2020中考第一次模拟测试数学试卷

合集下载

2020年中考数学模拟试卷一(含答案)

2020年中考数学模拟试卷一(含答案)

2020年中考数学模拟试卷(时间90分钟满分120分)一.选择题(共10小题,满分30分,每小题3分)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年末到2020年6月14日星期日海外现有确诊病例约340万,将数据340万用科学记数表示为()A.3.4×104B.3.4×103C.3.4×106D.3.4×1053.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.4.下列图形是中心对称图形的是()A.B.C.D.5.数据2,4,8,5,3,5,5,4的众数、中位数分别为()A.4.5、5B.5、4.5C.5、4D.5、56.P(4,﹣3)关于x轴对称点的坐标是()A.(4,3)B.(﹣4,﹣3)C.(﹣4,3)D.(﹣3,4)7.下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y68.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°9.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM 交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共7小题,满分28分,每小题4分)11.分解因式:2x2﹣2=.12.若一个正多边形的一个外角等于40°,则这个多边形是边形.13.不等式组的解集是.14.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.15.已知点P(a,b)是一次函数y=x﹣1的图象与反比例函数的图象的一个交点,则a2+b2的值为.16.下面一组按规律排列的数,2,4,8,16,32,……则第2020个数是.17.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.三.解答题(共8小题,具体分值在题号后,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.(6分)先化简,再求值:÷a,中a=﹣1.20.(6分)如图,在△ABC中,AC=12cm,BC=16cm,AB=20cm,∠CAB的角平分线AD交BC于点D.(1)根据题意将图形补画完整(要求:尺规作图保留作图痕迹,不写作法);(2)求△ABD的面积.21.(8分)某学校举行“每天锻炼一小时,健康生活一辈子”为主题的体育活动,并开展了以下体育项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了解选择各项体育活动的学生人数,随机抽取了部分学生进行调查,并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)求选择篮球项目的人数在扇形统计图中所占的百分比?(4)若该学校有1500人,请你估计该学校选择乒乓球项目的学生人数约是多少人?22.(8分)如图,矩形ABCD对角线相交于O点,DE∥AC,CE∥BD,连接BE.(1)求证:四边形OCED是菱形;(2)若∠AOD=120°,CD=2,求DE和tan∠DBE的值.23.(8分)某汽车租贸公司共有汽车50辆,市场调查表明,当租金为每辆每日200元时可全部租出,当租金每提高10元,租出去的车就减少2辆.(1)当租金提高多少元时,公司的每日收益可达到10120元?(2)公司领导希望日收益达到10160元,你认为能否实现?若能,求出此时的租金,若不能,请说明理由,(3)汽车日常维护要定费用,已知外租车辆每日维护费为100元未租出的车辆维护费为50元,当租金为多少元时,公司的利润恰好为5500元?(利润=收益﹣维护费)24.(10分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP的长.25.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.。

