()A.2 B.C.﹣D.﹣【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣的绝对值是.故选:B.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A.a<0 B.ab<0 C.a<b D.a,b互为倒数【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:A、a<0,故A正确;B、ab<0,故B正确;C、a<b,故C正确;D、乘积为1的两个数互为倒数,故D错误;故选:D.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.3.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.01【考点】正数和负数.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤5.03.∵44.9不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.4.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.【考点】简单几何体的三视图.【分析】直接利用左视图的观察角度,进而得出视图.【解答】解:如图所示:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,∴该几何体的左视图为:.故选:C.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.5.一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2【考点】根与系数的关系.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2==﹣2”,再结合四个选项即可得出结论.【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.故选C.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DB A C.∠C=∠D D.BC=AD【考点】全等三角形的判定.【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率;【解答】解:解:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,则所求概率P1=,故选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【考点】解直角三角形的应用.【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米2);故选:D.【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.9.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【考点】角的大小比较.【专题】网格型.【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,通过测量可知∠ACB<∠ADB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE(异于端点)上一点,故选C.【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质.【分析】由△DAH∽△CAB,得=,求出y与x关系,再确定x的取值范围即可解决问题.【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x+1<﹣2的解集是x<﹣1 .【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以3,不等号的方向不变.得到不等式的解集为:x<﹣1.【解答】解:解不等式3x+1<﹣2,得3x<﹣3,解得x<﹣1.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.能够说明“=x不成立”的x的值是﹣1 (写出一个即可).【考点】算术平方根.【专题】计算题;实数.【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是 1 mg/L.【考点】算术平均数;折线统计图.【专题】统计与概率.【分析】根据题意可以求得这6次总的含量,由折线统计图可以得到除第3次的含量,从而可以得到第3次检测得到的氨氮含量.【解答】解:由题意可得,第3次检测得到的氨氮含量是:1.5×6﹣(1.6+2+1.5+1.4+1.5)=9﹣8=1mg/L,故答案为:1.【点评】本题考查算术平均数、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.14.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【考点】平行线的性质.【分析】延长DE交AB于F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是2或5 .【考点】翻折变换(折叠问题).【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x 的方程求解即可.【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8﹣x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8﹣x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.【点评】本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.16.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是3米.【考点】三角形的稳定性.【分析】(1)只要证明AE∥BD,得=,列出方程即可解决问题.(2)分别求出六边形的对角线并且比较大小,即可解决问题.【解答】解:(1)如图1中,∵FB=DF,FA=FE,∴∠FAE=∠FEA,∠B=∠D,∴∠FAE=∠B,∴AE∥BD,∴=,∴=,∴AE=,故答案为.(2)如图中,作BN⊥FA于N,延长AB、DC交于点M,连接BD、AD、BF、CF.在RT△BFN中,∵∠BNF=90°,BN=,FN=AN+AF=+2=,∴BF==,同理得到AC=DF=,∵∠ABC=∠BCD=120°,∴∠MBC=∠MCB=60°,∴∠M=60°,∴CM=BC=BM,∵∠M+∠MAF=180°,∴AF∥DM,∵AF=CM,∴四边形AMCF是平行四边形,∴CF=AM=3,∵∠BCD=∠CBD+∠CDB=60°,∠CBD=∠CDB,∴∠CBD=∠CDB=30°,∵∠M=60°,∴∠MBD=90°,∴BD==2,同理BE=2,∵<3<2,∴用三根钢条连接顶点使该钢架不能活动,∴连接AC、BF、DF即可,∴所用三根钢条总长度的最小值3,故答案为3.【点评】本题考查三角形的稳定性、平行线的性质、平行四边形的判定和性质、勾股定理.等边三角形的判定和性质等知识,解题的关键是添加辅助线构造特殊三角形以及平行四边形,属于中考常考题型.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:﹣(﹣1)2022﹣3tan60°+(﹣2022)0.【考点】实数的运算.【分析】首先利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.【解答】解:原式=3﹣1﹣3×+1=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.解方程组.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,由①﹣②,得y=3,把y=3代入②,得x+3=2,解得:x=﹣1.则原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.【考点】条形统计图.【分析】(1)将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A等级人数;(2)将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:(1)∵抽取的人数为21+7+2=30,∴训练后“A”等次的人数为30﹣2﹣8=20.补全统计图如图:(2)600×=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400.【点评】本题主要考查条形统计图,根据统计图读出训练前后各等级的人数及总人数间的关系是解题的关键,也考查了样本估计总体.20.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 11:15 2:50首尔时间8:30 12:15 3:50(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?【考点】一次函数的应用.【分析】(1)根据图1得到y关于x的函数表达式,根据表达式填表;(2)根据如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间得到伦敦(夏时制)时间与北京时间的关系,结合(1)解答即可.【解答】解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.北京时间7:30 11:15 2:50首尔时间8:30 12:15 3:50(2)从图2看出,设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,由第(1)题,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.【点评】本题考查的是一次函数的应用,根据题意正确求出函数解析式是解题的关键.21.如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)令一次函数中y=0,解关于x的一元一次方程,即可得出结论;(2)①过点C作CF⊥x轴于点F,设AE=AC=t,由此表示出点E的坐标,利用特殊角的三角形函数值,通过计算可得出点C的坐标,再根据反比例函数图象上点的坐标特征可得出关于t的一元二次方程,解方程即可得出结论;②根据点在直线上设出点D的坐标,根据反比例函数图象上点的坐标特征可得出关于点D横坐标的一元二次方程,解方程即可得出点D的坐标,结合①中点E的坐标即可得出结论.【解答】解:(1)当y=0时,得0=x﹣,解得:x=3.∴点A的坐标为(3,0).:(2)①过点C作CF⊥x轴于点F,如图所示.设AE=AC=t,点E的坐标是(3,t),在Rt△AOB中,tan∠OAB==,∴∠OAB=30°.在Rt△ACF中,∠CAF=30°,∴CF=t,AF=AC•cos30°=t,∴点C的坐标是(3+t, t).∴(3+t)×t=3t,解得:t1=0(舍去),t2=2.∴k=3t=6.②点E与点D关于原点O成中心对称,理由如下:设点D的坐标是(x, x﹣),∴x(x﹣)=6,解得:x1=6,x2=﹣3,∴点D的坐标是(﹣3,﹣2).又∵点E的坐标为(3,2),∴点E与点D关于原点O成中心对称.【点评】本题考查了反比例函数与一次函数的交点问题、解一元二次方程以及反比例函数图象上点的坐标特征,解题的关键是:(1)令一次函数中y=0求出x的值;(2)根据反比例函数图象上点的坐标特征得出一元二次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出关于点的横坐标的一元二次方程是关键.22.四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.【考点】菱形的判定与性质;切线的性质.【分析】(1)先由AE=EC、BE=ED可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)①连结OF,由切线可得OF为△ABD的高且OF=4,从而可得S△ABD,由OE为△ABD的中位线可得S△OBE=S△ABD;②作DH⊥AB于点H,结合①可知四边形OHDF为矩形,即DH=OF=4,根据sin∠DAB==知∠EOB=∠DAH=30°,即∠AOE=150°,根据弧长公式可得答案【解答】解:(1)∵AE=EC,BE=ED,∴四边形ABCD是平行四边形.∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.(2)①连结OF.∵CD的延长线与半圆相切于点F,∴OF⊥CF.∵FC∥AB,∴OF即为△ABD中AB边上的高.∴S△ABD=AB×OF=×8×4=16,∵点O是AB中点,点E是BD的中点,∴S△OBE=S△ABD=4.②过点D作DH⊥AB于点H.∵AB∥CD,OF⊥CF,∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°.∴四边形OHDF为矩形,即DH=OF=4.∵在Rt△DAH中,sin∠DAB==,∴∠DAH=30°.∵点O,E分别为AB,BD中点,∴OE∥AD,∴∠EOB=∠DAH=30°.∴∠AOE=180°﹣∠EOB=150°.∴弧AE的长==.【点评】本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.23.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.【考点】二次函数综合题.【分析】(1)①根据函数解析式求出点A、B的坐标,求出AC的长;②作抛物线L2的对称轴与AD相交于点N,根据抛物线的轴对称性求出OM,利用待定系数法求出抛物线的函数表达式;(2)过点B作BK⊥x轴于点K,设OK=t,得到OG=4t,利用待定系数法求出抛物线的函数表达式,根据抛物线过点B(t,at2),求出的值,根据抛物线上点的坐标特征求出的值.【解答】解:(1)①二次函数y=x2,当y=2时,2=x2,解得x1=,x2=﹣,∴AB=2.∵平移得到的抛物线L1经过点B,∴BC=AB=2,∴AC=4.②作抛物线L2的对称轴与AD相交于点N,如图2,根据抛物线的轴对称性,得BN=DB=,∴OM=.设抛物线L2的函数表达式为y=a(x﹣)2,由①得,B点的坐标为(,2),∴2=a(﹣)2,解得a=4.抛物线L2的函数表达式为y=4(x﹣)2;(2)如图3,抛物线L3与x轴交于点G,其对称轴与x轴交于点Q,过点B作BK⊥x轴于点K,设OK=t,则AB=BD=2t,点B的坐标为(t,at2),根据抛物线的轴对称性,得OQ=2t,OG=2OQ=4t.设抛物线L3的函数表达式为y=a3x(x﹣4t),∵该抛物线过点B(t,at2),∴at2=a3t(t﹣4t),∵t≠0,∴=﹣,由题意得,点P的坐标为(2t,﹣4a3t2),则﹣4a3t2=ax2,解得,x1=﹣t,x2=t,EF=t,∴=.【点评】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,灵活运用待定系数法求出函数解析式、掌握抛物线的对称性、正确理解抛物线上点的坐标特征是解题的关键.24.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B 在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由【考点】正方形的性质;待定系数法求一次函数解析式.【分析】(1)先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;(2)判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;(3)由△OEP的其中两边之比为:1分三种情况进行计算即可.【解答】解:(1)如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,∴OH=3,EH==3.∴E(﹣3,3).∵∠AOM=90°,∴∠EOM=30°.在Rt△EOM中,∵cos∠EOM=,即=,∴OM=4.∴M(0,4).设直线EF的函数表达式为y=kx+4,∵该直线过点E(﹣3,3),∴﹣3k+4=3,解得k=,所以,直线EF的函数表达式为y=x+4.(2)如图2,射线OQ与OA的夹角为α(α为锐角,tanα).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=2a,∴a2+(2a)2=62,解得a1=,a2=﹣(舍去),∴OE=2a=,∴S正方形OEFG=OE2=.(3)设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有=或=.在Rt△AOP中,∠APO=45°,OP=OA=6,∴点P1的坐标为(0,6).在图3的基础上,当减小正方形边长时,点P在边FG 上,△OEP的其中两边之比不可能为:1;当增加正方形边长时,存在=(图4)和=(图5)两种情况.如图4,△EFP是等腰直角三角形,有=,即=,此时有AP∥OF.在Rt△AOE中,∠AOE=45°,∴OE=OA=6,∴PE=OE=12,PA=PE+AE=18,∴点P2的坐标为(﹣6,18).如图5,过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,在Rt△PEF中,PE2=PF2+EF2=m2+n2,当=时,∴PO2=2PE2.∴2m2+2mn+n2=2(m2+n2),得n=2m.∵EO∥PH,∴△AOE∽△AHP,∴=,∴AH=4OA=24,即OH=18,∴m=9.在等腰Rt△PRH中,PR=HR=PH=36,∴OR=RH﹣OH=18,∴点P3的坐标为(﹣18,36).当点F落在y轴负半轴时,如图6,P与A重合时,在Rt△POG中,OP=OG,又∵正方形OGFE中,OG=OE,∴OP=OE.∴点P4的坐标为(﹣6,0).在图6的基础上,当正方形边长减小时,△OEP的其中两边之比不可能为:1;当正方形边长增加时,存在=(图7)这一种情况.如图7,过P作PR⊥x轴于点R,设PG=n.在Rt△OPG中,PO2=PG2+OG2=n2+m2,在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2.当=时,∴PE2=2PO2.∴2m2+2mn+n2=2n2+2m2,∴n=2m,由于NG=OG=m,则PN=NG=m,∵OE∥PN,∴△AOE∽△ANP,∴ =1,即AN=OA=6.在等腰Rt△ONG中,ON=m,∴12=m,∴m=6,在等腰Rt△PRN中,RN=PR=6,∴点P5的坐标为(﹣18,6).所以,△OEP的其中两边的比能为:1,点P的坐标是:P1(0,6),P2(﹣6,18),P3(﹣18,36),P4(﹣6,0),P5(﹣18,6).【点评】此题是正方形的性质题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,解本题的关键是灵活运用勾股定理进行计算.。

(中考精品)浙江省金华市中考数学真题(解析版)

(中考精品)浙江省金华市中考数学真题(解析版)

数学卷Ⅰ说明:本卷共有1大题,10小题.一、选择题(本题有10小题)1.在12,2-中,是无理数的是( )A. 2-B. 12C. D. 2 【答案】C【解析】【分析】根据无理数定义判断即可;【详解】解:∵-2,12,2故选: C .【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.2. 计算32a a ⋅的结果是( )A. aB. 6aC. 6aD. 5a 【答案】D【解析】【分析】根据同底数幂的乘法法则计算判断即可.【详解】∵ 32a a ⋅=5a ,故选D .【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键. 3. 体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为( )A. 4163210⨯B. 71.63210⨯C. 61.63210⨯D. 516.3210⨯【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,10n a ⨯的形式中a 的取值范围必须是110,a ≤<10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为71.63210.⨯的故选:B .【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1. 4. 已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A. 2cmB. 3cmC. 6cmD. 13cm【答案】C【解析】【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x ,∵ 角形的两边长分别为5cm 和8cm ,∴3cm <x <13cm ,故选C .【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键. 5. 观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为( )A. 5B. 6C. 7D. 8【答案】D【解析】【分析】用总人数减去其他三组的人数即为所求频数.【详解】解:20-3-5-4=8,故组界为99.5~124.5这一组频数为8,故选:D .【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.的6. 如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A. SSSB. SASC. AASD. HL【答案】B【解析】【分析】根据OA OD =,OB OC =,AOB COD ∠=∠正好是两边一夹角,即可得出答案. 【详解】解:∵在△ABO 和△DCO 中,OA OD AOB COD OB OC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO DCO ≌△△,故B 正确.故选:B . 【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.7. 如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A. 超市B. 医院C. 体育场D. 学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,=,=,=,=故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8. 如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A. B.C. D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB 为底面直径,∴将圆柱侧面沿AC “剪开”后, B 点在长方形上面那条边的中间,∵两点之间线段最短,故选: C .【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.9. 一配电房示意图如图所示,它是一个轴对称图形,已知6m BC =,ABC α∠=,则房顶A 离地面EF 的高度为( )A. (43sin )m α+B. (43tan )m α+C. 34m sin α⎛⎫+ ⎪⎝⎭ D. 34m tan a ⎛⎫+ ⎪⎝⎭【答案】B【解析】【分析】过点A 作AD ⊥BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案.【详解】解:过点A 作AD ⊥BC 于D ,如图所示:∵它是一个轴对称图形, ∴132BD DC BC ===m , tan 3AD AD BD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查了解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.10. 如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A. C. 207 D. 83【答案】A【解析】【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F '=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH=x ,最后求出ADAB 的值.【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =,∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,52x y A G -'=,由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△, ∴CGA GCF B F '=', 则53232x yxx y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=x , EH=-(舍),∴AB=,∴AD AB ==.故选:A .【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,勾股定理求边长等知识,借助于相似三角形找到y =3x 的关系式是解决问题的关键.卷Ⅱ说明:本卷共有2大题,14小题二、填空题(本题有6小题)11. 因式分解:29x -=______.【答案】()()33x x +-【解析】【分析】根据平方差公式()()22a b a b a b -=+-直接进行因式分解即可. 【详解】解:29x -223x =-()()33x x =+-,故答案为:()()33x x +-.【点睛】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键. 12. 若分式23x -的值为2,则x 的值是_______. 【答案】4【解析】【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =-去括号:226x =-移项,合并同类项:28x =系数化为1:4x =经检验,x =4是原方程的解,故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键.13. 一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是______. 【答案】710【解析】【分析】先确定所有等可能性的数量,再确定红球事件的可能性数量,根据公式计算即可.【详解】∵ 所有等可能性有10种,红球事件的可能性有7种, ∴摸到红球的概率是710, 故答案:710. 【点睛】本题考查了简单的概率计算,熟练掌握概率计算公式是解题的关键. 14. 如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C '''V ,连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴==∵把ABC 沿AB 方向平移1cm ,得到A B C '''V ,∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+为故答案为:8+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.15. 如图,木工用角尺的短边紧靠⊙O 于点A ,长边与⊙O 相切于点B ,角尺的直角顶点为C ,已知6cm,8cm AC CB ==,则⊙O 的半径为_____cm .【答案】253##183【解析】 【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,利用勾股定理,在Rt △AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∴OB CB ⊥,∴90CBD BDA ACB ∠=∠=∠=︒,∴四边形ACBD 为矩形,∴8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:222OA OD AD =+, 即r 2=(r −6)2+82, 解得:253r =, 即O 的半径为253cm .故答案为:253. 【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r 的方程,是解题的关键.16. 图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为______m . (2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是_______.【答案】 ①. 9②.7.5αβ-=︒【解析】【分析】(1)过点A 作AG ⊥EF ,垂足为G ,证明四边形ABEG 是矩形,解直角三角形AFG ,确定FG ,EG (2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A 作AG ⊥EF ,垂足为G . ∵∠ABE =∠BEG =∠EGA =90°,∴四边形ABEG 是矩形,∴EG =AB =1m ,AG =EB =8m , ∵∠AFG =45°, ∴FG =AG =EB =8m , ∴EF =FG +EG =9(m ). 故答案为:9;(2)7.5αβ-=︒.理由如下: ∵∠A 'B 'E =∠B 'EG =∠EG A '=90°, ∴四边形A 'B 'EG 是矩形,∴EG =A 'B '=1m ,A 'G =E B '=,∴tan ∠A 'FG =A G FG '= ∴∠A 'FG =60°,∠F A 'G =30°,根据光的反射原理,不妨设∠FAN =2m ,∠F A 'M =2n , ∵ 光线是平行的, ∴AN ∥A 'M , ∴∠GAN =∠G A 'M , ∴45°+2m =30°+2n , 解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'' , ∴9090m n n m αβ-=--+=- , 故7.5αβ-=︒,故答案为:7.5αβ-=︒ .【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.三、解答题(本题有8小题,各小题都必须写出解答过程)17. 计算:0(2022)2tan 45|2|--︒+-. 【答案】4 【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=-⨯++1223=-++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键. 18. 解不等式:2(32)1x x ->+. 【答案】1x > 【解析】【分析】按照解不等式的基本步骤解答即可. 【详解】解:2(32)1x x ->+,641x x ->+,641x x ->+, 55x >,∴1x >.【点睛】本题考查了一元一次不等式的解法,熟练掌握不等式解法的基本步骤是解题的关键.19. 如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长. (2)当3a =时,该小正方形的面积是多少? 【答案】(1)3a +(2)36 【解析】【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可. 【小问1详解】解:∵直角三角形较短的直角边122a a =⨯=, 较长的直角边23a =+,∴小正方形的边长233a a a =+-=+;【小问2详解】解:22(3)69S a a a =+=++小正方形, 当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.20. 如图,点A 在第一象限内,AB x ⊥轴于点B ,反比例函数(k 0,x 0)ky x=≠>的图象分别交,AO AB 于点C ,D .已知点C 的坐标为(2,2),1BD =.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在ABO 的内部(包括边界),直接写出点P 的横坐标x 的取值范围. 【答案】(1)4k =,(4,1);(2)24x ≤≤; 【解析】【分析】(1)由C 点坐标可得k ,再由D 点纵坐标可得D 点横坐标; (2)由C 、D 两点的横坐标即可求得P 点横坐标取值范围; 【小问1详解】解:把C (2,2)代入k y x=,得22k=,4k =,∴反比例函数函数为4y x=(x >0), ∵AB ⊥x 轴,BD =1, ∴D 点纵坐标为1,把1y =代入4y x=,得4x =, ∴点D 坐标为(4,1); 【小问2详解】解:∵P 点在点C (2,2)和点D (4,1)之间, ∴点P 的横坐标:24x ≤≤;【点睛】本题考查了反比例函数解析式,坐标的特征,数形结合是解题关键.21. 学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题: 演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表: 内容 表达 风度 印象 总评成绩 小明 8 7 8 8 m 小亮 7 8 8 9 785小田 79777.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m 的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整? 【答案】(1)108︒;(2)7.6,三人成绩从高到低的排名顺序为:小亮,小田,小明;.(3)班级制定的各部分所占比例不合理,见解析;【解析】【分析】(1)由“内容”所占比例×360°计算求值即可;(2)根据各部分成绩所占的比例计算加权平均数即可;(3)根据 “内容”所占比例要高于“表达”比例,将“内容”所占比例设为40%即可;【小问1详解】---=,解:∵“内容”所占比例为115%15%40%30%=︒⨯=︒;∴“内容”的扇形的圆心角36030%108【小问2详解】m=⨯+⨯+⨯+⨯=,解:830%740%815%815%7.6>>,∵7.857.87.6∴三人成绩从高到低的排名顺序为:小亮,小田,小明;【小问3详解】解:各部分所占比例不合理,“内容”比“表达”重要,那么“内容”所占比例应大于“表达”所占比例,∴“内容”所占百分比应为40%,“表达”所占百分比为30%,其它不变;【点睛】本题考查了扇形圆心角的计算,加权平均数的计算,掌握相关概念的计算方法是解题关键.22. 如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF;②以F为圆心,FO为半径作圆弧,与⊙O交于点M,N;③连AM MN NA.接,,∠的度数.(1)求ABC是正三角形吗?请说明理由.(2)AMN(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.【答案】(1)108︒(2)是正三角形,理由见解析(3)15n = 【解析】【分析】(1)根据正五边形的性质以及圆的性质可得 BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论. 【小问1详解】解:∵正五边形ABCDE .∴ BC CD DE AE AB ====,∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵ 3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; 【小问2详解】解:AMN 是正三角形,理由如下: 连接,ON FN ,由作图知:FN FO =, ∵ON OF =, ∴ON OF FN ==, ∴OFN △是正三角形, ∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒, 同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠, ∴AMN 是正三角形;【小问3详解】 ∵AMN 是正三角形, ∴2120A N A N M O =∠=︒∠. ∵ 2AD AE =,∴272144AOD ∠=⨯︒=︒,∵ DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==. 【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.23. “八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:②该蔬菜供给量2(吨)关于售价x (元/千克)的函数表达式为2,函数图象见图1.③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.【答案】(1)1,95a c=-=(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元【解析】【分析】(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w 元,根据w x x =-售价成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x 的值,再求出总利润即可. 【小问1详解】 把3,7.2x y =⎧⎨=⎩,4,5.8x y =⎧⎨=⎩代入2y ax c =+需求可得97.2,16 5.8.a c a c +=⎧⎨+=⎩①② ②-①,得7 1.4a =-, 解得15a =-, 把15a =-代入①,得9c =, ∴1,95a c =-=. 【小问2详解】设这种蔬菜每千克获利w 元,根据题意, 有211323242w x x t t t ⎛⎫=-=+--+ ⎪⎝⎭售价成本, 化简,得221121(4)344w t t t =-+-=--+, ∵10,44t -<=在17t ≤≤的范围内, ∴当4t =时,w 有最大值.答:在4月份出售这种蔬菜每千克获利最大. 【小问3详解】由y y =需求供给,得21195x x -=-+, 化简,得25500x x +-=,解得125,10x x ==-(舍去), ∴售价为5元/千克.此时,14y y x ==-=需求供给(吨)4000=(千克), 把5x =代入122x t =+售价,得6t =,把6t =代入21214w t t =-+-,得13626124w =-⨯+⨯-=, ∴总利润240008000w y =⋅=⨯=(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.【点睛】此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.24. 如图,在菱形ABCD 中,310,sin 5AB B ==,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA FG =.(2)若EF FG =,当EF 过AC 中点时,求AG 的长.(3)已知8FG =,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与BEF 相似(包括全等)?【答案】(1)见解析(2)7AG =或5 (3)1s =或3225s =或327s =或1012s ≤≤ 【解析】【分析】(1)证明△AFG 是等腰三角形即可得到答案;(2)记AC 中点为点O .分点E 在BC 上和点E 在CD 上两种情况进行求解即可;(3)过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .分点E 在线段BM 上时,点E 在线段MC 上时,点E 在线段CN 上,点E 在线段ND 上,共四钟情况分别求解即可.【小问1详解】证明:如图1,∵四边形ABCD 是菱形,∴BA BC =,∴BAC BCA ∠=∠.∵FG BC ,∴FGA BCA ∠=∠,∴BAC FGA ∠=∠,∴△AFG 是等腰三角形,∴FA FG =.【小问2详解】解:记AC 中点为点O .①当点E 在BC 上时,如图2,过点A 作AM BC ⊥于点M ,∵Rt ABM 中,365AM AB ==,∴8BM ===.∴6,2FG EF AM CM BC BM ====-=,∵,OA OC OE AM =∥, ∴112122CE ME CM ===⨯=, ∴1AF ME ==,∴167AG AF FG =+=+=.②当点E 在CD 上时,如图3,在过点A 作AN CD ⊥于点N .同理,6,2FG EF AN CN ====,112AF NE CN ===, ∴615AG FG AF =-=-=.∴7AG =或5.【小问3详解】解:过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .①当点E 在线段BM 上时,08s <≤.设3EF x =,则4,3BE x GH EF x ===, ⅰ)若点H 在点C 的左侧,810s +≤,即02s <≤,如图4,10(48)24CH BC BH x x =-=-+=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴33244x x =-,解得14x =, 经检验,14x =是方程的根, ∴41s x ==.∵GHC BEF △∽△, ∴GH CH BE EF=, ∴GH BE CH EF=, ∴34243x x =-, 解得825x =, 经检验,825x =是方程的根, ∴32425s x ==. ⅱ)若点H 在点C 的右侧,810s +>,即28s <≤,如图5,(48)1042CH BH BC x x =-=+-=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴33424x x =-, 此方程无解.∵GHC BEF △∽△,∴GH CH BE EF=, ∴GH BE CH EF=, ∴34423x x =-, 解得87x =, 经检验,87x =是方程的根, ∴3247s x ==. ②当点E 在线段MC 上时,810s <≤,如图6,6,8,EF EH BE s ===.∴8,2BH BE EH s CH BH BC s =+=+=-=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴662s s =-, 此方程无解.∵GHC BEF △∽△, ∴GH CH BE EF=, ∴GH BE CH EF=, ∴626s s =-,解得1s =±经检验,1s =±∵810s <≤,∴1s =±③当点E 在线段CN 上时,1012s ≤≤,如图7,过点C 作⊥CJ AB 于点J ,在Rt BJC △中,10,6,8BC CJ BJ ===.8,EH BJ JF CE ===,∴BJ JF EH CE +=+,∴CH BF =,∵,90GH EF GHC EFB =∠=∠=︒,∴GHC EFB △≌△,符合题意,此时,1012s ≤≤.④当点E 在线段ND 上时,1220s <<,∵90EFB ∠>︒,∴GHC 与BEF 不相似.综上所述,s 满足的条件为:1s =或3225s =或327s =或1012s ≤≤. 【点睛】此题考查了相似三角形的性质、菱形的性质、勾股定理、等腰三角形的判定和性质、矩形的性质、锐角三角函数等知识,分类讨论方法是解题的关键。

