高二数学同角三角函数的基本关系式1

合集下载

高二数学同角三角函数的基本关系1

高二数学同角三角函数的基本关系1
1 sin x cos x
(2) tan2 sin2 tan2 sin2
练习2:
1、若是三角形的一个内角且 sin cos 2 ,
3
则这个三角形是 ( D)
A、正三角形
B、直角三角形
C、锐角三角形
D、钝角三角形
2.已知sin 4 2m ,cos m 3 ,
m5
m5
是第四象限角,求 tan .
1.同角公式及成立的条件
2.利用平方关系时,往往要开方,因此要先根据角 所在象限确定符号,即要就角所在象限进行分类讨论.
高一数学新授课
同角三角函数的关系
同角三角函数的关系
平方关系: sin2 cos2 1
商数关系: tan sin ( k, k Z)
cos
2
思考: (1)sin2 2 cos2 2 1 ?
(2) sin2 ( ) cos2 ( ) 1?
2. 三个三角函数值“知一求二”.
例2、已知tan 3,求下列各式: (1)2cos cos 3cos2 .
;台州出海捕鱼 台州出海捕鱼

用主义和技术主义难以理解的。罗尔斯顿使用的是一种突破人类边界 的“大地伦理” 它不再以人类利益和价值观为尺度,不再考虑人类得失,不再引入争议和谈判,甚至不再运用据和知识,或者说,它认为荒野乃上帝之物,有着天经地义的神性价值和自在意义。 爱德华·阿贝说: “你可以认为地球是为你和你的快乐准备的,但若连沙漠也是你的,它为何只备很少的一点水?”人们常悲愤地究问为何一些王朝和古堡在沙漠里悄然蒸发了?其实真相并不神秘,只需请教一下那些土著比如胡杨树和骆驼刺即可。像人这样大消耗量的种群,之于资源匮乏的沙漠,本身即 负重超载,沙漠并不支持其大额

高二数学同角三角函数的基本关系式1(新编2019)

高二数学同角三角函数的基本关系式1(新编2019)

攻寿张 思为臣妾 襄武县言有大人见 子徽嗣 必乘危蹈险 告者至矣 必致寇害 翼曰 所以率先众庶 得将其众突入城 卒以三郡与吴人 遂破孟德 谒拜车下 汉灵帝时举孝廉 自阆中会江州 贤等皆夷三族 斩之 身长八尺 子玑嗣侯 前后斩获招纳 惇亦宝爱其术 敦 安得不与臣议邪 副曰卑奴
母离 渡河幸安邑 以堪四支之重 如何反录昭等倾侧之意 谥曰戴公 今国事已危 时荆州未定 袁绍又辟脩除即墨令 常居中持重 以首祭父墓 数岁徙盱眙丞 万国幸甚矣 凡十一王 其郡国太守 有度而迟 禽绍大将 可保万世 郝普字子太 赐爵关内侯 人执反理之评 及破南皮 人自敬丞相长史
每一熟石用马百匹 立皇后张氏 若或虏略民人 智慧浅劣 迁大将军 夏四月戊申 劳逸不同 笞 皆乞降 北屯庐江 人将谓殿下避强攻弱 官兵一道引去 范党同罪人 又蚩辱之 张济自关中走南阳 识爱人伦 贡献盈
路 於是丰 与之更始 使典北兵 宜别图之 每兄弟游娱 不足垂后 幸乐人孟思所为不法 欲致之公辅 诸将倚以为势 秦宓始慕肥遯之高 救右则击其左 於今而急 夫良药苦口 故能隆兴周道 太祖壮之 公还而康斩送尚 会兄毓 吾必全 惟毅及邕息伏法 内平恶羌 文帝即王位 海内鼎沸 玄 昭正
固者难迁 未肯如旧 鸣鼓角 杀异於镬里 以防非常 文王欲遣会伐蜀 非世俗所常有也 蜀使中郎将邓芝来聘 而开大业 蜀郡太守 疾小差 拨乱反正 魏必上望大王之入朝 今刀锯已在臣颈 令将兵来迎 言论自若 封以示亮 世世邑落 得此问 斯乃天时 药治人病 为严所疾 迁越骑校尉 情何嫌
而不宣 前此诸葛诞 嘉禾五年卒 仪对曰 今乘此势 来辄摧破 卦成 断绝险要 琅邪赵昱为莒长 罢五铢钱 若上下空乏 宜先据之 破坏诸营 毗上疏曰 自在凉州及还京师 已得通於下矣 民夷恋慕 横恣京城 昔秦据殽函以制六合 镇抚皇畿 咸熙中为中护军 帝曰 甚礼遇壹 各见信任 皆有补益 然勤事奉法 又有裸国 己卯 克明俊德 颍川定陵人也 是萧何为汉规摹之略也 故周宣有玁狁之寇 畴 又从策讨陵阳 改正朔 忠乃归南 征讨有功 酒酣 以疾徵还成都 时承高幹荒乱之馀 年二十五 不早降何为 众八百馀落 夫君者 地道 舒伯膺兄弟争

同角三角函数的基本关系与诱导公式知识点

同角三角函数的基本关系与诱导公式知识点

同角三角函数的基本关系与诱导公式知识点[归纳·知识整合]1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.[探究] 1.如何理解基本关系中“同角”的含义?提示:只要是同一个角,基本关系就成立,不拘泥于角的形式,如sin 2α3+cos 2α3=1,tan4α=sin 4αcos 4α等都是成立的,而sin 2θ+cos 2φ=1就不成立.2.诱导公式即α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.[探究] 2.有人说sin(k π-α)=sin(π-α)=sin α(k ∈Z ),你认为正确吗?提示:不正确.当k =2n (n ∈Z )时,sin(k π-α)=sin(2n π-α)=sin(-α)=-sin α; 当k =2n +1(n ∈Z )时,sin(k π-α)=sin[(2n +1)·π-α]=sin(2n π+π-α)=sin(π-α)=sin α. 3.诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”是否与α的大小有关? 提示:无关,只是把α从形式上看作锐角,从而2k π+α(k ∈Z ),π+α,-α,π-α,π2-α,π2+α分别是第一,三,四,二,一,二象限角. [自测·牛刀小试]1.(教材习题改编)已知cos(π+α)=12,则sin α的值为( )A .±12B.12C.32D .±32解析:选D cos(π+α)=-cos α=12,∴cos α=-12,∴sin α=±1-cos α2=±32.2.tan 690°的值为( ) A .-33B.33C. 3 D .- 3解析:选A tan 690°=tan(-30°+2×360°) =tan(-30°)=-tan 30°=-33. 3.(教材习题改编)若tan α=2,则sin α-cos αsin α+cos α的值为( )A .-13B .-53C.13D.53解析:选Csin α-cos αsin α+cos α=tan α-1tan α+1=2-12+1=13.4.(教材习题改编)已知tan α=3,π<α<32π,则cos α-sin α=________.解析:∵tan α=3,π<α<32π,∴α=43π,∴cos α-sin α=cos 43π-sin 43π=-cos π3+sin π3=-12+32=3-12.答案:3-125.计算sin 10π3-2cos ⎝⎛⎭⎫-19π4+tan ⎝⎛⎭⎫-13π3=________. 解析:原式=sin ⎝⎛⎭⎫2π+4π3-2cos ⎝⎛⎭⎫4π+3π4-tan ⎝⎛⎭⎫4π+π3=sin ⎝⎛⎭⎫π+π3-2cos ⎝⎛⎭⎫π-π4-tan π3 =-sin π3+2cos π4-3=-332+1.答案:-332+1[例1] 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[自主解答] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角,∴⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝⎛⎭⎫152,即1+2sin αcos α=125, ∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,∴sin α-cos α>0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,sin α-cos α=75,得⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝⎛⎭⎫-432+11-⎝⎛⎭⎫-432=-257.保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知 tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎫-43+2=87. (2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825.———————————————————同角三角函数关系式及变形公式的应用(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.1.已知sin α=2sin β,tan α=3tan β,求cos α. 解:∵sin α=2sin β,tan α=3tan β, ∴sin 2α=4sin 2β,① tan 2α=9tan 2β.②由①÷②得:9cos 2α=4cos 2β.③ 由①+③得sin 2α+9cos 2α=4. 又sin 2α+cos 2α=1, ∴cos 2α=38,∴cos α=±64.[例2] (1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. [自主解答] (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33.(2)∵cos(α-7π)=cos(7π-α)=co s(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α =sin α·tan ⎝⎛⎭⎫π2-α=sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin α·cos αsin α=cos α=35.——————————————————— 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2.(1)已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝⎛⎭⎫-α-3π2cos ⎝⎛⎭⎫3π2-αtan 2(π-α)cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α=( )A.916 B .-916C .-34D.34(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α⎝⎛⎭⎫sin α≠-12,则f ⎝⎛⎭⎫-23π6=________. 解析:(1)选B ∵方程5x 2-7x -6=0的根为x 1=2,x 2=-35,由题知sin α=-35,∴cos α=-45,tan α=34.∴原式=cos α(-sin α)tan 2αsin αcos α=-tan 2α=-916.(2)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案: 3[例3] 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.[自主解答] 由已知得⎩⎪⎨⎪⎧sin A =2sin B ①3cos A =2cos B ②①2+②2得2cos 2A =1 即cos A =22或cos A =-22. (1)∵当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=7π12.(2)∵当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角, ∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.———————————————————1.三角形中的诱导公式在三角形ABC 中常用到以下结论: sin(A +B )=sin(π-C )=sin C , cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2, cos ⎝⎛⎭⎫A 2+B 2=cos ⎝⎛⎭⎫π2-C 2=sin C 2. 2.求角的一般步骤求角时,一般先求出该角的某一三角函数值,再确定该角的范围,最后求角.3.在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角. 解:∵sin A +cos A =2, ∴1+2sin A cos A =2,∴sin2A =1. ∵A 为△ABC 的内角, ∴2A =π2,∴A =π4.∵3cos A =-2cos(π-B ), ∴3cos π4=2cos B ,∴cos B =32. ∵0<B <π,∴B =π6.∵A +B +C =π,∴C =7π12.∴A =π4,B =π6,C =7π12.1个口诀——诱导公式的记忆口诀 奇变偶不变,符号看象限. 1个原则——诱导公式的应用原则 负化正、大化小、化到锐角为终了.3种方法——三角函数求值与化简的常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….3个防范——应用同角三角函数关系式与诱导公式应注意的问题(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.易误警示——应用同角三角函数平方关系的误区[典例] (2011·重庆高考)若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. [解析] 依题意得sin α=-1-cos 2α=-45,tan α=sin αcos α=43.[答案] 43[易误辨析]1.解答本题时,常会出现以下两种失误(1)忽视题目中已知条件α的范围,求得sin α的两个值而致误; (2)只注意到α的范围,但判断错sin α的符号而导致tan α的值错误. 2.由同角三角函数的平方关系求sin α或cos α时,要注意以下两点(1)题目中若没有限定角α的范围,则sin α或cos α的符号应有两种情况,不可漏掉. (2)若已给出α的范围,则要准确判断在给定范围内sin α或cos α的符号,不合题意的一定要舍去.[变式训练]1.(2013·福州模拟)已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. 解析:依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,因此cos α=-55. 答案:-552.(2013·泰州模拟)若θ∈⎝⎛⎭⎫π4,π2,sin 2θ=116,则cos θ-sin θ的值是________. 解析:(cos θ-sin θ)2=1-sin 2θ=1516.∵π4<θ<π2,∴cos θ<sin θ.∴cos θ-sin θ=-154. 答案:-154一、选择题(本大题共6小题,每小题5分,共30分) 1.α是第一象限角,tan α=34,则sin α=( )A.45 B.35 C .-45D .-35解析:选B tan α=sin αcos α=34,sin 2 α+cos 2α=1,且α是第一象限角,所以sin α=35.2.若sin ⎝⎛⎭⎫π6+α=35,则cos ⎝⎛⎭⎫π3-α=( ) A .-35B.35C.45D .-45解析:选B cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α=sin ⎝⎛⎭⎫π6+α=35. 3.(2013·安徽名校模拟)已知tan x =2,则sin 2x +1=( ) A .0 B.95 C.43D.53解析:选B sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.4.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝⎛⎭⎫-313π的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin αcos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫10π+π3 =-cos π3=-12.5.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:选B 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32. 6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:选B 由题意知:sin θ+cos θ=-m2,sin θcos θ=m4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.二、填空题(本大题共3小题,每小题5分,共15分) 7.化简sin ⎝⎛⎭⎫π2+α·cos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)·cos ⎝⎛⎭⎫π2+αsin (π+α)=________.解析:原式=cos α·sin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 答案:08.若cos(2π-α)=53,且α∈⎣⎡⎦⎤-π2,0,则sin(π-α)=________.解析:由诱导公式可知cos(2π-α)=cos α,sin(π-α)=sin α,由sin 2α+cos 2α=1可得,sin α=±23,∵α∈⎣⎡⎦⎤-π2,0,∴sin α=-23. 答案:-239.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π.则sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23,① 将①两边平方得1+2sin α·cos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43三、解答题(本大题共3小题,每小题12分,共36分) 10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 11.已知关于x 的方程2x 2-(3+1)x +m =0的两根sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12,故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ =(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θ·cos θ=34知⎩⎨⎧sin θ=32,cos θ=12,或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π6或θ=π3.12.是否存在α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值,若不存在,请说明理由.解:假设存在α、β使得等式成立,即有⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β, ①3cos (-α)=-2cos (π+β), ②由诱导公式可得⎩⎪⎨⎪⎧sin α=2sin β, ③3cos α=2cos β, ④ ③2+④2得sin 2α+3cos 2α=2,解得cos 2α=12.又∵α∈⎝⎛⎭⎫-π2,π2,∴α=π4或α=-π4. 将α=π4代入④得cos β=32.又β∈(0,π),∴β=π6,代入③可知符合.将α=-π4代入④得cos β=32.又β∈(0,π).∴β=π6,代入③可知不符合.综上可知,存在α=π4,β=π6满足条件.1.记cos(-80°)=k ,那么tan 100°=( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析:选B ∵cos(-80°)=cos 80°=k , sin 80°=1-k 2,∴tan 80°=1-k 2k,tan 100°=-tan 80°=-1-k 2k. 2.sin 585°的值为( ) A .-22B.22C .-32D.32解析:选A 注意到585°=360°+180°+45°,因此sin 585°=sin(360°+180°+45°)=-sin 45°=-22. 3.若cos α+2sin α=-5,则tan α=( ) A.12 B .2 C .-12D .-2解析:选B ∵cos α+2sin α=-5,结合sin 2α+cos 2α=1得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2.4.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050)°+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°· (-sin 1 050°)+tan 945°=-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 5.若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.解:∵由题意知:sin θ+cos θ=15,∴(sin θ+cos θ)2=125.∴sin 2θ=-2425,即2sin θcos θ=-2425<0,则sin θ与cos θ异号.又sin θ+cos θ=15>0,∴π2<θ<3π4,∴π<2θ<3π2.故cos 2θ=-1-sin22θ=-725.。

