版高考数学大一轮复习第九章平面解析几何98圆锥曲线的综合问题第2课时范围最值问题教师用书文北师大版
三维设计江苏专用高三数学一轮总复习第九章平面解析几何第八节圆锥曲线的综合问题第二课时最值范围证明问题
OA·OB,且23≤λ≤34.
(1)求椭圆的方程;
(2)求k的取值范围;
(3)求△OAB的面积S的取值范围.
(-则 λ解3(所=)24|:A)xx以O因11B(+xA原1|为22)·]x=由O=点直2=B题(2线xO=-1-1意+-到xl4:2知12kxx直kkm22y2)+22+2=线2,c+=y1kx1lx(y12的2y+x2,1,=2-=距m所(12y离1与+2m以+)为2圆2k=-2c2k=)x(22x112.1|1+m2+x+.2|+ykk22=2k)=[m(1x1(相1x,+1+切xx2,)22) 由 设 则 即+ 由 即因 从 所即 由 得 设12△ △23为 而 以mSk≤(≤=mA12yxOO2的圆 所=+=b(2k2λAA12+ x==2≤取与 求1|1≤BB2kAk,+ykk1x234B值椭 椭2的 的+122,+=,y+ )2,|dx1范圆 圆k面1)故m2=A得 1,12得+,围有 方B.,积1212aB4|≤2边是且 程 =Ak(6SxmB≤上k只 为2的-,2x|,2≤|+ 的A有 x, 2取1y2所 B,12+高 2两)值,|m,≤以-y为个范2243-=4公.2围d6221,≤共=.是∪S点0≤.42,6223,,. 231..
于由是Δ=2设(所b8=kt以=)2-△2,k2A24-O解(2B3得k,面 2+b由积=1)的k>12.0>又最,32,大a得2知-值k2为ct>2>=3202..2b.2,从而 a= 2,c=1.
所解以得椭x于1圆,2=是C-S的△4A方k2O±kB程2=+4为k12x2-2+6t,+y82=t412=.
(因 所 即213解 所 因 所 即 因 即)- -为 因 ① ② ⑤证 以xyxy以 为 b: 以 为1111xy为 × × +bC- +明 - +2x(1因 所 所 因 所1所 又 = 即c=1=P直 点 F+(4③ ④ ⑥C1: λλλλa2-为 以 以 为 以以 因 椭13=+ )yyxx--Q= (线cO,因22得 得 得-22设y点 点= =为 圆= =到- x=+x3λbλ8A32为1c1≠2(2,xyx,3F+Cy直131,cλxλbCQ2C1210c212112△2--=2-QP±1- +(-c+2- 1+所),- +的yx线=的 =,在1D-D21A1λλbλ,λy=λ, 3以9yD1λ方2,, 2A21, 224方0BA定λ)1=, y-xy-=),.x所F,322Fa在(y22程..同= =程,0直=,1=41λ2b)(,的以④的圆b2,为 12理为3线((-x22,-x1(-.距22周.D- x122-+可Ox4+所x+ xλ-λ2b(离长(2++cx上λ得y)x)y以+232λ,22(d222, 为=)2x3yy,)3- x=)+ ==2-yy.=b8y3-y.⑥42,,133(b=)11,,y3=b,-.)=b29.+cQ1,yλ0,2(2cx)-所上③2⑤(,=x①以.+3②yba))c3. ,=by2)所.b2c,以
高三数学一轮总复习第九章平面解析几何第八节圆锥曲线的综合问题第二课时最值范围证明问题课件理
8 t+1t6+8.
考点二 范围问题重点保分型考点——师生共研 [典例引领]
(2016·常州模拟)已知圆x2+y2=1过椭圆
x2 a2
+
yb22=1(a>b>0)的
两焦点,与椭圆有且仅有两个公共点,直线l:y=kx+m与圆
x2+y2=1相切,与椭圆
x2 a2
+
y2 b2
=1相交于A,B两点.记λ=
[由题悟法] 圆锥曲线中最值问题的2种类型和2种解法 (1)2类最值问题 ①涉及距离、面积的最值以及与之相关的一些问题; ②求直线或圆锥曲线中几何元素的最值以及这些元素 存在最值时确定与之有关的一些问题.
(2)2种解法 ①几何法,若题目的条件和结论能明显体现几何特征 及意义,则考虑利用图形性质来解决; ②代数法,若题目的条件和结论能体现一种明确的函 数关系,则可先建立起目标函数,再求这个函数的最值, 最值常用基本不等式法、配方法及导数法求解. [提醒] 求最值问题时,一定要注意对特殊情况的讨 论.如直线斜率不存在的情况,二次三项式最高次项的系 数的讨论等.
过由点题意FA由且可B=与设t+直x11t6轴线+≥垂kA82, B直|x1的得的-方直x02<程|线,S△为方AO程yB=≤为k2xx2+=,2c., 代由入yx2椭=2+所圆当kyx以2方且+=程S仅21△,,当AO有Bt=消=ca2122去4+A,Bbyy即·22d并==k整12|,=x理1-解72,时x得得2等|=y(号=2k成±2+2立281b2.).2xkk22++2-813k2x.+6=0,
(2)设直线PB,DC的斜率存在且分别为k1,k2,若k1= λk2,求λ的取值范围.
(圆解 ∴ 则 即 代2):A(x方入设x2D+ +(程直1P2+)2y(设2x线)∴x4+2D20+D+,PCλx(=yA-2xy=y2,方+20kk2=)A=12,y(程=Cx)1,-0直2消,,. ∵1线x去得)024∠y+-Pyyy00得 AA1y2=D2方=C1=程= 90.-414为9y×003°yx1=①0,3.xxx00-0-y+02222(x+2),代入椭 x∵ 整 此∵ ∴ 联 ∵ 代 ∴ k∵21+=点 x立 - 入 △理 方 xk42021++椭 ①= D2A4x得 程<×0D在yy-圆 ②xyλ2: 有0= ∵ ∴C0<2k=椭=方 ,x2的22一 (14- λ,0,1,圆1+的程 消×面y4.0根202,∴kE-, 去2积取<2上1=为x∴x233得yS=值(0,,x+=x<x-xy1023+1范22)得 =y-132x.+x, 21×x022,围23-41+04)xx3-3= 2×2设 为0-×22+(≠.3212x.D(214224021-- 003=-x+ (1x23-x-200,∞x1=-012-4,043.6(y,=x1x03y0+220x1②00).-)0x,),2∪+)12则=(-204x,143-13=)=.x240001y-1,0x000x2-=02-.30x.102,
高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题
第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。
(全国通用)2019届高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第2课时课件
x y 跟踪训练 (2017· 长沙联考)已知椭圆 2+ 2=1(a>0, b>0)过点(0,1), 其长轴、 a b 焦距和短轴的长的平方依次成等差数列.直线 l 与 x 轴正半轴和 y 轴分别交 → → 于点 Q,P,与椭圆分别交于点 M,N,各点均不重合且满足PM=λ1MQ, → → PN=λ2NQ.
3 解 因为椭圆 C 的离心率为 2 ,且过点 A(2,1), 4 1 3 c 所以a2+b2=1,a= 2 ,
又 a2=b2+c2,所以 a2=8,b2=2, x2 y2 所以椭圆 C 的方程为 8 + 2 =1.
解答
(2)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试 判断直线PQ的斜率是否为定值?若是,求出该值;若不是,请说明理由.
几何画板展示
解答
题型三
探索性问题
师生共研
x2 典例 在平面直角坐标系 xOy 中,曲线 C:y= 与直线 l:y=kx+a(a>0) 4 交于 M,N 两点,
(1)当k=0时,分别求C在点M和N处的切线方程;
解答
(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
解答
思维升华 解决探索性问题的注意事项 探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在, 若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论; (2) 当给出结论而要推导出存在的条件时,先假设成立,再推出条件; (3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采 取另外合适的方法.
(1)求C的方程;
解答
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜 率的和为-1,证明:定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再 研究变化的量与参数何时没有关系,找到定点. (2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该 定点与变量无关.
2018版高考数学一轮复习第九章解析几何9.9圆锥曲线的综合问题第2课时范围最值问题课件理
点P为椭圆上的任意一点,则
→→ OP·FP
的最小值为__6___.
答案
解析
1 2 3 4 5 6 7 89
5.(2017·郑州质检)已知椭圆 C1:m+x2 2-yn2=1 与双曲线 C2:xm2+yn2=1 有相同的焦点,则椭圆 C1 的离心率 e1 的取值范围为_(__22_,__1_)_.
答案
②求直线AB的斜率的解最答 小值.
思维升华
处理圆锥曲线最值问题的求解方法 圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种 方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几 何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何 量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、 不等式方法等进行求解.
思维升华
解决圆锥曲线中的取值范围问题应考虑的五个方面 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取 值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两 个参数之间的等量关系; (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围; (5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域, 从而确定参数的取值范围.