2024年浙江金华市义乌市八校联考 数学中考模拟预测题(原卷版)

2024年浙江金华市义乌市八校联考 数学中考模拟预测题(原卷版)

2024年浙江省金华市义乌市八校联考中考数学模拟试卷一、选择题(本大题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 著名的数学苏步青被誉为“数学大王”.为纪念其卓越贡献,国际上将一颗距地球约218000000公里的行星命名为“苏步青星”,数据218000000用科学记数法表示为( )A. 90.21810×B. 82.1810×C. 92.1810×D. 621810× 2. 规定2a b a b =−△,则3(2)−△的值为( )A. 7B. 5−C. 1D. 1−3. 下列各式中,能运用“公式法”进行因式分解是( )A. 22b a −B. 24x x −C. 241x x ++D. 21x −− 4. 若∠A 是锐角,且sinA =13,则( ) A. 0°<∠A <30° B. 30°<∠A <45°C. 45°<∠A <60°D. 60°<∠A <90° 5. 如图所示,若DAC ABC ∽△△,则需满足( )A. 2CD AD DB =⋅B. 2AC BC CD =⋅C. AC AB CD BC =D. CD BC DA AC= 6. 已知排球队6名场上队员的身高(单位:cm )分别是:181185188190194196,,,,,.现用两名身高分别是186193,的队员换下场上身高为181194,的队员,与换人前相比,现在计算结果不受影响的是( )A. 平均数B. 中位数C. 方差D. 标准差 7. 如图,AE 是O 的直径,半径OD 与弦AB 垂直于点C ,连接EC .若8AB =,2CD =,则CE 的长为( )的A. 8B.C.D. 8. 如图,点B 、E 是以AD 为直径的半圆O 的三等分点,弧BE 的长为4,903C π∠=°,则图中阴影部分的面积为( )A. 83π−B. 23π−C. 43πD. 83π− 9. 已知关于x 的二次函数2695(0)y ax ax a a =−++<,在6m x ≤≤的取值范围内,若03m <<,则下列说法正确的是( )A. 函数有最大值95a +B. 函数有最大值5 C 函数没有最小值 D. 函数没有最大值10. 如图是一个由A B C ,,三种相似的直角三角形纸片(相似比相同)拼成的矩形,相邻纸片之间互不重叠也无缝隙,其中A B C ,,的纸片的面积分别为123S S S ,,,若123S S S >>,则这个矩形的面积一定可以表示为( )A. 14SB. 26SC. 2343S S +D. 1334+S S二、填空题(本大题有6小题,每小题3分,共18分)11. 2+=______. 12. 五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐,如图,A ,B ,C 为直线与五线谱横线相交的三个点,若12AC =,则AB 的长为__________..13. 口袋中有10个球(每个球除颜色外都相同),其中白球x 个,红球2x 个,其余蓝球.从袋中随机摸出一个球,摸到红球则甲获胜,摸到蓝球则乙获胜.要使游戏对甲、乙双方公平,则x 应该等于_______. 14. 如图,在平面直角坐标系中,正六边形ABCDEF 的边AB 与y 轴正半轴重合,顶点C 在x 轴正半轴上,2AB =,将正六边形ABCDEF 绕坐标原点O 顺时针旋转,每次旋转90°,那么经过第3次旋转后,顶点E 的坐标为 _____.15. 现有y 是关于x 的二次函数()2211y mx m x m =+−−−,则下列描述正确的是________. ①当1m =−时,函数图像的顶点坐标为11,22 ;②当0m >时,函数图像在x 轴上截得线段的长度大于32; ③当0m ≠时,函数图像总过定点;④若函数图像上任取不同的两点()111,P x y 、()222,P x y ,则当0m <时,函数在14x >时一定能使21210y y x x −<−成立. 16. 如图,正方形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若AB =5,CF =2,则线段EP 的长是_____.三、解答题(本大题有8小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17. 解方程(组)(1)3831412x x x −−=−为的(2)162(1)11x y x y += +−=18. 如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,15DE BC =.(1)若30AB =,求线段BD 的长.(2)若ADE 的面积为2,求平行四边形BFED 的面积.19. 为切实落实“双减”,丰富学校生活,盐田区某学校开展了“第二课堂”活动.推出以下社团:A .财经素养社;B .趣味数学社;C .历史辩论社;D .物理创客社.学校规定:每个学生都必须报名且只能选择其中一个社团.现随机抽查了部分学生,对他们选择的社团进行统计并绘制了如图两幅不完整的统计图,请结合统计图中的信息解决下列问题:(1)补全条形统计图.(2)在扇形统计图中,“物理创客社”所对应的圆心角为________.(3)该校共1800名学生,试估计选择“趣味数学社”的学生.20. 如图,在等腰ABC 中,AB BC =,BO 平分ABC ∠,过点A 作AD BC ∥交BO 的延长线于D ,连接CD ,过点D 作DE BD ⊥交BC 的延长线于E .(1)判断四边形ABCD 的形状,并说明理由;(2)若3AB =,120ABE ∠=°,求DE 的长.的21. 如图,直线y mx n =+与双曲线k y x=相交于(1,3)A −、(3,)B b 两点,与y 轴相交于点C .(1)求直线AB 的解析式;(2)直接写出不等式k mx n x+<的解集; (3)点D 在y 轴上,且32OD OC =,在x 轴上是否存在一点G ,使得GD GB +的值最小?若存在,求点G 的坐标,若不存在请说明理由.22. 如图,圆内接四边形ABCD 的对角线AC BD ,交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证:DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长. 23. 在平面直角坐标系xOy 中,点()1,A m −,点()3,B n 在抛物线2(0)y ax bx c a ++> 上.设抛物线的对称轴为直线x t =.(1)当2t =时,①直接写出b 与a 满足的等量关系;②比较m ,n 的大小,并说明理由;(2)已知点()0,C x p 在该抛物线上,若对于x <<034,都有m p n >>,求t 的取值范围. 24. 在直角坐标系中,正方形OABC 的两边OC OA ,分别在x 轴、y 轴上,A 点的坐标为()0,4.(1)如图1,将正方形OABC 绕点O 顺时针旋转30°,得到正方形ODEF ,边DE 交BC 于G .求G 点的坐标.(2)如图2,1O 与正方形ABCO 四边都相切,直线MQ 切1O 于点P ,分别交y 轴、x 轴、线段BC 于点M N Q ,,.求证:1O N 平分1MO Q ∠.(3)若()4,4H −,T 为CA 延长线上一动点,过T H A ,,三点作2O ,AS AC ⊥交2O 于S ,如图3.当T 运动时(不包括A 点),AT AS −是否为定值?若是,求其值;若不是,说明理由.。

2022年浙江省义乌市中考数学试题(解析版)

2022年浙江省义乌市中考数学试题(解析版)

浙江省义乌市2022年中考数学试卷一、选择题〔此题有10小题,每题4分,共40分〕1. 计算3)1(⨯-的结果是A. -3B. -2C. 2D. 3考点:有理数的乘法.分析:根据有理数的乘法运算法那么进行计算即可得解.解答:解:〔﹣1〕×3=﹣1×3=﹣3.应选A .点评:此题考查了有理数的乘法,是根底题,计算时要注意符号的处理.2. 据报道,2022年第一季度,义乌电商实现交易额约为26 000 000 000元,同比增长22%,将26 000 000 000用科学计数法表示为考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.应选:A .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 有6个相同的立方体搭成的几何体如下列图,那么它的主视图是考点:简单组合体的三视图..分析:根据主视图是从正面看得到的图形,可得答案.解答:解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形. 应选:C .点评:此题考查了简单组合体的三视图,从正面看得到的图形是主视图.4. 下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326a a a =÷;④532a a a =⋅,其中做对的一道题的序号是A. ①B. ②C. ③D. ④考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.. 分析:①根据合并同类项,可判断①,②根据积的乘方,可得答案;③根据同底数幂的除法,可得答案;④根据同底数幂的乘法,可得答案.解答:解:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;应选:D .点评:此题考查了同底数幂的除法,熟记法那么并根据法那么计算是解题关键.5. 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,那么摸出白球的概率是 A. 31 B. 52 C. 21 D. 53 考点:概率公式..分析:由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.解答:解:∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球, ∴从中任意摸出一个球,那么摸出白球的概率是:=.应选B .点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6. 化简xx x -+-1112的结果是 A. 1+x B. 11+x C. 1-x D. 1-x x 考点:分式的加减法..专题:计算题.分析:原式变形后,利用同分母分式的减法法那么计算即可得到结果.解答:解:原式=﹣===x+1.应选A点评:此题考查了分式的加减法,熟练掌握运算法那么是解此题的关键.7. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。

中考数学模拟卷(含答案)

中考数学模拟卷(含答案)

中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【解答】解:俯视图是三角形的是选项D,故选:D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【解答】解:6700000=6.7×106.故答案为:6.7×106.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【解答】解:原式=4﹣5﹣5=﹣6.18.(6分)化简:【解答】解:原式=•=•=.19.(6分)解不等式组:【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【解答】解:(1)①如图1中,由旋转可知:CA=CD,∵∠ACB=90°,∠B=30°,∴∠CAD=60°,∴△ADC是等边三角形,∴∠DCA=60°,∵∠ECD=90°,∠DEC=30°,∴∠CDE=60°,∴∠EDC=∠DCA,∴DE∥AC,②∵AB=2AC,AD=AC,∴AD=BD,∴S△BDC=S△ADC,∵DE∥AC,∴S△ADC=S△ACE,∴S1=S2.故答案为:DE∥AC,S1=S2.(2)如图3中,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴S△BDC=S△AEC.(3)如图4中,作DF∥BC交AB于F.延长CD交AB于H.∵DF∥BE,DE∥BF,∴四边形DEBF是平行四边形,∴S△BDF=S△BDE,S△BDF=S△DFC,∴S△DFC=S△BDE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,∵BD=CD=6,∴∠DBC=∠DCB=30°,∵∠DEC=∠ABC=60°,∴∠CDE=90°,∴DE=CD•tan30°=6×=2,∴BF=DE=2,∵DE∥AB,∴∠BHC=∠EDC=90°,∴CH⊥AB,作点F关于CH的对称点F′,连接DF′,易知S△DFC=S△DF′C,在Rt△DFH中,FH=HF′=DF•sin30°=,∴BF′=4,综上所述,满足条件的BF的值为2或4.。

2023年初中数学中考模拟试卷(含解析)

2023年初中数学中考模拟试卷(含解析)