2020年中考数学一模试卷【答案+解析】

2020年中考数学一模试卷【答案+解析】

2020年中考数学一模试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣64.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=25.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5 6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.67.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.68.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3 9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1y2.(填“>”,“<”或“=”)13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.16.(6分)计算:(+)÷.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c (1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选:B.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:D.4.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=2【分析】把方程的左边的式子进行分解,得出两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程可化为:(x﹣1)(x﹣2)=0∴x1=1,x2=2.故选:A.5.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5【分析】根据合并同类项,同底数幂的乘除法,幂的乘方,对各选项分析判断后利用排除法求解.【解答】解:A、x3与x2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、x3•x2=x5,原计算正确,故此选项符合题意;C、x6÷x2=x4,原计算错误,故此选项不符合题意;D、(x3)2=x6,原计算错误,故此选项不符合题意.故选:B.6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.6【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:根据该几何体的俯视图的面积为5,可知每个小正方体的棱长为1,从正面看有两层,底层是三个正方形,上层是一个正方形,所以这个几何体的主视图的面积为4.故选:B.7.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.6【分析】将点A、B的坐标分别代入函数解析式,列出方程组,通过解方程组求得k、m 的值即可.【解答】解:把点A(2,m),B(﹣1,6)分别代入,得.解得k=﹣6,m=﹣3.故选:A.8.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3【分析】抛物线y=x2的顶点坐标为(0,0),向左平移2个单位,再向上平移3个单位,所得的抛物线的顶点坐标为(﹣2,3),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是BD的线段垂直平分线,∴BE=ED,∵△ABE的周长=AB+AE+BE=AB+AE+ED=AB+AD=6cm.故选:C.10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8【分析】连接OA,由垂径定理得:AC=BC,根据勾股定理,可以求出AC的长,从而得AB的长.【解答】解:如图,连接OA,∵OC⊥AB于点C,∴AC=BC,∵⊙O的半径是5,∴OA=5,又OC=3,所以在Rt△AOC中,AC===4,所以AB=2AC=8.故选:D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为x=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=6x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1<y2.(填“>”,“<”或“=”)【分析】根据点P1、P2的横坐标结合二次函数图象上点的坐标特征,即可得出y1、y2的值,比较后即可得出结论.【解答】解:当x=﹣2时,y1=(﹣2+1)2﹣2=﹣1;当x=2时,y2=(2+1)2﹣2=7.∵﹣1<7,∴y1<y2.故答案为<.13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为6﹣2.