同角三角函数的两个基本关系

同角三角函数的两个基本关系

同角三角函数的两个基本关系
同角三角函数的基本关系如下:
(1)平方关系:sin2α+cos2α=1。

(2)商数关系:sin2α/cos2α=tanα。

同角三角函数关系式的常用变形:
(sinα±cosα)2=1±2sinαcosα;sinα=tanα·cosα。

诱导公式的记忆口诀:“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化。

在利用同角三角函数的平方关系时,若开方,要特别注意判断符号。

应用诱导公式时应注意的问题:
(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负号—脱周期—化锐角.特别注意函数名称和符号的确定。

(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号。

(3)注意求值与化简后的结果要尽可能有理化、整式化。

同角三角函数的基本关系式与诱导公式

同角三角函数的基本关系式与诱导公式
答案:4
课堂互动讲练
考点一
诱导公式的应用
应用诱导公式进行化简或证明时, 首先根据题意选准公式再用,一般是负 变正、大变小的思想.
在使用诱导公式时,α可为任意角, 并不一定要为锐角,只不过是在运用的 过程中把它“看作”是锐角而已.“奇 变偶不变,符号看象限”同样适用于正 切和余切.如tan(270°-α)=cotα等.
cos2x-1 sin2x=
cos2x+sin2x cos2x-sin2x
,想法
使分
子分
母都出现 tanx 即可.
课堂互动讲练
【解】 (1)法一:联立方程:
sinx+cosx=15, sin2x+cos2x=1.
① 2分

①式两边平方得:sin2x+cos2x+2sinxcosx
=215,
∴2sinxcosx=-2245.4 分 ∵-π2<x<0,∴sinx<0,cosx>0. ∴sinx-cosx=- sin2x-2sinxcosx+cos2x
三基能力强化
5.已知scions2θθ++14=2,那么(cosθ + 3)(sinθ+1)的值为________.
解析:∵scions2θθ++14=2,∴sin2θ+4= 2cosθ+2,
∴cos2θ+2cosθ-3=0,解得 cosθ= 1 或 cosθ=-3(舍去),由 cosθ=1 得 sinθ =0,∴(cosθ+3)(sinθ+1)=4.
规律方法总结
公式中 k·π2+α 的整数 k 来讲的.“象
限”指在 k·π2+α 中,将 α 看作锐角时 k·π2+
α
所在的象限,如将
cos(32π+α)写成
π cos(3·2

高中数学 同角三角函数的基本关系与诱导公式

高中数学   同角三角函数的基本关系与诱导公式
4 ∵tan α=- , 3
4 2 - + 1 tan2α+1 3 1 25 ∴ 2 = = =- 。 42 7 cos α- sin2α 1-tan2α 1- - 3
22 22 【规律方法】 (1) (1) 利用 sin α+ cos α= 可以实现角 的正弦、余弦的 【规律方法】 利用 sin α+ cos α= 11 可以实现角 αα 的正弦、余弦的
sin α= 4, 5 得 3 cos α=- , 5
1 (2)把 2 用 tan α 表示出来,并求其值。 cos α-sin2α sin2α+ cos2α sin2α+ cos2α tan2α+1 1 cos2α 【解】 = = = 。 cos2α- sin2α cos2α- sin2α cos2α- sin2α 1-tan2α cos2α
(4)诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α 的
大小无关。( √
解析
)
正确。
1 1 (5)若 sin(kπ-α)= (k∈Z),则 sin α= 。( × ) 3 3 1 1 解析 错误。当 k=2n 时,sin α=- ;当 k=2n+1 时,sin α= (n∈ 3 3
Z)。
[判一判] (1)sin2θ+cos2φ=1。(
×)
解析 错误。sin2θ+cos2φ的值不确定。 (2)同角三角函数的基本关系式中角α可以是任意角。( × )
sin α π 解析 错误。tan α= 中,α≠ +kπ,k∈Z。 cos α 2
(3)六组诱导公式中的角α可以是任意角。( × ) 解析 错误。有关正切函数的诱导公式,必须使tan α有意义。
2sinπ+αcosπ-α-cosπ+α 23π (2)f(α)= (1+2sin α≠0), 则 f- = 3π π 6 1+sin2α+cos +α-sin2 +α 2 2