2023年初中数学中考模拟试卷(含解析)一、单选题1.从3名男生和2名女生共5名候选人中随机选取两人参加演讲比赛,则两人恰好是一男一女的概率是()A .25B .12C .35D .452.计算(﹣3)﹣9的结果等于()A .6B .﹣12C .12D .﹣63.下列说法正确的是()A .若|a |=a ,则a >0B .若sinA =,则锐角∠A =60°C .矩形的对角线互相垂直平分D .菱形的面积等于对角线的乘积4.改革开放四十年以来,中国每天都在发生新的变化.目前,我省重大新兴产业基地、工程和专项在建及储备项目共1656个,总投资9364亿元.数据9364亿用科学记数法可表示为()A .9364×108B .9364×109C .9.364×1011D .9.364×10125.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:x…2-1-012…2y ax bx c=++…tm 2-2-n…且当12x =-时,其对应的函数值0y >.有下列结论:①0abc >;②对称轴为12x =-;③2-和3是关于x 的方程21ax bx c ++=的两个根;④2003m n <+<其中,正确结论的个数是()A .0B .1C .2D .36.将△ABC 平移得到△A B C ''',若80A AC '∠=︒,则A C C ''∠的度数是()A .10°B .80°C .100°D .160°7.如图,△ABC 是等腰直角三角形,AC=BC ,AB=4,D 为AB 上的动点,DP ⊥AB 交折线A ﹣C ﹣B 于点P ,设AD=x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是()A.B.C.D .8.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE ,分别交AC 、AD 于点F 、G ,连接OG ,则下列结论:①OG =12AB ;②图中与△EGD 全等的三角形共有5个;③以点A 、B 、D 、E 为项点的四边形是菱形;④S 四边形ODGF =S △ABF .其中正确的结论是()A .①③B .①③④C .①②③D .①②④9.如图,在⊙O 中,将劣弧BC 沿弦BC 翻折恰好经过圆心O ,A 是劣弧BC 上一点,分别延长CA ,BA 交圆O 于E ,D 两点,连接BE ,CD.若tan ECB ∠=ABE 的面积为1S ,ADC △的面积为2S .则12S S =()A .25B .425C .37D .94910.如图,正方形ABCD 中,4=AD ,点E 是对角线AC 上一点,连接DE ,过点E 作EF ED ⊥,交AB 于点F ,连接DF ,交AC 于点G ,将EFG ∆沿EF 翻折,得到EFM △,连接DM ,交EF 于点N ,若点F 是AB 的中点,则EMN 的周长是()A .2B .2C D 二、填空题11.1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,它的运行轨道距地球最近点439000米.将439000用科学记数法表示应为___.12.不等式组2213x x -<⎧⎨+<⎩的解集为_______________.13.如图,有一个正三角形图片高为1米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,工人将图片沿数轴正方向滚动一周,点A 恰好与数轴上点A '重合,则点A '对应的实数是______.14.如图,点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是__________15.如图,在Rt ABC △中,90C ∠=︒,6CA =,8CB =,点P 为此三角形内部(包含三角形的边)的一点且P 到三角形三边的距离和为7,则CP 的最小值为______.三、解答题16.计算:6tan30°+(3.14-π)012.17.计算:2133|2sin 602-︒⎛⎫-++ ⎪⎝⎭18.一个不透明的袋子中装有三个大小、质地都相同的小球,球面上分别标有数字123-、、,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的小球中任意摸出一个小球,记下数字作为A 点的纵坐标.(1)“A 点坐标为()0,0”的事件是事件(填“随机”或“不可能”或“必然”);(2)用列表法或画树状图法列出所有可能出现的结果,并求点A 落在第四象限的概率.19.如图,在□ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F .求证:(1)ABE CDF ≌;(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.20.如图,AD 是ABC 的角平分线.(1)作线段AD 的垂直平分线EF ,分别交AB 、AC 于点E 、F ;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE 、DF ,四边形AEDF 是________形.(直接写出答案)21.如图,在Rt ABC △中,90A ∠=︒,4AB =,3AC =,D ,E 分别是AB ,BC 边上的动点,以BD 为直径的O 交BC 于点F .(1)当AD DF =时,求证:CAD CFD ≅ ;(2)当CED △是等腰三角形且DEB 是直角三角形时,求AD 的长.22.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,P 为BA 延长线上一点,连接CA 、CD 、AD ,且∠PCA =∠ADC ,CE ⊥AB 于E ,并延长交AD 于F .(1)求证:PC 为⊙O 的切线;(2)求证:2PC PA PB =⋅;(3)若3tan 4ADC ∠=,36AF AD ⋅=,求PA 的长.23.已知在扇形AOB 中,点C 、D 是 AB 上的两点,且 2,130,10AC AO C B OA D =∠=︒=.(1)如图1,当OD OA ⊥时,求弦CD 的长;(2)如图2,联结AD,交半径OC于点E,当OD//AC时,求AEED的值;内接正多边形的边?如果能,(3)当四边形BOCD是梯形时,试判断线段AC能否成为O请求出这个正多边形的边数;如果不能,请说明理由.参考答案与解析1.C【分析】画出树状图表示出所有可能的情况,再找出符合题意的情况,最后根据概率公式计算即可.【详解】解:根据题意可画树状图如下:共有20种等可能的情况,其中两人恰好是一男一女的有12种,则两人恰好是一男一女的概率是123 205=;故选:C.【点睛】本题考查用列表或画树状图法求概率.正确的列出表格或画出树状图是解题关键.2.B【分析】原式利用减法法则变形,计算即可得到结果.【详解】解:原式=﹣3+(﹣9)=﹣12,故选B.【点睛】此题考查有理数的减法,解题关键在于掌握运算法则.3.B【分析】A.根据绝对值的性质判断即可;B.根据特殊角的三角函数值判断即可;C.根据矩形的性质判断即可;D.根据菱形的面积的计算方法判定即可.【详解】A、当|a|=a时,a≥0,故选项A错误,不符合题意;B、∵sinA2=,∴锐角∠A=60°,故选项B正确,符合题意;C、矩形的对角线相等且互相平分,但不一定垂直,故选项C错误,不符合题意;D、菱形的面积等于对角线的乘积的一半,故选项D错误,不符合题意.故选:B .【点睛】本题主要考查了绝对值的性质,特殊角的三角函数值,矩形的性质,菱形面积的计算方法.熟练掌握以上知识是解题的关键.4.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将9364亿用科学记数法表示为:9.364×1011.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.C【分析】①根据表中数据判断,,a b c 的正负即可;②根据(0,2)-,(1,2)-,可得对称轴为直线12x =-;③根据对称轴为直线12x =-,再根据二次函数的对称性得出结论;④把1x =-和2x =代入抛物线解析式求出m n +的值,再根据a 的取值范围得出结论.【详解】解:①当0x =时,2c =-,当1x =时,22a b +-=-,0a b ∴+=,22y ax ax ∴=--,0abc ∴>,故①正确;②根据(0,2)-,(1,2)-,可得对称轴为直线12x =-;故②错误;③ 对称轴为直线12x =-2x ∴=-时,y t =则3x =时,,y t =2∴-和3是关于x 的方程2ax bx c t ++=的两个根;故③正确④2m a a =+-,422n a a =--,22m n a ∴==-,44m n a ∴+=-,当12x =-时,其对应的函数值0y >∴83a >∴203m n +>,故④错误;故选:C .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,能够从表格中获取信息确定出对称轴是解题的关键.6.B【分析】利用平移的性质证明四边形''AA C C 为平行四边形,根据对角相等即可解答.【详解】解:由题意作下图:由平移的性质知,//'',''AC A C AC A C =,∴四边形''AA C C 为平行四边形,''A AC A C C '∴∠=∠,80A AC '∠=︒ ,80A C C ''∴∠=︒,故选:B .【点睛】本题考查了平移的性质、平行四边形的判定及性质,解题的关键是掌握平移的性质.7.B【分析】根据题意可以列出y 与x 的函数解析式,从而可以确定y 与x 的函数图象,从而可以得到正确的选项,本题得以解决.【详解】由题意可得,当0≤x≤2时,y=2x x ⋅=22x ,当2≤x≤4时,y=222(4)4112(2)22222x x x x x x x --+==-+=--+,∴当0≤x≤2时,函数图象为y=212x 的右半部分,当2≤x≤4时,函数图象为y=21(2)22x --+的右半部分,故选B .【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,可以列出相应的函数解析式、确定函数的图象.8.B【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DE AB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴= 在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确;∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确.∵OB=OD ,AG=DG ,∴OG 是△ABD 的中位线,∴OG ∥AB ,OG=12AB ,∴△GOD ∽△ABD ,△ABF ∽△OGF ,∴△GOD 的面积=14△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF:OF=2:1,∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;④正确;故答案为:B.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.9.B【分析】分别作△ABC 、点O 关于线段BC 的对称,交 BC于点F 、H ,OH 与BC 交于点M ,连接OH 、OB ,过点B 作BG ⊥CE 于点G ,根据轴对称的性质可得 BC的度数为120°,则有∠BFC =∠BAC =120°,进而可得△ABE 和△ADC 都为等边三角形,然后根据三角函数可得25AE AC =,最后根据相似三角形的性质可求解.【详解】解:分别作△ABC 、点O 关于线段BC 的对称,交 BC于点F 、H ,OH 与BC 交于点M ,连接OH 、OB ,过点B 作BG ⊥CE 于点G ,如图所示:∵劣弧BC 沿弦BC 翻折恰好经过圆心O ,∴由折叠的性质可得1,,2OM MH OH OH BC BAC BFC ==⊥∠=∠,∴12OM OB =, BH CH =,∴30OBC ∠=︒,∴60BOH ∠=︒,∴ BC的度数为120°,∴ BDC的度数为240°,∠D =∠E =60°,∴∠BFC =∠BAC =120°,∴∠EAB =∠DAC =60°,∴△ABE 和△ADC 都为等边三角形,且ABE ACD ∽△△,∵BG ⊥CE ,∴,30EG AG EBG ABG =∠=∠=︒,∴3tan EG BG EG EBG==∠,∵3tan 6ECB ∠=,设3,6BG x CG x ==,则EG AG x ==,∴2,5AE x AC x ==,∴25AE AC =,∴212425S AE S AC ⎛⎫== ⎪⎝⎭;故选B .【点睛】本题主要考查折叠的性质、圆的基本性质、相似三角形的性质与判定及三角函数,熟练掌握折叠的性质、圆的基本性质、相似三角形的性质与判定及三角函数是解题的关键.10.C【分析】如图:过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE .先通过等腰三角形和全等三角形的判定和性质得到FQ=BQ=PE=1;再说明△DEF 是等腰直角三角形,然后再利用勾股定理计算得到;如图2,由DC//AB 可得△DGC ∽△FGA ,列比例式可求FG 和CG 的长,从而得EG 的长;然后再根据AGHF 是等腰直角三角形,求得GH 和FH 的长;利用DE ∥GM 证明△DEN ∽△MNH ,则DE EN MH NH 可得3,然后计算出△EMN 各边的长,最后求周长即可.【详解】解:如图1:过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE .∵DC ∥AB∴PQ ⊥AB ,∴四边形ABCD 是正方形∴∠ACD=450∴△PEC 是等腰直角三角形∴PE=PC.设PC=x ,则PE=x ,PD=4-x ,EQ=4-x.∴PD=EQ ,∴∠DPE=∠EQF=90°,∠PED=∠EFQ.∴△DPE ≌△EQF∴DE=EF∵DE ⊥EF∴△DEF 是等腰直角三角形易证△DEC ≌△BEC∴DE=BE∴EF=BE∵EQ ⊥FB∴FQ=BQ=12BF∵AB=4,F 是AB 的中点∴BF=2∴FQ=BQ=PE=1∴CE=2,PD=4-1=3Rt △DAF 中,224225DF =+=∴DE=EF=10如图2:∵DC//AB.∴△DGC ∽△FGA∴422CGDCDG AG AF FG ====∴AG=2AG,DG=2FG ∴15533FG =⨯∵224442AC =+=∴22233CG =⨯∴8252233EG ==连接GM 、GN ,交EF 于H.∵∠GFE=45°∴△GHF 是等腰直角三角形∴2510332GH FH ==由折叠得:GM ⊥EF ,103∴∠EHM=∠DEF=90°∴DE ∥HM∴△DEN ∽△MNH ∴DE EN MH NH=3EN NH==∴EN=3NH∵EN+NH=EH=3∴EN=3∴NH=EH-EN=326-=在Rt △GNH 中,6GN ===由折叠得:MN=GN ,EM=EG∴△EMN 的周长为2632EN MN EM ++=+=.故选:C .【点睛】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数等知识,灵活应用所学知识并求出PE 的长是解答本题的关键.11.4.39×105【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于439000有6位,所以可以确定n =6−1=5.【详解】解:439000=4.39×105.故答案为:4.39×105【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.12.﹣2<x <1【详解】解:2{213x x -<+<①②,解①得x >﹣2,解②得x <1,所以不等式组的解集为﹣2<x <1.故答案为﹣2<x <1.13.【详解】考点:等边三角形的性质;实数与数轴.分析:首先理解题意:求点A′对应的实数是正三角形的周长,已知此正三角形的高,利用三角函数的性质,求得边长即可.解:∵△ABC 是正三角形,∴∠B=60°,∵CD 是高,∴∠CDB=90°,∴sin ∠B=sin60°=CD BC =2,∵CD=1,∴BC=3,∴△ABC 的周长为∴点A′对应的实数是故答案为14.2.4【详解】过P 点作PE ⊥AC ,PF ⊥BD ,∵矩形ABCD ,∴AD ⊥CD ,∴△PEA ∽△CDA ,∴PE PA CD CA =,∵,∴35PE PA =…①,同理:△PFD ∽△BAD ,∴PF PD AB BD =,∴35PF PD =…②,∴①+②得:43555PE PF PA PD AD ++===,∴PE+PF=125,即点P 到矩形的两条对角线AC 和BD 的距离之和是:125.15【分析】以点C 为原点,CB 为x 轴正半轴,CA 为y 轴正半轴建立平面直角坐标系,设P 为(),x y 根据已知和等面积法得到x 、y 的关系式,则可知点P 在直线211y x =-+上运动,当CP 垂直该直线时,CP 最小,求出CP 所在的直线方程,联立方程组求点P 坐标,再利用两点间距离公式即可求解.【详解】如图所示,以点C 为原点,CB 为x 轴正半轴,CA 为y 轴正半轴建立平面直角坐标系,设P 为(),x y ,过P 作PE x ⊥轴,PF y ⊥轴,PD AB ⊥,∴PE y =,PF x =,连接PA ,PC ,PB ,∴ABC ACP BCP ABP S S S S =++△△△△,∴11116868102222x y PD ⨯⨯=⨯⨯+⨯⨯+⨯⨯,解得:24345x y PD --=,∵P 到三角形ABC 三边的距离和为7,∴7PE PF PD ++=,即:243475x y x y --++=,整理得:211y x =-+,∴点P 在直线211y x =-+上运动,设直线211y x =-+为l ,∴当1CP l ⊥交l 于点1P 时,1CP最小,∴11CP l k k ⋅=-,∴112CP k =,又∵直线1CP 过原点()0,0C ,∴直线1CP 为:12y x =,联立12211y x y x ⎧=⎪⎨⎪=-+⎩,解得:225115x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点1P 为2211,55⎛⎫ ⎪⎝⎭,∴最小值CP 为1CP ,=【点睛】本题是将几何图形问题转化为平面直角坐标系中的问题,涉及三角形的等面积法、求直线方程、直线方程的动点和最值问题、解二元一次方程组、两点间的距离公式等知识,解答的关键是找到相关知识的关联点,利用代数知识解决几何问题,是有一定难度的填空压轴题.16.1【详解】试题分析:首先根据三角函数、0次幂和二次根式的计算法则求出各式的值,然后进行求和得出答案.试题解析:原式=6117.7【分析】先根据负整数指数幂、绝对值的意义、特殊角的三角函数值逐项化简,再合并同类项或同类二次根式即可.【详解】213|2sin 602-︒⎛⎫-++ ⎪⎝⎭=432=++=7=7.【点睛】本题考查了实数的混合运算,熟练掌握负整数指数幂的意义及特殊角的三角函数值是解答本题的关键.18.(1)不可能(2)13【分析】(1)首先根据题意画树状图,然后根据点A 的坐标即可求解;(2)从表格中找到点A 落在第四象限的结果数,利用概率公式计算可得.【详解】(1)解:不可能.画树状图点A 的坐标为()()()()()()121321233132----,,,,,,,,,,,∴“A 点坐标为()0,0”的事件是不可能事件.(2)解:画树状图点A 的坐标为()()()()()()121321233132----,,,,,,,,,,,∵由树状图知共有6种等可能的结果,点A 恰好落在第四象限的情况有2种,即()()1,2,3,2--∴P (点A 落在第四象限)=2163=.【点睛】本题考查了列表法或树状图法求概率的知识.注意列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)见解析;(2)菱形,理由见解析.【分析】(1)由平行四边形ABCD 可得出的条件有:①AB=CD ,②∠A=∠C ,③∠ABC=∠CDA ;已知BE 、CD 分别是等角∠ABD 、∠CDA 的平分线,易证得∠ABE=∠CDF ④;联立①②④,即可由ASA 判定所求的三角形全等;(2)由(1)的全等三角形,易证得DE=BF ,那么DE 和BF 平行且相等,由此可判定四边形BEDF 是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD 的形状.【详解】(1)∵四边形ABCD 是平行四边,∴A C AB CD ABC ADC∠=∠=∠=∠,,∵BE 平分ABC ∠,DF 平分ADC ∠,∴ABE CDF∠=∠∴()ABE CDF ASA ≌(2)由ABE CDF ≌,得AE CF=在平行四边形ABCD 中,AD BC AD BC=,∥∴DE BF DE BF= ,∴四边形EBFD 是平行四边形若BD EF ⊥,则四边形EBFD 是菱形20.(1)见解析;(2)菱形.【分析】(1)线段的垂直平分线过线段的中点,且垂直于该线段.(2)根据AD 是ABC 的角平分线,且EF 是AD 的垂直平分线,可知四边形AEDF 满足菱形的条件.【详解】(1)如图,直线EF 即为所求作的垂直平分线.(2)根据AD 是ABC 的角平分线,且EF 是AD 的垂直平分线,可知四边形AEDF 的对角线互相垂直,因此为菱形.【点睛】本题考查垂直平分线的概念和作法,以及菱形的判定定理.21.(1)证明见解析;(2)32或37【分析】(1)根据BD 是圆的直径,可以得到∠BFD =90°,即∠DFC =90°,然后利用“HL ”证明△CAD ≌△CFD 即可;(2)因为三角形CED 为等腰三角形,故每一条边都可能是底边,可以分三类讨论,由于三角形DEB 是直角三角形,所以D 和F 都可以为直角的顶点,需要分两类讨论;当∠EDB =90°时,∠DEB <90°,∠CED 是钝角,所以此时只能构造EC =ED 的等腰三角形,故取D 点使CD 平分∠ACB ,作DE ⊥AB 交BC 于E ,可以证明DE =DC ,且DE ∥DC ,得到△BDE ∽△BAC 即可求解;当∠AED =90°时,若三角形CED 为等腰三角形,则∠ECD =∠EDC =45°,即EC =DE ,利用三角函数或相似即可求出AD .【详解】解:(1)∵BD 是圆的直径,∴∠DFB =90°,∴∠DFC =90°,在Rt △CAD 和Rt △FCD 中,CD CD AD FD=⎧⎨=⎩,∴△CAD ≌△CFD (HL );(2)∵三角形DEB 是直角三角形,且∠B <90°,∴直角顶点只能是D 点和E 点,若∠EDB =90°,如图在AB 上取D 点使CD 平分∠ACB ,作DE ⊥AB 交BC 于E ,∵CD 平分∠ACB ,∴∠ACD =∠ECD ,∵∠CAB =∠EDB =90°,∴AC ∥DE ,∴∠ACD =∠CDE ,∴∠ECD =∠CDE ,∴CE =DE ,此时三角形ECD 为E 为顶角顶点的等腰三角形,三角形DEB 是E 为直角顶点的直角三角形,设CE =DE =x ,在直角三角形ABC 中5BC =,∴BE =5-x ,∵DE ∥AC ,∴△BDE ∽△BAC ,∴DEBEAC BC =,∴535x x-=,解得158x =,∴158CE =,∵DE ∥AC ,∴ADCEAB BC =,∴15845AD =,∴32AD =;若∠DEB =90°,如图所示,∠CED =90°,∵△CED 为等腰三角形,∴∠ECD =∠EDC =45°,即EC =DC ,设EC =DC =y ,∵3tan =4ACB AB =∠,∴3tan =4DEB BE =∠,∴43BE y =,∵5BC CE BE =+=,∴453y y +=∴157y =,∴157CE CD ==,∵3sin 5AC B BC ==∠,∴15257==3sin 75DE BD B =∠,∴37AD AB BD =-=∴AD 的长为32或37.【点睛】本题主要考查了全等三角形的性质与判定,相似三角形的性质与判定,三角函数,解题的关键在于能够利用数形结合的思想进行分类讨论求解.22.(1)证明见解析;(2)证明见解析;(3)907.【分析】(1)如图(见解析),先根据圆周角定理可得12AOC ADC ∠=∠,再根据等腰三角形的性质、三角形的内角和定理可得1902A A C OC O =︒-∠∠,然后根据角的和差可得90OCP ∠=︒,最后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得PBC ADC ∠=∠,从而可得PBC PCA ∠=∠,再根据相似三角形的判定与性质即可得证;(3)先根据圆周角定理、直角三角形的性质可得ACF ADC ∠=∠,再根据相似三角形的判定与性质可得AF AC AC AD=,从而可得6AC =,又根据圆周角定理、正切三角函数可得8,10BC AB ==,然后设PA x =,由题(2)的结论可得PC =形的性质可得PC BC PA AC=,由此即可得出答案.【详解】(1)如图,连接OC由圆周角定理得:2AOC ADC ∠=∠,即12AOC ADC ∠=∠OA OC= 1)909(2180102AOC OCA OAC AD AO C C ∠=︒-∠=︒-∴∠=∠=︒-∠PCA ADC∠=∠ 9090OCP OCA PCA ADC ADC ∴∠=∠+∠=∠+∠=︒-︒,即OC PC⊥又OC 是⊙O 的半径∴PC 是⊙O 的切线;(2)如图,连接BC由圆周角定理得:PBC ADC∠=∠PCA ADC∠=∠ PBC PCA∴∠=∠在BCP 和CAP 中,PBC PCAP P∠=∠⎧⎨∠=∠⎩BCP CAP∴~ PC PBPA PC∴=即2PC PA PB =⋅;(3)CE AB ⊥ ,即90AEC ∠=︒90ACF BAC ∴∠+∠=︒由圆周角定理得:90BCA ∠=︒90ABC BAC ∴∠+∠=︒ACF ABC∴∠=∠又ABC ADC∠=∠ ACF ADC∴∠=∠在ACF △和ADC △中,ACF ADCCAF DAC∠=∠⎧⎨∠=∠⎩ACF ADC∴~ AFACAC AD ∴=,即2AC AF AD=⋅36AF AD ⋅=6AC ∴=或6AC =-(不符题意,舍去),3tan 4AB A C DC C AD ∠∠==∠ tan tan AC ADC ABC BC ∠=∠=∴,即634BC =解得8BC =10AB ∴=,152OA OC AB ===设PA x =,则10PB PA AB x =+=+由(2)可知,2(10)PC PA PB x x =⋅=+,即PC 又由(2)可知,BCP CAP~ PC BCPA AC ∴=86=解得907x =或0x =经检验,907x =是所列方程的根,0x =是所列方程的增根故PA 的长为907.【点睛】本题考查了圆周角定理、圆的切线的判定与性质、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(3),利用圆周角定理找出两个相似三角形,从而求出AC 的长是解题关键.23.(1)10CD =(2)AE DE =(3)线段AC 能成为O 的内接正多边形的边,边数为18【分析】(1)取 CD 的中点E ,连接OE ,根据圆的有关性质可得COE EOD AOC α∠=∠=∠=,然后由余角的性质及等边三角形的判定与性质可得答案;(2)由平行线的性质及三角形内角和定理可得108AOD ∠=︒.然后根据相似三角形的判定与性质可得答案;(3)根据圆内接多边形的性质及三角形的内角和定理分两种情况进行解答:①//BD OC ;②//CD OB .【详解】(1)解:设AOC α∠=,取 CD的中点E ,连接OE ,∴ 22CD CE DE ==,又∵ 2CD AC =,∴ CE A DE C ==,∴COE EOD AOC α∠=∠=∠=,∵OD OA ⊥,∴90AOD ∠=︒,∴90AOC COE EOD ∠+∠+∠=︒,∴90ααα++=︒,∴30α=︒,∴60COD ∠=︒,∵OC OD =,∴COD △是等边三角形,∴CD OC OA ==,又10OA =,∴10CD =;(2)解:∵OD AC ∥,∴2OCA COD α∠=∠=,∵OA OC =,∴2OCA OAC α∠=∠=,在AOC 中,∵180OAC OCA AOC ∠+∠+∠=︒,∴22180ααα++=︒,∴36α=︒,∴36,72AOC COD ∠=︒∠=︒,∴108AOD ∠=︒,在AOD △中,∵OA OD =,∴OAD ODA ∠=∠,∵180OAD ODA AOD ∠+∠+∠=︒,∴36OAD ODA ∠=∠=︒,∴363672OED OAD AOC ∠=∠+∠=︒+︒=︒,∴OED COD ∠=∠,∴10ED OD ==,∵,OAE OAD AOE ADO ∠=∠∠=∠,∴AOE ADO △∽△,∴OA AE AD OA=,设AE x =,则10AD x =+,∴101010x x =+.解之得5x =,∴AE DE ==(3)解:当四边形BOCD 是梯形时,①∥BD OC ,∴2ODB COD α∠=∠=,∵OB OD =,∴2OBD ODB α∠=∠=,∵130AOB AOC COD DOB ∠=∠+∠+∠=︒,∴1303BOD α∠︒=-,在BOD 中,∵180OBD ODB BOD ∠+∠+∠=︒,∴221303180ααα++︒-=︒,∴50α=︒.当50α=︒时,13030BOD α∠=︒-<,不合题意,舍去.②CD OB ∥,∴1303ODC BOD α∠=∠=︒-,∵OC OD =,∴1303OCD ODC α∠=∠=︒-,在COD △中,∵180OCD ODC COD ∠+∠+∠=︒,∴130313032180ααα-+︒-+=︒,∴20α=︒,∴3601820n =︒︒=.∴线段AC 能成为O 的内接正多边形的边,边数为18.【点睛】本题考查的是圆的弧、弦、角之间的关系、三角形的内角和定理、圆内接多边形的性质等知识,正确作出辅助线是解决此题的关键.。

2024年浙江省中考数学模拟练习试卷(解析版)

2024年浙江省中考数学模拟练习试卷(解析版)