【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【解答】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM=DE,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,∴x=(2﹣x),解得x=4﹣2,∴CM=4﹣2,由旋转的性质可知:CF=CE=4﹣2,∴BF=BC+CF=2+4﹣2=6﹣2.故答案为:6﹣2.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为100°.【分析】连接OD,根据圆周角定理求出∠BOD,根据切线的性质得到∠ABO=90°,∠ADO=90°,根据四边形内角和等于360°计算即可.【解答】解:连接OD,由圆周角定理得,∠BOD=2∠C=80°,∵BC是⊙O的直径,AB、AD是⊙O的切线,∴OB⊥AB,OD⊥AD,∴∠ABO=90°,∠ADO=90°,∴∠A=180°﹣∠BOD=100°,故答案为:100°.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.【分析】(1)本题涉及零指数幂、平方、特殊角的三角函数值、绝对值、二次根式化简5个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可得解.【解答】解:(1)2cos45°﹣|﹣|+()0﹣(﹣2)2=2×﹣+1﹣4=﹣+1﹣4=﹣3;(2),解不等式①得x>1.5;解不等式②得x≤3.故不等式组的解集为1.5<x≤3.16.(6分)计算:(+)÷.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)【分析】首先根据题意分析图形,本题涉及到两个直角三角形,进而求得BE、AE的大小,再利用AB=BE﹣AE可求出答案.【解答】解:作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【分析】(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.【分析】(1)先由一次函数y=kx+b(k<0)的图象经过点C(3,0),得出3k+b=0①,由于一次函数y=kx+b的图象与y轴的交点是(0,b),根据三角形的面积公式可求得b 的值,然后利用待定系数法即可求得函数解析式;(2)将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,得到E(﹣,0),解方程组得到B(6,﹣2),连接AE,BE,根据三角形的面积公式即可得到结论.【解答】解:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵k<0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k=﹣,则函数的解析式是y=﹣x+2.故这个函数的解析式为y=﹣x+2;把点A(a,4)代入y=﹣x+2得,4=﹣a+2,解得:a=﹣3,∴A(﹣3,4),∴m=﹣12,∴反比例函数的解析式为y=﹣;(2)∵将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,当y=0时,即0=﹣x﹣3,解得:x=﹣,∴E(﹣,0),解得,,,∴B(6,﹣2),连接AE,BE,∵AB∥DE,∴S△ADB=S△AEB=(3+)×4+(3+)×2=.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.【分析】(1)连接OC,OE,根据等腰三角形的性质得到∠E=∠OCE,求得∠E+∠ODE =90°,得到∠PCD=∠ODE,得到OC⊥PC,于是得到结论;(2)连接AC,BE,BC,根据相似三角形的性质得到=,推出CD•DE=AO2﹣OD2;由△ACP∽△CBP,得到,得到PD2=PD2+2PD•OD+OD2﹣OA2,于是得到结论;(3)由(2)知,CD•DE=AO2﹣OD2;把已知条件代入得到OD=1(负值舍去),求得AD=3,由(2)知,CD•DE=2OD•PD,于是得到结论.【解答】(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为﹣2.【分析】由点的坐标,利用一次函数图象上点的坐标特征可求出a﹣b的值,此题得解.【解答】解:∵直线y=ax+b经过点(﹣1,2),∴2=﹣a+b,∴a﹣b=﹣2.故答案为:﹣2.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.【分析】首先根据题意可求得,所有可能结果,然后解不等式组求得不等式组的解集得出符合要求的点的坐标,再利用概率公式即可求得答案.【解答】解:根据题意列出树状图得:则(a,b)的等可能结果有:(﹣2,﹣6),(﹣2,2),(﹣2,6),(﹣6,﹣2),(﹣6,2),(﹣6,6),(2,﹣2),(2,6),(2,﹣6),(6,﹣2),(6,2),(6,﹣6)共12种;,解①得:x<7,当a>0,解②得:x>,根据不等式组的解集中有且只有3个非负整数解,则3<x<7时符合要求,故=3,即b=6,a=2符合要求,当a<0,解②得:x<,根据不等式组的解集中有且只有3个非负整数解,则x<3时符合要求,故=3,即b=﹣6,a=﹣2符合要求,故所有组合中只有2种情况符合要求,故使关于x的不等式组的解集中有且只有3个非负整数解的概率为:=.