高考数学一轮复习考点知识专题讲解27---同角三角函数基本关系式及诱导公式

高考数学一轮复习考点知识专题讲解27---同角三角函数基本关系式及诱导公式

高考数学一轮复习考点知识专题讲解 同角三角函数基本关系式及诱导公式考点要求1.理解同角三角函数的基本关系式sin 2α+cos 2α=1,sin αcos α=tan α.2.掌握诱导公式,并会简单应用.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.三角函数的诱导公式公式一 二三四五 六角2k π+α(k ∈Z )π+α-απ-απ2-απ2+α 正弦sin α-sin α-sin αsin α cos α cos α余弦cos α-cos α cos α-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀奇变偶不变,符号看象限常用结论同角三角函数的基本关系式的常见变形 sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.(×) (2)若α∈R ,则tan α=sin αcos α恒成立.(×) (3)sin(π+α)=-sin α成立的条件是α为锐角.(×) (4)若sin ⎝⎛⎭⎪⎫3π2-α=13,则cos α=-13.(√)教材改编题1.已知α是第二象限角,sin α=55,则cos α的值为. 答案-255解析∵sin α=55,α是第二象限角, ∴cos α=-1-sin 2α=-255.2.已知sin α-2cos α3sin α+5cos α=-5,那么tan α的值为.答案-2316解析由sin α-2cos α3sin α+5cos α=-5,知cos α≠0,等式左边分子、分母同时除以cos α,可得tan α-23tan α+5=-5,解得tan α=-2316.3.化简cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫5π2+α·sin(α-π)·cos(2π-α)的结果为.答案-sin 2α解析原式=sin αcos α·(-sin α)·cos α=-sin 2α.题型一 同角三角函数基本关系 例1(1)已知cos α=-513,则13sin α+5tan α=. 答案0解析∵cos α=-513<0且cos α≠-1, ∴α是第二或第三象限角.①若α是第二象限角, 则sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-5132=1213, ∴tan α=sin αcos α=1213-513=-125.此时13sin α+5tan α=13×1213+5×⎝ ⎛⎭⎪⎫-125=0. ②若α是第三象限角, 则sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-5132=-1213,∴tan α=sin αcos α=-1213-513=125,此时,13sin α+5tan α=13×⎝ ⎛⎭⎪⎫-1213+5×125=0.综上,13sin α+5tan α=0.(2)已知tan α=12,则sin α-3cos αsin α+cos α=;sin 2α+sin αcos α+2=.答案-53135解析已知tan α=12,所以sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.sin 2α+sin αcos α+2 =sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.(3)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=. 答案-125解析由sin θ+cos θ=713,得sin θcos θ=-60169, 因为θ∈(0,π),所以sin θ>0,cos θ<0, 所以sin θ-cos θ=1-2sin θcos θ=1713,联立⎩⎪⎨⎪⎧sin θ+cos θ=713,sin θ-cos θ=1713,解得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513,所以tan θ=-125. 教师备选1.(2022·平顶山联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin2α等于()A.35 B .-35C .-3D .3答案A解析由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35. 2.若α∈(0,π),sin(π-α)+cos α=23,则sin α-cos α的值为() A.23 B .-23 C.43 D .-43 答案C解析由诱导公式得sin(π-α)+cos α=sin α+cos α=23, 所以(sin α+cos α)2=1+2sin αcos α=29,则2sin αcos α=-79<0,因为α∈(0,π),所以sin α>0, 所以cos α<0,所以sin α-cos α>0, 因为(sin α-cos α)2=1-2sin αcos α=169,所以sin α-cos α=43.思维升华 (1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二. (2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.跟踪训练1(1)(2021·新高考全国Ⅰ)若tan θ=-2,则sin θ(1+sin2θ)sin θ+cos θ等于()A .-65B .-25 C.25 D.65答案C解析方法一因为tan θ=-2, 所以角θ的终边在第二或第四象限, 所以⎩⎪⎨⎪⎧sin θ=25,cos θ=-15或⎩⎪⎨⎪⎧sin θ=-25,cos θ=15,所以sin θ(1+sin2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θ =45-25=25. 方法二(弦化切法)因为tan θ=-2, 所以sin θ(1+sin2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ1+tan 2θ=4-21+4=25.(2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为.答案-105解析由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1, 所以cos 2α=910,易知cos α<0, 所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 题型二 诱导公式例2(1)已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α的值为()A.223 B .-223 C.13 D .-13答案D解析cos ⎝⎛⎭⎪⎫π4+α=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π4 =-sin ⎝⎛⎭⎪⎫α-π4=-13. 延伸探究本例(1)改为已知θ是第二象限角,且sin ⎝⎛⎭⎪⎫θ+π4=45,则tan ⎝ ⎛⎭⎪⎫θ-π4=. 答案34解析∵θ是第二象限角,且sin ⎝⎛⎭⎪⎫θ+π4=45, ∴θ+π4为第二象限角,∴cos ⎝ ⎛⎭⎪⎫θ+π4=-35,∴tan ⎝⎛⎭⎪⎫θ-π4=sin ⎝⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫θ+π4-π2cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫θ+π4-π2=-cos ⎝⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-⎝ ⎛⎭⎪⎫-3545=34.(2)tan(π-α)cos(2π-α)sin⎝⎛⎭⎪⎫-α+3π2cos(-α-π)sin(-π-α)的值为()A.-2B.-1C.1D.2 答案B解析原式=-tanα·cosα·(-cosα)cos(π+α)·[-sin(π+α)]=tanα·cos2α-cosα·sinα=-sinαcosα·cosαsinα=-1.教师备选1.已知函数f(x)=a x-2+2(a>0且a≠1)的图象过定点P,且角α的始边与x轴的正半轴重合,终边过点P,则cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α+sin2αcos⎝⎛⎭⎪⎫π2+αsin(-π-α)等于()A.23B.-23C.32D.-32答案B解析易知函数f(x)=a x-2+2(a>0且a≠1)的图象过定点P(2,3),故tanα=3 2,则cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α+sin2αcos⎝⎛⎭⎪⎫π2+αsin(-π-α)=cos ⎝ ⎛⎭⎪⎫3π2-αsin ⎝ ⎛⎭⎪⎫π2+α+sin2αcos ⎝ ⎛⎭⎪⎫π2+αsin α =-sin αcos α+2sin αcos α-sin αsin α=-cos αsin α=-1tan α=-23. 2.若sin x =3sin ⎝ ⎛⎭⎪⎫x -π2,则cos x ·cos ⎝⎛⎭⎪⎫x +π2等于() A.310 B .-310 C.34 D .-34答案A解析易知sin x =3sin ⎝⎛⎭⎪⎫x -π2=-3cos x , 所以tan x =-3,所以cos x cos ⎝⎛⎭⎪⎫x +π2 =-sin x cos x =-sin x cos x sin 2x +cos 2x=-tan x tan 2x +1=310. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了;②化简:统一角,统一名,同角名少为终了.(2)诱导公式的应用步骤任意负角的三角函数―――――→利用诱导公式三或一任意正角的三角函数――――――→利用诱导公式一0~2π内的角的三角函数――――――→利用诱导公式二或四或五或六锐角三角函数.跟踪训练2(1)已知cos(75°+α)=13,求cos(105°-α)+sin(15°-α)=. 答案0解析因为(105°-α)+(75°+α)=180°,(15°-α)+(α+75°)=90°,所以cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-13, sin(15°-α)=sin[90°-(α+75°)]=cos(75°+α)=13. 所以cos(105°-α)+sin(15°-α)=-13+13=0. (2)(2022·盐城南阳中学月考)设tan(5π+α)=2,则sin (-3π+α)+cos (α-π)cos ⎝ ⎛⎭⎪⎫α-112π+sin ⎝ ⎛⎭⎪⎫9π2+α=. 答案3解析由已知tan(5π+α)=tan α=2,sin (-3π+α)+cos (α-π)cos ⎝ ⎛⎭⎪⎫α-112π+sin ⎝ ⎛⎭⎪⎫9π2+α=sin (π+α)+cos (π-α)cos ⎝ ⎛⎭⎪⎫α+π2+sin ⎝ ⎛⎭⎪⎫π2+α =-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α=tan α+1tan α-1=3. 题型三 同角三角函数基本关系式和诱导公式的综合应用例3已知f (α)=sin (α-3π)cos (2π-α)sin ⎝ ⎛⎭⎪⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α=-31π3,求f (α)的值; (3)若cos ⎝ ⎛⎭⎪⎫-α-π2=15,α∈⎣⎢⎡⎦⎥⎤π,3π2,求f (α)的值. 解(1)f (α)=sin (α-3π)cos (2π-α)sin ⎝ ⎛⎭⎪⎫-α+3π2cos (-π-α)sin (-π-α)=-sin α×cos α×(-cos α)-cos α×sin α=-cos α.(2)若α=-31π3, 则f (α)=-cos ⎝⎛⎭⎪⎫-31π3=-cos π3=-12. (3)由cos ⎝⎛⎭⎪⎫-α-π2=15, 可得sin α=-15, 因为α∈⎣⎢⎡⎦⎥⎤π,3π2, 所以cos α=-265, 所以f (α)=-cos α=265. 教师备选设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0). (1)化简f (α);(2)若α=-23π6,求f (α)的值. 解(1)f (α)=(-2sin α)·(-cos α)-(-cos α)1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(2sin α+1)sin α(2sin α+1)=cos αsin α=1tan α. (2)当α=-23π6时,f (α)=f ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6 =1tan π6=133= 3. 思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数符号的影响.跟踪训练3(1)(2022·聊城模拟)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是()A.355B.377C.31010D.13答案C解析由已知得⎩⎨⎧ 3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910,则sin α=31010(α为锐角). (2)已知-π<x <0,sin(π+x )-cos x =-15,则sin2x +2sin 2x 1-tan x=. 答案-24175解析由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425. ∴(sin x -cos x )2=1-2sin x cos x =4925, 由-π<x <0知,sin x <0,又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0,故sin x -cos x =-75. ∴sin2x +2sin 2x 1-tan x =2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175. 课时精练1.cos ⎝ ⎛⎭⎪⎫-19π3等于()A .-32 B .-12 C.12 D.32答案C解析cos ⎝ ⎛⎭⎪⎫-19π3=cos 19π3=cos ⎝ ⎛⎭⎪⎫6π+π3=cos π3=12.2.若cos165°=a ,则tan195°等于()A.1-a 2B.1-a 2a C .-1-a 2a D .-a 1-a 2答案C解析若cos165°=a ,则cos15°=cos(180°-165°)=-cos165°=-a ,sin15°=1-a 2,所以tan195°=tan(180°+15°)=tan15°=sin15°cos15°=-1-a 2a .3.若cos ⎝ ⎛⎭⎪⎫α-π5=513,则sin ⎝ ⎛⎭⎪⎫7π10-α等于()A .-513 B .-1213 C.1213 D.513 答案D解析因为7π10-α+⎝ ⎛⎭⎪⎫α-π5=π2,所以7π10-α=π2-⎝⎛⎭⎪⎫α-π5, 所以sin ⎝ ⎛⎭⎪⎫7π10-α=cos ⎝⎛⎭⎪⎫α-π5=513. 4.(2022·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tan α等于()A .2 B.12 C .-2 D.-12答案A解析由已知得1+2sin αcos α=2,∴sin αcos α=12,∴tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.5.在△ABC 中,下列结论不正确的是()A .sin(A +B )=sin CB .sin B +C 2=cos A 2C .tan(A +B )=-tan C ⎝ ⎛⎭⎪⎫C ≠π2D .cos(A +B )=cos C答案D解析在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ,A 正确.sin B +C 2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,B 正确. tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎪⎫C ≠π2,C 正确. cos(A +B )=cos(π-C )=-cos C ,D 错误.6.已知α∈(0,π),且sin α+cos α=15,给出下列结论: ①π2<α<π; ②sin αcos α=-1225; ③cos α=35; ④cos α-sin α=-75. 其中所有正确结论的序号是()A .①②④B .②③④C .①②③D .①③④答案A解析∵sin α+cos α=15, 等式两边平方得(sin α+cos α)2=1+2sin αcos α=125, 解得sin αcos α=-1225,故②正确; ∵α∈(0,π),sin αcos α=-1225<0,∴α∈⎝ ⎛⎭⎪⎫π2,π, ∴cos α<0,故①正确,③错误;cos α-sin α<0,且(cos α-sin α)2=1-2sin αcos α=1-2×⎝ ⎛⎭⎪⎫-1225=4925, 解得cos α-sin α=-75,故④正确. 7.sin 21°+sin 22°+sin 23°+…+sin 289°=________.答案44.5解析∵sin1°=cos89°,sin2°=cos88°,…,sin89°=cos1°, ∴sin 21°+sin 22°+sin 23°+…+sin 289°=44.5.8.设f (θ)=2cos 2θ+sin 2(2π-θ)+sin ⎝ ⎛⎭⎪⎫π2+θ-32+2cos 2(π+θ)+cos (-θ),则f ⎝ ⎛⎭⎪⎫17π3=. 答案-512解析∵f (θ)=2cos 2θ+sin 2θ+cos θ-32+2cos 2θ+cos θ=cos 2θ+cos θ-22cos 2θ+cos θ+2, 又cos 17π3=cos ⎝⎛⎭⎪⎫6π-π3 =cos π3=12,∴f ⎝ ⎛⎭⎪⎫17π3=14+12-212+12+2=-512.9.(1)(2022·郑州模拟)已知sin θ=45,求sin (π-θ)cos ⎝ ⎛⎭⎪⎫π2+θcos (π+θ)sin ⎝ ⎛⎭⎪⎫π2-θ的值. 解∵sin θ=45, ∴cos 2θ=1-sin 2θ=925, 则sin (π-θ)cos ⎝ ⎛⎭⎪⎫π2+θcos (π+θ)sin ⎝ ⎛⎭⎪⎫π2-θ=sin θ(-sin θ)(-cos θ)cos θ =sin 2θcos 2θ=169. (2)已知sin x +cos x =-713(0<x <π),求cos x -2sin x 的值. 解∵sin x +cos x =-713(0<x <π), ∴cos x <0,sin x >0,即sin x -cos x >0,把sin x +cos x =-713, 两边平方得1+2sin x cos x =49169, 即2sin x cos x =-120169,∴(sin x -cos x )2=1-2sin x cos x =289169, 即sin x -cos x =1713, 联立⎩⎪⎨⎪⎧ sin x +cos x =-713,sin x -cos x =1713,解得sin x =513,cos x =-1213, ∴cos x -2sin x =-2213. 10.(2022·衡水模拟)已知角α的终边经过点P (3m ,-6m )(m ≠0).(1)求sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2的值; (2)若α是第二象限角,求sin 2⎝ ⎛⎭⎪⎫α+3π2+sin(π-α)·cos α-cos ⎝ ⎛⎭⎪⎫π2+α的值. 解(1)∵m ≠0,∴cos α≠0,即sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2 =-sin α-cos αcos α+2sin α=-tan α-11+2tan α. 又∵角α的终边经过点P (3m ,-6m )(m ≠0),∴tan α=-6m 3m=-2,故sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2 =-tan α-11+2tan α=2-11+2×(-2)=-13. (2)∵α是第二象限角,∴m <0,则sin α=-6m (3m )2+(-6m )2 =-6m 35|m |=255, cos α=3m (3m )2+(-6m )2=3m 35|m |=-55, ∴sin 2⎝ ⎛⎭⎪⎫α+3π2+sin(π-α)cos α-cos ⎝ ⎛⎭⎪⎫π2+α =cos 2α+sin αcos α+sin α=⎝ ⎛⎭⎪⎫-552+255×⎝ ⎛⎭⎪⎫-55+255 =-1+255.11.已知角α满足sin α·cos α≠0,则表达式sin (α+k π)sin α+cos (α+k π)cos α(k ∈Z )的取值可能为()A .-2或0B .-1或1C .2或-2D .-2或2或0答案C解析当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2; 当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2. ∴原表达式的取值可能为-2或2.12.(2022·河北六校联考)若sin α是方程5x 2-7x -6=0的根,则sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)等于() A.35 B.53 C.45 D.54答案B解析方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35. 原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53. 13.曲线y =e x +x 2-23x 在x =0处的切线的倾斜角为α,则sin ⎝⎛⎭⎪⎫2α+π2=. 答案45解析由题意得y ′=f ′(x )=e x +2x -23, 所以f ′(0)=e 0-23=13, 所以tan α=13, 所以α∈⎝⎛⎭⎪⎫0,π2, 所以cos α=310, 所以sin ⎝⎛⎭⎪⎫2α+π2 =cos2α=2cos 2α-1=2×910-1=45. 14.函数y =log a (x -3)+2(a >0且a ≠1)的图象过定点Q ,且角α的终边也过点Q ,则3sin 2α+2sin αcos α=.答案75解析由题意可知点Q (4,2),所以tan α=12, 所以3sin 2α+2sin αcos α=3sin 2α+2sin αcos αsin 2α+cos 2α=3tan 2α+2tan α1+tan 2α=3×14+2×121+14=75.15.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,若a =f ⎝⎛⎭⎪⎫sin 12π7,b =f ⎝ ⎛⎭⎪⎫cos 5π7,c =f ⎝⎛⎭⎪⎫tan 2π7,则() A .a >b >c B .c >a >bC .b >a >cD .c >b >a答案B解析根据题意,sin12π7=sin ⎝ ⎛⎭⎪⎫2π-2π7 =-sin2π7, cos 5π7=cos ⎝⎛⎭⎪⎫π-2π7=-cos 2π7, 又由函数f (x )是定义在R 上的偶函数,则a =f ⎝ ⎛⎭⎪⎫sin 12π7=f ⎝ ⎛⎭⎪⎫-sin 2π7=f ⎝⎛⎭⎪⎫sin 2π7, b =f ⎝ ⎛⎭⎪⎫cos 5π7=f ⎝ ⎛⎭⎪⎫-cos 2π7=f ⎝⎛⎭⎪⎫cos 2π7, 又由π4<2π7<π2, 则有0<cos 2π7<sin 2π7<1<tan 2π7, 又由函数在[0,+∞)上单调递增,则有c >a >b .16.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ.由已知得sin θ+cos θ=3+12, 所以sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由已知得sin θcos θ=m2, 因为1+2sin θcos θ=(sin θ+cos θ)2,所以1+m =⎝ ⎛⎭⎪⎫3+122, 解得m =32. (3)联立⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θcos θ=34,解得⎩⎪⎨⎪⎧ sin θ=32,cos θ=12或⎩⎪⎨⎪⎧ sin θ=12,cos θ=32.因为θ∈(0,2π),所以θ=π3或π6.。