几何画板展示
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值. 解答
课时作业Βιβλιοθήκη 1.(2016·昆明两区七校调研)过抛物线y2=x的焦点F的直线l交抛物线于A, B两点,且直线l的倾斜角θ≥π4,点A在x轴上方,则|FA|的取值范围是
答案
解析
A.(41,1]
B.(14,+∞)
2017版高考数学一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 课时2 范围、最值问题课件 理
课时2 范围、最值问题
内容 索引
题型一 范围问题 题型二 最值问题 思想方法 感悟提高 练出高分
题型一 范围问题
题型一
范围问题
x2 y2 (2015· 天津)已知椭圆a2+b2=1(a>b>0)的左焦点为 F(-c,0), 离
例1
2 3 b 心率为 3 , 点 M 在椭圆上且位于第一象限, 直线 FM 被圆 x2+y2= 4 截
2.圆锥曲线中常见最值问题及解题方法 (1)两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题; ②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时与之相 关的一些问题. (2)两种常见解法:①几何法,若题目的条件和结论能明显体现几何特征 及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论 能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的 最值,最值常用基本不等式法、配方法及导数法求解.
2 2
由 FM=
c+c
2
x y 解得 c=1,所以椭圆的方程为 3 + 2 =1.
解析答案
2 3 4 3 2 + c-0 = 3 . 3 2 2
思维升华
解析答案
跟踪训练1
解
x2 y2 设双曲线 C 的方程为a2-b2=1(a>0,b>0).
x2 2 ∴双曲线 C 的方程为 3 -y =1.
解析答案
返回
失误与防范
1.求范围问题要注意变量自身的范围. 2.利用几何意义求最值时,要注意“ 相切”与 “公共点唯一 ”的不等价 关系.注意特殊关系,特殊位置的应用.
返回
练出高分
1
2
3
4
5
高考数学大一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、范围、最
问题第2课时定点、定值、范围、最值问题试题理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何第9讲圆锥曲线的综合问题第2课时定点、定值、范围、最值问题试题理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何第9讲圆锥曲线的综合问题第2课时定点、定值、范围、最值问题试题理新人教版的全部内容。
综合问题第2课时定点、定值、范围、最值问题试题理新人教版基础巩固题组(建议用时:40分钟)一、选择题1。
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l 的斜率的取值范围是()A。
错误!B。
[-2,2]C。
[-1,1] D.[-4,4]解析Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1。
答案C2。
(2017·石家庄模拟)已知P为双曲线C:错误!-错误!=1上的点,点M满足|错误!|=1,且错误!·错误!=0,则当|错误!|取得最小值时点P到双曲线C的渐近线的距离为( )A。
错误!B。
错误! C.4 D.5解析由错误!·错误!=0,得OM⊥PM,根据勾股定理,求|MP|的最小值可以转化为求|OP|的最小值,当|OP|取得最小值时,点P的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x±3y=0,∴所求的距离d=错误!,故选B。
高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第2课时范围最值问题课件理苏教版
跟踪训练 1 (2016·扬州模拟)如图,已知椭圆ax22+by22=1(a>b>0)的左,右焦 点分别为 F1,F2,P 是椭圆上一点,点 M 在 PF1 上,且满足F→1M=λM→P (λ∈R), PO⊥F2M,O 为坐标原点.
(1)若椭圆的方程为x82+y42=1,且点 P 的坐标为(2, 2),求点 M 的横坐标;
§9.9 圆锥曲线的综合问题
第2课时 范围、最值问题
内容索引
题型分类 深度剖析 课时作业
题型分类 深度剖析
题型一 范围问题 例 1 (2015·天津)已知椭圆ax22+by22=1(a>b>0)的左焦点为 F(-c,0),离心
率为 33,点 M 在椭圆上且位于第一象限,直线 FM 被圆 x2+y2=b42截得的
123456789
4.(2016·宿迁质检)若点 O 和点 F 分别为椭圆x92+y82=1 的中点和左焦点,
点 P 为椭圆上的任意一点,则O→P·F→P的最小值为_6__.
答案
解析
123456789
xm52+.(2y0n21=7有·1郑相州同第的一焦次点质,量则预椭测圆)已C1知的椭离圆心C率1:em1的+x2取2-值yn范2=围与1为双_曲__(线_2_2C_,2_:_1.)
(1)求椭圆C的方程.
解答
(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一
象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长
QM交C于点B. ①设直线 PM,QM 的斜率分别为 k,k′,证明k′k 为定值; 证明 设P(x0,y0)(x0>0,y0>0).
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第2课时 范围、最值问题教师用
第2课时 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ). 由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=c +c2+⎝⎛⎭⎪⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立,⎩⎪⎨⎪⎧y =t x +,x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6,又由已知,得t =6-2x2x +2>2,解得-32<x <-1或-1<x <0.设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0,因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =- 2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是⎝ ⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.(2016·黄冈模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点. (1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围. 解 (1)∵双曲线的离心率为233, ∴椭圆的离心率e =c a =32. 又∵直线x -y -2=0经过椭圆的右顶点, ∴右顶点为(2,0),即a =2,c =3,b =1,∴椭圆方程为x 24+y 2=1.(2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2). 联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则x 1+x 2=-8km 1+4k 2,x 1x 2=m 2-1+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=k 2⇒-8k 2m 21+4k2+m 2=0.由m ≠0得k 2=14,解得k =±12.又由Δ=64k 2m 2-16(1+4k 2)(m 2-1) =16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d , 则S △OMN =12|MN |d=12·|m |1+k 2·1+k 2·|x 1-x 2| =12|m |x 1+x 22-4x 1x 2=-m 2-2+1.故由m 的取值范围可得△OMN 面积的取值范围为(0,1). 题型二 最值问题命题点1 利用三角函数有界性求最值例2 (2016·锦州模拟)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( )A .2 B. 2 C .4 D .2 2 答案 C解析 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ,则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________________________________________________________________________. 答案22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+-2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值例4 (2016·山东)如图,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM 、QM 的斜率分别为k 、k ′,证明k ′k为定值; ②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c . 由题意知2a =4,2c =2 2. 所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3m x 0.此时k ′k =-3.所以k ′k为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2). 直线PA 的方程为y =kx +m . 直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=m 2-k 2+x 0,所以y 1=kx 1+m =2km 2-k 2+x 0+m .同理x 2=m 2-k 2+x 0,y 2=-6k m 2-k 2+x 0+m . 所以x2-x 1=m 2-k 2+x 0-m 2-k 2+x 0=-32k 2m 2-k 2+k 2+x 0,y 2-y 1=-6k m 2-k 2+x 0+m -2k m 2-k 2+x 0-m =-8kk 2+m 2-k 2+k 2+x 0,所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝ ⎛⎭⎪⎫6k +1k ,由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.因为P (x 0,2m )在椭圆x 24+y 22=1上,所以x 0=4-8m 2,故此时2m -m4-8m 2-0=66,即m =147,符合题意. 所以直线AB 的斜率的最小值为62. 思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(2017·开封月考)已知圆(x -a )2+(y +1-r )2=r 2(r >0)过点F (0,1),圆心M 的轨迹为C .(1)求轨迹C 的方程;(2)设P 为直线l :x -y -2=0上的点,过点P 作曲线C 的两条切线PA ,PB ,当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 解 (1)依题意,由圆过定点F 可知轨迹C 的方程为x 2=4y . (2)抛物线C 的方程为x 2=4y ,即y =14x 2,求导得y ′=12x .设A (x 1,y 1),B (x 2,y 2)(其中y 1=x 214,y 2=x 224), 则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1), 即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0. 因为切线PA ,PB 均过点P (x 0,y 0), 所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解. 所以直线AB 的方程为x 0x -2y -2y 0=0.