故答案为:.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为1.【分析】设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入抛物线的解析式,两式相减,计算即可求得.【解答】解:设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入y=x2+mx﹣m得,①﹣②得2a=2am,解得m=1,故答案为1.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为2.【分析】如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.再根据矩形性质和勾股定理即可求出DG的长.【解答】解:如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.∵BC=AD=2,AB=CD=6,根据翻折可知:DE=EF=x,AF=AD=2,则CE=CD﹣DE=6﹣x,在Rt△ABF中,根据勾股定理,得BF==4,则BE=BF+EF=4+x,在Rt△BEC中,根据勾股定理,得(4+x)2=(6﹣x)2+(2)2,解得x=2.则DG的最大值为2.故答案为:2.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为3.【分析】根据双曲线的对称性得到BC=AD,设BC=AD=a,用a表示出点C和得D的坐标,根据梯形面积公式、三角形面积公式求出a、b的关系,根据反比例函数图象上点的坐标特征列出方程,解方程求出b.【解答】解:由题意点B的坐标为(0,b),点A的坐标为(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵=,∴=,整理得,12a2+17ab﹣14b2=0,解得,a1=b,a2=﹣b(舍去),则D(b,﹣b),∴b×(﹣b)=﹣4,解得,b1=3,b2=﹣3(舍去),∴b=3,故答案为:3.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯,列方程求解;(2)设再购进彩灯a盏,根据利润=售价﹣进价和货栈要想获得利润不低于15000元列出不等式并解答.【解答】解:(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,依题意得:=+100,解得x=75,经检验x=75是所列方程的根,则0.8x=0.8×75=60(元).答:该货栈实际购进每盏彩灯为60元;(2)设再购进彩灯a盏,由(1)知,实际购进30000÷60=500(盏),依题意得:(500+a)(1﹣20%)×60×50%+(500+a)×20%×[60×(1+50%)×0.5﹣60]≥15000,解得a≥.因为a取正整数,所以a=215.答:至少再购进彩灯215盏.27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.【分析】(1)由EB=EB1,EA=EA1,可得∠EBB1=∠EB1B,∠EAA1=∠EA1A,由∠BEB1=∠AEA1,可得∠EBB1=∠EB1B=∠EAA1=∠EA1A,由此即可证明;(2)连接BF,延长EB1交AA1于M.由△MFB1∽△MEA1,推出△MEF∽△MA1B1,推出∠MFE=∠MB1A1=90°,即EF⊥AA1,由EA=EA1,可得AF=F A1;(3)首先求出AE,由cos∠GBC=cos∠EAF===,在Rt△AEF中,根据AF=AE•cos∠EAF,计算即可;【解答】(1)证明:如图∵EB=EB1,EA=EA1,∴∠EBB1=∠EB1B,∠EAA1=∠EA1A,∵∠BEB1=∠AEA1,∴∠EBB1=∠EB1B=∠EAA1=∠EA1A,∴△AA1E∽△BB1E.(2)证明:连接BF,延长EB1交AA1于M.∵∠BB1B=∠FB1M=∠MA1E,∠FMB1=∠EMA1,∴△MFB1∽△MEA1,∴=,∴=,∵∠EMF=∠A1MB1,∴△MEF∽△MA1B1,∴∠MFE=∠MB1A1=90°,∴EF⊥AA1,∵EA=EA1,∴AF=F A1.(3)解:在Rt△ABE中,∵AB=4,BE=1,∴AE==,∵DG=GC,∴cos∠GBC=cos∠EAF===,在Rt△AEF中,AF=AE•cos∠EAF=•=.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.【分析】(1)先求出对称轴为x=4,进而求出AB=4,进而求出点A,B坐标,即可得出结论;(2)利用面积的和差建立方程求解,即可得出结论;(3)Ⅰ、当点Q在对称轴右侧时,先判断出点E,M,Q,P四点共圆,得出∠EMQ=90°,利用同角的余角相等判断出∠EMF=∠HGM,得出tan∠EMF==2,得出HG =HM=1,进而求出Q(8,6),得出结论;Ⅱ、当点Q在对称轴左侧时,先判断出△PDQ∽△EFP,得出,进而判断出DP=,PF=2QD,即可得出结论.【解答】解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.。