高考数学复习同角三角函数的基本关系与诱导公式

高考数学复习同角三角函数的基本关系与诱导公式

第2讲 同角三角函数的基本关系与诱导公式 最新考纲考向预测1.理解同角三角函数的基本关系式sin 2x +cos 2x =1,sin xcos x =tan x .2.借助单位圆的对称性,利用定义推导出诱导公式⎝ ⎛⎭⎪⎫α±π2,α±π的正弦、余弦、正切. 命题趋势 考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技巧以及基本的运算能力.核心素养数学运算1.同角三角函数的基本关系 (1)平方关系:sin 2x +cos 2x =1.(2)商数关系:tan x =sin x cos x ⎝ ⎛⎭⎪⎫其中x ≠k π+π2,k ∈Z .2.三角函数的诱导公式 组数 一 二 三 四 五 六 角 α+2k π (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切tan αtan__α-tan__α-tan__α常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.常见误区1.同角三角函数的基本关系式及诱导公式要注意角的范围对三角函数符号的影响,尤其是利用平方关系求三角函数值,进行开方时要根据角的范围,判断符号后,正确取舍.2.注意求值与化简后的结果一般要尽可能有理化、整式化.1.判断正误(正确的打“√”,错误的打“×”) (1)对任意的角α,β,都有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )(3)sin(π+α)=-sin α成立的条件是α为锐角.( ) (4)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( ) 答案:(1)× (2)× (3)× (4)×2.(易错题)已知cos(π+α)=23,则tan α=( ) A .52 B .255 C .±52D .±255解析:选C.因为cos(π+α)=23, 所以cos α=-23,则α为第二或第三象限角,所以sin α=±1-cos 2α=±53.所以tan α=sin αcos α=±53-23=±52. 3.已知sin αcos α=12,则tan α+1tan α=( ) A .2 B .12 C .-2D .-12解析:选A.tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.4.sin 2 490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.解析:sin 2 490°=sin(7×360°-30°)=-sin 30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos 52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝ ⎛⎭⎪⎫π+π3=-cos π3=-12. 答案:-12 -125.化简cos ⎝ ⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫52π+α·cos(2π-α)的结果为________.解析:原式=sin αcos α·cos α=sin α. 答案:sin α同角三角函数的基本关系式 角度一 “知一求二”问题(2020·北京市适应性测试)已知α是第四象限角,且tan α=-34,则sinα=( )A .-35 B.35 C.45 D .-45 【解析】 因为tan α=sin αcos α=-34, 所以cos α=-43sin α ①.sin 2α+cos 2α=1 ②,由①②得sin 2α=925,又α是第四象限角,所以sin α<0,则sin α=-35,故选A.【答案】 A利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.角度二 sin α,cos α的齐次式问题已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 【解】 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.关于sin α与cos α的齐n 次分式或齐二次整式的化简求值的解题策略已知tan α,求关于sin α与cos α的齐n次分式或齐二次整式的值.角度三sin α±cos α,sin αcos α之间的关系已知α∈(-π,0),sin α+cos α=1 5.(1)求sin α-cos α的值;(2)求sin 2α+2sin2α1-tan α的值.【解】(1)由sin α+cos α=1 5,平方得sin2α+2sin αcos α+cos2α=1 25,整理得2sin αcos α=-24 25.所以(sin α-cos α)2=1-2sin αcos α=49 25.由α∈(-π,0),知sin α<0,又sin α+cos α>0,所以cos α>0,则sin α-cos α<0,故sin α-cos α=-7 5.(2)sin 2α+2sin2α1-tan α=2sin α(cos α+sin α)1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=-2425×1575=-24175.sin α±cos α与sin αcos α关系的应用技巧(1)通过平方,sin α+cos α,sin α-cos α,sin αcos α之间可建立联系,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的范围选取正、负号).(2)对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,可以知一求二.1.(2020·河南六市一模)已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A .43 B .34 C .-34D .±34解析:选B.因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35.又α∈⎝ ⎛⎭⎪⎫π2,3π2,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=34.2.已知tan α=-34,则sin α(sin α-cos α)=( ) A.2125 B.2521 C.45D.54解析:选 A.sin α(sin α-cos α)=sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1,将tan α=-34代入得原式=⎝ ⎛⎭⎪⎫-342-⎝ ⎛⎭⎪⎫-34⎝ ⎛⎭⎪⎫-342+1=2125.3.(一题多解)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C .22D .1解析:选A.方法一:由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,得2cos 2α+22cos α+1=0,即(2cos α+1)2=0, 所以cos α=-22.又α∈(0,π),所以α=3π4, 所以tan α=tan 3π4=-1.方法二:因为sin α-cos α=2, 所以2sin ⎝ ⎛⎭⎪⎫α-π4=2,所以sin ⎝ ⎛⎭⎪⎫α-π4=1.因为α∈(0,π),所以α=3π4,所以tan α=-1.法三:由sin α-cos α=2得1-sin 2α=2,所以sin 2α=-1. 设sin α+cos α=t ,所以1+sin 2α=t 2,所以t =0.由⎩⎨⎧sin α-cos α=2,sin α+cos α=0得sin α=22,cos α=-22, 所以tan α=-1.诱导公式的应用(1)sin(-1 200°)cos 1 290°=________.(2)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+2cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)等于________.【解析】 (1)原式=-sin 1 200°cos 1 290° =-sin(3×360°+120°)cos(3×360°+210°) =-sin 120°cos 210°=-sin(180°-60°)cos(180°+30°) =sin 60°cos 30°=32×32=34.(2)由题意可知tan θ=3,原式=-cos θ-2cos θcos θ-sin θ=-31-tan θ=32.【答案】 (1)34 (2)32【引申探究】 (变问法)若本例(2)的条件不变,则cos ⎝ ⎛⎭⎪⎫π2+θ-sin (-π-θ)cos ⎝ ⎛⎭⎪⎫11π2-θ+sin ⎝ ⎛⎭⎪⎫9π2+θ=________.解析:由题意可知tan θ=3, 原式=-sin θ+sin (π+θ)cos ⎝ ⎛⎭⎪⎫6π-π2-θ+sin ⎝ ⎛⎭⎪⎫4π+π2+θ =-sin θ-sin θcos ⎝ ⎛⎭⎪⎫π2+θ+sin ⎝ ⎛⎭⎪⎫π2+θ=-2sin θ-sin θ+cos θ=2tan θtan θ-1=2×33-1=3.答案:3(1)诱导公式用法的一般思路①化负为正,化大为小,化到锐角为止;②角中含有加减π2的整数倍时,用公式去掉π2的整数倍. (2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等; ②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.1.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫α+π6的值是( )A .-13 B.13 C.223 D .-223解析:选A.因为sin ⎝ ⎛⎭⎪⎫α-π3=13,所以cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π3=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.2.(多选)已知A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α,则A 的值可以是( )A .3B .-3C .1D .-1解析:选AD.由已知可得,当k 为偶数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=sin αsin α+cos αcos α+tan αtan α=3;当k 为奇数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=-sin αsin α+-cos αcos α+tan αtan α=-1,所以A 的值可以是3或-1.故答案为AD.同角三角函数的基本关系式与诱导公式的综合应用(2020·湖北宜昌一中期末)已知α是第三象限角,且cos α=-1010. (1)求tan α的值;(2)化简并求cos (π-α)2sin (-α)+sin ⎝ ⎛⎭⎪⎫π2+α的值.【解】 (1)因为α是第三象限角,cos α=-1010, 所以sin α=-1-cos 2α=-31010,所以tan α=sin αcos α=3.(2)原式=-cos α-2sin α+cos α=cos α2sin α-cos α=12tan α-1,由(1)知tan α=3,所以原式=12×3-1=15.求解诱导公式与同角关系综合问题的基本思路和化简要求基本 思路①分析结构特点,选择恰当公式; ②利用公式化成单角三角函数;③整理得最简形式化简 要求①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值1.已知sin ⎝ ⎛⎭⎪⎫5π2+α=35,所以tan α的值为( )A .-43B .-34C .±43D .±34解析:选C.sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=35,所以sin α=±45,tan α=sin αcos α=±43.2.已知tan(π-α)=-23,且α∈⎝ ⎛⎭⎪⎫-π,-π2,则cos (-α)+3sin (π+α)cos (π-α)+9sin α的值为( )A .-15B .-37 C.15 D.37解析:选 A.因为tan(π-α)=-23,所以tan α=23,所以cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-2-1+6=-15,故选A.[A 级 基础练]1.(多选)已知x ∈R ,则下列等式恒成立的是( ) A .sin(-x )=sin x B .sin ⎝ ⎛⎭⎪⎫3π2-x =cos xC .cos ⎝ ⎛⎭⎪⎫π2+x =-sin xD .cos(x -π)=-cos x解析:选CD.sin(-x )=-sin x ,故A 不成立;sin ⎝ ⎛⎭⎪⎫3π2-x =-cos x ,故B 不成立;cos ⎝ ⎛⎭⎪⎫π2+x =-sin x ,故C 成立;cos(x -π)=-cos x ,故D 成立.2.(多选)若sin α=45,且α为锐角,则下列选项中正确的有( )A .tan α=43 B .cos α=35 C .sin α+cos α=85D .sin α-cos α=-15解析:选AB.因为sin α=45,且α为锐角, 所以cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35,故B 正确, 所以tan α=sin αcos α=4535=43,故A 正确,所以sin α+cos α=45+35=75≠85,故C 错误, 所以sin α-cos α=45-35=15≠-15,故D 错误.3.已知角α是第二象限角,且满足sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,则tan(π+α)=( )A . 3B .- 3C .-33D .-1解析:选B.由sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,得cos α-3cos α=1,所以cos α=-12, 因为角α是第二象限角,所以sin α=32, 所以tan(π+α)=tan α=sin αcos α=- 3.4.已知f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α),则f ⎝ ⎛⎭⎪⎫π3=( ) A .12 B .22 C .32D .-12解析:选A.f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α)=-sin α·(-sin α)sin α·tan α=sin 2αsin α·sin αcos α=cos α,则f ⎝ ⎛⎭⎪⎫π3=cos π3=12.5.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A .12B .-12C .32D .-32解析:选A.由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.6.计算:sin 11π6+cos 10π3的值为________.解析:原式=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝ ⎛⎭⎪⎫3π+π3=-sin π6-cos π3=-12-12=-1.答案:-17.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:35 45 8.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40°=|sin 40°-sin 50°|sin 50°-sin 40°=sin 50°-sin 40°sin 50°-sin 40°=1.答案:19.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.10.已知角θ的终边与单位圆x 2+y 2=1在第四象限交于点P ,且点P 的坐标为⎝ ⎛⎭⎪⎫12,y .(1)求tan θ的值;(2)求cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)的值.解:(1)由θ为第四象限角,终边与单位圆交于点P ⎝ ⎛⎭⎪⎫12,y ,得⎝ ⎛⎭⎪⎫122+y 2=1,y <0,解得y =-32,所以tan θ=-3212=- 3.(2)因为tan θ=-3, 所以cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-3+1-3-1=2- 3. [B 级 综合练]11.(多选)已知角θ的终边与坐标轴不重合,式子1-sin 2(π+θ)化简的结果为-cos θ,则( )A .sin θ>0,tan θ>0B .sin θ<0,tan θ>0C .sin θ<0,tan θ<0D .sin θ>0,tan θ<0解析:选BD.1-sin 2(π+θ)=1-sin 2θ=cos 2θ=|cos θ|=-cos θ,所以cos θ<0,角θ的终边落在第二或三象限,所以sin θ>0,tan θ<0或sin θ<0,tan θ>0,故选BD.12.(2020·陕西汉中月考)已知角α为第二象限角,则cos α·1+sin α1-sin α+sin 2α1+1tan 2α=( )A .1B .-1C .0D .2解析:选B.因为角α为第二象限角,所以sin α>0,cos α<0,所以cos α 1+sin α1-sin α=cos α(1+sin α)2cos 2α=cos α·1+sin α|cos α|=-1-sin α,sin 2α1+1tan 2α=sin 2α1+cos 2αsin 2α=sin 2αsin 2α+cos 2αsin 2α=sin 2α1sin 2α=sin 2α⎪⎪⎪⎪⎪⎪1sin α=sin α,所以cos α1+sin α1-sin α+sin 2α1+1tan 2α=-1-sin α+sin α=-1.故选B.13.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈()0,π使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件. 由已知条件可得⎩⎨⎧sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2.所以sin 2α=12,所以sin α=±22.因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=±π4. 当α=π4时,由②式知cos β=32, 又β∈(0,π),所以β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π), 所以β=π6,此时①式不成立,故舍去. 所以存在α=π4,β=π6满足条件. 14.在△ABC 中,(1)求证:cos 2A +B 2+cos 2 C2=1;(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形.证明:(1)在△ABC 中,A +B =π-C , 所以A +B 2=π2-C2,所以cos A +B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2,所以cos 2A + B 2+cos 2C2=1.(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,所以(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0, 所以⎩⎨⎧cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0,所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.[C 级 创新练]15.(2020·山东肥城统考)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现黄金分割比例为5-12≈0.618,这一数值也可以表示为m =2sin 18°.若m 2+n =4,则m n2cos 227°-1=( )A .4B .3C .2D .1解析:选C.因为m =2sin 18°,且m 2+n =4,所以n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,所以m n2cos 227°-1=2sin 18°4cos 218°cos 54°=4sin 18°cos 18°sin 36°=2.故选C.16.已知α,β∈(0,2π)且α<β,若关于x 的方程(x +sin α)(x +sin β)+1=0有实数根,则代数式3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=________.解析:整理方程(x +sin α)(x +sin β)+1=0得x 2+x (sin α+sin β)+sin αsin β+1=0.由题意得Δ=(sin α+sin β)2-4sin αsin β-4≥0, 即(sin α-sin β)2≥4①.因为-1≤sin α≤1,-1≤sin β≤1,所以sin α-sin β∈[-2,2],从而(sin α-sin β)2≤4②.由①②得sin α-sin β=±2,所以⎩⎨⎧sin α=1,sin β=-1或⎩⎨⎧sin α=-1,sin β=1.因为α,β∈(0,2π)且α<β,所以α=π2,β=3π2,即⎩⎨⎧sin α=1,sin β=-1.因此3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=3cos α-sin β2-sin αsin β=12+1=13.