2024年浙江省中考数学模拟练习试卷(解析版)(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b = 【答案】C【分析】根据整式的减法运算,同底数幂的乘法、除法运算,幂的乘方进行运算求解,然后进行判断即可.【详解】解:A 中4222a a a −=≠,错误,故不符合要求;B 中8424a a a a ÷=≠,错误,故不符合要求;C 中235a a a ⋅=,正确,故符合要求;D 中()3265b b b =≠,错误,故不符合要求;故选C .3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据277000000用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710× 【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同, 当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知: 8277000000=2.7710×.故选:D .4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,中心对称,是针对两个图形而言,是指两个图形的(位置)关系;如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.由此即可求解.【详解】解:A 选项,不是轴对称图形,也不是中心对称图形,不符合题意;B 选项,不是轴对称图形,是中心对称图形,不符合题意;C 选项,是轴对称图形,也是中心对称图形,符合题意;D 选项,是轴对称图形,不是中心对称图形,不符合题意;故选:C .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】解:∵点P (m ﹣3,m ﹣1)在第二象限,∴3010m m −< −> , 解得:1<m <3,故选D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 【答案】A【分析】根据题意首先应通分,然后进行分式的加减运算进而上下约分即可得出答案. 【详解】解:24142x x −−− 224244x x x +−−−2424x x −−=− (2)(2)(2)x x x −−=−+ 12x =−+ 故选:A .7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .19【答案】C【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果.【详解】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种, 则甲被选中的概率为4263=. 故选:C .8. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°【答案】D【分析】连接 OD 、OC ,如图,利用等腰三角形的性质和三角形内角和定理计算出 100AOC ∠=° ,再根据圆心角、弧、弦的关系得到 50AOD COD ∠=∠=°,然后根据圆周角定理得到 CAD ∠ 的度数; 【详解】连接 OD 、OC ,如图,,OA OC =OCA OAC ∴∠=∠40=°180AOC ∴∠=°4040100−°−°=°AD CD =,AD CD∴= 12AOD COD AOC ∴∠=∠=∠50=° 125.2CAD COD ∴∠=∠=° 故选:D9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .【答案】C 【分析】连接OP 、OQ ,根据勾股定理知 222PQ OP OQ =﹣, 当PO ⊥AB 时,线段PQ 最短,即线段PQ 最小. 【详解】解:如图,连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;由勾股定理知222PQ OP OQ =﹣,, ∵当PO ⊥AB 时,线段PQ 最短;又∵A (4,0)、B (0,4), ∴OA =OB =4,∴AB ,∴1122OP AB ==× ∵OQ =2,∴2PQ .故选C .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A.B .5 C.D.【答案】B 【分析】由矩形的性质可得BEG DGE ∠=∠,求出AEH CGF ∠=∠,证得(AAS)AEH CGF ≌,得出AE CG =,过点K 作GK AB ⊥于K ,可证明AEH KGE ∽,利用相似三角形对应边成比例求出144AE KG ==,再求出12EK =,然后利用勾股定理列式求出EG ,然后求解即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD ,∴BEG DGE ∠=∠, ∴AEH CGF ∠=∠, ∵5个小正方形全等,∴EH GF =,在AEH △和CGF △中,90AEH CGF A C EH GF ∠=∠ ∠=∠=° =, ∴(AAS)AEH CGF ≌, ∴AE CG =,过点K 作GK AB ⊥于K ,如下图所示,则四边形BCGK 为矩形,∴,16BKCG AE KG BC ====, ∵90,90AEH KEGKGE KEG ∠+∠=°∠+∠=°, ∴AEH KGE ∠=∠, ∵90A EKG ∠=∠=°, ∴AEH KGE ∽, ∴14AE EH KG GE ==, ∴144AE KG ==, ∴204412EK AB AE BK −−−−,在Rt KEG 中,20EG ,∴小正方形的边长为5420=÷,故选:B .二、填空题:本题共6小题,每小题3分,共18分。

浙江省金华市中考数学试卷

浙江省金华市中考数学试卷

浙江省金华市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列各组数中,把两数相乘,积为1的是()A.2和﹣2 B.﹣2和C.和D.和﹣2.(3分)一个几何体的三视图如图所示,这个几何体是()A.球B.圆柱 C.圆锥 D.立方体3.(3分)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.6,8,104.(3分)在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A.B.C.D.5.(3分)在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+16.(3分)对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是27.(3分)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm8.(3分)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A .B .C .D .9.(3分)若关于x 的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<510.(3分)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A、B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处B.F处C.G处D.H处二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:x2﹣4= .12.(4分)若,则= .13.(4分)5月28日全国部分宜居城市最高温度的数据如下:则以上最高气温的中位数为℃.14.(4分)如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= .15.(4分)如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为.16.(4分)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2)(1)如图1,若BC=4m,则S= m2.(2)如图2,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.三、解答题(本题有8个小题,共66分,各小题都必须写出解答过程)17.(6分)计算:2cos60°+(﹣1)+|﹣3|﹣(﹣1)0.18.(6分)解分式方程:=.19.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.20.(8分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表,请按正确数据解答下列各题:(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.21.(8分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.22.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.23.(10分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,;S矩形AEFG:S▱ABCD= .(2)▱ABCD纸片还可以按图3方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.24.(12分)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,3)、B(9,5),C(14,0),动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA﹣AB﹣BC运动,在OA、AB、BC上运动的速度分别为3,,(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式;(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(•金华)下列各组数中,把两数相乘,积为1的是()A.2和﹣2 B.﹣2和C.和D.和﹣【分析】直接利用两数相乘运算法则求出答案.【解答】解:A、2×(﹣2)=﹣4,故此选项不合题意;B、﹣2×=﹣1,故此选项不合题意;C、×=1,故此选项符合题意;D、×(﹣)=﹣3,故此选项不合题意;故选:C.【点评】此题主要考查了实数运算,正确掌握运算法则是解题关键.2.(3分)(•金华)一个几何体的三视图如图所示,这个几何体是()A.球B.圆柱 C.圆锥 D.立方体【分析】根据三视图确定该几何体是圆柱体.【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.3.(3分)(•金华)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.6,8,10【分析】根据三角形三边关系定理判断即可.【解答】解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边是解题的关键.4.(3分)(•金华)在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A.B.C.D.【分析】根据勾股定理,可得AC的长,根据正切函数的定义,可得答案.【解答】解:由勾股定理,得AC==4,由正切函数的定义,得tanA==,故选:A.【点评】本题考查了锐角三角函数,利用正切函数的定义是解题关键.5.(3分)(•金华)在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)(•金华)对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是2【分析】根据抛物线的图象与性质即可判断.【解答】解:由抛物线的解析式:y=﹣(x﹣1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选(B)【点评】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.7.(3分)(•金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.8.(3分)(•金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有12种等可能的结果,甲、乙同学获得前两名的有2种情况,∴甲、乙同学获得前两名的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(•金华)若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)(•金华)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A、B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处B.F处C.G处D.H处【分析】根据各选项安装位置判断能否覆盖所有空白部分即可.【解答】解:如图,A、若安装在E处,仍有区域:四边形MGNS和△PFI监控不到,此选项错误;B、若安装在F处,仍有区域:△ERW监控不到,此选项错误;C、若安装在G处,仍有区域:四边形QEWK监控不到,此选项错误;D、若安装在H处,所有空白区域均能监控,此选项正确;故选:D.【点评】本题主要考查视点和盲区,掌握视点和盲区的基本定义是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(•金华)分解因式:x2﹣4= (x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12.(4分)(•金华)若,则= .【分析】根据等式的性质1,等式两边都加上1,等式仍然成立可得出答案. 【解答】解:根据等式的性质:两边都加1,,则=,故答案为:.【点评】本题主要考查等式的性质,观察要求的式子和已知的式子之间的关系,从而利用等式的性质进行计算.13.(4分)(•金华)5月28日全国部分宜居城市最高温度的数据如下:则以上最高气温的中位数为 29 ℃.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有6个,按从小到大排列后为:25,26,28,30,32,35. 故中位数是按从小到大排列后第3,第4两个数的平均数, 故这组数据的中位数是 ×(28+30)=29. 故答案为:29.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.14.(4分)(•金华)如图,已知l 1∥l 2,直线l 与l 1、l 2相交于C 、D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= 20° .【分析】先根据平行线的性质,得到∠BDC=50°,再根据∠ADB=30°,即可得出∠2=20°.【解答】解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案为:20°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15.(4分)(•金华)如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为(﹣1,﹣6).【分析】解法1:将点A绕着点B顺时针旋转90°得到点D,连接AD,则△ABD是等腰直角三角形,进而得到点D在射线AC上,根据点A(2,3)和点B(0,2),可得D(1,0),再根据待定系数法求得直线AC的解析式,最后解方程组即可得到点C的坐标;解法2:先过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据直线AB 的解析式为y=x+2,可得PF=,将△AGP绕点A逆时针旋转90°得△AEH,构造△ADP≌△ADH,再设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,在Rt△PDF中,根据PF2+DF2=PD2,可得方程()2+(3﹣x)2=(x+)2,进而得到D(1,0),即可得出直线AD的解析式为y=3x﹣3,最后解方程组即可得到D点坐标.【解答】解法1:如图所示,将点A绕着点B顺时针旋转90°得到点D,连接AD,则△ABD是等腰直角三角形,∴∠BAD=45°,由题可得,∠BAC=45°,∴点D在射线AC上,由点A(2,3)和点B(0,2),可得D(1,0),设AC的解析式为y=ax+b,把A(2,3),D(1,0)代入,可得,解得,∴直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法2:如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为y=x+2,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即()2+(3﹣x)2=(x+)2,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).【点评】本题主要考查了反比例函数与一次函数图象交点问题,旋转的性质以及反比例函数图象上点的坐标特征的运用,解决问题的关键是利用45°角,作辅助线构造等腰直角三角形或正方形,依据旋转的性质或勾股定理列方程进行求解.16.(4分)(•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m 长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2)(1)如图1,若BC=4m,则S= 88πm2.(2)如图2,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10﹣x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【解答】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10﹣x,∴S=•π•102+•π•x2+•π•(10﹣x)2=(x2﹣5x+250)=(x﹣)2+,当x=时,S取得最小值,∴BC=,故答案为:.【点评】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.三、解答题(本题有8个小题,共66分,各小题都必须写出解答过程)17.(6分)(•金华)计算:2cos60°+(﹣1)+|﹣3|﹣(﹣1)0.【分析】本题涉及特殊角的三角函数值、乘方、零指数幂、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:2cos60°+(﹣1)+|﹣3|﹣(﹣1)0=2×﹣1+3﹣1=1﹣1+3﹣1=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、乘方、零指数幂、绝对值等考点的运算.18.(6分)(•金华)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(x﹣1)=x+1,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(6分)(•金华)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.【分析】(1)分别作出点A、B、C关于原点O成中心对称的对应点,顺次连接即可得;(2)由点A′坐标为(﹣2,2)可知要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移6个单位,据此可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)∵点A′坐标为(﹣2,2),∴若要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移6个单位,即4<a <6.【点评】本题主要考查作图﹣中心对称和轴对称、平移,熟练掌握中心对称和轴对称、平移变换的性质是解题的关键.20.(8分)(•金华)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表,请按正确数据解答下列各题:(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.【分析】(1)求出各自的人数,补全表格即可;(2)根据调整后的数据,补全条形统计图即可;(3)根据“优秀”人数占的百分比,乘以1500即可得到结果.【解答】解:(1)填表如下:故答案为:12;22;12;4;50;(2)补全条形统计图,如图所示:(3)抽取的学生中体能测试的优秀率为24%,则该校体能测试为“优秀”的人数为1500×24%=360(人).【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.21.(8分)(•金华)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a (x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.22.(10分)(•金华)如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.【分析】(1)由切线性质知OC⊥CD,结合AD⊥CD得AD∥OC,即可知∠DAC=∠OCA=∠OAC,从而得证;(2)①由AD∥OC知∠EOC=∠DAO=105°,结合∠E=30°可得答案;②作OG⊥CE,根据垂径定理及等腰直角三角形性质知CG=FG=OG,由OC=2得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得答案.【解答】解:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OCE=45°;②作OG⊥CE于点G,则CG=FG=OG,∵OC=2,∠OCE=45°,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E=30°,∴GE=2,∴.【点评】本题主要考查圆的切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质,熟练掌握切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质是解题的关键.23.(10分)(•金华)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段AE ,GF ;S矩形AEFG:S▱ABCD= 1:2 .(2)▱ABCD纸片还可以按图3方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.【分析】(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=S▱ABCD,即可得出答案;(2)由矩形的性质和勾股定理求出FH,即可得出答案;(3)折法1中,由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM﹣GM=1,BC=BM+CM=7;折法2中,由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MC=CN,求出GH=CD=5,由叠合正方形的性质得出EM=GH=5,正方形EMHG的面积=52=25,由勾股定理求出FM=BM==3,设AD=x,则MN=FM+FN=3+x,由梯形ABCD的面积得出BC=﹣x,求出MC=BC﹣BM=﹣x﹣3,由MN=MC得出方程,解方程求出AD=,BC=;折法3中,由折叠的性质、正方形的性质、勾股定理即可求出BC、AD的长.【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,∴S矩形AEFG=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH==13,由折叠的性质得:AD=FH=13;(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.【点评】本题是四边形综合题目,考查了折叠的性质、正方形的性质、勾股定理、梯形面积的计算、解方程等知识;本题综合性强,有一定难度.24.(12分)(•金华)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,3)、B(9,5),C(14,0),动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA﹣AB﹣BC运动,在OA、AB、BC上运动的速度分别为3,,(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式;(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.【分析】(1)利用待定系数法求AB所在直线的函数表达式;(2)由题意得:OP=t,PC=14﹣t,求出PC边上的高为t+2,代入面积公式计算,并根据二次函数的最值公式求出最大值即可;(3)分别以Q在OA、AB、BC上运动时讨论:①当0<t≤2时,线段PQ的中垂线经过点C(如图2),②当2<t≤6时,线段PQ的中垂线经过点A(如图3),③当6<t≤10时,i)线段PQ的中垂线经过点C(如图4),ii)线段PQ的中垂线经过点B(如图5),只要能画出图形,根据中垂线的性质和勾股定理列方程可得结论.【解答】解:(1)设AB所在直线的函数表达式为y=kx+b,把A(3,3)、B(9,5)代入得:,解得:,∴AB所在直线的函数表达式为y=x+2;(2)如图1,由题意得:OP=t,则PC=14﹣t,过A作AD⊥x轴于D,过B作BF⊥x轴于F,过Q作QH⊥x轴于H,过A作AE⊥BF于E,交QH于G,∵A(3,3),∴OD=3,AD=3,由勾股定理得:OA=6,∵B(9,5),∴AE=9﹣3=6,BE=5﹣3=2,Rt△AEB中,AB==4,tan∠BAE===,∴∠BAE=30°,点Q过OA的时间:t==2(秒),∴AQ=(t﹣2),∴QG=AQ=,∴QH=+3=t+2,在△PQC中,PC=14﹣t,PC边上的高为t+2,t==4(秒),∴S=(14﹣t)(t+2)=﹣+t+14(2≤t≤6),∴当t=5时,S有最大值为;(3)①当0<t≤2时,线段PQ的中垂线经过点C(如图2),过Q作QG⊥x轴于G,由题意得:OQ=3t,OP=t,∠AOG=60°,∴∠OQG=30°,∴OG=t,∴CG=14﹣t,sin60°=,∴QG=×3t=t,在Rt△QGC中,由勾股定理得:QG2+CG2=QC2=PC2,可得方程()2+(14﹣t)2=(14﹣t)2,解得:t1=,t2=0(舍),此时t=,②当2<t≤6时,线段PQ的中垂线经过点A(如图3),∴AQ=AP,过A作AG⊥x轴于G,由题意得:OP=t,AQ=(t﹣2),则PG=t﹣3,AP=(t﹣2),在Rt△AGP中,由勾股定理得:AP2=AG2+PG2,可得方程:(3)2+(t﹣3)2=[(t﹣2)]2,解得:t1=,t2=(舍去),此时t=;③当6<t≤10时,i)线段PQ的中垂线经过点C(如图4),∴PC=CQ,由(2)知:OA=6,AB=4,BC=10,t=+=6,∴BQ=(t﹣6),∴CQ=BC﹣BQ=10﹣(t﹣6)=25﹣t,可得方程为:14﹣t=25﹣t,解得:t=;ii)线段PQ的中垂线经过点B(如图5),∴BP=BQ,过B作BG⊥x轴于G,则BG=5,PG=t﹣9,BQ=(t﹣6),由勾股定理得:BP2=BG2+PG2,可得方程为:(5)2+(t﹣9)2=[(t﹣6)]2,解得:t1=,t2=(舍去),此时t=,综上所述,t的值为或或或.【点评】本题是四边形的综合题,考查了利用待定系数法求直线的解析式、动点运动问题、组成的三角形的面积问题、二次函数的最值问题、线段垂直平分线的性质以及勾股定理,计算量大,第三问有难度,容易丢解,注意运用数形结合的思想,且第三问主要运用了线段垂直平分线的性质.。

2024年浙江省金华市金东区中考数学二模试卷(含详解)

2024年浙江省金华市金东区中考数学二模试卷(含详解)

2024年浙江省金华市金东区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在下列选项实数中,绝对值最小的是( )A. −2B. 0C. 13D. π2.计算(−a 3)2的结果是( )A. −a 5B. a 5C. −a 6D. a 63.据报道:2020年广西高考报名人数约为520000人,再创历史新高,其中数据520000用科学记数法表示为( )A. 0.52×106B. 5.2×105 C. 5.2×104 D. 52×1044.如图是某同学搭建的积木立体图,则该几何体的左视图是( )A.B.C. D.5.用配方法解方程x 2−6x +1=0时,将方程化为(x−3)2=a 的形式,则a 的值是( )A. 8B. 9C. 10D. 126.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意的是( )A. {x +y =35y =2x B. {x +y =3520x =2×30y C. {x +y =3520x =30y2D. {x +y =352x 20=y307.如图,在△ABC 中,∠C =90°,用直尺和圆规在边BC 上确定一点P ,使点P 到边AC 、AB 的距离相等,则符合要求的作图痕迹是( )A. B.C. D.8.若(x 1,y 1),(x 2,y 2)是抛物线y =ax 2(a >0)图象上两个不同的点,则(|x 1|−|x 2|)(y 1−y 2)为( )A. 正数B. 负数C. 非正数D. 非负数9.如图,在▱ABCD 中,O 是对角线AC 上一点,连接BO ,DO.若△COD ,△AOD ,△AOB ,△BOC 的面积分别为S 1,S 2,S 3,S 4,则下列关于S 1,S 2,S 3,S 4的等量关系中,不一定正确的是( )A. S 1+S 3=S 2+S 4B. S 1S 2=S 4S 3C. S 3−S 1=S 2−S 4D. S 2+S 3=2(S 1+S 4)10.如图,△ABC 和△CDE 都是等边三角形,AC =4,连结AE ,BD ,F 为直线AE ,BD 的交点,连结CF ,当线段BF 最长时,CF 的值是( )A. 1B. 433C. 2D. 23二、填空题:本题共6小题,每小题3分,共18分。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2023年浙江省金华市部分学校中考数学适应性试卷及答案解析