(3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0,由一元二次方程根与系数的关系可得y 1+y 2=x 20-2y 0,y 1y 2=y 20,所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1. 又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2, 所以y 20+x 20-2y 0+1=2y 20+2y 0+5=2(y 0+12)2+92,所以当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.1.(2016·昆明两区七校调研)过抛物线y 2=x 的焦点F 的直线l 交抛物线于A ,B 两点,且直线l 的倾斜角θ≥π4,点A 在x 轴上方,则|FA |的取值范围是( )A .(14,1]B .(14,+∞)C .(12,+∞)D .(14,1+22]答案 D解析 记点A 的横坐标是x 1,则有|AF |=x 1+14=(14+|AF |cos θ)+14=12+|AF |cos θ,|AF |(1-cos θ)=12,|AF |=1-cos θ.由π4≤θ<π得-1<cos θ≤22,2-2≤2(1-cos θ)<4,14<1-cos θ≤12-2=1+22, 即|AF |的取值范围是(14,1+22].2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( ) A.95 B.125 C .4 D .5 答案 B解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B.3.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,对于左支上任意一点P 都有|PF 2|2=8a |PF 1|(a 为实半轴长),则此双曲线的离心率e 的取值范围是( ) A .(1,+∞) B .(2,3] C .(1,3] D .(1,2]答案 C解析 由P 是双曲线左支上任意一点及双曲线的定义, 得|PF 2|=2a +|PF 1|,所以|PF 2|2|PF 1|=|PF 1|+4a2|PF 1|+4a =8a ,所以|PF 1|=2a ,|PF 2|=4a , 在△PF 1F 2中,|PF 1|+|PF 2|≥|F 1F 2|, 即2a +4a ≥2c ,所以e =c a≤3. 又e >1,所以1<e ≤3.故选C.4.(2016·成都质检)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最小值为________. 答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ), ∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝ ⎛⎭⎪⎫x +922+234. ∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝ ⎛⎭⎪⎫x +922≤2254, ∴14≤19⎝ ⎛⎭⎪⎫x +922≤22536, ∴6≤19·⎝ ⎛⎭⎪⎫x +922+234≤12,即6≤OP →·FP →≤12.故最小值为6.5.(2017·郑州质检)已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________. 答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2. ∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +2+n =m -n ,则n =-1, ∴e 21=1-1m +2. 由m >0得m +2>2,1m +2<12,-1m +2>-12, ∴1-1m +2>12,即e 21>12,而0<e 1<1, ∴22<e 1<1. 6.已知双曲线C 的两个焦点分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2的距离差的绝对值等于2. (1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程;(3)已知定点G (1,2),点D 是双曲线C 右支上的动点,求|DF 1|+|DG |的最小值. 解 (1)依题意,得双曲线C 的实半轴长为a =1, 半焦距c =2,所以其虚半轴长b =c 2-a 2= 3. 又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3.两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0. 因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2,所以12(x 1-x 2)-2(y 1-y 2)=0, 即k AB =y 1-y 2x 1-x 2=6, 故AB 所在直线l 的方程为y -1=6(x -2), 即6x -y -11=0.(3)由已知,得|DF 1|-|DF 2|=2, 即|DF 1|=|DF 2|+2,所以|DF 1|+|DG |=|DF 2|+|DG |+2≥|GF 2|+2, 当且仅当G ,D ,F 2三点共线时取等号, 因为|GF 2|=-2+22=5,所以|DF 2|+|DG |+2≥|GF 2|+2=5+2, 故|DF 1|+|DG |的最小值为5+2.7.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),求实数m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知得a =3,c =2, 又a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)联立⎩⎪⎨⎪⎧y =kx +m ,x 23-y 2=1,整理得(1-3k 2)x 2-6kmx -3m 2-3=0. ∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=m 2+1-3k 2,可得m 2>3k 2-1且k 2≠13,①设M (x 1,y 1),N (x 2,y 2),MN 的中点为B (x 0,y 0),则x 1+x 2=6km 1-3k 2,∴x 0=x 1+x 22=3km 1-3k 2, ∴y 0=kx 0+m =m 1-3k 2. 由题意,AB ⊥MN ,∴k AB =m1-3k 2+13km 1-3k 2=-1k(k ≠0,m ≠0). 整理得3k 2=4m +1,②将②代入①,得m 2-4m >0,∴m <0或m >4.又3k 2=4m +1>0(k ≠0),即m >-14. ∴m 的取值范围是⎝ ⎛⎭⎪⎫-14,0∪(4,+∞). 8.已知椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)的右顶点为A (1,0),过C 1的焦点且垂直长轴的弦长为1. (1)求椭圆C 1的方程;(2)设点P 在抛物线C 2:y =x 2+h (h ∈R )上,C 2在点P 处的切线与C 1交于点M ,N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值. 解 (1)由题意,得⎩⎪⎨⎪⎧ b =1,2·b 2a =1.从而⎩⎪⎨⎪⎧ a =2,b =1.因此,所求的椭圆C 1的方程为y 24+x 2=1. (2)如图,设M (x 1,y 1),N (x 2,y 2),P (t ,t 2+h ),则抛物线C 2在点P 处的切线斜率为y ′| x =t =2t .直线MN 的方程为y =2tx -t 2+h .将上式代入椭圆C 1的方程中,得4x 2+(2tx -t 2+h )2-4=0,即4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0.①因为直线MN 与椭圆C 1有两个不同的交点,所以①式中的Δ1=16[-t 4+2(h +2)t 2-h 2+4]>0.② 设线段MN 的中点的横坐标是x 3, 则x 3=x 1+x 22=t t 2-h +t 2. 设线段PA 的中点的横坐标是x 4,则x 4=t +12.由题意,得x 3=x 4,即t 2+(1+h )t +1=0.③由③式中的Δ2=(1+h )2-4≥0,得h ≥1或h ≤-3. 当h ≤-3时,h +2<0,4-h 2<0,则不等式②不成立,所以h ≥1.当h =1时,代入方程③得t =-1,将h =1,t =-1代入不等式②,检验成立.所以,h 的最小值为1. 9.如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左,右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.解 (1)因为e 1e 2=32,所以 a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b,0),F 4(3b,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2. 故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1. (2)因为AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x =my -1.由⎩⎪⎨⎪⎧ x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. 因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2, 于是AB 的中点为M (-2m 2+2,m m 2+2),故直线PQ 的斜率为-m 2,PQ 的方程为y =-m 2x , 即mx +2y =0. 由⎩⎪⎨⎪⎧ y =-m 2x ,x 22-y 2=1得(2-m 2)x 2=4, 所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2, 从而|PQ |=2x 2+y 2=2m 2+42-m2. 设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4. 因为点A ,B 在直线mx +2y =0的异侧, 所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =m 2+y 1-y 2|m 2+4. 又因为|y 1-y 2|=y 1+y 22-4y 1y 2=22·1+m 2m 2+2, 所以2d =22·1+m 2m 2+4. 故四边形APBQ 的面积S =12|PQ |·2d =22·1+m22-m 2=22·-1+32-m 2. 而0<2-m 2≤2,故当m =0时,S 取得最小值2. 综上所述,四边形APBQ 面积的最小值为2.。
2020高考数学大一轮复习第九章平面解析几何第9讲圆锥曲线的综合问题第2课时定点定值范围最值问题试题理新人