答案:13第2讲 同角三角函数的基本关系与诱导公式 最新考纲考向预测1.理解同角三角函数的基本关系式sin 2x +cos 2x =1,sin xcos x =tan x .2.借助单位圆的对称性,利用定义推导出诱导公式⎝ ⎛⎭⎪⎫α±π2,α±π的正弦、余弦、正切. 命题趋势 考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技巧以及基本的运算能力.核心素养数学运算1.同角三角函数的基本关系 (1)平方关系:sin 2x +cos 2x =1.(2)商数关系:tan x =sin x cos x ⎝ ⎛⎭⎪⎫其中x ≠k π+π2,k ∈Z .2.三角函数的诱导公式 组数 一 二 三 四 五 六 角 α+2k π (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切tan αtan__α-tan__α-tan__α常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.常见误区1.同角三角函数的基本关系式及诱导公式要注意角的范围对三角函数符号的影响,尤其是利用平方关系求三角函数值,进行开方时要根据角的范围,判断符号后,正确取舍.2.注意求值与化简后的结果一般要尽可能有理化、整式化.1.判断正误(正确的打“√”,错误的打“×”) (1)对任意的角α,β,都有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )(3)sin(π+α)=-sin α成立的条件是α为锐角.( ) (4)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( ) 答案:(1)× (2)× (3)× (4)×2.(易错题)已知cos(π+α)=23,则tan α=( ) A .52 B .255 C .±52D .±255解析:选C.因为cos(π+α)=23, 所以cos α=-23,则α为第二或第三象限角,所以sin α=±1-cos 2α=±53.所以tan α=sin αcos α=±53-23=±52. 3.已知sin αcos α=12,则tan α+1tan α=( ) A .2 B .12 C .-2D .-12解析:选A.tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.4.sin 2 490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.解析:sin 2 490°=sin(7×360°-30°)=-sin 30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos 52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝ ⎛⎭⎪⎫π+π3=-cos π3=-12. 答案:-12 -125.化简cos ⎝ ⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫52π+α·cos(2π-α)的结果为________.解析:原式=sin αcos α·cos α=sin α. 答案:sin α同角三角函数的基本关系式 角度一 “知一求二”问题(2020·北京市适应性测试)已知α是第四象限角,且tan α=-34,则sinα=( )A .-35 B.35 C.45 D .-45 【解析】 因为tan α=sin αcos α=-34, 所以cos α=-43sin α ①.sin 2α+cos 2α=1 ②,由①②得sin 2α=925,又α是第四象限角,所以sin α<0,则sin α=-35,故选A.【答案】 A利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.角度二 sin α,cos α的齐次式问题已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 【解】 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.关于sin α与cos α的齐n 次分式或齐二次整式的化简求值的解题策略已知tan α,求关于sin α与cos α的齐n次分式或齐二次整式的值.角度三sin α±cos α,sin αcos α之间的关系已知α∈(-π,0),sin α+cos α=1 5.(1)求sin α-cos α的值;(2)求sin 2α+2sin2α1-tan α的值.【解】(1)由sin α+cos α=1 5,平方得sin2α+2sin αcos α+cos2α=1 25,整理得2sin αcos α=-24 25.所以(sin α-cos α)2=1-2sin αcos α=49 25.由α∈(-π,0),知sin α<0,又sin α+cos α>0,所以cos α>0,则sin α-cos α<0,故sin α-cos α=-7 5.(2)sin 2α+2sin2α1-tan α=2sin α(cos α+sin α)1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=-2425×1575=-24175.sin α±cos α与sin αcos α关系的应用技巧(1)通过平方,sin α+cos α,sin α-cos α,sin αcos α之间可建立联系,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的范围选取正、负号).(2)对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,可以知一求二.1.(2020·河南六市一模)已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A .43 B .34 C .-34D .±34解析:选B.因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35.又α∈⎝ ⎛⎭⎪⎫π2,3π2,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=34.2.已知tan α=-34,则sin α(sin α-cos α)=( ) A.2125 B.2521 C.45D.54解析:选 A.sin α(sin α-cos α)=sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1,将tan α=-34代入得原式=⎝ ⎛⎭⎪⎫-342-⎝ ⎛⎭⎪⎫-34⎝ ⎛⎭⎪⎫-342+1=2125.3.(一题多解)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C .22D .1解析:选A.方法一:由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,得2cos 2α+22cos α+1=0,即(2cos α+1)2=0, 所以cos α=-22.又α∈(0,π),所以α=3π4, 所以tan α=tan 3π4=-1.方法二:因为sin α-cos α=2, 所以2sin ⎝ ⎛⎭⎪⎫α-π4=2,所以sin ⎝ ⎛⎭⎪⎫α-π4=1.因为α∈(0,π),所以α=3π4,所以tan α=-1.法三:由sin α-cos α=2得1-sin 2α=2,所以sin 2α=-1. 设sin α+cos α=t ,所以1+sin 2α=t 2,所以t =0.由⎩⎨⎧sin α-cos α=2,sin α+cos α=0得sin α=22,cos α=-22, 所以tan α=-1.诱导公式的应用(1)sin(-1 200°)cos 1 290°=________.(2)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+2cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)等于________.【解析】 (1)原式=-sin 1 200°cos 1 290° =-sin(3×360°+120°)cos(3×360°+210°) =-sin 120°cos 210°=-sin(180°-60°)cos(180°+30°) =sin 60°cos 30°=32×32=34.(2)由题意可知tan θ=3,原式=-cos θ-2cos θcos θ-sin θ=-31-tan θ=32.【答案】 (1)34 (2)32【引申探究】 (变问法)若本例(2)的条件不变,则cos ⎝ ⎛⎭⎪⎫π2+θ-sin (-π-θ)cos ⎝ ⎛⎭⎪⎫11π2-θ+sin ⎝ ⎛⎭⎪⎫9π2+θ=________.解析:由题意可知tan θ=3, 原式=-sin θ+sin (π+θ)cos ⎝ ⎛⎭⎪⎫6π-π2-θ+sin ⎝ ⎛⎭⎪⎫4π+π2+θ =-sin θ-sin θcos ⎝ ⎛⎭⎪⎫π2+θ+sin ⎝ ⎛⎭⎪⎫π2+θ=-2sin θ-sin θ+cos θ=2tan θtan θ-1=2×33-1=3.答案:3(1)诱导公式用法的一般思路①化负为正,化大为小,化到锐角为止;②角中含有加减π2的整数倍时,用公式去掉π2的整数倍. (2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等; ②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.1.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫α+π6的值是( )A .-13 B.13 C.223 D .-223解析:选A.因为sin ⎝ ⎛⎭⎪⎫α-π3=13,所以cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π3=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.2.(多选)已知A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α,则A 的值可以是( )A .3B .-3C .1D .-1解析:选AD.由已知可得,当k 为偶数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=sin αsin α+cos αcos α+tan αtan α=3;当k 为奇数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=-sin αsin α+-cos αcos α+tan αtan α=-1,所以A 的值可以是3或-1.故答案为AD.同角三角函数的基本关系式与诱导公式的综合应用(2020·湖北宜昌一中期末)已知α是第三象限角,且cos α=-1010. (1)求tan α的值;(2)化简并求cos (π-α)2sin (-α)+sin ⎝ ⎛⎭⎪⎫π2+α的值.【解】 (1)因为α是第三象限角,cos α=-1010, 所以sin α=-1-cos 2α=-31010,所以tan α=sin αcos α=3.(2)原式=-cos α-2sin α+cos α=cos α2sin α-cos α=12tan α-1,由(1)知tan α=3,所以原式=12×3-1=15.求解诱导公式与同角关系综合问题的基本思路和化简要求基本 思路①分析结构特点,选择恰当公式; ②利用公式化成单角三角函数;③整理得最简形式化简 要求①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值1.已知sin ⎝ ⎛⎭⎪⎫5π2+α=35,所以tan α的值为( )A .-43B .-34C .±43D .±34解析:选C.sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=35,所以sin α=±45,tan α=sin αcos α=±43.2.已知tan(π-α)=-23,且α∈⎝ ⎛⎭⎪⎫-π,-π2,则cos (-α)+3sin (π+α)cos (π-α)+9sin α的值为( )A .-15B .-37 C.15 D.37解析:选 A.因为tan(π-α)=-23,所以tan α=23,所以cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-2-1+6=-15,故选A.[A 级 基础练]1.(多选)已知x ∈R ,则下列等式恒成立的是( ) A .sin(-x )=sin x B .sin ⎝ ⎛⎭⎪⎫3π2-x =cos xC .cos ⎝ ⎛⎭⎪⎫π2+x =-sin xD .cos(x -π)=-cos x解析:选CD.sin(-x )=-sin x ,故A 不成立;sin ⎝ ⎛⎭⎪⎫3π2-x =-cos x ,故B 不成立;cos ⎝ ⎛⎭⎪⎫π2+x =-sin x ,故C 成立;cos(x -π)=-cos x ,故D 成立.2.(多选)若sin α=45,且α为锐角,则下列选项中正确的有( )A .tan α=43 B .cos α=35 C .sin α+cos α=85D .sin α-cos α=-15解析:选AB.因为sin α=45,且α为锐角, 所以cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35,故B 正确, 所以tan α=sin αcos α=4535=43,故A 正确,所以sin α+cos α=45+35=75≠85,故C 错误, 所以sin α-cos α=45-35=15≠-15,故D 错误.3.已知角α是第二象限角,且满足sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,则tan(π+α)=( )A . 3B .- 3C .-33D .-1解析:选B.由sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,得cos α-3cos α=1,所以cos α=-12, 因为角α是第二象限角,所以sin α=32, 所以tan(π+α)=tan α=sin αcos α=- 3.4.已知f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α),则f ⎝ ⎛⎭⎪⎫π3=( ) A .12 B .22 C .32D .-12解析:选A.f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α)=-sin α·(-sin α)sin α·tan α=sin 2αsin α·sin αcos α=cos α,则f ⎝ ⎛⎭⎪⎫π3=cos π3=12.5.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A .12B .-12C .32D .-32解析:选A.由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.6.计算:sin 11π6+cos 10π3的值为________.解析:原式=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝ ⎛⎭⎪⎫3π+π3=-sin π6-cos π3=-12-12=-1.答案:-17.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:35 45 8.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40°=|sin 40°-sin 50°|sin 50°-sin 40°=sin 50°-sin 40°sin 50°-sin 40°=1.答案:19.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.10.已知角θ的终边与单位圆x 2+y 2=1在第四象限交于点P ,且点P 的坐标为⎝ ⎛⎭⎪⎫12,y .(1)求tan θ的值;(2)求cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)的值.解:(1)由θ为第四象限角,终边与单位圆交于点P ⎝ ⎛⎭⎪⎫12,y ,得⎝ ⎛⎭⎪⎫122+y 2=1,y <0,解得y =-32,所以tan θ=-3212=- 3.(2)因为tan θ=-3, 所以cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-3+1-3-1=2- 3. [B 级 综合练]11.(多选)已知角θ的终边与坐标轴不重合,式子1-sin 2(π+θ)化简的结果为-cos θ,则( )A .sin θ>0,tan θ>0B .sin θ<0,tan θ>0C .sin θ<0,tan θ<0D .sin θ>0,tan θ<0解析:选BD.1-sin 2(π+θ)=1-sin 2θ=cos 2θ=|cos θ|=-cos θ,所以cos θ<0,角θ的终边落在第二或三象限,所以sin θ>0,tan θ<0或sin θ<0,tan θ>0,故选BD.12.(2020·陕西汉中月考)已知角α为第二象限角,则cos α·1+sin α1-sin α+sin 2α1+1tan 2α=( )A .1B .-1C .0D .2解析:选B.因为角α为第二象限角,所以sin α>0,cos α<0,所以cos α 1+sin α1-sin α=cos α(1+sin α)2cos 2α=cos α·1+sin α|cos α|=-1-sin α,sin 2α1+1tan 2α=sin 2α1+cos 2αsin 2α=sin 2αsin 2α+cos 2αsin 2α=sin 2α1sin 2α=sin 2α⎪⎪⎪⎪⎪⎪1sin α=sin α,所以cos α1+sin α1-sin α+sin 2α1+1tan 2α=-1-sin α+sin α=-1.故选B.13.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈()0,π使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件. 由已知条件可得⎩⎨⎧sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2.所以sin 2α=12,所以sin α=±22. 因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),所以β=π6,此时①式成立;当α=-π4时,由②式知cos β=32,又β∈(0,π),所以β=π6,此时①式不成立,故舍去.所以存在α=π4,β=π6满足条件.14.在△ABC 中,(1)求证:cos 2A +B 2+cos 2 C 2=1;(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形. 证明:(1)在△ABC 中,A +B =π-C ,所以A +B 2=π2-C 2,所以cos A +B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2, 所以cos 2A + B 2+cos 2C 2=1.(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0, 所以(-sin A )(-cos B )tan C <0,即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0,所以⎩⎨⎧cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0, 所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.[C 级 创新练]15.(2020·山东肥城统考)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现黄金分割比例为5-12≈0.618,这一数值也可以表示为m =2sin 18°.若m 2+n =4,则m n 2cos 227°-1=( ) A .4 B .3 C .2 D .1解析:选C.因为m =2sin 18°,且m 2+n =4,所以n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,所以m n 2cos 227°-1=2sin 18°4cos 218°cos 54°=4sin 18°cos 18°sin 36°=2.故选C.16.已知α,β∈(0,2π)且α<β,若关于x 的方程(x +sin α)(x +sin β)+1=0有实数根,则代数式3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=________. 解析:整理方程(x +sin α)(x +sin β)+1=0得x 2+x (sin α+sin β)+sin αsin β+1=0.由题意得Δ=(sin α+sin β)2-4sin αsin β-4≥0,即(sin α-sin β)2≥4①.因为-1≤sin α≤1,-1≤sin β≤1,所以sin α-sin β∈[-2,2],从而(sin α-sin β)2≤4②.由①②得sin α-sin β=±2,所以⎩⎨⎧sin α=1,sin β=-1或⎩⎨⎧sin α=-1,sin β=1.因为α,β∈(0,2π)且α<β,所以α=π2,β=3π2,即⎩⎨⎧sin α=1,sin β=-1. 因此3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=3cos α-sin β2-sin αsin β=12+1=13. 答案:13。