2023年浙江省金华市部分学校中考数学适应性试卷及答案解析

2023年浙江省金华市部分学校中考数学适应性试卷一、选择题(本题有10小题,每小题3分,共30分.)1.(3分)的相反数是()A.2022B.C.D.﹣20222.(3分)下列运算正确的是()A.(a+b)2=a2+b2B.(﹣3x3)2=6x6C.a2+a2=2a4D.(a4)3=a123.(3分)2022年冬奥会在北京举行,据了解北京冬奥会的预算规模为15.6亿美元,其中15.6亿用科学记数法表示为()A.1.56×109B.1.56×108C.15.6×108D.0.156×1010 4.(3分)如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.5.(3分)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边可以自由滑动上.当∠1=15°时,∠2的度数是()A.15°B.75°C.25°D.45°6.(3分)如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,且∠ACD=22.5°,CD =4,则⊙O的半径长为()A.2B.C.4D.7.(3分)在Rt△ABC中,∠C=90°,AC=6,sin A=,则AB的值为()A.8B.9C.10D.7.58.(3分)如图,在Rt△ABC中,∠B=90°,AC=5,AB=3,点E是边CB上一动点,过点E作EF∥CA交AB于点F,D为线段EF的中点,按下列步骤作图:①以C为圆心,适当长为半径画弧交CB,CA于点M,点N;②分别以M,N为圆心,适当长为半径画弧,两弧的交点为G;③作射线CG.若射线CG经过点D,则CE的长度为()A.B.C.D.9.(3分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(3分)如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°,甲、乙两车由A口同时驶入立交桥,均以12m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示,结合题目信息,下列说法错误的是()A.甲车从G口出,乙车从F口出B.立交桥总长为252mC.从F口出比从G口出多行驶72mD.乙车在立交桥上共行驶16s二、填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是.12.(4分)分解因式:3x2﹣12=.13.(4分)一个不透明的袋子中装有四个小球,它们除分别标有的数字﹣3,﹣2,2,5不同外,其他完全相同.任意从袋子中摸出一个小球不放回,再任意摸出一个小球,则两次摸出的小球上所标数字之和为正数的概率是.14.(4分)现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为.15.(4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,点M是AC边的中点,点N是BC边上的任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.16.(4分)如图1是一款重型订书机,其结构示意图如图2所示,其主体部分为矩形EFGH,由支撑杆CD垂直固定于底座AB上,且可以绕点D旋转.压杆MN与伸缩片PG连接,点M在HG上,MN可绕点M旋转,PG⊥BC,DF=8厘米,不使用时,EF∥AB,G是PF中点,tan∠PMG=,且点D在NM的延长线上,则GF的长为厘米;使用时如图3,按压MN使得MN∥AB,此时点F落在AB上,若CD=2厘米,则压杆MN 到底座AB的距离为厘米.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°18.(6分)解方程:.19.(6分)在5×5的方格中,A、B、F均在格点上,请用无刻度直尺按要求画图.(1)在线段AB上找一点C,使得AC=3BC;=S△ABF(D为格点);(2)作△ABD,使得S△ABD(3)作GE⊥AB,且GE=AB(E、G为格点).20.(8分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型A B AB O人数105(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.21.(8分)如图,已知抛物线y=x2+bx+c经过A(﹣2,0)、B(4,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当3<x<5时,求y的取值范围;=30,求出此时点P的坐标.(3)点P为抛物线上一点,若S△P AB22.(10分)公园草坪上有一架秋千OA,秋千静止时,底端A到地面的距离AB为0.5m,从竖直位置开始,向右可摆动的最大夹角为α,sinα=,已知秋千的长OA=2m.(1)如图1,当向右摆动到最大夹角时,求A'到地面的距离;(2)如图2,若有人在B点右侧搭建了一个等腰△PCD帐篷,已知BC=0.6m,CD=2m,帐篷的高PH为1.8m,秋千摆动的过程中是否会撞到帐篷?若不会撞到,请说明理由;若会撞到,则帐篷应该向右移动超过多少米才能不被撞到?23.(10分)如图,直线y=﹣x+6与反比例函数y=(x>0)分别交于点D、A(AB<AC),经探索研究发现:结论AB=CD始终成立.另一直线y=mx(m>0)交线段BC于点E,交反比例函数y=(x>0)图象于点F.(1)当BC=5时.①求反比例函数的解析式.②若BE=3CE,求点F的坐标.(2)当BE:CD=2:1时,请直接写出k与m的数量关系.24.(12分)菱形ABCD的对角线AC,BD相交于点O,点G是射线OD上一个动点,过点G作GE∥DC交射线OC于点E,以OE,OG为邻边作矩形EOGF.(1)如图1,当点F在线段DC上时,求证:DF=FC;(2)若∠ABO=30°,OD=3,直线AD与直线GF交于点H,将△GDH沿直线AD翻折得到△MDH.①求CF的最小值;②当△GFM是等腰三角形时,求OG的长.2023年浙江省金华市部分学校中考数学适应性试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.)1.【分析】根据相反数的定义即可得出答案.【解答】解:﹣的相反数是.故选:B.【点评】本题考查了相反数,解题的关键是掌握只有符号不同的两个数互为相反数.2.【分析】分别根据完全平方公式,积的乘方运算法则,合并同类项法则以及幂的乘方运算法则逐一判断即可.【解答】解:A.(a+b)2=a2+2ab+b2,故本选项不合题意;B.(﹣3x3)2=9x6,故本选项不合题意;C.a2+a2=2a2,故本选项不合题意;D.(a4)3=a12,正确.故选:D.【点评】本题主要考查了完全平方公式,合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:15.6亿=1560000000=1.56×109.故选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:从左边看有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.故选:D.【点评】此题主要考查了简单几何体的三视图,注意所有的看到的棱都应表现在三视图中.5.【分析】根据BE∥CD得到∠EBC=15°,依据∠ABC=60°,∠EBC=15°,由角的和差关系可求∠2=45°.【解答】解:如图,∵BE∥CD,∴∠EBC=∠1=15°,∵∠ABC=60°,∴∠2=45°.故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【分析】连接OD,由圆周角定理得出∠AOD=45°,根据垂径定理可得CE=DE=2,证出△DOE为等腰直角三角形,利用特殊角的三角函数可得答案.【解答】解:连接OD,如图所示:∵AB是⊙O的直径,弦CD⊥AB,CD=4,∴CE=DE=CD=2,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∴△DOE为等腰直角三角形,∴OD=DE=2,即⊙O的半径为2,故选:B.【点评】此题主要考查了圆周角定理、垂径定理、以及三角函数的应用;关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.【分析】根据正弦函数的定义即可直接求解.【解答】解:∵sin A==,设BC=4x,AB=5x,∴AC=3x,∴3x=6,解得x=2,∴AB=10.故选:C.【点评】本题考查了锐角三角函数的定义,解决本题的关键是掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.8.【分析】先利用勾股定理计算出BC=4,利用基本作图得到CD平分∠ACB,再证明∠DCE =∠CDE得到EC=ED,设CE=x,则EF=2x,BE=4﹣x,接着证明△BEF∽△BCA,利用相似比得到=,然后解方程即可.【解答】解:∵∠B=90°,AC=5,AB=3,∴BC===4,由作法得CD平分∠ACB,∴∠DCE=∠DCA,∵EF∥AC,∴∠DCA=∠CDE,∴∠DCE=∠CDE,∴EC=ED,∵D点为EF的中点,∴DE=DF,设CE=x,则EF=2x,BE=4﹣x,∵EF∥AC,∴△BEF∽△BCA,∴=,即=,解得x=,即CE的长为.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.9.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选:C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.【分析】根据题意,根据弧长公式并结合图象问题可得.【解答】解:根据两车运行时间,可知甲车从G口出,乙车从F口出,故A正确;由图象可知,两车通过、、弧时每段所用时间均为3s,通过直行道AB,CG,EF时,每段用时为4s.所以立交桥总长为(3×3+4×3)×12=252m,故B正确;根据两车运行路线,从F口驶出比从G口多走,弧长之和,用时为6s,则多走72m,故C正确;根据题意乙车行驶时间为:4×2+3×3=17秒,故D错误;故选:D.【点评】本题考查了动点问题的函数图象,解答时要注意数形结合.二、填空题(本题有6小题,每小题4分,共24分)11.【分析】二次根式有意义的条件就是被开方数是非负数,即可求解.【解答】解:根据题意得:x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.13.【分析】画树状图,共有12种等可能的结果,两次摸出的小球上所标数字之和为正数的结果有6种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种等可能的结果,两次摸出的小球上所标数字之和为正数的结果有6种,∴两次摸出的小球上所标数字之和为正数的概率为=,故答案为:.【点评】此题考查的是树状图法求概率.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意是放回试验还是不放回试验.14.【分析】已知扇形底面半径是10cm,就可以知道展开图扇形的弧长是20πcm,根据弧长公式l=nπr÷180得到.【解答】解:20π=解得:n=90°,∵扇形彩纸片是30%圆周,因而圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣90°=18°.剪去的扇形纸片的圆心角为18°.故答案为18°.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.15.【分析】取BC、AB的中点H、G,连接MH、HG、MG.分三种情形:①如图1中,当点C′落在MH上时;②如图2中,当点C′落在GH上时;③如图3中,当点C′落在直线GM上时,分别求解即可解决问题;【解答】解:取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=4,MH=5,HC′=1,HN=3﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(3﹣x)2=x2+12,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=3,MC=MC′=4,∴GC′=,∵∠NHC'=∠C'GM=90°,∠NC'M=90°,∴∠HNC'+∠HC'N=∠GC'M+∠HC'N=90°,∴∠HNC'=∠CGC'M,∴△HNC′∽△GC′M,∴=,∴=,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM =2.∴C'M>GM,此时点C′在中位线GM的延长线上,不符合题意.综上所述,满足条件的线段CN的长为或.故答案为:或.【点评】本题考查轴对称、三角形的中位线、勾股定理、相似三角形的判定和性质、正方形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.16.【分析】延长NM,则NM过点D,根据tan∠PMG=和DF=8可得GF的长;过点P 作PK⊥AB于K,可得∠PFK=∠CDF=∠MPF,利用勾股定理可得CF的长,最后利用三角函数可得答案.【解答】解:如图2,延长NM,则NM过点D,∵四边形EFGH是矩形,HG∥EF,∴∠PMG=∠PDF,∴tan∠PDF=tan∠PMG==,即=,PF=6,∵PF=6,∴GF=PF=3(厘米).如图3,过点P作PK⊥AB于K,∵MN∥AB,∴PK⊥MN,∠MPF=∠PFK,∵∠DFP=∠DCF=90°,∴∠CDF+∠DFC=∠PFK+∠DFC=90°,∴∠PFK=∠CDF=∠MPF,由图2可得,PG=3,tan∠PMG=,∴MG=4,Rt△DCF中,CF==2,∴tan∠CDF=tan∠MPF==,∴PG=,PF=,∵sin∠CDF=sin∠PFK==,∴PK=(1+)厘米.故答案为:3;(1+).【点评】本题考查解直角三角形的应用,正确作出辅助线构造直角三角形是解题关键.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°=4+1+﹣1+1=+5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:,去分母得:x﹣2=4(x+1),去括号得:x﹣2=4x+4,移项合并得:﹣3x=6,解得:x=﹣2,经检验:x=﹣2是原分式方程的解.【点评】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.【分析】(1)根据相似三角形的性质作图;(2)根据等底等高作三角形;(3)根据网格线的特征作图.【解答】解:如下图:(1)点C即为所求;(2)△ABD即为所求;(3)线段EG即为所求.【点评】本题考查了作图的应用和设计,掌握相似三角形的性质和三角形的面积公式是解题的关键.20.【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数;(4)画出树状图,根据概率公式即可得到结果.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),血型A B AB O人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,1300×=312(人),估计这1300人中大约有312人是A型血;(4)画树状图如图所示,==.所以P(两个O型)【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了统计图.21.【分析】(1)把A(﹣2,0)、B(4,0)两点坐标代入y=x2+bx+c可求出b、c,进而确定函数关系式,再将二次函数写出顶点式,进而得出顶点坐标;(2)根据抛物线的关系式,求出当x=3、x=5时相应的y的值即可;=30,则其高为10,再在抛物线上找一点使其纵坐标(3)求出AB的长为6,要使S△P AB的绝对值为10即可.【解答】解:(1)把A(﹣2,0)、B(4,0)两点坐标代入y=x2+bx+c得,,解得,,∴二次函数的关系式为y=x2﹣2x﹣8=(x﹣1)2﹣9,答:二次函数的关系式为y=x2﹣2x﹣8=(x﹣1)2﹣9,顶点坐标为(1,﹣9);(2)当x=3时,y=4﹣9=﹣5,当x=5时,y=16﹣9=7,所以当3<x<5时,﹣5<y<7;(3)∵AB=4﹣(﹣2)=6,=30=×6×|y P|,∴S△P AB∴|y P|=10,又∵抛物线的顶点坐标为(1,﹣9),∴点P在x轴上方的抛物线上,当y=10时,即10=x2﹣2x﹣8,解得,x1=1+,x2=1﹣,∴点P的坐标为(1+,10)或(1﹣,10).【点评】本题考查二次函数的图象和性质,待定系数法求二次函数的关系式以及图象上点的坐标特征,将点的坐标代入函数关系式求出待定的系数a、b、c是解决问题的关键.22.【分析】(1)过A′作A′N⊥OA于C,解直角三角形即可得到结论;(2)当秋千摆动的夹角最大时,由(1)知,HQ=NB=0.9m,由△PMQ∽△PCH可知MQ=0.5m,求得A′N=1.2m,当A′恰好在帐篷的边CP时,NQ=1.7m,BH=1.6m,于是得到结论.【解答】解:(1)过A′作A′N⊥OA于C,在Rt△ONA′中,sinα==,∴A′N=×OA′=×2=1.2(m),∴ON==1.6(m),∴NB=AN+AB=2﹣1.6+0.5=0.9(m),∴A'到地面的距离为0.9m;(2)当秋千摆动的夹角最大时,由(1)知,HQ=NB=0.9m,∵CH=1,∵MQ∥CH,∴△PMQ∽△PCH,∴=,∴MQ=0.5m,∴=sinα=,∴A′N=1.2m,当A′恰好在帐篷的边CP时,NQ=1.7m,BH=1.6m,∵NQ>BH,∴会撞到,∴移动的距离为1.7﹣1.6=0.1m.【点评】本题考查了解直角三角形的应用,等腰三角形的性质,正确的作出辅助线是解题的关键.23.【分析】(1)①先求出OA=6,OD=8,进而求出AD=10,再根据AB=CD,求出AB=,再判断出△ABG∽ADO,得出,进而求出B(2,),即可得出结论;②先求出AE=,同①的方法求出点E(5,),进而得出直线OE的解析式为y=x,即可得出结论;(2)先设出BE=a,得出CD=2a=AB,进而得出AE=3a,同(1)①的方法求出点E (a,6﹣a),代入直线解析式中得出a=,进而求出点C的坐标,将点C坐标代入反比例函数解析式中,即可让得出结论.【解答】解:(1)①针对于直线y=﹣x+6,令x=0,则y=6,∴A(0,6),∴OA=6,令y=0,则0=﹣x+6,∴x=8,∴D(8,0),∴OD=8,∴AD=10,∵BC=5,∴AB+CD=AD﹣BC=5,∵AB=CD,∴AB=,过点B作BG⊥y轴于G,∴∠AGB=90°=∠AOB,∵∠BAG=∠DAO,∴△ABG∽ADO,∴,∴,∴AG=,BG=2,∴OG=OA﹣AG=,∴B(2,),∵点B在反比例函数y=(x>0))图象上,∴k=2×=9,∴反比例函数的解析式为y=;②∵BC=5,∴BE+CE=5,∵BE=3CE,∴BE=,∴AE=AB+BE=,过点E作EH⊥y轴于H,∴∠AHE=90°=∠AOB,∵∠HAE=∠OAD,∴△HAE∽△OAD,∴,∴,∴AH=,BG=5,∴OH=OA﹣AH=,∴E(5,),∴直线OE的解析式为y=x,联立,解得,(舍)或,∴F(2,);(2)∵BE:CD=2:1,∴BE=2a,则CD=a,∴AB=CD=a,∴AE=AB+BE=3a,同(1)的方法得,点C((5﹣a),a),过点E作EH⊥y轴于H,同(1)的方法得,△HAE∽△OAD,∴,∴,∴AH=a,EH=a,∴OH=OA﹣AH=6﹣a,∴E(a,6﹣a),将点E坐标代入直线y=mx(m>0)中,解得am=6﹣a,∴a=,∴将点C的坐标代入反比例函数y=(x>0)的图象上,∴k=(a)×(6﹣a)=×=.【点评】此题是反比例函数综合题,主要考查了待定系数法,直线和双曲线的交点坐标的求法,相似三角形的判定和性质,构造出相似三角形,求出点E的坐标是解本题的关键.24.【分析】(1)证明四边形GEFD是平行四边形,四边形GECF是平行四边形,得GE=DF,GE=CF,进而得结论;(2)①根据抛物线的最小值解答即可;②根据翻折的性质和等腰三角形的性质分三种情况解答即可.【解答】(1)证明:∵四边形EOGF是矩形,∴EO∥GF,GO∥EF,∵GE∥DC,∴四边形GEFD是平行四边形,四边形GECF是平行四边形,∴GE=DF,GE=CF,∴DF=FC;(2)解:①设OE=x,则OG=x=EF,EC=﹣x,∴,令y=,由于抛物线开口向上,∴当x=,∴y=,最小=;即CF最小②a:若MG=MF,则M在GF的垂直平分线上,显然不成立;b:若MG=MF,设OE=x,则GF=OE=GM=x,令MG与AD交于N,∵△MDH由△GDH翻折而得,∴N为MG中点,且DN⊥MG,∵∠OGE=30°,∴DG=DO﹣OG=3﹣x,在△DNG中,NG=x,DG=3﹣x,∠DNG=90°,∠NDG=30°,∴3﹣x=x,解得:x=,∴OG=;c:若MF=GF,则F在MG的垂直平分线上,显然不成立,d:当G在OD的延长线上,显然不成立,综上所述,OG=.【点评】本题是四边形综合题,主要考查了菱形的性质与判定,等腰三角形的性质与判定,抛物线的性质,关键是根据菱形的性质与判定,等腰三角形的性质与判定,抛物线的性质解答。

2021年浙江省金华市中考数学试卷及答案解析

2021年浙江省金华市中考数学试卷及答案解析

2021年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数−12,−√5,2,﹣3中,为负整数的是()A.−12B.−√5C.2D.﹣32.1a +2a=()A.3B.32a C.2a2D.3a3.太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×1094.一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<05.某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补6.将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A .B .C .D .7.如图是一架人字梯,已知AB =AC =2米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cosα米8.已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =−12x 的图象上.若x 1<0<x 2,则( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%10.如图,在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E ,F ,G ,H ,M ,N 都在同一个圆上.记该圆面积为S 1,△ABC 面积为S 2,则S 1S 2的值是( )A .5π2B .3πC .5πD .11π2二、填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式√x −3中,字母x 的取值范围是 . 12.(4分)已知{x =2y =m是方程3x +2y =10的一个解,则m 的值是 .13.(4分)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是 .14.(4分)如图,菱形ABCD 的边长为6cm ,∠BAD =60°,将该菱形沿AC 方向平移2√3cm 得到四边形A ′B ′C ′D ′,A ′D ′交CD 于点E ,则点E 到AC 的距离为 cm .15.(4分)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC 及四边形②的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是 .16.(4分)如图1是一种利用镜面反射,放大微小变化的装置.木条BC 上的点P 处安装一平面镜,BC 与刻度尺边MN 的交点为D ,从A 点发出的光束经平面镜P 反射后,在MN 上形成一个光点E .已知AB ⊥BC ,MN ⊥BC ,AB =6.5,BP =4,PD =8. (1)ED 的长为 .(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣1)2021+√8−4sin45°+|﹣2|.18.(6分)已知x=16,求(3x﹣1)2+(1+3x)(1﹣3x)的值.19.(6分)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB =2.(1)求矩形对角线的长.(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.20.(8分)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.21.(8分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A 在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=−16(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.22.(10分)在扇形AOB中,半径OA=6,点P在OA上,连结PB,将△OBP沿PB折叠得到△O′BP.(1)如图1,若∠O=75°,且BO′与AB̂所在的圆相切于点B.①求∠APO′的度数.②求AP的长.(2)如图2,BO′与AB̂相交于点D,若点D为AB̂的中点,且PD∥OB,求AB̂的长.23.(10分)背景:点A在反比例函数y=kx(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A 在第一象限内,当AC=4时,小李测得CD=3.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.①求这个“Z函数”的表达式.②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.24.(12分)在平面直角坐标系中,点A的坐标为(−√73,0),点B在直线l:y=38x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB 的长;若不存在,请说明理由.2021年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.实数−12,−√5,2,﹣3中,为负整数的是()A.−12B.−√5C.2D.﹣3【分析】根据实数的分类即可做出判断.【解答】解:A选项是负分数,不符合题意;B选项是无理数,不符合题意;C选项是正整数,不符合题意;D选项是负整数,符合题意;故选:D.【点评】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和0.2.1a +2a=()A.3B.32a C.2a2D.3a【分析】根据同分母的分式的加减法法则计算即可.【解答】解:1a +2a=1+2a=3a,故选:D.【点评】本题考查了分式的加减法,属于简单题,可以类比小学的分数计算法则,熟练掌握分式的加减法法则.3.太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×109【分析】对于大于10的数,可以写成a×10n的形式,其中1≤a<10,n为正整数,n的值比原数的位数少1.【解答】解:150 000 000=1.5×108,故选:A.【点评】本题考查了科学记数法,解题的关键是确定a和n的值.4.一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<0【分析】解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】解:A、x>﹣2,故A错误;B、x<2,故B正确;C、x≥2,故C错误;D、x>2,故D错误.故选:B.【点评】本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补【分析】先证l1∥l2,再由平行线的性质即可得出结论.【解答】解:已知∠1=∠2,根据内错角相等,两直线平行,得l1∥l2,再根据两直线平行,同位角相等,得∠3=∠4.故选:C.【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.6.将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【分析】直三棱柱的表面展开图的特点,由三个长方形的侧面和上下两个等边三角形的底面组成.【解答】解:选项A、B、C均可能是该直棱柱展开图,而选项D中的两个底面会重叠,不可能是它的表面展开图,故选:D.【点评】考查了几何体的展开图,动手折叠一下,有助于空间想象力的培养.7.如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.4cosα米【分析】直接利用等腰三角形的性质得出BD=DC,再利用锐角三角函数关系得出DC的长,即可得出答案。

2022年浙江省金华市中考数学试卷(解析版)

2022年浙江省金华市中考数学试卷(解析版)