【2019最新】精选高考数学大一轮复习第九章平面解析几何第9讲圆锥曲线的综合问题第2课时定点定值范围最值问题试题理新人教基础巩固题组(建议用时:40分钟)一、选择题1.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )A. B.[-2,2]C.[-1,1]D.[-4,4]解析Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.答案C2.(2017·石家庄模拟)已知P为双曲线C:-=1上的点,点M满足||=1,且·=0,则当||取得最小值时点P到双曲线C的渐近线的距离为( )A. B. C.4 D.5解析由·=0,得OM⊥PM,根据勾股定理,求|MP|的最小值可以转化为求|OP|的最小值,当|OP|取得最小值时,点P的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x±3y=0,∴所求的距离d=,故选B.答案B3.已知椭圆C的方程为+=1(m>0),如果直线y=x与椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点F,则m的值为( )A.2B.2C.8D.23解析根据已知条件得c=,则点(,)在椭圆+=1(m>0)上,∴+=1,可得m =2.答案 B4.若双曲线-=1(a >0,b >0)的渐近线与抛物线y =x2+2有公共点,则此双曲线的离心率的取值范围是( )A.[3,+∞)B.(3,+∞)C.(1,3]D.(1,3)解析 依题意可知双曲线渐近线方程为y =±x,与抛物线方程联立消去y 得x2±x+2=0.∵渐近线与抛物线有交点,∴Δ=-8≥0,求得b2≥8a2,∴c =≥3a ,∴e =≥3.答案 A5.(2016·丽水一模)斜率为1的直线l 与椭圆+y2=1相交于A ,B 两点,则|AB|的最大值为( )A.2B.C.D.8105解析 设A ,B 两点的坐标分别为(x1,y1),(x2,y2),直线l 的方程为y =x +t ,由消去y ,得5x2+8tx +4(t2-1)=0,则x1+x2=-t ,x1x2=.∴|AB|=|x1-x2|=·(x1+x2)2-4x1x2 =·⎝ ⎛⎭⎪⎫-85t 2-4×4(t2-1)5 =·,当t =0时,|AB|max =.答案 C二、填空题6.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程为________.解析由条件知双曲线的焦点为(4,0),所以解得a=2,b=2,故双曲线方程为-=1.答案-=17.已知动点P(x,y)在椭圆+=1上,若A点坐标为(3,0),||=1,且·=0,则||的最小值是________.解析∵·=0,∴⊥.∴||2=||2-||2=||2-1,∵椭圆右顶点到右焦点A的距离最小,故||min=2,∴||min=.答案38.(2017·平顶山模拟)若双曲线x2-=1(b>0)的一条渐近线与圆x2+(y-2)2=1至多有一个公共点,则双曲线离心率的取值范围是________.解析双曲线的渐近线方程为y=±bx,则有≥1,解得b2≤3,则e2=1+b2≤4,∵e >1,∴1<e≤2.答案(1,2]三、解答题9.如图,椭圆E:+=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且·=-1.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得·+λ·为定值?若存在,求λ的值;若不存在,请说明理由.解(1)由已知,点C,D的坐标分别为(0,-b),(0,b).又点P 的坐标为(0,1),且·=-1,于是解得a =2,b =.所以椭圆E 方程为+=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x1,y1),(x2,y2).联立⎩⎪⎨⎪⎧x24+y22=1,y =kx +1,得(2k2+1)x2+4kx -2=0.其判别式Δ=(4k)2+8(2k2+1)>0,所以,x1+x2=-,x1x2=-.从而,·+λ·=x1x2+y1y2+λ[x1x2+(y1-1)(y2-1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==--λ-2.所以,当λ=1时,--λ-2=-3.此时,·+λ·=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD ,此时·+λ·=·+·=-2-1=-3,故存在常数λ=1,使得·+λ·为定值-3.10.(2016·浙江卷)如图,设椭圆+y2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示); (2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由得(1+a2k2)x2+2a2kx =0. 故x1=0,x2=-,因此|AM|=|x1-x2|=·.(2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP|=|AQ|.记直线AP ,AQ 的斜率分别为k1,k2,且k1,k2>0,k1≠k2.由(1)知|AP|=),1+a2k),|AQ|=),1+a2k),故),1+a2k)=),1+a2k),所以(k -k)[1+k +k +a2(2-a2)kk]=0.由于k1≠k2,k1,k2>0得1+k +k +a2(2-a2)kk =0,因此)+1)))+1))=1+a2(a2-2),①因为①式关于k1,k2的方程有解的充要条件是1+a2(a2-2)>1,所以a >.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤, 由e ==得,所求离心率的取值范围是.能力提升题组(建议用时:25分钟)11.(2016·湖南师大附中月考)设双曲线C :-=1(a >0,b >0)的一条渐近线与抛物线y2=x 的一个交点的横坐标为x0,若x0>1,则双曲线C 的离心率e 的取值范围是( )A.B.(,+∞)C.(1,)D.⎝ ⎛⎭⎪⎫62,+∞ 解析 不妨联立y =x 与y2=x 的方程,消去y 得x2=x ,由x0>1知<1,即<1,故e2<2,又e >1,所以1<e <,故选C.答案 C12.(2017·河南省八市质检)已知双曲线-=1(a >0,b >0)的离心率为2,它的两条渐近线与抛物线y2=2px(p >0)的准线分别交于A ,B 两点,O 为坐标原点.若△AOB 的面积为,则抛物线的准线方程为( )A.x =-2B.x =2C.x =1D.x =-1解析 因为e ==2,所以c =2a ,b =a ,双曲线的渐近线方程为y =±x,又抛物线的准线方程为x =-,联立双曲线的渐近线方程和抛物线的准线方程得A ,B ,在△AOB 中,|AB|=p ,点O 到AB 的距离为,所以·p·=,所以p =2,所以抛物线的准线方程为x =-1,故选D.答案 D13.(2017·绵阳诊断)若点O 和点F 分别为椭圆+=1的中点和左焦点,点P 为椭圆上的任一点,则·的最小值为________.解析 点P 为椭圆+=1上的任意一点,设P(x ,y)(-3≤x≤3,-2≤y≤2),依题意得左焦点F(-1,0),∴=(x ,y),=(x +1,y),∴·=x(x +1)+y2=x2+x +=+. ∵-3≤x ≤3,∴≤x +≤,∴≤≤,∴≤≤,∴6≤+≤12,即6≤·≤12,故最小值为6.答案 614.(2017·衡水中学高三联考)已知椭圆C :+=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x2+(y -b)2=a2相切.(1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l1,l2分别交椭圆C 于M ,N 两点,且l1⊥l2,求证:直线MN 过定点,并求出定点坐标;(3)在(2)的条件下求△AMN 面积的最大值.解 (1)由题意,得∴⎩⎪⎨⎪⎧a =2,b =1, 即C :+y2=1.(2)由题意得直线l1,l2的斜率存在且不为0.∵A(-2,0),设l1:x =my -2,l2:x =-y -2,由得(m2+4)y2-4my =0,∴M.同理,N.①m ≠±1时,kMN =,lMN :y =.此时过定点.②m =±1时,lMN :x =-,过点. ∴lMN 恒过定点.(3)由(2)知S△AMN=×|yM-yN|==8⎪⎪⎪⎪⎪⎪m3+m4m4+17m2+4 ==.令t =≥2,当且仅当m =±1时取等号, ∴S △AMN ≤,且当m =±1时取等号. ∴(S △AMN)max =.。
近年届高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第2课时学案(2021学年)
(全国通用)2019届高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第2课时学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2019届高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第2课时学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2019届高考数学大一轮复习第九章平面解析几何 9.9 圆锥曲线的综合问题第2课时学案的全部内容。
第2课时定点、定值、探索性问题题型一定点问题典例(2017·全国Ⅰ)已知椭圆C:错误!+错误!=1(a〉b>0),四点P1(1,1),P2(0,1),P3错误!,P4错误!中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.(1)解由于P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点.又由\f(1,a2)+错误!〉错误!+错误!知,椭圆C不经过点P1,所以点P2在椭圆C上.因此错误!解得错误!故椭圆C的方程为\f(x2,4)+y2=1。
(2)证明设直线P2A与直线P2B的斜率分别为k1,k2。
如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为错误!,错误!,则k1+k2=错误!-错误!=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入错误!+y2=1,得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0。
设A(x1,y1),B(x2,y2),则x1+x2=-\f(8km,4k2+1),x1x2=错误!。
(全国通用)高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第2课时学案-人教
第2课时 定点、定值、探索性问题题型一 定点问题典例 (2017·全国Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设知k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.跟踪训练 (2017·长沙联考)已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点. (1)解 设椭圆的焦距为2c ,由题意知b =1, 且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,∴a 2=3.∴椭圆的方程为x 23+y 2=1.(2)证明 由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2),设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m ),得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1,由题意mt <0,∴mt =-1,满足②,得直线l 方程为x =ty +1,过定点(1,0),即Q 为定点.题型二 定值问题典例 (2017·广州市综合测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A (2,1).(1)求椭圆C 的方程;(2)若P ,Q 是椭圆C 上的两个动点,且使∠PAQ 的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,请说明理由. 解 (1)因为椭圆C 的离心率为32,且过点A (2,1), 所以4a 2+1b 2=1,c a =32,又a 2=b 2+c 2,所以a 2=8,b 2=2,所以椭圆C 的方程为x 28+y 22=1.(2)方法一 因为∠PAQ 的角平分线总垂直于x 轴, 所以PA 与AQ 所在的直线关于直线x =2对称. 设直线PA 的斜率为k ,则直线AQ 的斜率为-k . 所以直线PA 的方程为y -1=k (x -2), 直线AQ 的方程为y -1=-k (x -2).设点P (x P ,y P ),Q (x Q ,y Q ),由⎩⎪⎨⎪⎧y -1=k (x -2),x 28+y22=1,得(1+4k 2)x 2-(16k 2-8k )x +16k 2-16k -4=0.①因为点A (2,1)在椭圆C 上,所以x =2是方程①的一个根,则2x P =16k 2-16k -41+4k 2, 所以x P =8k 2-8k -21+4k 2. 同理x Q =8k 2+8k -21+4k2. 所以x P -x Q =-16k 1+4k 2,x P +x Q =16k 2-41+4k 2.又y P -y Q =k (x P +x Q -4)=-8k1+4k 2,所以直线PQ 的斜率k PQ =y P -y Q x P -x Q =12, 所以直线PQ 的斜率为定值,该值为12.方法二 设直线PQ 的方程为y =kx +b , 点P (x 1,y 1),Q (x 2,y 2), 则y 1=kx 1+b ,y 2=kx 2+b , 直线PA 的斜率k PA =y 1-1x 1-2, 直线QA 的斜率k QA =y 2-1x 2-2. 因为∠PAQ 的角平分线总垂直于x 轴,所以PA 与AQ 所在的直线关于直线x =2对称, 所以k PA =-k QA ,即y 1-1x 1-2=-y 2-1x 2-2,化简得x 1y 2+x 2y 1-(x 1+x 2)-2(y 1+y 2)+4=0. 