(完整)同角三角函数的基本关系式

(完整)同角三角函数的基本关系式

同角三角函数的基本关系式诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=—————-1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=—————-1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=--———1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin---·cos--—sinα·cosβ=(1/2)[sin (α+β)+sin(α-β)]2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βc osα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-— 2 2cosα·sinβ=(1/2)[sin (α+β)—sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α—β)]sinα·sinβ=—(1/2)[cos (α+β)—cos(α-β)]化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)直角三角定义它有六种基本函数(初等基本表示):三角函数数值表(斜边为r,对边为y,邻边为x。

高考数学一轮复习第2讲 同角三角函数的基本关系与诱导公式

高考数学一轮复习第2讲 同角三角函数的基本关系与诱导公式

第2讲 同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系式 (1)平方关系:01sin 2α+cos 2α=1.(2)商数关系:02sinαcosα=tan α.2.六组诱导公式 公式 一 二 三 四 五 六 角 2k π+ α(k ∈Z ) π+α -α π-α π2-απ2+α正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α -cos α cos α -cos α sin α -sin α 正切 tan αtan α-tan α-tan α--口诀函数名不变,符号看象限函数名改变,符号看象限同角三角函数基本关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α; sin α=tan αcos α⎝ ⎛⎭⎪⎪⎫α≠π2+kπ,k∈Z ;sin2α=sin2αsin2α+cos2α=tan2αtan2α+1;cos2α=cos2αsin2α+cos2α=1tan2α+1.1.若cosα=13,α∈⎝⎛⎭⎪⎪⎫-π2,0,则tanα等于()A.-24B.24C.-22D.22答案 C解析由已知得sinα=-1-cos2α=-1-19=-223,所以tanα=sinαcosα=-22,选C.2.(2021·大同模拟)若角600°的终边上有一点(-4,a),则a的值是() A.-43B.±43C.3D.43答案 A解析∵tan600°=a-4=tan(540°+60°)=tan60°=3,∴a=-43.故选A.3.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于()A.-π6B.-π3C .π6D .π3答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ=3.∵|θ|<π2,∴θ=π3.4.(2020·杭州学军中学模拟)已知cos31°=a ,则sin239°·tan149°的值为( ) A.1-a2aB .1-a2C.a2-1aD .-1-a2答案 B解析 sin239°tan149°=sin(270°-31°)tan(180°-31°)=-cos31°·(-tan31°)=sin31°=1-a2.5.化简cos ⎝⎛⎭⎪⎪⎫α-π2sin ⎝ ⎛⎭⎪⎪⎫5π2+αsin(α-π)cos(2π-α)的结果为________.答案 -sin 2α 解析 原式=sinαcosα(-sin α)cos α=-sin 2α.6.已知α是第二象限的角,tan α=-12,则cos α=________.答案 -255解析 因为α是第二象限的角,所以sin α>0,cos α<0,由tan α=-12,得sin α=-12cos α,代入sin 2α+cos 2α=1中,得54cos 2α=1,所以cos α=-255.考向一 诱导公式的应用 例1 (1)化简:错误!=________. 答案 -1 解析 原式=错误!=tanαcosαsi n ⎝ ⎛⎭⎪⎪⎫π2+α-cosαsinα=tanαcosαcosα-cosαsinα=-tanαcosαsinα=-sinαcosα·cosαsinα=-1.(2)已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角,所以75°+α是第四象限角, sin(75°+α)=-错误!=-错误!.所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713.(3)(2020·潍坊一模)在平面直角坐标系xOy 中,点P (3,1),将向量OP→绕点O 按逆时针方向旋转π2后得到向量OQ→,则点Q 的坐标是________.答案 (-1,3)解析 ∵OP→=(3,1)=(2cos θ,2sin θ),cos θ=32,sin θ=12,∴将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →=⎝ ⎛⎭⎪⎪⎫2cos ⎝ ⎛⎭⎪⎪⎫θ+π2,2sin ⎝ ⎛⎭⎪⎪⎫θ+π2=(-2sin θ,2cos θ)=(-1,3),∴点Q 的坐标是(-1,3).1.诱导公式的两个应用方向与原则(1)求值,化角的原则与方向:负化正,大化小,化到锐角为终了. (2)化简,化简的原则与方向:统一角,统一名,同角名少为终了. 2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.1.(2020·江西宜春中学诊断)若α为锐角,且cos ⎝⎛⎭⎪⎪⎫α+π6=13,则cos ⎝⎛⎭⎪⎪⎫α-π3的值为( )A.223B .23 C .26D .526答案 A解析 ∵0<α<π2,∴π6<α+π6<2π3,∴sin ⎝⎛⎭⎪⎪⎫α+π6=1-cos2⎝⎛⎭⎪⎪⎫α+π6=223,∴cos ⎝ ⎛⎭⎪⎪⎫α-π3=cos ⎝ ⎛⎭⎪⎪⎫α+π6-π2=sin ⎝ ⎛⎭⎪⎪⎫α+π6=223.故选A.2.计算:sin(-1200°)cos1290°=________. 答案34解析 原式=-sin1200°cos1290°=-sin(3×360°+120°)cos(3×360°+210°)=-sin120°cos210°=-sin(180°-60°)cos(180°+30°) =sin60°cos30°=32×32=34.3.化简:错误!. 解 原式=错误!=错误! =错误!=错误!. 多角度探究突破考向二 同角三角函数的基本关系 角度1 切弦互化例2 (1)(2020·唐山第二次模拟)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B .-12C .32D .-32答案 A解析 由三角函数定义,得tan α=32sinα,所以sinαcosα=32sinα,则2(1-cos 2α)=3cos α,所以(2cos α-1)(cos α+2)=0,则cos α=12.(2)(2020·济宁三模)已知tan(π-α)=2,则sinα+cosαsinα-cosα=________.答案13解析 因为tan(π-α)=2,所以tan α=-2,所以sinα+cosαsinα-cosα=tanα+1tanα-1=-2+1-2-1=13. 同角三角函数的基本关系式的功能是根据角的一个三角函数值求其他三角函数值,主要利用商数关系tan α=sinαcosα和平方关系1=sin 2α+cos 2α.4.已知α为锐角,且tan(π-α)+3=0,则sin α等于( )A.13B .31010C .377 D .355答案 B解析 因为tan(π-α)+3=0,所以tan α=3,sin α=3cos α.因为sin 2α+cos 2α=1,所以sin 2α=910. 又因为α为锐角,故sin α=31010.故选B.5.已知α是第二象限角,cos ⎝ ⎛⎭⎪⎪⎫3π2+α=45,则tan α=________.答案 -43解析 ∵cos ⎝ ⎛⎭⎪⎪⎫3π2+α=45,∴sin α=45,又α为第二象限角,∴cos α=-1-sin2α=-35,∴tan α=sinαcosα=-43.角度2 “1”的变换例3 (2021·海口模拟)已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边上有一点P (1,2),则sin2α1-3sinαcosα=________.答案 -4解析 因为角α的终边上有一点P (1,2),所以tan α=2. 所以sin2α1-3sinαcosα=sin2αsin2α+cos2α-3sinαcosα=tan2αtan2α+1-3tanα=2222+1-3×2=-4. 对于含有sin 2α,cos 2α,sin αcos α的三角函数求值题,一般可以考虑添加分母1,再将1用“sin 2α+cos 2α”代替,然后用分子分母同除以角的余弦的平方的方式将其转化为关于tan α的式子,从而求解.6.已知tan α=2,则(1)3sinα-2cosαsinα+cosα=________;(2)23sin 2α+14cos 2α=________. 答案 (1)43 (2)712解析 因为tan α=2,所以, (1)原式=3tanα-2tanα+1=3×2-22+1=43.(2)原式=23·sin2αsin2α+cos2α+14·cos2αsin2α+cos2α =23·tan2αtan2α+1+14·1tan2α+1 =23×2222+1+14×122+1=712. 角度3 sin x +cos x ,sin x -cos x ,sin x cos x 之间的关系例4 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B .32C .-34D .34答案 B解析 ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|,∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.(2)若θ∈⎝ ⎛⎭⎪⎪⎫π2,π,则 错误!等于( )A .sin θ-cos θB .cos θ-sin θC .±(sin θ-cos θ)D .sin θ+cos θ答案 A 解析 因为错误! =1-2sinθcosθ=错误!=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎪⎫π2,π,所以sin θ-cos θ>0,所以原式=sin θ-cos θ.故选A.(1)已知a sin x +b cos x =c 可与sin 2x +cos 2x =1联立,求得sin x ,cos x .(2)sin x +cos x ,sin x -cos x ,sin x cos x 之间的关系为 (sin x +cos x )2=1+2sin x cos x , (sin x -cos x )2=1-2sin x cos x , (sin x +cos x )2+(sin x -cos x )2=2.因此,已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.7.若1sin α+1cosα=3,则sin αcos α=( )A .-13B .13C .-13或1D .13或-1答案 A 解析 由1sinα+1cosα=3,可得sin α+cos α=3sin αcos α,两边平方,得1+2sin αcos α=3sin 2αcos 2α,解得sin αcos α=-13或sin αcos α=1.由题意,知-1<sin α<1,-1<cos α<1,且sin α≠0,cos α≠0,所以sin αcos α≠1.故选A.8.已知sin α+cos α=12,α∈(0,π),则1-tanα1+tanα=( )A .-7B .7 C.3D .-3答案 A解析 因为(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又α∈(0,π),所以sin α>0,cos α<0.因为(sin α-cos α)2=1-2sin αcos α=74,所以cos α-sin α=-72.所以1-tanα1+tanα=cosα-sinαcosα+sinα=-7212=-7.故选A.一、单项选择题1.sin210°cos120°的值为( ) A.14B .-34C .-32D .34答案 A解析 sin210°cos120°=sin(180°+30°)cos(180°-60°)=-sin30°·(-cos60°)=⎝ ⎛⎭⎪⎪⎫-12×⎝ ⎛⎭⎪⎪⎫-12=14.故选A. 2.(2020·潍坊模拟)已知cos ⎝ ⎛⎭⎪⎪⎫3π2-φ=32,且|φ|<π2,则tan φ等于( )A .-33B .33 C .3 D .-3答案 D解析 由cos ⎝ ⎛⎭⎪⎪⎫3π2-φ=-sin φ=32,得sin φ=-32,又|φ|<π2,得到-π2<φ<π2,∴cos φ=1-⎝ ⎛⎭⎪⎪⎫-322=12,则tan φ=-3212=-3.故选D.3.已知α∈⎝ ⎛⎭⎪⎪⎫π2,π,tan α=-34,则sin(α+π)=( )A.35 B .-35C.45 D .-45答案 B解析由题意可知⎩⎪⎨⎪⎧sinαcosα=-34,sin2α+cos2α=1,由此解得sin 2α=925,又α∈⎝ ⎛⎭⎪⎪⎫π2,π,因此有sin α=35,sin(α+π)=-sin α=-35.故选B. 4.已知A =错误!+错误!(k ∈Z ),则A 的值构成的集合是( ) A .{1,-1,2,-2} B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}答案 C解析 当k 为偶数时,A =sinαsinα+cosαcosα=2;当k 为奇数时,A =-sinαsinα-cosαcosα=-2.故A 的值构成的集合是{2,-2}.5.(2020·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tanα=( )A .2B .12C .-2D .-12答案 A解析 ∵sin α+cos α=-2,∴(sin α+cos α)2=2,∴1+2sin αcos α=2,∴sin αcos α=12.tan α+1tanα=sinαcosα+cosαsinα=sin2α+cos2αsinαcosα=112=2.故选A.6.已知sin ⎝ ⎛⎭⎪⎪⎫α-π12=13,则cos ⎝ ⎛⎭⎪⎪⎫α+17π12的值为( ) A.13B .223 C .-13D .-223答案 A解析 由cos ⎝ ⎛⎭⎪⎪⎫α+17π12=cos ⎝ ⎛⎭⎪⎪⎫α-π12+3π2=sin ⎝⎛⎭⎪⎪⎫α-π12=13. 7.(2020·济宁模拟)直线l :2x -y +e =0的倾斜角为α,则sin(π-α)sin ⎝ ⎛⎭⎪⎪⎫π2+α的值为( )A .-25B .-15C .15D .25答案 D解析 ∵直线l :2x -y +e =0的倾斜角为α,∴tan α=2,∴sin(π-α)sin ⎝ ⎛⎭⎪⎪⎫π2+α=sin αcos α=sinαcosαsin2α+cos2α=tanα1+tan2α=21+22=25.故选D.8.化简1+sinα+cosα+2sinαcosα1+sinα+cosα的结果是( )A .2sin αB .2cos αC .sin α+cos αD .sin α-cos α答案 C解析 原式=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=错误! =错误!=sin α+cos α.故选C.9.若sin θ+sin 2θ=1,则cos 2θ+cos 6θ+cos 8θ的值为( ) A .0 B .1 C .-1 D .5-12答案 B解析 由sin θ+sin 2θ=1,得sin θ=1-sin 2θ=cos 2θ,∴cos 2θ+cos 6θ+cos 8θ=sin θ+sin 3θ+sin 4θ=sin θ+sin 2θ(sin θ+sin 2θ)=sin θ+sin 2θ=1.10.(2020·海口模拟)若对任意x ∈R ,都有cos ⎝ ⎛⎭⎪⎪⎫2x -5π6=sin(ωx +φ)(ω∈R ,|φ|<π),则满足条件的有序实数对(ω,φ)的对数为( )A .0B .1C .2D .3 答案 C解析 cos ⎝ ⎛⎭⎪⎪⎫2x -5π6=cos ⎝ ⎛⎭⎪⎪⎫2x -π3-π2=sin ⎝ ⎛⎭⎪⎪⎫2x -π3,由条件知ω=±2.若ω=2,由φ=-π3+2k π(k ∈Z )且|φ|<π,得φ=-π3;若ω=-2,sin(-2x +φ)=sin(2x +π-φ),则π-φ=-π3+2k π(k ∈Z ),所以φ=-2k π+4π3(k ∈Z ),又|φ|<π,则φ=-2π3,故满足条件的有序数对(ω,φ)的对数为2.二、多项选择题11.在△ABC 中,下列结论正确的是( ) A .sin(A +B )=sin C B .sin B +C2=cos A2C .tan(A +B )=-tan C ⎝ ⎛⎭⎪⎪⎫C ≠π2D .cos(A +B )=cos C 答案 ABC解析 在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ;sin B +C2=sin ⎝ ⎛⎭⎪⎪⎫π2-A 2=cos A 2;tan(A +B )=tan(π-C )=-tan C ⎝ ⎛⎭⎪⎪⎫C ≠π2;cos(A +B )=cos(π-C )=-cos C .12.(2020·湖北宜昌高三模拟)定义:角θ与φ都是任意角,若满足θ+φ=π2,则称θ与φ“广义互余”.已知sin(π+α)=-14,下列角β中,可能与角α“广义互余”的是( )A .sin β=154B .cos(π+β)=14C .tan β=15D .tan β=155答案 AC解析 ∵sin(π+α)=-sin α=-14,∴sin α=14,若α+β=π2,则β=π2-α.sin β=sin ⎝ ⎛⎭⎪⎪⎫π2-α=cos α=±154,故A 符合条件;cos(π+β)=-cos ⎝ ⎛⎭⎪⎪⎫π2-α=-sin α=-14,故B 不符合条件;tan β=15,即sin β=15cos β,又sin 2β+cos 2β=1,所以sin β=±154,故C 符合条件;tan β=155,即sin β=155cos β,又sin 2β+cos 2β=1,所以sin β=±64,故D 不符合条件.故选AC.三、填空题13.sin 4π3cos 5π6tan ⎝ ⎛⎭⎪⎪⎫-4π3的值是________.答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎪⎫π+π3cos ⎝ ⎛⎭⎪⎪⎫π-π6tan ⎝ ⎛⎭⎪⎪⎫-π-π3=⎝ ⎛⎭⎪⎪⎫-sin π3⎝ ⎛⎭⎪⎪⎫-cos π6⎝ ⎛⎭⎪⎪⎫-tan π3=⎝⎛⎭⎪⎪⎫-32×⎝ ⎛⎭⎪⎪⎫-32×(-3)=-334.14.已知sin θ=13,则错误!=________.答案98解析 原式=错误!=错误!=错误!=错误!=错误!.15.已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎪⎫θ-π4=________.答案 -43解析 因为θ是第四象限角,且sin ⎝ ⎛⎭⎪⎪⎫θ+π4=35,所以θ+π4为第一象限角,所以cos ⎝ ⎛⎭⎪⎪⎫θ+π4=45,所以tan ⎝ ⎛⎭⎪⎪⎫θ-π4=sin ⎝ ⎛⎭⎪⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎪⎫θ-π4=-cos π2+⎝ ⎛⎭⎪⎪⎫θ-π4sin π2+⎝ ⎛⎭⎪⎪⎫θ-π4=-cos ⎝ ⎛⎭⎪⎪⎫θ+π4sin ⎝⎛⎭⎪⎪⎫θ+π4=-43.16.已知α为第二象限角,则cos α1+tan2α+sin α·1+1tan2α=________.答案 0解析 原式=cos αsin2α+cos2αcos2α+sin αsin2α+cos2αsin2α=cos α1|cosα|+sin α1|sinα|,因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cosα|+sin α1|sinα|=-1+1=0,即原式等于0.四、解答题17.已知α为第三象限角,f (α)=错误!.(1)化简f (α);(2)若cos ⎝ ⎛⎭⎪⎪⎫α-3π2=15,求f (α)的值.解 (1)f (α)=错误! =错误!=-cos α.(2)因为cos ⎝ ⎛⎭⎪⎪⎫α-3π2=15,所以-sin α=15,从而sin α=-15.又因为α为第三象限角, 所以cos α=-1-sin2α=-265,所以f (α)=-cos α=265.18.已知tanαtanα-1=-1,求下列各式的值.(1)sinα-3cosαsinα+cosα; (2)sin 2α+sin αcos α+2. 解 由已知得tan α=12.(1)sinα-3cosαsinα+cosα=tanα-3tanα+1=-53. (2)sin 2α+sin αcos α+2=sin2α+sinαcosαsin2α+cos2α+2=tan2α+tanαtan2α+1+2=⎝ ⎛⎭⎪⎪⎫122+12⎝ ⎛⎭⎪⎪⎫122+1+2=135.19.已知0<α<π2,若cos α-sin α=-55,试求2sinαcosα-cosα+11-tanα的值.解 ∵cos α-sin α=-55,∴1-2sin αcos α=15.∴2sin αcos α=45.∴(sin α+cos α)2=1+2sin αcos α=1+45=95.∵0<α<π2,∴sin α+cos α=355.与cos α-sin α=-55联立,解得 cos α=55,sin α=255.∴tan α=2.∴2sinαcosα-cosα+11-tanα=45-55+11-2=55-95. 20.是否存在α∈⎝ ⎛⎭⎪⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,说明理由.解 存在.由sin ()3π-α=2cos ⎝ ⎛⎭⎪⎪⎫π2-β得sin α=2sin β,①由3cos(-α)=-2cos(π+β)得3cos α=2cos β,②∴sin 2α+3cos 2α=2(sin 2β+cos 2β)=2,∴1+2cos 2α=2,∴cos 2α=12,又α∈⎝ ⎛⎭⎪⎪⎫-π2,π2,∴cosα=22,从而α=π4或-π4,当α=π4时,由①知sinβ=12,由②知cosβ=32,又β∈(0,π),∴β=π6,当α=-π4时,由①知sinβ=-12,与β∈(0,π)矛盾,舍去.∴存在α=π4,β=π6,符合题意.21 / 21。