2020年度中考初三数学一模试卷(含答案解析)

2020年度中考初三数学一模试卷(含答案解析)

2020年初三数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.-3的绝对值是 A .-13B .-3C .13D .32.函数中y =x2-x 自变量x 的取值范围是A .x ≥2B .x ≤2C .x ≠2D .x >23.在下列四个图形中,是中心对称图形的是A .B .C .D .4.下列运算正确的是 A .2a 2+a 2=3a 4B .(-2a 2)3=8a 6C .a 3÷a 2=aD .(a -b )2=a 2-b 25.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的 A .最高分B .方差C .中位数D .平均数6.下列图形中,主视图为①的是A .BC .D .7.已知a -b =2,则a 2-b 2-4b 的值为 A .2B .4C .6D .88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形9.如图,平面直角坐标系中,A (-8,0),B (-8,4),C (0,4),反比例函数y =k x的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k = A .-20B .-16C .-12D .-810.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B ′DE ,若B ′D ,B ′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是 A .△ADF ≌△CGEB .△B ′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB ′F 的面积是一个定值二、填空题(本大题共8小题,每小题2分,共16分) 11.16的平方根是 .12.某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 . 13.若3m =5,3n =8,则32m +n= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 . 15.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB = . 16.如图,△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的O 和AB ,BC 均相切,则⊙O 的半径为 .(第16题图)(第15题图)ABCDFGB′O(第10题图)(第9题图)(第6题图①)17.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (-1,0),点B在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .18.如图,正方形ABCD 和Rt △AEF ,AB =5,AE =AF =4,连接BF ,DE .若△AEF 绕点A 旋转,当∠ABF 最大时,S △ADE = .三、解答题(共84分) 19.(本题满分8分)(1)计算:(π-3)0+2sin45°-⎝ ⎛⎭⎪⎫18-1 (2)解不等式组:⎩⎨⎧1-2x <3x +13<220.(本题满分8分)解方程: (1)x 2-8x +1=0 (2)3x -2-1-x2-x=121.(本题满分8分)如图,□ABCD 中,E 为AD 的中点,直线BE ,CD 相交于点F .连接AF ,BD . (1)求证:AB =DF ;(2)若AB =BD ,求证:四边形ABDF 是菱形.ABCDEF(第18题图)(第17题图)22.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有________人,请将两幅统计图补充完整; (2)抽取的测试成绩的中位数落在________组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?调查测试成绩扇形统计图ADFEBC23.(本题满分8分)有甲,乙两把不同的锁和A,B,C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24.(本题满分8分)如图,△ABC中,⊙O经过A,B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.y/千克)26.(本题满分8分)如图,线段OB 放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA ,使tan ∠AOB 的值分别为1,2,3.27.(本题满分10分)已知,二次函数y =ax 2+2ax -3a (a >0)图象的顶点为C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),点C ,B 关于过点A 的直线l 对称,直线l 与y 轴交于D . (1)求A ,B 两点坐标及直线l 的解析式; (2)求二次函数解析式;(3)在第三象限抛物线上有一个动点E ,连接OE 交直线l 于点F ,求EFOF的最大值.BO图3B O图2B O图128.(本题满分10分)如图,矩形ABCD ,AB =2,BC =10,点E 为AD 上一点,且AE =AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰Rt △BFG ,以BG ,BF 为邻边作□BFHG ,连接AG .设点F 的运动时间为t 秒,(1)试说明:△ABG ∽△EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出HC 的最小值.图2AB CDE图1ABC DFEG H9.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC ﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.17.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B 在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是﹣4≤x≤﹣1 .【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.18.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.22.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在B组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?【分析】(1)根据E组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得B组和C组所占的百分比.根据本次调查的总人数和B组所占的百分比可以求得B组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.有甲、乙两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好都能打开的概率(请用“画树状图”或“列表”等方法给出分析过程)【分析】首先根据题意列表,得所有等可能的结果,可求得打开一把锁的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图:可能出现的等可能性结果有6种,分别是(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),只有1种情况(有先后顺序)恰好打开这两把锁P(恰好打开这两把锁)=.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.25.某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.【分析】本题是通过构建函数模型解答销售利润的问题.(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a,解得m即可(2)可先求出y与销售单价x之间的函数关系为:y=﹣5x+130,再根据销售利润=销售量×(售价﹣进价),列出销售利润w与销售价x之间的函数关系式,即可求最大利润(3)设扣除捐赠后利润为s,则s=﹣5x2+(5p+200)x﹣130(p+14),再根据对称轴的位置及增减性进行判断即可.【解答】解:(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a则a>0可解得:m≥14∴水果商要把水果售价至少定为14元/千克才不会亏本(2)由(1)可知,每千克水果的平均成本为14元得y与销售单价x之间的函数关系为:y=﹣5x+130由题意得:w=(x﹣14)y=(x﹣14)(﹣5x+130)=﹣5x2+200x﹣1820整理得w=﹣5(x﹣20)2+180∴当x=20时,w有最大值∴当销售单价定为20元时,每天获得的利润w最大,最大利润是180元.(3)设扣除捐赠后利润为s则s=(x﹣14﹣p)(﹣5x+130)=﹣5x2+(5p+200)x﹣130(p+14)∵抛物线的开口向下∴对称轴为直线x==∵销售价格大于每千克22元时,扣除捐赠后每天的利润s随x的增大而减小∴≤22解得p≤4故1≤p≤4【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.26.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..【点评】此题主要考查了应用与设计作图以及锐角三角函数关系、勾股定理等知识,正确构造直角三角形是解题关键.27.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.28.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H 在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.。