把y 1=kx 1+b ,y 2=kx 2+b 代入上式,化简得 2kx 1x 2+(b -1-2k )(x 1+x 2)-4b +4=0.①由⎩⎪⎨⎪⎧y =kx +b ,x 28+y22=1,得(4k 2+1)x 2+8kbx +4b 2-8=0,② 则x 1+x 2=-8kb 4k 2+1,x 1x 2=4b 2-84k 2+1,代入①,得2k (4b 2-8)4k 2+1-8kb (b -1-2k )4k 2+1-4b +4=0, 整理得(2k -1)(b +2k -1)=0, 所以k =12或b =1-2k .若b =1-2k ,可得方程②的一个根为2,不符合题意. 所以直线PQ 的斜率为定值,该值为12.思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练 如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l . (1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由. 解 (1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线.∵点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=(x 0-1)2+y 20, 则|TS |=2r 2-d 2=2y 20-2x 0+1, ∵点M 在曲线C 上,∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.题型三 探索性问题典例 在平面直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ),即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点p (0,-a )符合题意. 思维升华 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.跟踪训练 (2018·唐山模拟)已知椭圆E :x 2a 2+y 2b2=1的右焦点为F (c,0)且a >b >c >0,设短轴的一个端点为D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF →|+|CF →|=4. (1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4PA →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由. 解 (1)由椭圆的对称性知|GF →|+|CF →|=2a =4,∴a =2. 又原点O 到直线DF 的距离为32, ∴bc a =32,∴bc =3, 又a 2=b 2+c 2=4,a >b >c >0,∴b =3,c =1. 故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件. 故可设A (x 1,y 1),B (x 2,y 2), 直线l 的方程为y =k (x -2)+1,代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0,∴x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k2, Δ=32(6k +3)>0,∴k >-12.∵OP →2=4PA →·PB →,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5, 即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5, ∴4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2)=4×4+4k23+4k2=5,解得k =±12,k =-12不符合题意,舍去.∴存在满足条件的直线l ,其方程为y =12x .设而不求,整体代换典例 (12分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1,PF 2的斜率分别为k 1,k 2,若k 2≠0,证明1kk 1+1kk 2为定值,并求出这个定值.思想方法指导 对题目涉及的变量巧妙地引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值. 规范解答解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a .由题意知2b2a=1,即a =2b 2.又e =ca =32,所以a =2,b =1. 所以椭圆C 的方程为x 24+y 2=1.[2分](2)设P (x 0,y 0)(y 0≠0), 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为lPF 1:y 0x -(x 0+3)y +3y 0=0, lPF 2:y 0x -(x 0-3)y -3y 0=0.由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2. 由于点P 在椭圆上,所以x 204+y 20=1.所以|m +3|⎝ ⎛⎭⎪⎫32x 0+22=|m -3|⎝ ⎛⎭⎪⎫32x 0-22.[4分]因为-3<m <3,-2<x 0<2, 可得m +332x 0+2=3-m2-32x 0,所以m =34x 0,因此-32<m <32.[6分](3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0).整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.[10分] 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0.由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k ⎝ ⎛⎭⎪⎫1k 1+1k 2=⎝⎛⎭⎪⎫-4y 0x 0·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.[12分]1.(2018届广西柳州摸底)已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为5.(1)求该抛物线C 的方程;(2)已知抛物线上一点M (t,4),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点?并说明理由.解 (1)由题意设抛物线方程为y 2=2px (p >0), 其准线方程为x =-p2,∵P (4,m )到焦点的距离等于P 到其准线的距离, ∴4+p2=5,∴p =2.∴抛物线C 的方程为y 2=4x . (2)由(1)可得点M (4,4), 可得直线DE 的斜率不为0, 设直线DE 的方程为x =my +t ,联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,得y 2-4my -4t =0,则Δ=16m 2+16t >0.(*) 设D (x 1,y 1),E (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4t .∵MD →·ME →=(x 1-4,y 1-4)·(x 2-4,y 2-4) =x 1x 2-4(x 1+x 2)+16+y 1y 2-4(y 1+y 2)+16=y 214·y 224-4⎝ ⎛⎭⎪⎫y 214+y 224+16+y 1y 2-4(y 1+y 2)+16=(y 1y 2)216-(y 1+y 2)2+3y 1y 2-4(y 1+y 2)+32=t 2-16m 2-12t +32-16m =0, 即t 2-12t +32=16m 2+16m , 得(t -6)2=4(2m +1)2,∴t -6=±2(2m +1),即t =4m +8或t =-4m +4, 代入(*)式检验知t =4m +8满足Δ>0, ∴直线DE 的方程为x =my +4m +8=m (y +4)+8. ∴直线过定点(8,-4).2.(2016·北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 的方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1.令y =0得x N =-x 0y 0-1.∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |·|BM |=4. 故|AN |·|BM |为定值.3.(2017·湘中名校联考)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ?若存在,求出直线l 的方程;若不存在,请说明理由. 解 (1)在C 1,C 2的方程中,令y =0,可得b =1, 且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点. 设C 1的半焦距为c , 由c a =32及a 2-c 2=b 2=1,得a =2, ∴a =2,b =1.(2)存在.由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由根与系数的关系,得x p =k 2-4k 2+4,从而y p =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1),k ≠0,y =-x 2+1,y ≤0,得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵以PQ 为直径的圆恰好过点A , ∴AP ⊥AQ ,∴AP →·AQ →=0, 即-2k2k 2+4[k -4(k +2)]=0. ∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意.故直线l 的方程为8x +3y -8=0.4.已知半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c 2=1(x <0)组成的曲线称为“果圆”,其中a 2=b 2+c 2,a >b >c >0.如图,设点F 0,F 1,F 2是相应椭圆的焦点,A 1,A 2和B 1,B 2是“果圆”与x ,y 轴的交点.(1)若△F 0F 1F 2是边长为1的等边三角形,求“果圆”的方程; (2)若|A 1A 2|>|B 1B 2|,求b a的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k ,使得斜率为k 的直线交果圆于两点,得到的弦的中点M 的轨迹方程落在某个椭圆上?若存在,求出所有k 的值;若不存在,说明理由.解 (1)∵F 0(c,0),F 1(0,-b 2-c 2),F 2(0,b 2-c 2), ∴|F 0F 2|=(b 2-c 2)+c 2=b =1, |F 1F 2|=2b 2-c 2=1, ∴c 2=34,a 2=b 2+c 2=74,∴所求“果圆”的方程为⎩⎪⎨⎪⎧47x 2+y 2=1,x ≥0,y 2+43x 2=1,x <0.(2)由题意,得a +c >2b ,即a 2-b 2>2b -a ,∴a 2-b 2>(2b -a )2,得b a <45.又b 2>c 2=a 2-b 2,∴b 2a 2>12.∴b a ∈⎝⎛⎭⎪⎫22,45.(3)设“果圆”C 的方程为⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,x ≥0,y 2b 2+x2c 2=1,x <0,记平行弦的斜率为k ,当k =0时,直线y =t (-b ≤t ≤b )与半椭圆x 2a 2+y 2b 2=1(x ≥0)的交点是P ⎝ ⎛⎭⎪⎫a1-t 2b 2,t ,与半椭圆y 2b 2+x 2c 2=1(x <0)的交点是Q ⎝ ⎛⎭⎪⎫-c1-t 2b 2,t .∴P ,Q 的中点M (x ,y )满足x =a -c2·1-t 2b2,y =t , 得x 2⎝ ⎛⎭⎪⎫a -c 22+y 2b2=1. ∵a 2=b 2+c 2<2b 2<4b 2,∴a <2b , ∴⎝⎛⎭⎪⎫a -c 22-b 2=a -c -2b 2·a -c +2b 2<0.综上所述,当k =0时,“果圆”平行弦的中点M 的轨迹总是落在某个椭圆上.当k >0时,过B 1的直线l 与半椭圆x 2a 2+y 2b 2=1(x ≥0)的交点是⎝ ⎛⎭⎪⎫2ka 2b k 2a 2+b 2,k 2a 2b -b 3k 2a 2+b 2.