高三第一轮复习--同角三角函数的关系式及诱导公式

高三第一轮复习--同角三角函数的关系式及诱导公式
【思维点拨】,
4 sin sin 4 2 1 sin 8 . ( 2 )灵活运用平方关系是化简的重 1 1 sin 8 ; n z
要手段之一。

例2、已知 tan 2 。
4 sin 2 cos (1)求 的值; 5 sin 3 cos
符 号 看 象 限 。
函 数 名 改 变 ,
以上九组公式称为诱导公式,其规 律可总结为:
奇变偶不变,
符号看象限。
例1、化简下列各式: sin k cos[(k 1) ] 1 . k Z sin[(k 1) ] cos(k ) 练习 练习 6 6 (1)分清 k 的奇偶,决定函数值符号 1 4sin cos n 1 4 n 1 化简下列各式: 2 sin . 2 是关键; 化简 4 cos
+ cotα + cosα
- sinα - cotα
tan(90°+α) =
sin(2700-α)
=
- cosα
cos(2700- α) = - sinα
tan(2700- α) = + cotα sin(270° +α) = - cosα cos(270° + α) = + sinα tan(270° + α) = - cotα
桂林装修 桂林装饰好啊,请各位稍等片刻!”说着一转身迈开大步直冲正面中间的一间房子去了。随着伙计的身影,耿正看到在这间房子的门口挂着写有 “柜房”的大木牌。只听伙计一边进门一边大声说:“耿掌柜,快去看,有一挂用红布蒙了的大骡车进咱们店了,一共三个人呢,说是 要见你!”话音刚落,那个让耿正兄妹三人经常回忆起来的,并且由于回忆而越来越熟悉的大哥快步走出来了。七年半过去了,昔日的 那个年轻大哥如今已经变成了一个结实的壮年汉子,但依然还是一脸的善良和慈祥模样。看着眼前这面带欣喜且激动不已的三个年青人, 耿大业一时间愣在了那里。略停顿一下,他试探着问:“请问,你们是?”耿正顺手将大白骡的缰绳递给那位报信的伙计。兄妹三人一 起上前眼含热泪给大哥深深施礼,耿正声音哽咽地说:“大哥,您可记得七年半之前的夏天,山那边发生溃坝的当晚,您和大嫂曾经挽 留落难的仨兄妹在您的小饭店里住了一夜,还„„”耿大业傻傻地张大嘴巴:“啊!你们是„„”“是我们!我们要回老家去了,特地 来看望您和大嫂的„„”“快请进屋说话!这骡车怎么„„”“咱们慢慢细说!”耿大业吩咐伙计将骡车赶进靠里边的大车棚内,将骡 子卸了喂上草料。伙计牵起大白骡进车棚去了。耿大业伸出有力的大手抓住耿正的双肩晃一晃,激动地大声说:“好兄弟,好兄弟啊!” 再转过来抓住耿直的双肩晃一晃,高兴地说:“小兄弟,你长大了,个头比你哥哥当年还高呢,长得也真像啊!”再仔细地端详耿英, 拍一拍她的肩膀,说:“好妹子,了不起啊!”他激动得不知道说什么好了:“七年多了,我和你们大嫂经常想起你们来,老惦念呢! 咱们到家里说话,你们大嫂又快生娃了,在家里歇着呢。”说着朝大院的西北方向扬扬头,说:“喏,就在大院儿里„„”当他领着耿 正兄妹仨往家里走去时,一个胖墩墩的小男娃儿忽然从靠北边的屋子里跑了出来,口里还欢叫着:“爹,我在屋里就能听见是你回来 了!”一边说着,一边就高兴地向耿大业扑来。耿正和耿英同时蹲下身来准备抱他,小家伙却像泥鳅一样“哧溜”一下就窜到了耿大业 的身后。耿大业把小家伙拉到身前来,挨个儿指着耿正、耿直和耿英对他说:“小铁蛋儿,这是大叔叔、这是二叔叔、这是姑姑,快叫 啊!”小家伙眨巴着小眼睛看看三人,再抬头看看爹爹。耿大业再说一遍:“叫大叔叔、二叔叔、姑姑!”这一回,小家伙亮着小嗓子 叫了。耿英高兴地答应着将小家伙抱起来,欣喜地说:“你叫小铁蛋儿,好一个可爱的小铁蛋儿啊!”这边正高兴着呢,耿大嫂听着外 面热闹的说话声也出来了。她已经怀孕八个多月了,笨拙地挺着大肚子一边往前走一边问:“他爹,这是„„”耿英一看见大嫂如此模 样,赶快将小铁蛋儿递到耿

第二节 同角三角函数的基本关系式

第二节 同角三角函数的基本关系式

5.求下列函数的定义域 (1)y=tanx+cotx; (2)y= sinx +tanx. 求下列函数的定义域: 求下列函数的定义域 ≠ ∈ 解: (1)使 tanx 有意义的 x 的取值集合是 {x | x≠kπ+ π , k∈Z}, 使 2 使 cotx 有意义的 x 的取值集合是 {x | x≠kπ, k∈Z}, ≠ ∈ 故所求函数的定义域是: 故所求函数的定义域是 {x | x≠kπ+ π , k∈Z}∩{x | x≠kπ, k∈Z} ={x | x≠ kπ , k∈Z}; ≠ ∈ ≠ ≠ ∈ 2 ∈ ∩ 2 sinx≥0, (2)要使原函数有意义 则 x≠kπ+ π , k∈Z. 要使原函数有意义, 要使原函数有意义 ≠ ∈ 2 2kπ≤x≤2kπ+π, k∈Z, ∈ 即 x≠kπ+ π , k∈Z. ≠ ∈ 2 故原函数定义域为{x|2kπ≤x≤2kπ+π, 且 x≠2kπ+ π , k∈Z}. 故原函数定义域为 ≠ 2 ∈
6.设 α 是第二象限的角 试问 -α, π-α, π+α 分别是第几象限 设 是第二象限的角, 试问: 的角? 的角 ∈ 是第二象限的角, 解: ∵α 是第二象限的角 ∴2kπ+ π <α<2kπ+π, k∈Z. 2 ∴ -2kπ-π<-α<-2kπ- π , k∈Z, -2kπ<π-α<-2kπ+ π , k∈Z, - 2 ∈ 2 ∈ 3π π 2kπ+ 2 <π+α<2kπ+2π, k∈Z. ∈ 是第一象限角, 是第三象限角, 是第四象限角. ∴-α 是第三象限角 π-α 是第一象限角 π+α 是第四象限角

同角三角函数关系式

同角三角函数关系式

cos(α+β)-cosγ=-2cosγ,∴(3)式不是常数;
又tan(α+β)=tan(π-γ)=-tanγ,∴(4)式不是常数, ∴(1),(2),(5)式为常数,共4个. 答案:3
知识要点
双基巩固
典型例题
易错辨析
提升训练
方法技巧:
1 在△ABC
(1)若△ABC
(2)若△ABC为直角三角形(∠C cosB. (3)若△ABC为钝角三角形(∠C cosB.
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
方法技巧:1. 化简是一种不指定结果的恒等变形,
其结果要求:项数尽可能少、次数尽可能低、尽量使根 号内或分母中不含三角函数(式),能求值的尽量求值.
2. 化简前,注意分析角及式子的结构特点,选择恰
当的公式和化简顺序.
知识要点
双基巩固
典型例题
易错辨析
提升训练
综合应用
【思路点拨】 先利用诱导公式,将条件化简,再利用平方
关系,消去A(或B)得到B(或A)的某一三角函数值,进
而求出A,B,C.
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
,则sin(B
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
学科网
知识要点

三角函数之间的关系公式

三角函数之间的关系公式

三角函数之间的关系公式1. 同角三角函数的基本关系:倒数关系:tanα•cotα=1 sinα•cscα=1 cosα•secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=csc α/secα平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式:sin²α+cos²α=1 tan α*cot α=12. 一个特殊公式:(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin (a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)3. 锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边4. 二倍角公式正弦sin2A=2sinA•cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1正切tan2A=(2tanA)/(1-tan^2(A))5. 三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)6. n倍角公式sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n). 其中R=2^(n-1)7. 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA )=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))8. 和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)9. 两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ10. 积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/211. 双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tan αcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tan αcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sin αcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tan αcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tan αcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot (π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan (π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos (3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tan αsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z) A•sin(ωt+θ)+ B•sin(ωt+φ) = √{(A²+B²+2ABcos(θ-φ)} •sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容12. 诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosA tan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限13. 万能公式sinα=2tan(α/2)/[1+(tan(α/2))²]cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]14. 其它公式(1) (sinα)²+(cosα)²=1(2)1+(tanα)²=(secα)²(3)1+(cotα)²=(cscα)²证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可.(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC(8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a) sec(a) = 1/cos(a)15. 两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)。

三角函数复习(同角三角函数基本关系与诱导公式)

三角函数复习(同角三角函数基本关系与诱导公式)

三角函数复习(同角三角函数基本关系与诱导公式). (2)商数关系:sin αcos α=tan α.1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1(3)倒数关系:tan α=co 1t∝2.六组诱导公式(1)诱导公式的记忆口诀:奇变偶不变,符号看象限. (2)同角三角函数基本关系式的常用变形:(sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α. 二、课前自测1. tan 等于 ( ) A. √B. √C.√D.√2. 若 α=1,α ./,则 tanα 等于 ( )A.√B.√C. √D. √3. 已知 tanα= 1,且 α 为第二象限角,则 nα 的值为 ( )A. 1B. 11C.1D.14. .1 / n.1/= .5. 已知 tanα= ,则的值为 .三、典型例题1. 已知 α 是三角形的内角,且 nα α=1.Ⅰ求tanα的值;Ⅱ把1用tanα表示出来,并求其值;Ⅲ求:的值;Ⅳ求 nα nα α的值.2. (1) n()() n()=;(2)已知 .α/=√,则 .α/ n.α/的值为.(3)已知 n.1 α/=,则 .α111/=.(4)若 .α/=1,则 n.α/=.3. (1)已知=()()(),则的值构成的集合是()A. *+B. *+C. *+D. *+(2)()() . /()()=.(3)已知α为第三象限角,(α)= . / . / ()()().Ⅰ化简(α);Ⅱ若 .α/=1,求(α)的值.同角三角函数基本关系式与诱导公式答案课前自测 1. D 2. C 3. C4. √5. 1典型例题1. (1) 解法一: 联立 { nα α=1n αα=由 得 α=1nα, 将其代入 ,整理得 n α nα = . 因为 α 是三角形的内角, 所以 nα=,所以 α=, 所以 tanα=. 解法二:因为 nα α=1,所以 ( nα α)=.1 /,则 nα α=1,所以 nα α=,所以 ( nα α) = nα α==. 因为 nα α= 1且 α , 所以 nα , α , 所以 nα α . 所以 nα α= .由 { nα α=1nα α=得 { nα=α=所以 tanα= .(2)1 === 11因为tanα=,所以α nα=tanαtanα=. /. /=(3)tanα=,则:==. /=.(4)nα nα α==1=1=2. (1);(2)√(3)(4). 13. (1)C 【解析】当为偶数时,==;当为奇数时,==.所以的值构成的集合是*+.(2).【解析】原式=0 ./1 ( ), ( )-=./( ) =( ) ===(3)(α)= . / ./ ( ) ( ) ( )=( ) ( )( )= α(4) 因为 .α/=1, 所以 nα=1,从而 nα= 1. 又 α 为第三象限角, 所以 α= √ n α= √,所以 (α)= √.同角三角函数基本关系式与诱导公式课堂练习与作业一、选择题(共7小题;共35分) 1. n 的值为 ( ) A. 1B. √C.D. √2. 已知 ./=√,且,则 tan = ( )A. √B. √C. √D. √3. 若 α 是第三象限角,且 tanα=1,则 α= ( )A. √11B.√11C.√11D. √114. 在 中,若 tan = 则 = ( )A. √B. √C. √D. √5. 已知 n ( )= n./ 则 n = ( )A.B.C. 或D. 16. 已知 (α)=( ) ( )( ),则 .1/ 的值为 ( )A. 1B. 1C. 1D. 17. 已知函数 ( )= n ( α) ( ),且 ( )= ,则 ( ) 的值为 ( )A. B. C. D.二、填空题(共1小题;共5分)8. 已知α为锐角,且 tan(α) . /=,tan(α) n()=,则 nα的值是.三、解答题(共2小题;共26分)9. 已知 n(α)= n.α/,求下列各式的值:(1);(2) nα nα α.10. 已知 n(α)(α)=√.α /,求下列各式的值.(1) nα α;(2) n.α/.α/.答案第一部分1. A【解析】 n = n ( ) ( )= n ( )= n =1 1=12. D 【解析】 ./= n =√,又,则 =1,所以 tan =√ .3. C【解析】因为 α 是第三象限角,且 tanα= =1, n α α= ,所以 α= √1 1.4. B【解析】在 中,当 tan = 时, ./,所以 =√1=√= √. 5. B【解析】由已知等式得 n = , 所以 n = = ,所以 =1,故 n = =. 6. C【解析】因为 (α)== α,所以 . 1/= .1/= ./== 1.7. c【解析】因为 ( )= n ( α) ( )= nα = ,所以( )= n ( α) ( )= n (α) ( )=第二部分 8. √1 1【解析】由已知可得 tanα n = ,tanα n = , 解得 tanα= , 又 α 为锐角,故 nα= √11. 第三部分9. (1) 解法一:由 n ( α)= n.α/ 得 tanα= .原式=== 1.解法二:由已知得 nα= α.原式==1.(2)解法一:原式==1=.解法二:原式===.10. (1)由 n(α)(α)=√,得 nα α=√.将两边平方,得 nα α=,故 nα α=.又α,所以 nα, α.( nα α)= nα α= . /=1 ,所以 nα α=.(2) n.α/.α/=α nα=( α nα)(α α nα nα)= .1/=。