2020年中考数学第一次模拟测试试卷(含解析)

2020年中考数学第一次模拟测试试卷(含解析)

中考数学第一次模拟测试试卷一、选择题(共10小题)1.下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.2.下列方程中,是一元一次方程的为()A.3x+2y=6B.4x﹣2=x+1C.x2+2x﹣1=0D.﹣3=3.下列各项中,不是由平移设计的是()A.B.C.D.4.下列六个数:0、、、π、﹣、中,无理数出现的频数是()A.3B.4C.5D.65.下列运算正确的是()A.a15÷b5=a3B.4a•3a2=12a2C.(a﹣b)2=a2﹣b2D.(2a2)2=4a46.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.57.如图,在正方形ABCD中,AB=4cm,动点E从点A出发,以1cm/秒的速度沿折线AB ﹣BC的路径运动,到点C停止运动.过点E作EF∥BD,EF与边AD(或边CD)交于点F,EF的长度y(cm)与点E的运动时间x(秒)的函数图象大致是()A.B.C.D.8.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于()A.2B.3C.4D.69.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A.=465B.=465C.x(x﹣1)=465D.x(x+1)=46510.如图,△ABC,AC=3,BC=4,∠ACB=60°,过点A作BC的平行线1,P为直线l上一动点,⊙O为△APC的外接圆,直线BD交⊙O于E点,则AE的最小值为()A.B.7﹣4C.D.1二.填空题(共6小题)11.因式分解:xy2﹣9x=.12.已知a、b满足方程组,则a+b的值为.13.如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为人.14.如图两条相交直线y1与y2的图象如图所示,当x时,y1<y2.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.16.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为.三.解答题(共8小题,共80分)17.(1)计算:(﹣3)2+20170﹣×sin45°(2)解方程:+2=18.已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(),B1(),C1();(2)直接写出△ABC的面积为;(3)在x轴上画点P,使PA+PC最小.19.已知:如图,在▱ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BF=DE20.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.21.已知,如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B.此抛物线与x轴的另一个交点为C.抛物线的顶点为D.(1)求此抛物线的解析式.(2)若点M为抛物线上一动点,是否存在点M.使△ACM与△ABC的面积相等?若存在,求点M的坐标;若不存在,请说明理由.22.如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.24.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.参考答案一.选择题(共10小题,每小题4分,共40分)1.下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.解:﹣3的绝对值=3>0;﹣3<0;﹣(﹣3)=3>0;>0.故选:B.2.下列方程中,是一元一次方程的为()A.3x+2y=6B.4x﹣2=x+1C.x2+2x﹣1=0D.﹣3=解:A、是二元一次方程,错误;B、是一元一次方程,正确;C、是一元二次方程,错误;D、是分式方程,错误;故选:B.3.下列各项中,不是由平移设计的是()A.B.C.D.解:根据平移的性质可知:A、B、C选项的图案都是由平移设计的,D选项的图案是由旋转设计的.故选:D.4.下列六个数:0、、、π、﹣、中,无理数出现的频数是()A.3B.4C.5D.6解:0、、、π、﹣、中,无理数有:、、π,则无理数出现的频数是3.故选:A.5.下列运算正确的是()A.a15÷b5=a3B.4a•3a2=12a2C.(a﹣b)2=a2﹣b2D.(2a2)2=4a4解:A、原式=b10,不符合题意;B、原式=12a3,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=4a4,符合题意,故选:D.6.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.5解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.7.如图,在正方形ABCD中,AB=4cm,动点E从点A出发,以1cm/秒的速度沿折线AB ﹣BC的路径运动,到点C停止运动.过点E作EF∥BD,EF与边AD(或边CD)交于点F,EF的长度y(cm)与点E的运动时间x(秒)的函数图象大致是()A.B.C.D.解:∵四边形ABCD是正方形,EF∥BD,∴当0≤x≤4时,y=,当4<x≤8,y==,故符合题意的函数图象是选项A.故选:A.8.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于()A.2B.3C.4D.6解:如图,过点B、点C作x轴的垂线,垂足为D,E,则BD∥CE,∴==,∵OC是△OAB的中线,∴===,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=OE﹣OD=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA•BD=××2x=3.故选:B.9.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A.