因此,在直线l 右侧,以k 为斜率的平行弦的中点为⎝ ⎛⎭⎪⎫ka 2b k 2a 2+b 2,-b 3k 2a 2+b 2,轨迹在直线y =-b 2ka2x 上,即不在某一椭圆上.当k <0时,可类似讨论得到平行弦的中点的轨迹不在某一椭圆上.5.(2018·保定模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +yb=1的距离d =455,O 为坐标原点.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值. (1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b .由左顶点M (-a,0)到直线x a +yb=1, 即到直线bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b25b=455,解得b =1. 所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,由椭圆的对称性, 可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点, 故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0, 又点A 在椭圆C 上,所以x 214+y 21=1,解得|x 1|=|y 1|=255.此时点O 到直线AB 的距离d 1=|x 1|=255.②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m ,与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, 所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O , 所以OA ⊥OB .所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0.整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255.6.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ), 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1,从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2.所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λPA →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD → =-2-1=-3.故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.。
北师大版版高考数学一轮复习第九章平面解析几何圆锥曲线的综合问题圆锥曲线中的范围最值问题教学案理
一、知识梳理1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程为f(x,y)=0.由错误!消元(如消去y),得ax2+bx+c=0.1若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合);2若a≠0,Δ=b2—4ac.A.当Δ>0时,直线和圆锥曲线相交于不同两点;B.当Δ=0时,直线和圆锥曲线相切于一点;C.当Δ<0时,直线和圆锥曲线没有公共点.2.直线与圆锥曲线相交时的弦长问题(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长:|P1P2|=错误!=错误!·|x1—x2|=错误!=错误!|y1—y2|.(2)斜率不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(3)直线l与曲线C相交于P,Q两点,联立直线方程与曲线方程,消去y得Ax2+Bx+C=0,Δ=B2—4AC>0,则|PQ|=错误!.3.圆锥曲线的中点弦问题遇到弦中点问题常用“根与系数的关系”或“点差法”求解.在椭圆错误!+错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k=—错误!;在双曲线错误!—错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k=错误!;在抛物线y2=2px(p>0)中,以P(x0,y0)为中点的弦所在直线的斜率k=错误!.在使用根与系数关系时,要注意前提条件是Δ≥0.常用结论过一点的直线与圆锥曲线的位置关系的特点(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、教材衍化1.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有()A.1条B.2条C.3条D.4条解析:选C.过(0,1)与抛物线y2=4x相切的直线有2条,过(0,1)与对称轴平行的直线有一条,这三条直线与抛物线都只有一个公共点.2.已知与向量v=(1,0)平行的直线l与双曲线错误!—y2=1相交于A,B两点,则|AB|的最小值为________.解析:由题意可设直线l的方程为y=m,代入错误!—y2=1得x2=4(1+m2),所以x1=错误!=2错误!,x2=—2错误!,所以|AB|=|x1—x2|=4错误!≥4,即当m=0时,|AB|有最小值4.答案:4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)直线l与抛物线y2=2px只有一个公共点,则l与抛物线相切.()(2)直线y=kx(k≠0)与双曲线x2—y2=1一定相交.()(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.()(4)直线与椭圆只有一个交点⇔直线与椭圆相切.()(5)过点(2,4)的直线与椭圆错误!+y2=1只有一条切线.()答案:(1)×(2)×(3)√(4)√(5)×二、易错纠偏错误!错误!(1)没有发现直线过定点,导致运算量偏大;(2)不会用函数法解最值问题;(3)错用双曲线的几何性质.1.直线y=kx—k+1与椭圆错误!+错误!=1的位置关系为()A.相交B.相切C.相离D.不确定解析:选A.直线y=kx—k+1=k(x—1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.故选A.2.如图,两条距离为4的直线都与y轴平行,它们与抛物线y2=—2px(0<p<14)和圆(x—4)2+y2=9分别交于A,B和C,D,且抛物线的准线与圆相切,则当|AB|·|CD|取得最大值时,直线AB的方程为________.解析:根据题意,由抛物线的准线与圆相切可得错误!=1或7,又0<p<14,故p=2,设直线AB的方程为x=—t(0<t<3),则直线CD的方程为x=4—t,则|AB|·|CD|=2错误!·2错误!=8错误!(0<t<3),设f(t)=t(9—t2)(0<t<3),则f′(t)=9—3t2(0<t<3),令f′(t)>0⇒0<t<错误!,令f′(t)<0⇒错误!<t<3,故f(t)max=f(错误!),此时直线AB的方程为x=—错误!.答案:x=—错误!3.已知点F1,F2分别是双曲线错误!—错误!=1(a>0,b>0)的左、右焦点,过F1且垂直于x 轴的直线与双曲线交于A,B两点,若△ABF2是钝角三角形,则该双曲线离心率的取值范围是________.解析:由题设条件可知△ABF2为等腰三角形,只要∠AF2B为钝角即可,所以有错误!>2c,即b2>2ac,所以c2—a2>2ac,即e2—2e—1>0,所以e>1+错误!.答案:(1+错误!,+∞)第1课时圆锥曲线中的范围、最值问题最值问题(多维探究)角度一数形结合利用几何性质求最值已知椭圆C:错误!+错误!=1的右焦点为F,P为椭圆C上一动点,定点A(2,4),则|PA|—|PF|的最小值为________.【解析】如图,设椭圆的左焦点为F′,则|PF|+|PF′|=4,所以|PF|=4—|PF′|,所以|PA|—|PF|=|PA|+|PF′|—4.当且仅当P,A,F′三点共线时,|PA|+|PF′|取最小值|AF′|=错误!=5,所以|PA|—|PF|的最小值为1.【答案】1角度二建立目标函数求最值如图,已知抛物线x2=y,点A错误!,B错误!,抛物线上的点P(x,y)错误!.过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.【解】(1)设直线AP的斜率为k,k=错误!=x—错误!,因为—错误!<x<错误!,所以直线AP斜率的取值范围是(—1,1).(2)联立直线AP与BQ的方程错误!解得点Q的横坐标是x Q=错误!.因为|PA|=错误!错误!=错误!(k+1),|PQ|=错误!(x Q—x)=—错误!,所以|PA|·|PQ|=—(k—1)(k+1)3.令f(k)=—(k—1)(k+1)3,因为f′(k)=—(4k—2)(k+1)2,所以f(k)在区间错误!上是增加的,错误!上是减少的,因此当k=错误!时,|PA|·|PQ|取得最大值错误!.角度三构造基本不等式求最值已知椭圆M:错误!+错误!=1(a>0)的一个焦点为F(—1,0),左、右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(1)当直线l的倾斜角为45°时,求线段CD的长;(2)记△ABD与△ABC的面积分别为S1和S2,求|S1—S2|的最大值.【解】(1)由题意,c=1,b2=3,所以a2=4,所以椭圆M的方程为错误!+错误!=1,易求直线方程为y=x+1,联立方程,得错误!消去y,得7x2+8x—8=0,Δ=288>0,设C(x1,y1),D(x2,y2),x1+x2=—错误!,x1x2=—错误!,所以|CD|=错误!|x1—x2|=错误!错误!=错误!.(2)当直线l的斜率不存在时,直线方程为x=—1,此时△ABD与△ABC面积相等,|S1—S2|=0;当直线l的斜率存在时,设直线方程为y=k(x+1)(k≠0),联立方程,得错误!消去y,得(3+4k2)x2+8k2x+4k2—12=0,Δ>0,且x1+x2=—错误!,x1x2=错误!,此时|S1—S2|=2||y2|—|y1||=2|y2+y1|=2|k(x2+1)+k(x1+1)|=2|k(x1+x2)+2k|=错误!,因为k≠0,上式=错误!≤错误!=错误!=错误!错误!,所以|S1—S2|的最大值为错误!.错误!圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(2020·河北武邑中学模拟)抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(1)O为坐标原点,求证:错误!·错误!=—3;(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.解:(1)证明:依题意得F(1,0),且直线AB的斜率不为0,设直线AB的方程为x=my+1.联立错误!消去x得y2—4my—4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=—4.x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1=1,故错误!·错误!=x1x2+y1y2=—3.(2)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.由(1)知2S△AOB=2×错误!|OF||y1—y2|=错误!=4错误!,所以当m=0时,四边形OACB的面积最小,最小值是4.范围问题(多维探究)角度一求代数式的取值范围已知椭圆C:错误!+错误!=1(a>b>0)的离心率为错误!,且以原点为圆心,椭圆的焦距为直径的圆与直线x sin θ+y cos θ—1=0相切(θ为常数).(1)求椭圆C的标准方程;(2)若椭圆C的左、右焦点分别为F1,F2,过F2作直线l与椭圆交于M,N两点,求错误!·错误!的取值范围.【解】(1)由题意,得错误!⇒错误!故椭圆C的标准方程为错误!+y2=1.(2)由(1)得F1(—1,0),F2(1,0).1若直线l的斜率不存在,则直线l⊥x轴,直线l的方程为x=1,不妨记M错误!,N错误!,所以错误!=错误!,错误!=错误!,故错误!·错误!=错误!.2若直线l的斜率存在,设直线l的方程为y=k(x—1),由错误!消去y得,(1+2k2)x2—4k2x+2k2—2=0,设M(x1,y1),N(x2,y2),则x1+x2=错误!,x1x2=错误!.错误!=(x1+1,y1),错误!=(x2+1,y2),则错误!·错误!