2022年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2022•金华)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.22.(3分)(2022•金华)计算a3•a2的结果是()A.a B.a6C.6a D.a53.(3分)(2022•金华)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105 4.(3分)(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm5.(3分)(2022•金华)观察如图所示的频数分布直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.86.(3分)(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL7.(3分)(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校8.(3分)(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.9.(3分)(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m 10.(3分)(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2022•金华)因式分解:x2﹣9=.12.(4分)(2022•金华)若分式的值为2,则x的值是.13.(4分)(2022•金华)一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是.14.(4分)(2022•金华)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm.把△ABC沿AB方向平移1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为cm.15.(4分)(2022•金华)如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C.已知AC=6cm,CB=8cm,则⊙O的半径为cm.16.(4分)(2022•金华)图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B′处各安装定日镜(介绍见图3).绕各中心点(A,A')旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知AB=A'B'=1m,EB=8m,EB'=8m,在点A观测点F的仰角为45°.(1)点F的高度EF为m.(2)设∠DAB=α,∠D'A'B'=β,则α与β的数量关系是.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2022•金华)计算:(﹣2022)0﹣2tan45°+|﹣2|+.18.(6分)(2022•金华)解不等式:2(3x﹣2)>x+1.19.(6分)(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?20.(8分)(2022•金华)如图,点A在第一象限内,AB⊥x轴于点B,反比例函数y=(k ≠0,x>0)的图象分别交AO,AB于点C,D.已知点C的坐标为(2,2),BD=1.(1)求k的值及点D的坐标.(2)已知点P在该反比例函数图象上,且在△ABO的内部(包括边界),直接写出点P 的横坐标x的取值范围.21.(8分)(2022•金华)学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如下表.请解答下列问题:三位同学的成绩统计表内容表达风度印象总评成绩小明8788m小亮78897.85小田79777.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整?22.(10分)(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连结AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n的值.23.(10分)(2022•金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y需求=ax 2+c,部分对应值如下表:售价x(元/… 2.53 3.54…千克)…7.757.2 6.55 5.8…需求量y需求(吨)②该蔬莱供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x﹣1,函数图象见图1.③1~7月份该蔬莱售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函教表达式分别为x售价=t+2,x成本=t2﹣t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.24.(12分)(2022•金华)如图,在菱形ABCD中,AB=10,sin B=,点E从点B出发沿折线B﹣C﹣D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.(1)如图1,点G在AC上.求证:F A=FG.(2)若EF=FG,当EF过AC中点时,求AG的长.(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?2022年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2022•金华)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.2【考点】无理数.【分析】利用有理数,无理数的概念对每个选项进行判断即可得出结论.【解答】解:﹣2,,2是有理数,是无理数,故选:C.【点评】本题主要考查了有理数,无理数的意义,掌握上述概念并熟练应用是解题的关键.2.(3分)(2022•金华)计算a3•a2的结果是()A.a B.a6C.6a D.a5【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:a3•a2=a5.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.3.(3分)(2022•金华)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【考点】科学记数法—表示较大的数.【分析】利用科学记数法表示数据的方法解答即可.【解答】解:16320000=1.632×107,故选:B.【点评】本题主要考查了科学记数法表示较大的数,正确掌握科学记数法是解题的关键.4.(3分)(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm【考点】三角形三边关系.【分析】由三角形的两边长分别为5cm和8cm,可得第三边x的长度范围即可得出答案.【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.【点评】此题考查了三角形的三边关系.注意已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.5.(3分)(2022•金华)观察如图所示的频数分布直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.8【考点】频数(率)分布直方图;频数与频率.【分析】根据直方图中的数据,可以得到组界为99.5~124.5这一组的频数.【解答】解:由直方图可得,组界为99.5~124.5这一组的频数是20﹣3﹣5﹣4=8,故选:D.【点评】本题考查频数分布直方图,利用数形结合的思想解答是解答本题的关键.6.(3分)(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】根据题目中的条件和全等三角形的判定方法,可以得到判定△ABO≌△DCO的依据.【解答】解:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),故选:B.【点评】本题考查全等三角形的判定,解答本题的关键是明确题意,写出△AOB和△DOC 全等的证明过程.7.(3分)(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【考点】勾股定理;点的坐标.【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O 到超市、学校、体育场、医院的距离,再比较大小即可.【解答】解:如右图所示,点O到超市的距离为:=,点O到学校的距离为:=,点O到体育场的距离为:=,点O到医院的距离为:=,∵<=<,∴点O到超市的距离最近,故选:A.【点评】本题考查勾股定理、平面直角坐标系,解答本题的关键是明确题意,作出合适平面直角坐标系.8.(3分)(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【考点】平面展开﹣最短路径问题.【分析】利用圆柱的侧面展开图是矩形,而点B是展开图的一边的中点,再利用蚂蚁爬行的最近路线为线段可以得出结论.【解答】解:将圆柱侧面沿AC“剪开”,侧面展开图为矩形,∵圆柱的底面直径为AB,∴点B是展开图的一边的中点,∵蚂蚁爬行的最近路线为线段,∵C选项符合题意,故选:C.【点评】本题主要考查了圆柱的侧面展开图,最短路径问题,掌握两点之间线段最短是解题的关键.9.(3分)(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m 【考点】解直角三角形的应用.【分析】过点A作AD⊥BC于点D,利用直角三角形的边角关系定理求得AD,.用AD+BE 即可表示出房顶A离地面EF的高度.【解答】解:过点A作AD⊥BC于点D,如图,∵它是一个轴对称图形,∴AB=AC,∵AD⊥BC,∴BD=BC=3m,在Rt△ADB中,∵tan∠ABC=,∴AD=BD•tanα=3tanαm.∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,故选:B.【点评】本题主要考查了解直角三角形的意义,轴对称的性质,等腰三角形的三线合一,利用直角三角形的边角关系定理求得AD的长是解题的关键.10.(3分)(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.【考点】相似三角形的判定与性质;矩形的性质;翻折变换(折叠问题).【分析】连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.设BF=2k,CG=3k.则AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,因为C,A′,B′共线,GA′∥FB′,推出=,推出=,可得y2﹣12ky+32k2=0,推出y=8k或y=4k(舍去),推出AE=DE=4k,再利用勾股定理求出GT,可得结论.【解答】解:连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.∵=,∴可以假设BF=2k,CG=3k.∵AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,∵AD∥CB,∴∠AEF=∠EFG,∴∠GEF=∠GFE,∴EG=FG=y﹣5k,∴GA′=y﹣(y﹣5k)=5k﹣y,∵C,A′,B′共线,GA′∥FB′,∴=,∴=,∴y2﹣12ky+32k2=0,∴y=8k或y=4k(舍去),∴AE=DE=4k,∵四边形CDTG是矩形,∴CG=DT=3k,∴ET=k,∵EG=8k﹣5k=3k,∴AB=CD=GT==2k,∴==2.解法二:不妨设BF=2,CG=3,连接CE,则Rt△CA'E≌Rt△CDE,推出A'C=CD=AB=A'B',==1,推出GF=CG=3,BC=8,在Rt△CB'F,勾股得CB'=4则A'B'=2,故选:A.【点评】本题考查翻折变换,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2022•金华)因式分解:x2﹣9=(x+3)(x﹣3).【考点】因式分解﹣运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)(2022•金华)若分式的值为2,则x的值是4.【考点】解分式方程.【分析】依据题意列出分式方程,解分式方程即可求得结论.【解答】解:由题意得:=2,去分母得:2=2(x﹣3),去括号得:2x﹣6=2,移项,合并同类项得:2x=8,∴x=4.经检验,x=4是原方程的根,∴x=4.故答案为:4.【点评】本题主要考查了解分式方程,解分式方程需要验根,这是容易丢掉的步骤.13.(4分)(2022•金华)一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是.【考点】概率公式.【分析】共有10个球,其中红球7个,即可求出任意摸出1球是红球的概率.【解答】解:袋子中共有10个球,其中红球有7个,所以从中任意摸出1个球,摸到红球的概率是,故答案为:.【点评】本题考查概率公式,理解概率的定义和建设方法是解决问题的关键.14.(4分)(2022•金华)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm.把△ABC沿AB方向平移1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为8+2 cm.【考点】勾股定理;平移的性质;含30度角的直角三角形.【分析】利用含30°角的直角三角形的性质,勾股定理和平移的性质,求得四边形AB'C'C 的四边即可求得结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,∴AB=2BC=4,∴AC==2.∵把△ABC沿AB方向平移1cm,得到△A'B'C',∴B′C′=BC=2,AA′=CC′=1,A′B′=AB=4,∴AB′=AA′+A′B′=5.∴四边形AB'C'C的周长为AB′+B′C′+CC′+AC=5+2+1+2=(8+2)cm.故答案为:8+2.【点评】本题主要考查了含30°角的直角三角形的性质,勾股定理和平移的性质,熟练掌握平移的性质是解题的关键.15.(4分)(2022•金华)如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C.已知AC=6cm,CB=8cm,则⊙O的半径为cm.【考点】切线的性质;勾股定理.【分析】连接OA,OB,过点A作AD⊥OB于点D,利用矩形的判定与性质得到BD=AC=6cm,AD=BC=8cm,设⊙O的半径为rcm,在Rt△OAD中,利用勾股定理列出方程即可求解.【解答】解:连接OA,OB,过点A作AD⊥OB于点D,如图,∵长边与⊙O相切于点B,∴OB⊥BC,∵AC⊥BC,AD⊥OB,∴四边形ACBD为矩形,∴BD=AC=6cm,AD=BC=8cm.设⊙O的半径为rcm,则OA=OB=rcm,∴OD=OB﹣BD=(r﹣6)cm,在Rt△OAD中,∵AD2+OD2=OA2,∴82+(r﹣6)2=r2,解得:r=.故答案为:.【点评】本题主要考查了圆的切线的性质定理,勾股定理,矩形的判定与性质,依据题意添加适当的辅助线是解题的关键.16.(4分)(2022•金华)图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B′处各安装定日镜(介绍见图3).绕各中心点(A,A')旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知AB=A'B'=1m,EB=8m,EB'=8m,在点A观测点F的仰角为45°.(1)点F的高度EF为9m.(2)设∠DAB=α,∠D'A'B'=β,则α与β的数量关系是α﹣β=7.5°.【考点】解直角三角形的应用﹣仰角俯角问题;旋转的性质.【分析】(1)连接A′A并延长交EF于点H,易证四边形HEB′A′,HEBA,ABB′A′均为矩形,可得HE=AB=1m,HD=EB=8m,再根据在点A观测点F的仰角为45°,可得HF=HD=8m,即可求出FE的长;(2)作DC的法线AK,D′C′的法线A′R,根据入射角等于反射角,可得∠F AM=2∠F AK,∠AF′N=2∠F A′R,根据HF=8m,HA′=8m,解直角三角形可得∠HF A′=60°,从而可得∠AF A′的度数,根据三角形外角的性质可得∠F A′R=7.5°+∠F AK,再根据平行线的性质可表示∠DAB和∠D′A′B′,从而可得α与β的数量关系.【解答】解:(1)连接A′A并延长交EF于点H,如图,则四边形HEB′A′,HEBA,ABB′A′均为矩形,∴HE=AB=A′B′=1m,HD=EB=8m,HA′=EB′=8m,∵在点A观测点F的仰角为45°,∴∠HAF=45°,∴∠HF A=45°,∴HF=HD=8,∴EF=8+1=9(m),故答案为:9;(2)作DC的法线AK,D′C′的法线A′R,如图所示:则∠F AM=2∠F AK,∠AF′N=2∠F A′R,∵HF=8m,HA′=8m,∴tan∠HF A′=,∴∠HF A′=60°,∴∠AF A′=60°﹣45°=15°,∵太阳光线是平行光线,∴A′N∥AM,∴∠NA′M=∠AMA′,∵∠AMA′=∠AFM+∠F AM,∴∠NA′M=∠AFM+∠F AM,∴2∠F A′R=15°+2∠F AK,∴∠F A′R=7.5°+∠F AK,∵AB∥EF,A′B′∥EF,∴∠BAF=180°﹣45°=135°,∠B′A′F=180°﹣60°=120°,∴∠DAB=∠BAF+∠F AK﹣∠DAK=135°+∠F AK﹣90°=45°+∠F AK,同理,∠D′A′B′=120°+∠F A′R﹣90°=30°+∠F A′R=30°+7.5°+∠F AK=37.5+F AK,∴∠DAB﹣∠D′A′B′=45°﹣37.5°=7.5°,故答案为:α﹣β=7.5°.【点评】本题考查了解直角三角形,涉及平行线的性质,三角形外角的性质,入射角与反射角的关系等,找出两反射角之间的关系是解题的关键.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2022•金华)计算:(﹣2022)0﹣2tan45°+|﹣2|+.【考点】特殊角的三角函数值;绝对值;算术平方根;实数的运算;零指数幂.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质、算术平方根分别化简,进而计算得出答案.【解答】解:原式=1﹣2×1+2+3=1﹣2+2+3=4.【点评】此题主要考查了零指数幂的性质以及特殊角的三角函数值、绝对值的性质、算术平方根,正确化简各数是解题关键.18.(6分)(2022•金华)解不等式:2(3x﹣2)>x+1.【考点】解一元一次不等式.【分析】利用解不等式的方法解答即可.【解答】解:去括号得:6x﹣4>x+1,移项得:6x﹣x>4+1,合并同类项得:5x>5,∴x>1.【点评】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的方法是解题的关键.19.(6分)(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?【考点】勾股定理;列代数式;代数式求值.【分析】(1)观察图形,用直角三角形较长的直角边减去较短的直角边即可;(2)根据正方形的面积=边长的平方列出代数式,把a=3代入求值即可.【解答】解:(1)∵直角三角形较短的直角边=×2a=a,较长的直角边=2a+3,∴小正方形的边长=2a+3﹣a=a+3;(2)小正方形的面积=(a+3)2,当a=3时,面积=(3+3)2=36.【点评】本题考查了列代数式,代数式求值,观察图形,用直角三角形较长的直角边减去较短的直角边求出小正方形的边长是解题的关键.20.(8分)(2022•金华)如图,点A在第一象限内,AB⊥x轴于点B,反比例函数y=(k ≠0,x>0)的图象分别交AO,AB于点C,D.已知点C的坐标为(2,2),BD=1.(1)求k的值及点D的坐标.(2)已知点P在该反比例函数图象上,且在△ABO的内部(包括边界),直接写出点P 的横坐标x的取值范围.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;反比例函数的性质.【分析】(1)根据点C(2,2)在反比例函数y=(k≠0,x>0)的图象上,可以求得k的值,再把y=1代入函数解析式,即可得到点D的坐标;(2)根据题意和点C、D的坐标,可以直接写出点P的横坐标的取值范围.【解答】解:(1)∵点C(2,2)在反比例函数y=(k≠0,x>0)的图象上,∴2=,解得k=4,∵BD=1.∴点D的纵坐标为1,∵点D在反比例函数y=(k≠0,x>0)的图象上,∴1=,解得x=4,即点D的坐标为(4,1);(2)∵点C(2,2),点D(4,1),点P在该反比例函数图象上,且在△ABO的内部(包括边界),∴点P的横坐标x的取值范围是2≤x≤4.【点评】本题考查反比例函数图象上点的坐标特征、反比例函数的性质,解答本题的关键是明确题意,求出k的值.21.(8分)(2022•金华)学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如下表.请解答下列问题:三位同学的成绩统计表内容表达风度印象总评成绩小明8788m小亮78897.85小田79777.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整?【考点】扇形统计图;加权平均数;统计表.【分析】(1)设“内容”所占比例为x,“风度”所占比例为y,列方程组求出x,y,即可求得图中表示“内容”的扇形的圆心角度数;(2)根据(1)求得的x,y,可得表中m的值,并确定三人的排名顺序;(3)根据“内容”与“表达”所占比例可得结论,根据“内容”比“表达”重要调整即可.【解答】解:(1)设“内容”所占比例为x,“风度”所占比例为y,由题意得:,整理得:,解得:,∴“内容”所占比例为30%,“风度”所占比例为15%,∴表示“内容”的扇形的圆心角度数为360°×30%=108°;(2)m=8×30%+7×40%+8×15%+8×15%=7.6.∵7.85>7.8>7.6,三人成绩从高到低的排名顺序为:小亮,小田,小明;(3)班级制定的各部分所占比例不合理.可调整为:“内容”所占百分比为40%,“表达”所占百分比为30%,其它不变(答案不唯一).【点评】此题考查了扇形统计图,以及统计表,加权平均数,二元一次方程组的应用,弄清题意是解本题的关键.22.(10分)(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连结AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n的值.【考点】正多边形和圆;作图—基本作图;等边三角形的判定.【分析】(1)根据正五边形内角和,可以计算出∠ABC的度数;(2)先判断,然后根据题意和图形说明理由即可;(3)根据题意和(2)中的结果,计算出∠NOD的度数,然后即可计算出n的值.【解答】解:(1)∵五边形ABCDE是正五边形,∴∠ABC==108°,即∠ABC=108°;(2)△AMN是正三角形,理由:连接ON,NF,由题意可得:FN=ON=OF,∴△FON是等边三角形,∴∠NF A=60°,∴NMA=60°,同理可得:∠ANM=60°,∴∠MAN=60°,∴△MAN是正三角形;(3)∵∠AMN=60°,∴∠AON=120°,∵∠AOD==144°,∴∠NOD=∠AOD﹣∠AON=144°﹣120°=24°,∵360°÷24°=15,∴n的值是15.【点评】本题考查正多边形和圆、等边三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.23.(10分)(2022•金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y需求=ax2+c ,部分对应值如下表:售价x(元/… 2.53 3.54…千克)…7.757.2 6.55 5.8…需求量y需求(吨)②该蔬莱供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x﹣1,函数图象见图1.③1~7月份该蔬莱售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函教表达式分别为x售价=t+2,x成本=t2﹣t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.【考点】二次函数的应用.【分析】(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价﹣x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.【解答】解:(1)把(3,7.2),(4,5.8)代入y需求=ax2+c,,②﹣①,得7a=﹣1.4,解得:a=﹣,把a=﹣代入①,得c=9,∴a的值为﹣,c的值为9;(2)设这种蔬菜每千克获利w元,根据题意,w=x售价﹣x成本=t+2﹣(t2﹣t+3)=﹣(t﹣4)2+3,∵﹣<0,且1≤t≤7,∴当t=4时,w有最大值,答:在4月份出售这种蔬菜每千克获利最大;(3)当y供给=y需求时,x﹣1=﹣x2+9,解得:x1=5,x2=﹣10(舍去),∴此时售价为5元/千克,则y供给=x﹣1=5﹣1=4(吨)=4000(千克),令t+2=5,解得t=6,∴w=﹣(t﹣4)2+3=﹣(6﹣4)2+3=2,∴总利润为w•y=2×4000=8000(元),答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.【点评】此题主要考查了二次函数的综合应用,利用待定系数法求出函数解析式,掌握二次函数的性质,并结合数形结合思想解释是关键.24.(12分)(2022•金华)如图,在菱形ABCD中,AB=10,sin B=,点E从点B出发沿折线B﹣C﹣D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.(1)如图1,点G在AC上.求证:F A=FG.(2)若EF=FG,当EF过AC中点时,求AG的长.(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?【考点】四边形综合题.【分析】(1)欲证明F A=FG,只要证明∠F AG=∠FGA即可;(2)设AO的中点为O.分两种情形:如图2中,当点E在BC上时,过点A作AM⊥CB于点M.如图3中,当点E在CD上时,过点A作AN⊥CD于N.分别求解即可;(3)过点A作AM⊥BC于点M,AN⊥CD于点N.分四种情形:①当点E在线段BM 上时,0<s≤8,设EF=3x,则BE=4x,GH=EF=3x.a、若点H值点C的左侧,x+B ≤10,即0<x≤2,如图4,b、若点H在点C的右侧,s+8>10,即2<s≤8,如图5;②当点E在线段MC上时,8<s≤10,如图6;③当点E在线段CN上时,10≤x≤12,如图7,过点C作CJ⊥AB于点J;④当点E值线段DN上时,12<s<20,分别求解即可.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴BA=BC,∴∠BAC=∠BCA,∵FG∥BC.∴∠AGF=∠ACB,∴∠AGF=∠F AG,∴F A=FG;(2)设AO的中点为O.①如图2中,当点E在BC上时,过点A作AM⊥CB于点M.在Rt△ABM中,AM=AB•sin B=10×=6,∴BM===8,∴FG=EF=AM=6,CM=BC﹣BM=2,∵OA=OC,OE∥AM,∴CE=EM=CM=1,∴AF=EM=1,∴AG=AF+FG=7.②如图3中,当点E在CD上时,过点A作AN⊥CD于N.同法FG=EF=AN=6,CN=2,AF=EN=CN,∴AG=FG﹣AF=6﹣1=5,综上所述,满足条件的AG的长为5或7;(3)过点A作AM⊥BC于点M,AN⊥CD于点N.①当点E在线段BM上时,0<s≤8,设EF=3x,则BE=4x,GH=EF=3x.a、若点H值点C的左侧,x+8≤10,即0<x≤2,如图4,CH=BC﹣BH=10﹣(4x+8)=2﹣4x,由△GHC∽△FEB,可得=,即=,∴=,解得x=,经检验x=是分式方程的解,∴s=4x=1.由△GHC∽△BEF,可得=,即=,∴=,解得x=,∴s=4x=.b、若点H在点C的右侧,s+8>10,即2<s≤8,如图5,CH=BH﹣BC=(4x+8)﹣10=4x﹣2,由△GHC∽△FEB,可得=,即=,∴=,方程无解,由△GHC∽△BEF,可得=,即=,∴=,解得x=,∴s=4x=.②当点E在线段MC上时,8<s≤10,如图6,EF=6,EH=8,BE=s,∴BH=BE+EH=s=8,CH=BH﹣BC=s﹣2,由△GHC∽△FEB,可得=,即=,∴=,方程无解,由△GHC∽△FEB ,可得=,即=,∴=,解得s=1±(舍弃)③当点E在线段CN上时,10≤x≤12,如图7,过点C作CJ⊥AB于点J,在Rt△BJC中,BC=10,CJ=6,BJ=8,∵EH=BJ=8,JF=CE,∴BJ+JF=EH+CE,即CH=BF,∴△GHC≌△EFB,符合题意,此时10≤s≤12.④当点E值线段DN上时,12<s<20,∵∠EFB>90°,∴△GHC与△BEF不相似.综上所述.满足条件的s的值为1或或或10≤s≤12.【点评】本题属于四边形综合题,考查了菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.第31页(共31页)。

浙教版-学年度九年级数学中考模拟试卷(含解析)

浙教版-学年度九年级数学中考模拟试卷(含解析)