=465B.=465C.x(x﹣1)=465D.x(x+1)=465解:设九年级(1)班有x名同学,根据题意列出的方程是=465,故选:A.10.如图,△ABC,AC=3,BC=4,∠ACB=60°,过点A作BC的平行线1,P为直线l上一动点,⊙O为△APC的外接圆,直线BD交⊙O于E点,则AE的最小值为()A.B.7﹣4C.D.1解:如图,连接CE.∵AP∥BC,∴∠PAC=∠ACB=60°,∴∠CEP=∠CAP=60°,∴∠BEC=120°,∴点E在以O'为圆心,O'B为半径的上运动,连接OA交于E′,此时AE′的值最小.此时⊙O与⊙O'交点为E'.∵∠BE'C=120°∴所对圆周角为60°,∴BOC=2×60°=120°,∵△BOC是等腰三角形,BC=4,OB=OC=4,∵∠ACB=60°,∠BCO'=30°,∴∠ACO;=90°∴O'A==5,∴AE′=O'A﹣O'E′=5﹣4=1.故选:D.二.填空题(共6小题,每小题5分,共30分)11.因式分解:xy2﹣9x=x(y+3)(y﹣3).解:原式=x(y2﹣9)=x(y+3)(y﹣3).故答案为:x(y+3)(y﹣3).12.已知a、b满足方程组,则a+b的值为5.解:,①+②得:3a+3b=15,则a+b=5,故答案为:513.如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为50人.解:∵步行的人数占总人数的百分比为×100%=20%,∴骑车人数占总人数的百分比为1﹣40%﹣20%=40%,∵骑车人数为20人,∴该班人数为20÷40%=50(人),故答案为:50.14.如图两条相交直线y1与y2的图象如图所示,当x>a时,y1<y2.解:观察图象得:当x>a时,y1<y2;故答案为>a.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为或2.解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+2,在Rt△DGN中,由勾股定理得:(3﹣x)2+()2=(x+2)2,解得:x=,即BN=;②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或2;故答案为:或2.三.解答题(共8小题,共80分)17.(1)计算:(﹣3)2+20170﹣×sin45°(2)解方程:+2=解:(1)原式=9+1﹣3×=9+1﹣3=7;(2)去分母得:2﹣3x+4x﹣2=2﹣x,移项合并得:2x=2,解得:x=1,经检验x=1是分式方程的解.18.已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(2)直接写出△ABC的面积为5;(3)在x轴上画点P,使PA+PC最小.解:(1)如图所示:A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;故答案为:5;(3)如图所示:点P即为所求.19.已知:如图,在▱ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BF=DE【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD.AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF,∴BE+EF=DF+EF,∴BF=DE.20.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).21.已知,如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B.此抛物线与x轴的另一个交点为C.抛物线的顶点为D.(1)求此抛物线的解析式.(2)若点M为抛物线上一动点,是否存在点M.使△ACM与△ABC的面积相等?若存在,求点M的坐标;若不存在,请说明理由.解:(1)∵直线y=﹣x+3,∴当x=0时,y=3,当y=0时,x=3,∵直线y=﹣x+3与坐标轴的两个交点A,B,∴点A的坐标为(3,0),点B的坐标为(0,3),∵抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B,∴,得,即抛物线的解析式为y=﹣x2+2x+3;(2)存在点M.使△ACM与△ABC的面积相等.∵抛物线y=﹣x2+2x+3=﹣(x﹣3)(x+1)=﹣(x﹣1)2+4与x轴的另一个交点为C.抛物线的顶点为D,∴点C的坐标为(﹣1,0),点D的坐标为(1,4),∵△ACM与△ABC的面积相等,点B的坐标为(0,3),∴点M的纵坐标是3或﹣3,当点M的纵坐标为3时,3=﹣x2+2x+3,得x1=0,x2=2,则点M的坐标为(2,3);当点M的纵坐标为﹣3时,﹣3=﹣x2+2x+3,得x3=+1,x4=﹣+1,则点M的坐标为(+1,﹣3)或(﹣+1,﹣3);由上可得,点M的坐标为(2,3)、(+1,﹣3)或(﹣+1,﹣3).22.如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.【解答】(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.解:(1)①设AB的长是x米,则AD=20﹣3x,根据题意得,x(20﹣3x)=25,解得:x1=5,x2=,当x=时,AD=15>6,∴x=5,∴AD=5,答:AD的长是5米;②设BC的长是x米,矩形花圃的最大面积是y平方米,则AB=[20﹣x﹣(x﹣6)]=,根据题意得,y=x()=﹣x2+x=﹣(x>6),∴当x=时,y有最大值为.答:按图乙的方案,能围成的矩形花圃的最大面积是平方米;(2)设BC=x,能围成的矩形花圃的面积为S,按图甲的方案,S=x×=﹣x=﹣,∴在x=a<10时,S的值随x的增大而增大,∴当x=a的最大值n时,S的值最大,为S;按图乙方案,S=[20﹣x﹣(x﹣a)]x=,∴当x=时,S的值最大为S=,此时a取最大值n时,S的值最大为S =;∵﹣[﹣(n﹣10)2+]=>0,∴,故第二种方案能围成面积最大的矩形花圃.24.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.。