=(x1+1)(x2+1)+y1y2=(x1+1)(x2+1)+k(x1—1)·k(x2—1)=(1+k2)·x1x2+(1—k2)(x1+x2)+1+k2,代入可得错误!·错误!=错误!+错误!+1+k2=错误!=错误!—错误!,由k2≥0可得错误!·错误!∈错误!.综上,错误!·错误!∈错误!.角度二求参数的取值范围已知椭圆C的两个焦点为F1(—1,0),F2(1,0),且经过点E错误!.(1)求椭圆C的方程;(2)过点F1的直线l与椭圆C交于A,B两点(点A位于x轴上方),若错误!=λ错误!,且2≤λ<3,求直线l的斜率k的取值范围.【解】(1)由错误!解得错误!所以椭圆C的方程为错误!+错误!=1.(2)由题意得直线l的方程为y=k(x+1)(k>0),联立方程,得错误!整理得错误!y2—错误!y—9=0,Δ=错误!+144>0,设A(x1,y1),B(x2,y2),则y1+y2=错误!,y1y2=错误!,又错误!=λ错误!,所以y1=—λy2,所以y1y2=错误!(y1+y2)2,则错误!=错误!,λ+错误!—2=错误!,因为2≤λ<3,所以错误!≤λ+错误!—2<错误!,即错误!≤错误!<错误!,且k>0,解得0<k≤错误!.故直线l的斜率k的取值范围是错误!.错误!解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.(2020·郑州模拟)已知椭圆错误!+错误!=1(a>b>0)上的点到右焦点F(c,0)的最大距离是错误!+1,且1,错误!a,4c成等比数列.(1)求椭圆的方程;(2)过点F且与x轴不垂直的直线l与椭圆交于A,B两点,线段AB的垂直平分线交x轴于点M (m,0),求实数m的取值范围.解:(1)由已知可得错误!解得错误!所以椭圆的方程为错误!+y2=1.(2)由题意得F(1,0),设直线AB的方程为y=k(x—1).与椭圆方程联立得错误!消去y可得(1+2k2)x2—4k2x+2k2—2=0.设A(x1,y1),B(x2,y2),则x1+x2=错误!,y1+y2=k(x1+x2)—2k=错误!.可得线段AB的中点为N错误!.当k=0时,直线MN为y轴,此时m=0.当k≠0时,直线MN的方程为y+错误!=—错误!错误!,化简得ky+x—错误!=0.令y=0,得x=错误!.所以m=错误!=错误!∈错误!.综上所述,实数m的取值范围为错误!.[基础题组练]1.(2020·河南新乡二模)如图,已知抛物线C1的顶点在坐标原点,焦点在x轴上,且过点(3,6),圆C2:x2+y2—6x+8=0,过圆心C2的直线l与抛物线和圆分别交于P,Q,M,N,则|PN|+3|QM|的最小值为()A.12+4错误!B.16+4错误!C.16+6错误!D.20+6错误!解析:选C.设抛物线的方程为y2=2px(p>0),则36=2p×3,则2p=12,所以抛物线的方程为y2=12x,设抛物线的焦点为F,则F(3,0),准线方程为x=—3,圆C2:x2+y2—6x+8=0的圆心为(3,0),半径为1,由直线PQ过抛物线的焦点,则错误!+错误!=错误!=错误!.|PN|+3|QM|=|PF|+1+3(|QF|+1)=|PF|+3|QF|+4=3(|PF|+3|QF|)错误!+4=3错误!+4≥3(4+2错误!)+4=16+6错误!错误!.故选C.2.如图,抛物线W:y2=4x与圆C:(x—1)2+y2=25交于A,B两点,点P为劣弧错误!上不同于A,B的一个动点,与x轴平行的直线PQ交抛物线W于点Q,则△PQC的周长的取值范围是()A.(10,14)B.(12,14)C.(10,12)D.(9,11)解析:选C.抛物线的准线l:x=—1,焦点(1,0),由抛物线定义可得|QC|=x Q+1,圆(x—1)2+y2=25的圆心为C(1,0),半径为5,可得△PQC的周长=|QC|+|PQ|+|PC|=x Q+1+(x P—x Q)+5=6+x P,由抛物线y2=4x及圆(x—1)2+y2=25可得交点的横坐标为4,即有x P∈(4,6),可得6+x P∈(10,12),故△PQC的周长的取值范围是(10,12).故选C.3.(2020·湖南湘潭一模)已知F(错误!,0)是椭圆C:错误!+错误!=1(a>b>0)的一个焦点,点M错误!在椭圆C上.(1)求椭圆C的方程;(2)若直线l与椭圆C分别相交于A,B两点,且k OA+k OB=—错误!(O为坐标原点),求直线l 的斜率的取值范围.解:(1)由题意知,椭圆的另一个焦点为(—错误!,0),所以点M到两焦点的距离之和为错误!+错误!=4.所以a=2.又因为c=错误!,所以b=1,所以椭圆C的方程为错误!+y2=1.(2)当直线l的斜率不存在时,结合椭圆的对称性可知,k OA+k OB=0,不符合题意.故设直线l的方程为y=kx+m(k≠0),A(x1,y1),B(x2,y2),联立错误!可得(4k2+1)x2+8kmx+4(m2—1)=0.则x1+x2=错误!,x1x2=错误!.而k OA+k OB=错误!+错误!=错误!=2k+错误!=2k+错误!=错误!.由k OA+k OB=—错误!,可得m2=4k+1,所以k≥—错误!.又由Δ>0,得16(4k2—m2+1)>0,所以4k2—4k>0,解得k<0或k>1,综上,直线l的斜率的取值范围为错误!∪(1,+∞).4.(2020·银川模拟)椭圆错误!+错误!=1(a>b>0)的焦点分别为F1(—1,0),F2(1,0),直线l:x=a2交x轴于点A,且错误!=2错误!.(1)试求椭圆的方程;(2)过点F1,F2分别作互相垂直的两条直线与椭圆分别交于D,E,M,N四点(如图所示),试求四边形DMEN面积的最大值和最小值.解:(1)由题意知,|F1F2|=2c=2,A(a2,0),因为错误!=2错误!,所以F2为线段AF1的中点,则a2=3,b2=2,所以椭圆方程为错误!+错误!=1.(2)当直线DE与x轴垂直时,|DE|=错误!=错误!,此时|MN|=2a=2错误!,四边形DMEN的面积S=错误!=4.同理当MN与x轴垂直时,也有四边形DMEN的面积S=错误!=4.当直线DE,MN与x轴均不垂直时,设直线DE:y=k(x+1)(k≠1),D(x1,y1),E(x2,y2),代入椭圆方程,消去y可得(2+3k2)x2+6k2x+3k2—6=0,则x1+x2=错误!,x1x2=错误!,所以|x1—x2|=错误!,所以|DE|=错误!|x1—x2|=错误!.同理|MN|=错误!=错误!,所以四边形DMEN的面积S=错误!=错误!×错误!×错误!=错误!,令u=k2+错误!,则S=4—错误!.因为u=k2+错误!≥2,当k=±1时,u=2,S=错误!,且S是以u为自变量的增函数,则错误!≤S<4.综上可知,错误!≤S≤4,故四边形DMEN面积的最大值为4,最小值为错误!.[综合题组练]1.已知椭圆E的中心在原点,焦点F1,F2在y轴上,离心率等于错误!,P是椭圆E上的点.以线段PF1为直径的圆经过F2,且9错误!·错误!=1.(1)求椭圆E的方程;(2)作直线l与椭圆E交于两个不同的点M,N.如果线段MN被直线2x+1=0平分,求直线l 的倾斜角的取值范围.解:(1)依题意,设椭圆E的方程为错误!+错误!=1(a>b>0),半焦距为c.因为椭圆E的离心率等于错误!,所以c=错误!a,b2=a2—c2=错误!.因为以线段PF1为直径的圆经过F2,所以PF2⊥F1F2.所以|PF2|=错误!.因为9错误!·错误!=1,所以9|错误!|2=错误!=1.由错误!,得错误!,所以椭圆E的方程为错误!+x2=1.(2)因为直线x=—错误!与x轴垂直,且由已知得直线l与直线x=—错误!相交,所以直线l不可能与x轴垂直,所以设直线l的方程为y=kx+m.由错误!,得(k2+9)x2+2kmx+m2—9=0.因为直线l与椭圆E交于两个不同的点M,N,所以Δ=4k2m2—4(k2+9)(m2—9)>0,即m2—k2—9<0.设M(x1,y1),N(x2,y2),则x1+x2=错误!.因为线段MN被直线2x+1=0平分,所以2×错误!+1=0,即错误!+1=0.由错误!,得错误!错误!—(k2+9)<0.因为k2+9>0,所以错误!—1<0,所以k2>3,解得k>错误!或k<—错误!.所以直线l的倾斜角的取值范围为错误!∪错误!.2.(2019·高考全国卷Ⅱ)已知点A(—2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为—错误!.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE并延长交C于点G.(ⅰ)证明:△PQG是直角三角形;(ⅱ)求△PQG面积的最大值.解:(1)由题设得错误!·错误!=—错误!,化简得错误!+错误!=1(|x|≠2),所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.(2)(ⅰ)证明:设直线PQ的斜率为k,则其方程为y=kx(k>0).由错误!得x=±错误! .记u=错误!,则P(u,uk),Q(—u,—uk),E(u,0).于是直线QG的斜率为错误!,方程为y=错误!(x—u).由错误!得(2+k2)x2—2uk2x+k2u2—8=0.1设G(x G,y G),则—u和x G是方程1的解,故x G=错误!,由此得y G=错误!.从而直线PG的斜率为错误!=—错误!.所以PQ⊥PG,即△PQG是直角三角形.(ⅱ)由(ⅰ)得|PQ|=2u错误!,|PG|=错误!,所以△PQG的面积S=错误!|PQ||PG|=错误!=错误!.设t=k+错误!,则由k>0得t≥2,当且仅当k=1时取等号.因为S=错误!在[2,+∞)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为错误!.因此,△PQG面积的最大值为错误!.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率;(2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ). 由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c . 因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c . 由|FM |= c +c 2+⎝ ⎛⎭⎪⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =yx +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立,⎩⎪⎨⎪⎧ y =t x +,x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t = 6-2x2x +2>2,解得-32<x <-1或-1<x <0.设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23. ①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m = 2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0.因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233. 思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.(2016·黄冈模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.(1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.解 (1)∵双曲线的离心率为233, ∴椭圆的离心率e =ca =32. 又∵直线x -y -2=0经过椭圆的右顶点,∴右顶点为(2,0),即a =2,c =3,b =1,∴椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1,消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=m 2-1+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列, 故y 1x 1·y 2x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=k 2⇒-8k 2m 21+4k 2+m 2=0. 由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S △OMN =12|MN |d =12·|m |1+k2·1+k 2·|x 1-x 2| =12|m |x 1+x 22-4x 1x 2 =-m 2-2+1.故由m 的取值范围可得△OMN 面积的取值范围为(0,1).