浙教版2018-2019学年度九年级数学中考模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各数中,相反数等于本身的数是()A.﹣1 B.0 C.1 D.22.下列运算正确的是()A.a+a=a2B.a3÷a=a3C.a2•a=a3D.(a2)3=a53.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°4.若x===,则x等于()A.﹣1或B.﹣1 C.D.不能确定5.若分式的值为0,则x的值为()A.2 B.0 C.﹣2 D.x=26.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.17.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④8.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是()A.90°B.30°C.45°D.60°9.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos ∠OBD=()A.B.C.D.10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a+c>2b;③4a+b=0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分24分,每小题3分)11.计算:2sin30°+(﹣1)﹣2﹣|2﹣|=.12.分式有意义时,x的取值范围是.13.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是.14.一个长方体的主视图和左视图如图(单位:cm),则其俯视图的面积是cm2.15.已知△ABC的三边长分别为a,b,c,且|b+c﹣2a|+(b+c﹣5)2=0,则b的取值范围是.16.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.17.有一个边长为6cm的正三角形ABC木块,点P是边CA的延长线上的点,在A、P 之间拉一条细绳,绳长AP为15cm,握住点P,拉直细绳,把它全部紧紧缠绕在△ABC 木块上(缠绕时木块不动).若圆周率取3.14,则点P运动的路线长为(精确到0.1cm)18.已知n个数x1,x2,x3,…,x n,它们每一个数只能取0,1,﹣2这三个数中的一个,且,则x13+x23+…+x n3=.三.解答题(共5小题,满分26分)19.(4分)化简:.20.(4分)已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹).(2)判断直线BC与⊙O的位置关系,并说明理由.(3)若AB=6,BD=2,求⊙O的半径.21.(6分)某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?22.(6分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)23.(6分)如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(1)画出“基本图形”关于y轴对称的四边形A1B1C1D1,并写出A1、B1、C1、D1的坐标:A1(,),B1(,),C1(,),D1(,);(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与四边形A1B1C1D1关于x轴对称.四.解答题(共5小题,满分40分)24.(7分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?25.(7分)已知:如图,函数y=的图象y=﹣2x+8交于点A(1,a),B(b,2)(1)求函数y=的解析式以及A、B的坐标;(2)观察图象,直接写出不等式<﹣2x+8的解集;(3)若点P是y轴上的动点,当PA+PB取得最小值时,直接写出点P的坐标.26.(8分)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E 是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.27.(8分)如图1,一个圆球放置在V型架中.图2是它的平面示意图,CA、CB都是⊙O的切线,切点分别是A、B,如果⊙O的半径为cm,且AB=6cm,求∠ACB.28.(10分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y ≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B 为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列各数中,相反数等于本身的数是()A.﹣1 B.0 C.1 D.2【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:相反数等于本身的数是0.故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.下列运算正确的是()A.a+a=a2B.a3÷a=a3C.a2•a=a3D.(a2)3=a5【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法和幂的乘方分别计算即可判断.【解答】解:A、a+a=2a,此选项计算错误;B、a3÷a=a2,此选项计算错误;C、a2•a=a3,此选项计算正确;D、(a2)3=a6,此选项计算错误;故选:C.【点评】本题主要考查幂的运算,解题的关键是熟练掌握同底数幂的除法、同底数幂的乘法、幂的乘方及积的乘方运算的法则.3.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.【解答】解:∵∠COB=∠COD+∠AOB﹣∠AOD,∴90°+90°﹣∠AOD=160°,∴∠AOD=20°.故选:B.【点评】本题主要考查的是角的和差计算,明确图形中相关角之间的和差关系是解题的关键.4.若x===,则x等于()A.﹣1或B.﹣1 C.D.不能确定【分析】分两种情况讨论:当a+b+c≠0时和当a+b+c=0时.【解答】解:∵x===,∴当a+b+c≠0时,x==;当a+b+c=0时,x===﹣1,故选:A.【点评】本题主要考查了比例的基本性质,容易漏掉a+b+c=0这一隐含可能条件.5.若分式的值为0,则x的值为()A.2 B.0 C.﹣2 D.x=2【分析】根据分式的值为0的条件即可求出答案.【解答】解:由题意可知:|x|﹣2=0且x+2≠0,∴x=2故选:A.【点评】本题考查分式的值为零的条件,解题的关键是熟练运用分式的值为零的条件,本题属于基础题型.6.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.【解答】解:根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.7.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④【分析】①观察条件,知是当x=1时,有a+b+c=0,因而方程有根.②把x=﹣1和2代入方程,建立两个等式,即可得到2a+c=0.③方程ax2+c=0有两个不相等的实根,则△=﹣4ac>0,左边加上b2就是方程ax2+bx+c=0的△,由于加上了一个非负数,所以△>0.④把b=2a+c代入△,就能判断根的情况.【解答】解:①当x=1时,有若a+b+c=0,即方程有实数根了,∴△≥0,故错误;②把x=﹣1代入方程得到:a﹣b+c=0 (1)把x=2代入方程得到:4a+2b+c=0 (2)把(2)式减去(1)式×2得到:6a+3c=0,即:2a+c=0,故正确;③方程ax2+c=0有两个不相等的实数根,则它的△=﹣4ac>0,∴b2﹣4ac>0而方程ax2+bx+c=0的△=b2﹣4ac>0,∴必有两个不相等的实数根.故正确;④若b=2a+c则△=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2,∵a≠0,∴4a2+c2>0故正确.②③④都正确,故选C.【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、对于给定的条件要仔细分析,向所求的内容转化.8.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是()A.90°B.30°C.45°D.60°【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【解答】解:∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点评】本题考查了旋转的性质,正方形的性质,等腰直角三角形的判定与性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小,然后判断出△CEF是等腰直角三角形是解题的关键.9.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos ∠OBD=()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出cos∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故选:C.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a+c>2b;③4a+b=0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线的对称性对①进行判断;利用x=﹣2时函数值为负数可对②进行判断;利用抛物线的对称轴方程可对③进行判断;根据二次函数的性质对④进行判断.【解答】解:∵抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点是(﹣1,0),∴抛物线与x轴的另一个交点是(5,0);所以①正确;∵x=﹣2时,y<0,∴4a﹣2b+c<0,即4a+c<2b,所以②错误;∵x=﹣=2,∴4a+b=0,所以③正确;∵当﹣1<x<2时,y的值随x值的增大而增大,x≥2时,y的值随x值的增大而减小,∴D选项错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(共8小题,满分24分,每小题3分)11.计算:2sin30°+(﹣1)﹣2﹣|2﹣|=.【分析】原式利用特殊角的三角函数值,负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=2×+1﹣2+=,故答案为:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.分式有意义时,x的取值范围是x<2.【分析】要使代数式有意义时,必有x﹣2>0,可解得x的范围.【解答】解:根据题意得:x﹣2>0,解得:x>2.故答案是:x>2.【点评】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为0.13.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是175°.【分析】先根据∠ADC、∠BCD的平分线交于点O1,得出∠O1DC+∠O1CD=(∠ADC+∠DCB),再根据∠O1DC、∠O1CD的平分线交于点O2,得出∠O2DC+∠O2CD=(∠ADC+∠DCB),根据规律可得到∠O5DC+∠O5CD=(∠ADC+∠DCB),最后将∠ADC+∠DCB=160°代入计算即可.【解答】解:如图所示,∵∠ADC、∠BCD的平分线交于点O1,∴∠O1DC+∠O1CD=(∠ADC+∠DCB),∵∠O1DC、∠O1CD的平分线交于点O2,∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),又∵四边形ABCD中,∠DAB+∠ABC=200°,∴∠ADC+∠DCB=160°,∴∠CO5D=180°﹣×160°=180°﹣5°=175°,故答案为:175°.【点评】本题主要考查了多边形的内角与外角以及角平分线的定义的运用,解决问题的关键是找出操作的变化规律,得到∠CO5D与∠ADC+∠DCB之间的关系.14.一个长方体的主视图和左视图如图(单位:cm),则其俯视图的面积是12cm2.【分析】根据给出的长方体的主视图和左视图可得,俯视图的长方形的长与主视图的长方形的宽相等为4,俯视图的长方形的宽与左视图的长方形的宽相等为3.因此俯视图的面积是12cm2.【解答】解:俯视图是边长分别为4和3的长方形,因而其面积为12cm2.故答案为:12.【点评】考查了由三视图判断几何体及简单几何体的三视图的知识,解题的关键是能得到立体图形的三视图和学生的空间想象能力.15.已知△ABC的三边长分别为a,b,c,且|b+c﹣2a|+(b+c﹣5)2=0,则b的取值范围是.【分析】根据非负数的性质得b+c﹣2a=0,b+c﹣5=0,两式联立求出a的值,再根据三角形任意两边之和大于第三边,任意两边之差小于第三边列不等式求解即可.【解答】解:根据题意得:b+c﹣2a=0,b+c﹣5=0,∴b+c=2a,b+c=5,∴2a=5,即a=2.5,那么c=5﹣b,根据三角形的三边关系:|5﹣b﹣2.5|<b且b<5﹣b+2.5,即2.5﹣b<b<2.5+5﹣b,解得:<b<.所以b的取值范围是<b<.【点评】本题主要利用非负数的性质和三角形的三边关系求解.几个表示非负数的算式的和等于0,则每一个运算式都等于0.16.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为﹣4<x<﹣.【分析】不等式mx+2<kx+b<0的解集就是图象上两个一次函数的图象都在x轴的下方,且y=mx+2的图象在y=kx+b的图象的下边的部分,对应的自变量的取值范围.【解答】解:不等式mx+2<kx+b<0的解集是﹣4<x<﹣.故答案是:﹣4<x<﹣.【点评】本题考查了一次函数的图象与一元一次不等式,正确理解不等式的解集与对应的函数图象的关系是关键.17.有一个边长为6cm的正三角形ABC木块,点P是边CA的延长线上的点,在A、P 之间拉一条细绳,绳长AP为15cm,握住点P,拉直细绳,把它全部紧紧缠绕在△ABC木块上(缠绕时木块不动).若圆周率取3.14,则点P运动的路线长为56.5cm(精确到0.1cm)【分析】根据如图所示可知点P运动的路线就是图中三外扇形的弧长,正三角形ABC的内角为60度,所以第一个小扇形的弧长等于,第二个为,第三个为,将三段弧的长度相加即为所求.【解答】解:第一段弧长==10πcm;第二段弧长==6πcm;第三段弧长==2πcm;所以三段弧长=18π=56.5cm.故答案是:56.5cm.【点评】本题的关键是理解点P运动的路线就是图中三外扇形的弧长,然后明确扇形的圆心角是120度,半径分别是15cm,9cm,3cm,求值即可.18.已知n个数x1,x2,x3,…,x n,它们每一个数只能取0,1,﹣2这三个数中的一个,且,则x13+x23+…+x n3=﹣29.【分析】由题可知,在x1,x2,x3,…,x n中,要想保证和为﹣5,平方和为19,在取值受限得情况下,可设各式中有a个1和b个﹣2,则可将两式变为:,求出方程组的解.【解答】解:设各式中有a个1和b个﹣2,则可将两式变为:,解得,那么x13+x23+…+x n3=(﹣2)3×4+13×3=﹣29.故答案为:﹣29.【点评】解此题时,关键要找准在n个数中到底有几个1、﹣2、0,这就需要对原题中两个式子进行分析,比较难.三.解答题(共5小题,满分26分)19.(4分)化简:.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20.(4分)已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹).(2)判断直线BC与⊙O的位置关系,并说明理由.(3)若AB=6,BD=2,求⊙O的半径.【分析】(1)作AD的中垂线与AB交于点O,以O为圆心OA为半径作⊙O即可;(2)结论:相切.只要证明OD⊥BC即可;(3)设OA=OD=x,在Rt△BDO中,根据OD2+BD2=OB2,构建方程即可解决问题;【解答】解:(1)如图⊙O即为所求;(2)结论:相切.理由:∵AD平分∠BAC,∴∠CAD=∠DAO,∵OA=OD,∴∠OAD=∠ODA=∠CAD,∴OD∥AC,∴∠BDO=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(3)设OA=OD=x,在Rt△BDO中,∵OD2+BD2=OB2,∴x2+(2)2=(6﹣x)2,∴x=2,∴⊙O的半径为2.【点评】本题考查作图﹣复杂作图、直线与圆的位置关系、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(6分)某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?【分析】设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据“调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y 元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(6分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B 地比原来少走多少路程.(1)过点C作AB的垂线CD,垂足为D,【解答】解:∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点评】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(6分)如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(1)画出“基本图形”关于y轴对称的四边形A1B1C1D1,并写出A1、B1、C1、D1的坐标:A1(﹣4,4),B1(﹣1,3),C1(﹣3,3),D1(﹣3,1);(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与四边形A1B1C1D1关于x轴对称.【分析】(1)找出四边形ABCD关于y轴对称的各对应点,然后顺次连接各点,根据所画图形写出坐标;(2)找出四边形ABCD关于x轴对称的各对应点,然后顺次连接各点即可;(3)找出四边形A1B1C1D1关于x轴对称的各对应点,然后顺次连接各点即可.【解答】解:(1)所画图形如下所示,A1、B1、C1、D1的坐标:A1(﹣4,4),B1(﹣1,3),C1(﹣3,3),D1(﹣3,1);(2)所画对称图形A2B2C2D2如下所示;(3)所画四边形A3B3C3D3如下所示.【点评】本题考查了轴对称作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.四.解答题(共5小题,满分40分)24.(7分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是144°;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?【分析】(1)利用A类别人数及其百分比可得总人数;(2)总人数减去A、B、D类别人数,求得C的人数即可补全图形;(3)360°×C类别人数所占比例可得;(4)总人数乘以样本中A、B人数占总人数的比例即可.【解答】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点评】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.25.(7分)已知:如图,函数y=的图象y=﹣2x+8交于点A(1,a),B(b,2)(1)求函数y=的解析式以及A、B的坐标;(2)观察图象,直接写出不等式<﹣2x+8的解集;(3)若点P是y轴上的动点,当PA+PB取得最小值时,直接写出点P的坐标.【分析】(1)利用待定系数法即可解决问题;(2)根据反比例函数图象在一次函数图象下方的部分,是反比例函数值小于一次函数值,可得答案;(3)作点A关于y轴的对称点A′(﹣1,6),连结A′B交y轴于点P,利用轴对称得出AP+BP的最小值为线段A′B,进而利用待定系数法求出解析式,即可得出P点坐标.【解答】解:(1)由题意得:A(1,6),B(3,2),把A(1,6)代入y=中,可得k=6∴反比例函数解析式为y=A、B两点坐标分别为A(3,2)、B(1,6);(2)由图象得:不等式<﹣2x+8的解集为1<x<3或x<0;(3)如图,作点A关于y轴的对称点A′(﹣1,6),连结A′B交y轴于点P,则PA′=PA,所以AP+BP=A′P+BP=A′B,即AP+BP的最小值为线段A′B的长度.设直线A′B的解析式为y=mx+n,∵B(3,2),B′(﹣1,6),∴,解得,∴直线A′B的解析式为y=﹣x+5,当x=0时,y=5,∴点P的坐标为(0,5).【点评】此题主要考查了反比例函数与一次函数的交点问题,轴对称﹣最短路线问题,待定系数法求一次函数解析式,进行分类讨论、利用数形结合以及方程思想是解题的关键.26.(8分)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E 是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.【分析】(1)根据三角形判定方法进行证明即可.(2)作FH⊥MN于H.先证△ABE≌△EHF,得到对应边相等,从而推出△CHF是等腰直角三角形,∠FCH的度数就可以求得了.(3)本题也是通过构建直角三角形来求度数,作FH⊥MN于H,∠FCH的正切值就是FH:CH.【解答】(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG.(2)解:∠FCN=45°,理由是:作FH⊥MN于H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△ABE,∴FH=BE,EH=AB=BC,∴CH=BE=FH,∵∠FHC=90°,∴∠FCN=45°.(3)解:当点E由B向C运动时,∠FCN的大小总保持不变,理由是:作FH⊥MN于H,由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=b,∴CH=BE,∴==;在Rt△FEH中,tan∠FCN===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=.【点评】本题考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.27.(8分)如图1,一个圆球放置在V型架中.图2是它的平面示意图,CA、CB都是⊙O的切线,切点分别是A、B,如果⊙O的半径为cm,且AB=6cm,求∠ACB.【分析】我们可通过构建直角三角形,将数据转换到直角三角形中进行计算.连接OC 交AB于点D,那么我们不难得出BD是AB的一半,CD平分∠ACB,那么只要求出∠COB的度数就能求出∠ACB的度数,已知了OB的长,BD(AB的一半)的长,这样在直角三角形ODB中根据三角形函数我们不难得出∠DOB的值,也就能求出∠ACB的度数了.【解答】解:如图,连接OC交AB于点D∵CA、CB分别是⊙O的切线∴CA=CB,OC平分∠ACB∴OC⊥AB∵AB=6∴BD=3在Rt△OBD中∵OB=∴sin∠BOD=∴∠BOD=60°∵B是切点∴OB⊥BC∴∠OCB=30°∴∠ACB=60°.。