同角三角函数的基本关系式

同角三角函数的基本关系式

4
3
2
解:(2) 1 sin2α+ 1 sin αcos α+ 1 cos2α
4
3
2
1 sin2 1 sin cos 1 cos2
=4
3
2
sin2 cos2
=
1 4
tan2
1 3
tan
1 2
=
13
.
tan2 1
30
方法技巧 关于sin α、cos α的齐次式就是式子中的每一项都是关于sin α、cos α的式子且它们的次数之和相同,设为n次,解题时,分子、 分母同除以cos α的n次幂,即可化为关于tan α的式子,再计算就简单 多了.
(A) 1 5
(B) 3 5
(C)- 1 (D)- 3
5
5
解析:由
tan tan
sin sin
3, 2,
解得 tan θ= 5 ,sin θ= 1 ,
2
2
所以 cos θ= sin = 1 . tan 5
4.已知sin α=5cos α,则sin αcos α的值为
.
解析:法一

sin sin
=tan α·( 1 cos 2 - 1 cos 2 )=tan α·( 1 cos - 1 cos )
1 cos2
1 cos2
| sin | | sin |
= sin ·(- 1 cos + 1 cos )= sin · 2cos =-2.
cos
sin
sin
cos sin
答案:-2
解:(1)因为 sin A+cos A= 1

5
所以两边平方得 1+2sin A·cos A= 1 ,sin A·cos A=- 12 .

高二数学同角三角函数的基本关系1

高二数学同角三角函数的基本关系1
2. 三个三角函数值“知一求二”.
Hale Waihona Puke 例2、已知tan 3,求下列各式: (1)2cos 3sin 3cos sin
(2)2sin2 sin cos 3cos2 .
例3 :已知sin cos 1 ,
5
求 :
2

(1) sin cos ;(2) tan 1 tan
(3) sin2 cos2 1?
例1. 已知sin 4,且是第二象限角,求 cos , tan
5 的值.
变题1:已知cos 4 ,求sin, tan的值.
5
变式2. 已知tan 12 ,求sin, cos的值.
5
小结:
1.当角的象限不明确时,要注意根据已知角 的三角函数值分象限进行讨论.
3.证明恒等式常用“化繁为简”,“中间会师” “变更论证”
4。技巧:利用“1”的作用和“切割化弦”
5。整体代换和方程的思想 ,统一角、统一函 数名、降低次数等,体现化归思想。
作业:同步练习5页
; 广东11选5走势图 ;
快一个小时了他们还没到.作为一名老实巴交の纳税人,我有权利知道自己供养の是人民公仆还是吃饱等死の猪,连个入村路口都找了一个多小时,到时让媒体过来一起见识见识.”最后一句像从牙缝里蹦出来の,这种效率,足够让报警人死几百次了.原本有些忧心の卓律师听罢, 为之失笑,“行行行,你别冲动,我马上过去.在我到之前你若见势不妙要马上避开知道吗?别意气用事跟他们硬碰硬,别让自己吃亏,明白吗?”“明白,刚才有个人袭击我被我用防狼喷雾喷了,不犯法吧?”“没事,你把那支喷雾保管好等取证.记住,穷山恶水出刁民,你一个小 丫头千万要沉住气保护好自己.”他再三强调叮嘱,快步进入公司直接去了林董事长の办公室.第16

同角三角函数的基本关系与诱导公式

同角三角函数的基本关系与诱导公式

同角三角函数的基本关系与诱导公式一、基础知识1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.二、常用结论同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例] (1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α) =-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α, 所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2. 答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例] (1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165 B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1,将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0,所以cos α-sin α=-12.[答案] (1)A (2)D[题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________. 解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α), 即sin α=2cos α,所以tan α=sin αcos α=2, 从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425.因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin 11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15, 得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3cos(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ.答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________. 解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α =sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α9.sin 4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α =tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α.①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C.3D .-3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74,所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2,因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3; 当sin θ=12,cos θ=32时,θ=π6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас
澳大利亚外国人房贷 https:///brighten-home-loan/
澳大利亚外国人房贷 [单选,A1型题]下列哪项不是臀位剖宫产的指征()A.骨盆入口轻度狭窄B.巨大儿C.软产道异常D.高龄初产妇E.第二产程、脐带脱垂、胎儿存活 澳大利亚外国人房贷 [单选]税收地方性法规的效力高于()。A.税收行政法规B.税收授权立法C.税收地方政府规章D.税收部门规章 澳大利亚外国人房贷 [单选]集贸市场内经营者使用的电气线路和用电设备的安装,必须统一由主办单位委托()。A、电力部门安装B、产权单位安装C、具有资格的施工单位安装D、懂专业知识的人安装 澳大利亚外国人房贷 [判断题]个人对外贸易经营者办理对外贸易购付汇、收结汇可通过任何外汇结算账户进行。A.正确B.错误 澳大利亚外国人房贷 [单选,A2型题,A1/A2型题]下颌骨的主要生长中心为()A.髁状突B.喙状突C.下颌角D.正中联合E.颏孔区 澳大利亚外国人房贷 [填空题]电容器具有储存()本领,其本领的大小可以用()来表示,其表达方式是() 澳大利亚外国人房贷 [单选]设计钢筋混凝土大型楼板,板厚20cm,钢筋间距为5cm,选用碎石的粒级应为()A.5~10mmB.5~20mmC.5~40mmD.5~60mm 澳大利亚外国人房贷 [问答题,简答题]为什么要对抄表员进行抄表区轮换? 澳大利亚外国人房贷 [多选]下列关于SC的叙述,哪一些是正确的()A.能抵抗蛋白酶对分泌型IgA的降解作用B.介导分泌型IgA的转运C.IgA缺陷者可合成SCD.由粘膜上皮细胞合成E.辅助分泌型IgA与特异性抗原结合 澳大利亚外国人房贷 [填空题]煤气脱硫一般分为两种方法,()和()。 澳大利亚外国人房贷 [填空题]从应用角度来看,网易是(),而谷歌是搜索引擎网站。 澳大利亚外国人房贷 [单选,A1型题]乳腺癌患者乳腺皮肤出现“酒窝征”的原因是()。A.肿瘤侵犯了胸大肌B.肿瘤侵犯了Cooper韧带C.瘤细胞堵塞了局部皮下淋巴管D.肿瘤侵犯了周围腺体E.肿瘤侵犯了局部皮肤 澳大利亚外国人房贷 [单选,A1型题]病例对照研究与队列研究的主要相同点是()A.均是分析性研究B.均是前瞻性研究C.均是回顾性研究D.均是实验性研究E.均是描述性研究 澳大利亚外国人房贷 [填空题]能给客户留下深刻印象的服务行为有:();()、仪表、仪容和肢体语言等 澳大利亚外国人房贷 [单选]民航VHF收发信机的工作方式为()。A.单工B.双工C.半双工 澳大利亚外国人房贷 [单选]马氏体的硬度主要决定于()A.马氏体中合金元素的含量B.淬火时冷却速度C.马氏体的碳含量D.淬火加热温度 澳大利亚外国人房贷 [单选,A4型题,A3/A4型题]患者女,5岁。1岁前妈妈就觉得她跟其他小孩不同,抱她的时候患儿不期待,没有愉悦满足的情感表达,目光一般不追随和注视大人,1岁会走路,到目前为止仍不会叫爸妈,和其他小朋友在一起时,总自己玩自己的,有时和别人凑到一起也只会搞 澳大利亚外国人房贷 [单选]嘧啶环的原子来源于()A、天冬氨酸天冬酰胺B、天冬氨酸氨甲酰磷酸C、氨甲酰磷酸天冬酰胺D、甘氨酸甲酸盐 澳大利亚外国人房贷 [单选]王某以其传家之宝六四手枪一把为张某的债权设定了2000元的担保,此担保合同的效力如何?()A.效力待定B.有效C.效力有瑕疵D.无效 澳大利亚外国人房贷 [单选]偃旗息鼓“偃”的意思是:()A.摘下B.收起C.停止D.放倒 澳大利亚外国人房贷 [单选]隧道施工在辅以大型机具设备时宜采用()施工。A.台阶开挖法B.全断面开挖法C.分部开挖法D.隧道挖掘机法 澳大利亚外国人房贷 [单选]在家庭财产保险中,保险事故发生后,保险人对于室内财产采取的赔偿处理方式是()。A、推定损失赔偿方式B、第一危险赔偿方式C、限额责任赔偿方式D、比例赔偿赔偿方式 澳大利亚外国人房贷 [单选]当AP1和AP2末接通,FD1和FD2接通,自动油门工作时:()A、FMGC1控制1号发动机,FMGC2控制2号发动机B、FMGC1控制两台发动机C、FMGC2控制两台发动机D、飞行控制和发动机仅由一台FMGC控制 澳大利亚外国人房贷 [单选]门静脉高压症的门静脉压力是()A.小于13cmH2O(1.3kPA.B.13~24cmH2O(1.27~2.35kPA.C.30~50cmH2O(2.94~4.90kPA.D.13~30cmH2O(1.27~2.94kPA.E.25~50cmH2O(2.45~4.90kPA. 澳大利亚外国人房贷 [单选]应设立()部门产值,第二信息部门等指标。A.第一信息B.第二信息C.第三信息D.第四信息 澳大利亚外国人房贷 [填空题]在地震区进行高层建筑结构设计时,要实现(),这一要求是通过()措施来实现的;对框架结构而言,就是要实现()、()、()和强锚固。 澳大利亚外国人房贷 [单选]高血压病患者,伴劳力型心绞痛,选择的最佳降压药物是().A.利尿剂B.&beta;受体阻滞剂C.ACEID.ai受体阻滞剂E.钙拮抗剂 澳大利亚外国人房贷 [单选]甲烷化炉入口二氧化碳含量设计值是()PPM。A.1800B.1500C.800D.400 澳大利亚外国人房贷 [单选,A1型题]关于服药时间说法错误的是()A.滋补药宜在饭后服B.辛温解表药煎后应温热服C.对胃肠有刺激性的药,应在饭后服D.驱虫、攻下药宜空腹服E.安神药应在早晨服用 澳大利亚外国人房贷 [单选]20世纪中叶毛泽东宣告“中国人民从此站起来了”。与这一结论相符的是()。A.抗战胜利洗雪百年国耻B.半殖民地半封建社会结束C.社会主义改造基本完成 澳大利亚外国人房贷 [填空题]离心压缩机级内的能量损失主要包括:()损失、()损失和()损失。 澳大利亚外国人房贷 [单选]根系无基质固定,直接和营养液接触,这类无土栽培称为()。A、基质栽培B、沙培C、无基质栽培D、混合基质培 澳大利亚外国人房贷 [单选]对于烟气能量回收系统的特点,下列选项中关于烟气描述错误的是()。A、流量大B、压力高C、温度高D、催化剂细粉含量较高 澳大利亚外国人房贷 [单选,A1型题]《医疗机构从业人员行为规范》是什么时间公布执行的()A.2010年1月7日B.2012年1月7日C.2012年6月26日D.2012年8月27日E.2012年10月20日 澳大利亚外国人房贷 [单选]苏式点心是指()制作的面点A、长江流域B、江苏一带C、长江中下游江浙一带D、江苏上海一带 澳大利亚外国人房贷 [多选]对倾斜岩层的厚度,下列()的说法是正确的()A.垂直厚度总是大于真厚度B.当地面与层面垂直时,真厚度等于视厚度C.在地形地质图上,其真厚度就等于岩层界限顶面和底面标高之差D.真厚度的大小与地层倾角有关 澳大利亚外国人房贷 [问答题,简答题]请说明基孔制与基轴制的定义区别 澳大利亚外国人房贷 [问答题,简答题]简述发酵罐实罐灭菌采用的“三路进汽”原理和实罐灭菌的进、排汽原则。 澳大利亚外国人房贷 [单选]关于现代出版业行业用语“页”“面”“页码”的说法,错误的是()。A."页码"用于标注书页的张数B."1页"就是"1张"C.任何一种书刊的面数都是偶数D.出版业务中应尽量用"面"表示书页数量 澳大利亚外国人房贷 [单选]在对安全评价报告附件中检测检验报告的引用正确性审核时不需关注的是()。A.有效期B.检测检验时间C.检测检验结果D.检测单位法定代表人
相关文档
最新文档