题型二 最值问题命题点1 利用三角函数有界性求最值例2 (2016·锦州模拟)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( )A .2 B. 2 C .4 D .2 2答案 C解析 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ,则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________________________________________________________________________.答案 22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+-2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值例4 (2016·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM 、QM 的斜率分别为k 、k ′,证明k ′k 为定值; ②求直线AB 的斜率的最小值.(1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2.所以a =2,b =a 2-c 2= 2.所以椭圆C 的方程为x 24+y 22=1. (2)①证明 设P (x 0,y 0)(x 0>0,y 0>0).由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ).所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k 为定值-3.②解 设A (x 1,y 1),B (x 2,y 2).直线PA 的方程为y =kx +m .直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0,由x 0x 1=2m 2-42k 2+1,可得x 1=m 2-k 2+x 0,所以y 1=kx 1+m =2k m 2-2k 2+x 0+m .同理x 2=m 2-k 2+x 0,y 2=-6k m 2-k 2+x 0+m .所以x2-x 1=m 2-k 2+x 0-m 2-k 2+x 0=-32k 2m 2-k 2+k 2+x 0,y 2-y 1=-6k m 2-k 2+x 0+m -2k m 2-k 2+x 0-m=-8k k 2+m 2-k +k +x 0,所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝ ⎛⎭⎪⎫6k +1k ,由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.因为P (x 0,2m )在椭圆x 24+y 22=1上,所以x 0=4-8m 2,故此时2m -m4-8m 2-0=66,即m =147,符合题意.所以直线AB 的斜率的最小值为62.思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(2016·沧州模拟)已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0. 又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4 =x 20+4-x 202+-x 20x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]答案 C 解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1. 2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( )A.95B.125C .4D .5 答案 B解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y=0,所以所求的距离d =125, 故选B. 3.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,对于左支上任意一点P 都有|PF 2|2=8a |PF 1|(a 为实半轴长),则此双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(2,3]C .(1,3]D .(1,2] 答案 C解析 由P 是双曲线左支上任意一点及双曲线的定义,得|PF 2|=2a +|PF 1|,所以|PF 2|2|PF 1|=|PF 1|+4a 2|PF 1|+4a =8a , 所以|PF 1|=2a ,|PF 2|=4a ,在△PF 1F 2中,|PF 1|+|PF 2|≥|F 1F 2|,即2a +4a ≥2c ,所以e =c a≤3.又e >1,所以1<e ≤3.故选C.4.(2016·邢台摸底)已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是________.答案 5解析 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1,则有|MA |+|MF |=|MA |+|MM 1|,结合图形(图略)可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即6-1=5,因此|MA |+|MF |的最小值是5. 5.(2017·郑州质量预测)已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________.答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1, ∴a 21=m +2,b 21=-n ,c 21=m +2+n , e 21=m +2+n m +2=1+n m +2. ∵双曲线C 2:x 2m +y 2n=1, ∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +2+n =m -n ,则n =-1,∴e 21=1-1m +2. 由m >0得m +2>2,1m +2<12,-1m +2>-12, ∴1-1m +2>12,即e 21>12,而0<e 1<1, ∴22<e 1<1. 6.已知双曲线C 的两个焦点分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2的距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程;(3)已知定点G (1,2),点D 是双曲线C 右支上的动点,求|DF 1|+|DG |的最小值. 解 (1)依题意,得双曲线C 的实半轴长为a =1,半焦距c =2,所以其虚半轴长b =c 2-a 2= 3.又其焦点在x 轴上,所以双曲线C 的标准方程为 x 2-y 23=1. (2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧ 3x 21-y 21=3,3x 22-y 22=3.两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0.因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧ x 1+x 2=4,y 1+y 2=2,所以12(x 1-x 2)-2(y 1-y 2)=0,即k AB =y 1-y 2x 1-x 2=6, 故AB 所在直线l 的方程为y -1=6(x -2),即6x -y -11=0.(3)由已知,得|DF 1|-|DF 2|=2,即|DF 1|=|DF 2|+2,所以|DF 1|+|DG |=|DF 2|+|DG |+2≥|GF 2|+2,当且仅当G ,D ,F 2三点共线时取等号,因为|GF 2|=-2+22=5, 所以|DF 2|+|DG |+2≥|GF 2|+2=5+2,故|DF 1|+|DG |的最小值为5+2.7.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),求实数m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知得a =3,c =2,又a 2+b 2=c 2,得b 2=1,∴双曲线C 的方程为x 23-y 2=1. (2)联立⎩⎪⎨⎪⎧ y =kx +m ,x 23-y 2=1, 整理得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧ 1-3k 2≠0,Δ=m 2+1-3k 2,可得m 2>3k 2-1且k 2≠13,① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为B (x 0,y 0),则x 1+x 2=6km 1-3k 2,∴x 0=x 1+x 22=3km 1-3k 2, ∴y 0=kx 0+m =m 1-3k 2. 由题意,AB ⊥MN ,∴k AB =m1-3k 2+13km 1-3k 2=-1k(k ≠0,m ≠0). 整理得3k 2=4m +1,②将②代入①,得m 2-4m >0,∴m <0或m >4.又3k 2=4m +1>0(k ≠0),即m >-14. ∴m 的取值范围是⎝ ⎛⎭⎪⎫-14,0∪(4,+∞). 8.已知椭圆C 的中心为坐标原点O ,一个长轴顶点为(0,2),它的两个短轴顶点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于异于椭圆顶点的两点A ,B ,且AP →=2PB →.(1)求椭圆的方程;(2)求m 的取值范围.解 (1)由题意,知椭圆的焦点在y 轴上, 设椭圆方程为y 2a 2+x 2b 2=1(a >b >0),由题意,知a =2,b =c ,又a 2=b 2+c 2,则b =2, 所以椭圆方程为y 24+x 22=1. (2)设A (x 1,y 1),B (x 2,y 2),由题意,知直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,即⎩⎪⎨⎪⎧ y 2+2x 2=4,y =kx +m ,消去y ,得 (2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0,由根与系数的关系,知⎩⎪⎨⎪⎧ x 1+x 2=-2mk 2+k 2,x 1·x 2=m 2-42+k 2,又AP →=2PB →,即有(-x 1,m -y 1)=2(x 2,y 2-m ), 所以-x 1=2x 2.则⎩⎪⎨⎪⎧ x 1+x 2=-x 2,x 1x 2=-2x 22,所以m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22. 整理,得(9m 2-4)k 2=8-2m 2,又9m 2-4=0时等式不成立,所以k 2=8-2m 29m 2-4>0,得49<m 2<4,此时Δ>0. 所以m 的取值范围为⎝⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2. 9.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2(3,0),离心率为e . (1)若e =32,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,若AF 2→·BF 2→=0,且22<e ≤32,求k 的取值范围. 解 (1)由右焦点F 2(3,0),知c =3,又e =32=c a ,所以a =2 3. 又由a 2=b 2+c 2,解得b 2=3.所以椭圆的方程为x 212+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx ,x 2a 2+y 2b 2=1,得(b 2+a 2k 2)x 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知,x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k 2.又AF 2→=(3-x 1,-y 1),BF 2→=(3-x 2,-y 2), 所以AF 2→·BF 2→=(3-x 1)(3-x 2)+y 1y 2=(1+k 2)x 1x 2+9=0, 即-a 2a 2-+k 2a 2k 2+a 2-+9=0,整理得k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 由22<e ≤32及c =3, 知23≤a <32,12≤a 2<18.所以a 4-18a 2=(a 2-9)2-81∈[-72,0), 所以k 2≥18,则k ≥24或k ≤-24,因此实数k 的取值范围为⎝ ⎛⎦⎥⎤-∞,-24∪⎣⎢⎡⎭⎪⎫24,+∞.。