2024届浙江省金华市义乌市七校联考中考五模数学试题含解析

2024届浙江省金华市义乌市七校联考中考五模数学试题含解析

2024学年浙江省金华市义乌市七校联考中考五模数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为( )A .152元B .156元C .160元D .190元2.如图,AB 是半圆O 的直径,点C 、D 是半圆O 的三等分点,弦2CD =.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为( )A .19B .29C .23D .133.下列计算或化简正确的是( )A .234265+=B .842=C .2(3)3-=-D .2733÷= 4.已知A (,1y ),B (2,2y )两点在双曲线32m y x+=上,且12y y >,则m 的取 值范围是( ) A .m 0> B .m 0< C .3m 2>- D .3m 2<-5.在,90ABC C ∆∠=中,2AC BC =,则tan A 的值为( )A .12B .2C .55D .2556.如图,在菱形纸片ABCD 中,AB=4,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上.则sin ∠AFG 的值为( )A.217B.277C.5714D.777.计算a•a2的结果是()A.a B.a2C.2a2D.a38.在下列实数中,﹣3,2,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.2D.﹣19.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A.2 B.23C.3D.4310.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.11.计算2a2+3a2的结果是()A.5a4B.6a2C.6a4D.5a212.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.5B.C.D.7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=(x+1)2 - 2的顶点坐标是______ .14.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.15.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .16.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.17.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C ,D 均在格点上,AB 与CD 相交于点E .(1)AB 的长等于_____;(2)点F 是线段DE 的中点,在线段BF 上有一点P ,满足53BP PF =,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,B (2m ,0),C (3m ,0)是平面直角坐标系中两点,其中m 为常数,且m >0,E (0,n )为y 轴上一动点,以BC 为边在x 轴上方作矩形ABCD ,使AB=2BC ,画射线OA ,把△ADC 绕点C 逆时针旋转90°得△A′D′C′,连接ED′,抛物线2y ax bx c =++(0a ≠)过E ,A′两点.(1)填空:∠AOB= °,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且13BPAP时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.20.(6分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?21.(6分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?22.(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分钟)10 10 35030 20 850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).①用含a的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a 的取值范围.23.(8分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)24.(10分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是人,扇形C的圆心角是°;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?25.(10分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=1204 t(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=28,01244,1224t tt t+<≤⎧⎨-+<≤⎩(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.26.(12分)如图,在△ABC中,AB AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB 上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.27.(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.求y与x之间的函数关系式,并写出自变量x的取值范围;求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.【题目详解】设进价为x元,依题意得240×0.8-x=20x℅解得x=160所以,进价为160元.故选C【题目点拨】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.2、D【解题分析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【题目详解】解:如图,连接OC、OD、BD,∵点C 、D 是半圆O 的三等分点,∴==AC CD DB ,∴∠AOC =∠COD =∠DOB =60°,∵OC=OD ,∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD ,∴=BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD , 飞镖落在阴影区域的概率21233ππ=÷=, 故选:D .【题目点拨】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.3、D【解题分析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .4、D【解题分析】 ∵A (1-,1y ),B (2,2y )两点在双曲线32m y x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32m y y 12++==-,. ∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【题目详解】请在此输入详解!5、A【解题分析】本题可以利用锐角三角函数的定义求解即可.【题目详解】解:tanA=BC AC, ∵AC=2BC ,∴tanA=12. 故选:A .【题目点拨】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .6、B【解题分析】如图:过点E 作HE ⊥AD 于点H ,连接AE 交GF 于点N ,连接BD ,BE .由题意可得:DE=1,∠HDE=60°,△BCD 是等边三角形,即可求DH 的长,HE 的长,AE 的长,NE 的长,EF 的长,则可求sin ∠AFG 的值.【题目详解】解:如图:过点E 作HE ⊥AD 于点H ,连接AE 交GF 于点N ,连接BD ,BE .∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB ∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=12CD=1在Rt△DEH中,DE=1,∠HDE=60°∴DH=1,3∴AH=AD+DH=5在Rt△AHE中,22AH HE+7∴7AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=1∴3∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.∴EF=7 2由折叠性质可得∠AFG=∠EFG,∴sin∠EFG= sin∠AFG =77772ENEF==,故选B.【题目点拨】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题7、D【解题分析】a·a2= a3.故选D.8、B【解题分析】|﹣3|=3,|2|=2,|0|=0,|2|=2,|﹣1|=1,∵3>2>2>1>0,∴绝对值最小的数是0,故选:B.9、B【解题分析】分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.详解:如图所示,连接OC、OB∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×33故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.【解题分析】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.11、D【解题分析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【题目详解】2a2+3a2=5a2.故选D.【题目点拨】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.12、A【解题分析】连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,,再证明Rt△ABE∽Rt△ADC,得到,即2R==.【题目详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D点,AC=5,DC=3,∴∠ADC=90°,∴AD=,∴在Rt△ABE与Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴,即2R==;∴⊙O的直径等于.故答案选:A.【题目点拨】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(-1,-2)【解题分析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.14、3:2【解题分析】因为DE∥BC,所以32AD AEDB EC==,因为EF∥AB,所以23CE CFEA BF==,所以32BFFC=,故答案为: 3:2.15、4【解题分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【题目详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为:4【题目点拨】本题主要考查比例线段的定义.要注意考虑问题要全面.16、1:1.【解题分析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考点:相似三角形的性质.17、5 18【解题分析】列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.【题目详解】解:列表得:∴两个骰子向上的一面的点数和小于6的有10种,则其和小于6的概率是105 3618=,故答案为:5 18.【题目点拨】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18109见图形【解题分析】分析:(Ⅰ)利用勾股定理计算即可;(Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接I J交BD于K,因为BI∥D J,所以BK:DK=BI:D J=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:(Ⅰ)AB的长=22=109;310(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格点G、H,连接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接I J交BD于K.∵BI∥D J,∴BK:DK=BI:D J=5:2.连接EK交BF于P,可证BP:PF=5:3.109(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F.因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接I J交BD于K.因为BI∥D J,所以BK:DK=BI:D J=5:2,连接EK交BF于P,可证BP:PF=5:3.点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)45;(m ,﹣m );(2)相似;(3)①1b am =--;②114a ≤≤. 【解题分析】试题分析:(1)由B 与C 的坐标求出OB 与OC 的长,进一步表示出BC 的长,再证三角形AOB 为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标; (2)△D′OE ∽△ABC .表示出A 与B 的坐标,由13BP AP =,表示出P 坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E 坐标代入即可得到m 与n 的关系式,利用三角形相似即可得证;(3)①当E 与原点重合时,把A 与E 坐标代入2y ax bx c =++,整理即可得到a ,b ,m 的关系式;②抛物线与四边形ABCD 有公共点,可得出抛物线过点C 时的开口最大,过点A 时的开口最小,分两种情况考虑:若抛物线过点C (3m ,0),此时MN 的最大值为10,求出此时a 的值;若抛物线过点A (2m ,2m ),求出此时a 的值,即可确定出抛物线与四边形ABCD 有公共点时a 的范围.试题解析:(1)∵B (2m ,0),C (3m ,0),∴OB=2m ,OC=3m ,即BC=m ,∵AB=2BC ,∴AB=2m=0B ,∵∠ABO=90°,∴△ABO 为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m ,即A′(m ,﹣m );故答案为45;m ,﹣m ;(2)△D′OE ∽△ABC ,理由如下:由已知得:A (2m ,2m ),B (2m ,0),∵13BP AP =,∴P (2m ,12m ),∵A′为抛物线的顶点,∴设抛物线解析式为2()y a x m m =--,∵抛物线过点E (0,n ),∴2(0)n a m m =--,即m=2n ,∴OE :OD′=BC :AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE ∽△ABC ;(3)①当点E 与点O 重合时,E (0,0),∵抛物线2y ax bx c =++过点E ,A ,∴20{n am bm n m=++=-,整理得:1am b +=-,即1b am =--;②∵抛物线与四边形ABCD 有公共点,∴抛物线过点C 时的开口最大,过点A 时的开口最小,若抛物线过点C (3m ,0),此时MN 的最大值为10,∴a (3m )2﹣(1+am )•3m=0,整理得:am=12,即抛物线解析式为21322y x x m =-,由A (2m ,2m ),可得直线OA 解析式为y=x ,联立抛物线与直线OA 解析式得:2{1322y xy x xm ==-,解得:x=5m ,y=5m ,即M (5m ,5m ),令5m=10,即m=2,当m=2时,a=14; 若抛物线过点A (2m ,2m ),则2(2)(1)22a m am m m --⋅=,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD 有公共点时a 的范围为114a ≤≤. 考点:1.二次函数综合题;2.压轴题;3.探究型;4.最值问题.20、赚了520元【解题分析】(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.【题目详解】(1)设第一次购书的单价为x元,根据题意得:1200x+10=1500(120)0x,解得:x=5,经检验,x=5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.【题目点拨】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21、(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解题分析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【题目详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°, 故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1. 故答案为160或1; (4)列树状图得:P (一男一女)=1220=35. 22、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-34a ;② a≤1. 【解题分析】(1)设生产一件甲种产品和每生产一件乙种产品分别需要x 分钟、y 分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解; (2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果; ②根据“小王四月份的工资不少于1500元”即可列出不等式. 【题目详解】(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟,由题意得:10103503020850x y x y +=⎧⎨+=⎩, 解这个方程组得:1520x y =⎧⎨=⎩,答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟; (2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟, ∴一小时生产甲产品4件,生产乙产品3件, 所以小王四月份生产乙种产品的件数:3(25×8﹣4a )=600-3a 4;②依题意:1.5a+2.8(600-3a 4)≥1500, 1680﹣0.6a≥1500,解得:a≤1. 【题目点拨】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键. 23、见解析 【解题分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AC 的交点即为所求作的点. 【题目详解】解:如图,点E 即为所求作的点.【题目点拨】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D 作DE ∥BC 并熟练掌握做一个角等于已知角的作法式解题的关键.24、(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人. 【解题分析】(1)由D 组频数及其所占比例可得总人数,用360°乘以C 组人数所占比例可得;(2)用总人数分别乘以A 、B 组的百分比求得其人数,再用总人数减去A 、B 、C 、D 的人数求得E 组的人数可得; (3)用总人数乘以样本中A 、B 组的百分比之和可得. 【题目详解】解:(1)抽取学生的总人数为78÷26%=300人,扇形C 的圆心角是360°×120300=144°, 故答案为300、144;(2)A 组人数为300×7%=21人,B 组人数为300×17%=51人, 则E 组人数为300﹣(21+51+120+78)=30人, 补全频数分布直方图如下:(3)该校创新意识不强的学生约有2200×(7%+17%)=528人. 【题目点拨】考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.25、(1)P=t+2;(2)①当0<t≤8时,w=240;当8<t≤12时,w=2t 2+12t+16;当12<t≤24时,w=﹣t 2+42t+88;②此范围所对应的月销售量P 的最小值为12吨,最大值为19吨. 【解题分析】分析:(1)设8<t≤24时,P=kt+b ,将A (8,10)、B (24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式; ②求出8<t≤12和12<t≤24时,月毛利润w 在满足336≤w≤513条件下t 的取值范围,再根据一次函数的性质可得P 的最大值与最小值,二者综合可得答案. 详解:(1)设8<t≤24时,P=kt+b , 将A (8,10)、B (24,26)代入,得:8102426k b k b +⎧⎨+⎩==, 解得:12k b ⎧⎨⎩==, ∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×1204t +=240; 当8<t≤12时,w=(2t+8)(t+2)=2t 2+12t+16; 当12<t≤24时,w=(-t+44)(t+2)=-t 2+42t+88; ②当8<t≤12时,w=2t 2+12t+16=2(t+3)2-2, ∴8<t≤12时,w 随t 的增大而增大,当2(t+3)2-2=336时,解题t=10或t=-16(舍), 当t=12时,w 取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=-t 2+42t+88=-(t-21)2+529,当t=12时,w 取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P 的最小值为12吨,最大值为19吨.点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t 的取值范围是解题的关键.26、(1)证明见解析;(2)32;(3)1. 【解题分析】(1)连接OM ,如图1,先证明OM ∥BC ,再根据等腰三角形的性质判断AE ⊥BC ,则OM ⊥AE ,然后根据切线的判定定理得到AE 为⊙O 的切线;(2)设⊙O 的半径为r ,利用等腰三角形的性质得到BE=CE=12BC=2,再证明△AOM ∽△ABE ,则利用相似比得到626r r -=,然后解关于r 的方程即可; (3)作OH ⊥BE 于H ,如图,易得四边形OHEM 为矩形,则HE=OM=32,所以BH=BE-HE=12,再根据垂径定理得到BH=HG=12,所以BG=1. 【题目详解】解:(1)证明:连接OM ,如图1,∵BM 是∠ABC 的平分线,∴∠OBM=∠CBM ,∵OB=OM ,∴∠OBM=∠OMB ,∴∠CBM=∠OMB ,∴OM ∥BC ,∵AB=AC ,AE 是∠BAC 的平分线,∴AE ⊥BC ,∴OM ⊥AE ,∴AE 为⊙O 的切线;(2)解:设⊙O 的半径为r ,∵AB=AC=6,AE 是∠BAC 的平分线,∴BE=CE=12BC=2, ∵OM ∥BE ,∴△AOM ∽△ABE ,∴OM AO BE AB =,即626r r -=,解得r=32, 即设⊙O 的半径为32; (3)解:作OH ⊥BE 于H ,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形,∴HE=OM=32, ∴BH=BE ﹣HE=2﹣32=12, ∵OH ⊥BG ,∴BH=HG=12, ∴BG=2BH=1.27、(1)()401016y x x =-+≤≤ (2)()225225x --+,16x =,144元 【解题分析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【题目详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩, 解得:140k b =-⎧⎨=⎩, 所以y 与x 的函数解析式为()y x 4010x 16=-+;(2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+- ()2x 25225=--+, a 10=-<,∴当x 25<时,W 随x 的增大而增大,10x 16,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【题目点拨】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江省金华市义乌市中考数学模拟试卷一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.2016的倒数是()A.2016 B.﹣2016 C.D.﹣2.宁波轨道交通3号线于2014年12月23日开工建设,预计2020年全线开通,3号线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米 B.32.83×104米 C.3.283×105米 D.3.283×103米3.下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣24.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.5.下列说法正确的是()A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式6.在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国7.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<08.如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG ⊥DE,垂足为G,DG=cm,则EF的长为()A.2cm B. cm C.1cm D. cm9.如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.910.已知二次函数y=x2﹣2x﹣3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:①d没有最大值;②d没有最小值;③﹣1<x<3时,d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本题有6小题,每小题5分,共30分)11.(5分)若二次根式有意义,则x的取值范围是.12.(5分)如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2= .13.(5分)袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是.14.(5分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.15.(5分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C 在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE 的面积为3,则k的值为.16.(5分)如图,点P(t,0)(t>0)是x轴正半轴上的一点,是以原点为圆心,半径为1的圆,且A(﹣1,0),B(0,1),点M是上的一个动点,连结PM,作直角△MPM1,并使得∠MPM1=90°,∠PMM1=60°,我们称点M1为点M的对应点.(1)设点A和点B的对应点为A1和B1,当t=1时,求A1的坐标;B1的坐标.(2)当P是x轴正半轴上的任意一点时,点M从点A运动至点B,求M1的运动路径长.三、解答题(本题有8小题,第17~19题每题8分,第20、21、22题每题10分,第23题每题12分,第24题14分,共80分)17.计算:()﹣1﹣|﹣2|+﹣(+1)0;(2)化简:.18.解方程:(2)解不等式组:.19.(8分)如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.20.(10分)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.21.(10分)图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM;(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.22.(10分)为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数借车数存量y7:00﹣8:00 1 7 5 158:00﹣9:00 2 8 7 n……………根据所给图表信息,解决下列问题:(1)m= ,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.23.(12分)如图1,新定义:直线l1、l、l2,相交于点O,长为m的线段AB在直线l2上,点P是直线l1上一点,点Q是直线l上一点.若∠AQB=2∠APB,则我们称点P是点Q的伴侣点;(1)如图1,直线l2、l的夹角为30°,线段AB在点O右侧,且OA=1,m=2,若要使得∠APB=45°且满足点P是点Q的伴侣点,则OQ= ;(2)如图2,若直线l1、l2的夹角为60°,且m=3,若要使得∠APB=30°,线段AB在直线l2上左右移动.①当OA的长为多少时,符合条件的伴侣点P有且只有一个?请说明理由;②是否存在符合条件的伴侣点P有三个的情况?若存在,请直接写出OA长;若不存在,请说明理由.24.(14分)如图1,点A,B分别是二次函数y=2x2的图象上的两个点,A、B的横坐标分别为a,b(a<0,b>0),点P(0,t)是抛物线对称轴上的任意一点.(1)当a+b=0时,探究是否存在t,使得△PAB是以AB为底的等腰三角形?若存在,请直接写出t、a、b的其中一组值;若不存在,请说明理由;(2)当a+b≠0时,探究是否存在t,使得△PAB是以AB为底的等腰三角形?若存在,请写出t的取值范围,并用含t的代数式表示a2+b2的值;若不存在,请说明理由;(3)如图2作边长为4的正方形ACDE(A、C、D、E按逆时针排列),使得AC∥x轴,若边CD与二次函数的图象总有交点,求a的取值范围.2016年浙江省金华市义乌市中考数学模拟试卷参考答案与试题解析一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.2016的倒数是()A.2016 B.﹣2016 C.D.﹣【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:2016的倒数是.故选C.【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.宁波轨道交通3号线于2014年12月23日开工建设,预计2020年全线开通,3号线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米 B.32.83×104米 C.3.283×105米 D.3.283×103米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:32.83千米=32830米=3.283×104.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣2【考点】多项式乘多项式;整式的加减.【分析】对各项计算后再利用排除法求解.【解答】解:A、不是同类项,不能合并,故本选项错误;B、不是同底数幂的除法,不能次数相减,故本选项错误;C、去括号时,括号里的每一项都变号,应为a﹣(a﹣b)=b,故本选项错误;D、(a﹣1)(a+2)=a2+a﹣2,正确.故选D.【点评】本题考查面较广,但都是基础知识,掌握好基础对学好数学非常重要.4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.下列说法正确的是()A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式【考点】概率的意义;全面调查与抽样调查;方差.【分析】利用概率的意义、全面调查与抽样调查及方差的知识进行判断即可得到正确的答案.【解答】解:A、根据方差的意义知方差越大越不稳定,故本选项错误;B、随机抽取可能是两男生或两女生,故本选项错误;C、降水概率大下雨的可能性就大,故本选项正确;D、学校范围较大,可以采用抽样调查的方法,故本选项错误;故选:C.【点评】本题考查了概率的意义、全面调查与抽样调查及方差的知识,知识点较多,但比较容易.6.在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国【考点】专题:正方体相对两个面上的文字.【分析】依据跳过一个面是这个面的对面进行判断即可.【解答】解:正方体的平面展开图,共有六个面,其中面“国”与面“市”相对,面“文”与面“城”相对,“全”与面“明”相对.故选:B.【点评】本题考查了正方体相对面上的文字,掌握对面的特点是解题的关键.7.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【考点】正比例函数的性质.【分析】根据正比例函数图象所在象限,可判断出m、n的正负.【解答】解:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.【点评】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.8.如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG ⊥DE,垂足为G,DG=cm,则EF的长为()A.2cm B. cm C.1cm D. cm【考点】平行四边形的性质.【分析】利用平行四边形的性质以及角平分线的性质得出∠CDE=∠CED,进而求出DE的长,再利用相似三角形的判定与性质得出EF的长.【解答】解:∵在▱ABCD中,∠ADC的平分线DE交BC于点E,∴∠ADE=∠EDC,∠ADE=∠DEC,AB=DC,∴∠CDE=∠CED,∵AB=3cm,AD=6cm,∴DC=EC=3cm,∵CG⊥DE,DG=cm,∴EG=cm,∴DE=3cm,∵AD∥BC,∴△AFD∽△CFE,∴,则,解得:EF=.故选:B.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△AFD ∽△CFE是解题关键.9.如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.9【考点】三角形三边关系.【分析】两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【解答】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选5+4、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选5+7、3、4作为三角形,则三边长为12、4、3;4+3<12,不能构成三角形,此种情况不成立;④选7+3、5、4作为三角形,则三边长为10、5、4;而5+4<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选:D.【点评】本题考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.10.已知二次函数y=x2﹣2x﹣3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:①d没有最大值;②d没有最小值;③﹣1<x<3时,d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】找出二次函数与x轴的交点,结合点P所在的象限分段考虑,再根据二次函数的性质找出其最值以及在各段区间内的单调性,对比4个结论即可得知正确的结论有两个.【解答】解:令二次函数y=x2﹣2x﹣3中y=0,即x2﹣2x﹣3=0,解得:x1=﹣1,x2=3.(i)当x≤﹣1时,d1=x2﹣2x﹣3,d2=﹣x,d=d1+d2=x2﹣3x﹣3=,d≥1;(ii)当﹣1<x≤0时,d1=﹣x2+2x+3,d2=﹣x,d=﹣x2+x+3=﹣,1<x≤3;(iii)当0<x≤3时,d1=﹣x2+2x+3,d2=x,d=﹣x2+3x+3=﹣+,3≤x≤;(iv)当3<x时,d1=x2﹣2x﹣3,d2=x,d=d1+d2=x2﹣x﹣3=,3<d.综上可知:d有最小值,没有最大值,即①成立,②不成了;当0<x≤时,d单调递增,<x≤3时,d单调递减,∴﹣1<x<3时,d随x的增大而增大,此结论不成了;令d=5,(i)中存在一个解;(ii)中无解;(iii)中有两个解;(iv)中一个解.∴满足d=5的点P有四个,该结论成立.∴正确的结论有2个.故选B.【点评】本题考查了二次函数的性质,解题的关键是根据点P所在的区间进行分段.本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质找出函数在各段区间内的单调性与最值是关键.二、填空题(本题有6小题,每小题5分,共30分)11.若二次根式有意义,则x的取值范围是x≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.12.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2= 26°.【考点】平行线的性质;多边形内角与外角.【分析】先根据正五边形的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵图中是正五边形.∴∠3=108°.∵太阳光线互相平行,∠1=46°,∴∠2=180°﹣∠1﹣∠3=180°﹣46°﹣108°=26°.故答案为:26°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,解题的关键是:根据正五边形的性质求出∠3的度数.13.袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是.【考点】概率公式.【分析】由袋子中装有3个红球、5个黄球、2个白球,随机从袋子中摸出1个球,这个球是红球的情况有3种,根据概率公式即可求得答案.【解答】解:∵袋子中装有3个红球、5个黄球、2个白球,一共3+5+2=10个球,∴摸到这个球是红球的概率是3÷10=.故答案为.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为 4 .【考点】旋转的性质.【分析】根据旋转的性质得到BC≌△A1BC1,A1B=AB=4,所以△A1BA是等腰三角形,∠A1BA=30°,然后得到等腰三角形的面积,由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【解答】解:∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.运用面积的和差解决不规则图形的面积是解决此题的关键.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.【考点】反比例函数综合题.【分析】由AE=3EC,△ADE的面积为3,得到△CDE的面积为1,则△ADC的面积为4,设A 点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABD+S△ADC+S△ODC 得(a+2a)×b=a×b+4+×2a×b,整理可得ab=,即可得到k的值.【解答】解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.【点评】本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系.16.如图,点P(t,0)(t>0)是x轴正半轴上的一点,是以原点为圆心,半径为1的圆,且A(﹣1,0),B(0,1),点M是上的一个动点,连结PM,作直角△MPM1,并使得∠MPM1=90°,∠PMM1=60°,我们称点M1为点M的对应点.(1)设点A和点B的对应点为A1和B1,当t=1时,求A1的坐标(1,2);B1的坐标(1+,).(2)当P是x轴正半轴上的任意一点时,点M从点A运动至点B,求M1的运动路径长.【考点】圆的综合题.【分析】(1)如图1,当t=1时,则AP=2,A1P⊥AP,解直角三角形得到PA1=2,于是得到A1(1,2),解直角三角形得到PB1=,于是得到PC=B1C=,即可得到B1(1+,);(2)根据已知条件得到PM1=(1+t),求得PM1旋转了n°,于是得到M1的运动路径长=,由于的长===,代入化简即可得到结论.【解答】解:(1)如图1,当t=1时,则AP=2,A1P⊥AP,∵∠PAA1=60°,∴PA1=2,∴A1(1,2),BP=OP=,∠BPO=45°,∴∠B1PC=∠PBO=90°﹣∠BPO=45°,PC=B1C,∵∠B1BP=60°,∴PB1=,∴PC=B1C=,∴B1(1+,),故答案为;(1,2),(1+,);(2)当M在A点时,PM=1+t,PM1=(1+t),点M从点A运动至点B,设∠APB=n°,则PM1也旋转n°,∴M1的运动路径长=,∵的长===,∴M1的运动路径长=.故答案为:.【点评】本题考查了解直角三角形,坐标与图形的性质,弧长的计算,正确的作出图形是解题的关键.三、解答题(本题有8小题,第17~19题每题8分,第20、21、22题每题10分,第23题每题12分,第24题14分,共80分)17.(1)计算:()﹣1﹣|﹣2|+﹣(+1)0;(2)化简:.【考点】分式的加减法;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂的法则、算术平方根的定义、绝对值的性质进行计算即可;(2)根据分式的混合运算法则计算.【解答】解:(1)原式=3﹣2+4﹣1=4;(2)原式===a.【点评】本题考查的是负整数指数幂、零指数幂、算术平方根、绝对值和分式的混合运算,掌握负整数指数幂、零指数幂的法则、算术平方根的定义、绝对值的性质以及分式的混合运算法则是解题的关键.18.(1)解方程:(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)去分母得:x+(﹣2)=3(x﹣1),解:x=,经检验x=是原方程的解;(2),由①得:x>﹣3,由②得:x<5,∴不等式组的解是﹣3<x<5.【点评】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.【考点】平行四边形的判定与性质;菱形的性质.【分析】(1)利用平行四边形的性质得出AF∥EC,进而得出AF=EC,进而求出即可;(2)利用菱形的性质以及三角形内角和定理得出∠1=∠2,进而求出∠3=∠4,再利用直角三角形的性质得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)解:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,∴∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.【点评】此题主要考查了平行四边形的性质与判定和菱形的性质与直角三角形的性质,得出∠3=∠4是解题关键.20.(10分)(2016•锦江区模拟)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【考点】列表法与树状图法;频数(率)分布直方图;扇形统计图.【分析】(1)由C有12人,占24%,即可求得该班的总人数,继而求得A与E的人数,即可补全频数分布直方图;(2)由(1)可得“足球”在扇形的圆心角是360°×;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人恰好1人选修篮球,1人选修足球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵C有12人,占24%,∴该班的总人数有:12÷24%=50(人),∴E有:50×10%=5(人),A有50﹣7﹣12﹣9﹣5=17(人),补全频数分布直方图为:(2)“足球”在扇形的圆心角是:360°×=50.4°;(3)画树状图得:∵共有12种等可能的结果,选出的2人恰好1人选修篮球,1人选修足球的有4种情况,∴选出的2人恰好1人选修篮球,1人选修足球的概率为: =.【点评】此题考查的是用列表法或树状图法求概率以及扇形统计图与频数分布直方图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2016•义乌市模拟)图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM;(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.【考点】解直角三角形的应用.【分析】(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH,又因为sin∠MOA=,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11﹣3=8,利用勾股定理即可求出FM=10个单位.【解答】解:(1)过点M作MD⊥OA交OA于点D,在RT△ODM中,sinα=,∴DM=15cm∴OD=20 cm,∴AD=BM=5cm;(2)延长DM交CF于点E,易得:∠FME=∠AOM=α,∵ME=AC﹣DM=55﹣15=40cm,∴cosα=∴MF=50cm.【点评】考查了解直角三角形的应用,解此题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中即可解答.22.(10分)(2016•义乌市模拟)为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数借车数存量y7:00﹣8:00 1 7 5 158:00﹣9:00 2 8 7 n……………根据所给图表信息,解决下列问题:(1)m= 13 ,解释m的实际意义:7:00时自行车的存量;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.【考点】二次函数的应用.【分析】(1)m表示7:00时自行车的存量,然后依据原有量=现存量+借车数﹣换车数求解即可;(2)将(0,13)(1,15)(2,16)的坐标代入函数的解析式可求得a、b、c的值,从而可求得二次函数的关系式;(3)将x=3,x=4代入得:y3=16,y4=15,设还车数为x,则借车数为+2.接下来,依据题意列方程求解即可.【解答】解:(1)m=15+5﹣7=13,m的实际意义:7:00时自行车的存量.故答案为;13;7:00时自行车的存量.(2)由题意可得:n=15+8﹣7=16.设二次函数关系式为y=ax2+bx+c,∵二次函数图象过点(0,13)(1,15)(2,16),∴,∴a=﹣,b=,c=13.∴二次函数关系式为y=﹣x2+x+13.(3)将x=3,x=4代入得:y3=16,y4=15.设还车数为x,则借车数为+2.根据题意得:y4=y3﹣(+2)即15=16﹣(+2)解得x=2,则.答:10:00﹣11:00这个时段的借车数为3辆.【点评】本题主要考查的是二次函数的综合应用,能够从表格中获取有效信息是解题的关键.23.(12分)(2016•义乌市模拟)如图1,新定义:直线l1、l、l2,相交于点O,长为m 的线段AB在直线l2上,点P是直线l1上一点,点Q是直线l上一点.若∠AQB=2∠APB,则我们称点P是点Q的伴侣点;(1)如图1,直线l2、l的夹角为30°,线段AB在点O右侧,且OA=1,m=2,若要使得∠APB=45°且满足点P是点Q的伴侣点,则OQ= ;(2)如图2,若直线l1、l2的夹角为60°,且m=3,若要使得∠APB=30°,线段AB在直线l2上左右移动.①当OA的长为多少时,符合条件的伴侣点P有且只有一个?请说明理由;②是否存在符合条件的伴侣点P有三个的情况?若存在,请直接写出OA长;若不存在,请说明理由.【考点】圆的综合题.【分析】(1)利用在一个圆中,同弧所对的圆心角是圆周角的2倍,构造图形,确定出点Q位置,判断出直线l与圆M相切即可;。

相关文档
最新文档