2020年数学中考第一次模拟试题附答案

2020年数学中考第一次模拟试题附答案

2020年数学中考第一次模拟试题附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.72.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm3.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.4.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D5.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD 为100米,点A、D、B在同一直线上,则AB两点的距离是()米A.200米B.2003米C.2203米D.100(31)6.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.47.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.1 9B.16C.13D.238.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③9.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分10.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.11.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间12.已知实数a,b,若a>b,则下列结论错误的是A.a-7>b-7B.6+a>b+6C.55a b>D.-3a>-3b二、填空题13.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 14.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 15.已知62x =+,那么222x x -的值是_____.16.若一个数的平方等于5,则这个数等于_____.17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 . 18.使分式的值为0,这时x=_____.19.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.20.分式方程32x x 2--+22x-=1的解为________. 三、解答题21.解方程:x 21x 1x-=-. 22.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD=23.过点D 作DF ∥BC ,交AB 的延长线于点F . (1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积; (3)若43AB AC =,DF+BF=8,如图2,求BF 的长.23.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考 (1)设,点到的距离. ①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格. 6 5 4 3.5 3 2.5 2 1 0.5 00.551.21.581.02.4734.295.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象. 数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.24.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=(),善于思考的小明进行了以下探索: 设(2a b 2m 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2+=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+法.请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.25.如图,在四边形ABCD 中,AB DC P ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】设这个多边形的边数为n ,根据多边形的内角和定理得到(n ﹣2)×180°=720°,然后解方程即可. 【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C. 【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.2.D解析:D 【解析】 【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.4.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B . 故选:B .【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.5.D解析:D 【解析】 【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长. 【详解】∵在热气球C 处测得地面B 点的俯角分别为45°, ∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°, ∴AC =2×100=200米, ∴AD 22200100 3∴AB =AD +BD =3100(3 故选D . 【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.6.B解析:B 【解析】 【分析】由图像可知a >0,对称轴x=-2ba=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断. 【详解】解:∵抛物线开口向上, ∴a >0,∵抛物线的对称轴为直线x =﹣2ba=1,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵抛物线与x轴的一个交点为(3,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∵x=﹣1时,y=0,∴a﹣b+c=0,所以②错误;∵b=﹣2a,∴2a+b=0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 7.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键. 8.D解析:D【解析】如图,连接BE,根据圆周角定理,可得∠C=∠AEB , ∵∠AEB=∠D+∠DBE , ∴∠AEB>∠D , ∴∠C>∠D ,根据锐角三角形函数的增减性,可得, sin ∠C>sin ∠D ,故①正确; cos ∠C<cos ∠D ,故②错误; tan ∠C>tan ∠D ,故③正确; 故选D .9.B解析:B 【解析】 【分析】根据中位数的定义直接求解即可. 【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分, 则该同学这6次成绩的中位数是:=95分;故选:B . 【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10.A解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1, 解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.11.B解析:B 【解析】 【分析】根据4.84<5<5.29,可得答案. 【详解】 ∵4.84<5<5.29, ∴5, ∴5, 故选B . 【点睛】5是解题关键.12.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.二、填空题13.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4 【解析】 【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解. 【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.14.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.15.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=x=,∴(22∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.16.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】±.若一个数的平方等于5,则这个数等于:5±.故答案为:5【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.18.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法19.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.20.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.三、解答题21.2x =.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD ,如图1,由已知得到∠BAD=∠CAD ,得到»»BDCD =,再由垂径定理得OD ⊥BC ,由于BC ∥EF ,则OD ⊥DF ,于是可得结论;(2)连结OB ,OD 交BC 于P ,作BH ⊥DF 于H ,如图1,先证明△OBD 为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12,在Rt△DEP中,∵,,∴=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1,∴,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5DF=,解得DF=12,在Rt△BDH中,BH=12S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=2216023604π⨯⨯+⨯=2π;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即2323=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,, , 故答案为:,. (2)①当时,,当时,, 故答案为2,6. ②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为. 性质2:函数图象在第一象限,随的增大而减小.【点睛】 本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵23(3)a m +=+, ∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ==.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD Y 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB V 中,90AOB ∠=︒.∴2OA =.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC V 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.。

中考数学第一次模拟测试试卷含解析(2020年最新)

中考数学第一次模拟测试试卷含解析(2020年最新)
【精品】 2020 年中考数学一模试卷
一、填空题(共 6 小题)
1.﹣ 2 的倒数是

2.中央宣讲团党的十九届四中全会精神宣讲报告会在我省某高校举行,参加报告会的人有
21300 人,将 21300 用科学记数法表示为

3.不等式 5﹣3x≤ 2 的解集是

4.写出一个图象经过第二、四象限的反比例函数
17.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人 数和优秀率绘制成如下两个不完整的统计图:
请根据以上两图解答下列问题:
的坐标为(

A .(﹣ 2, 7)
B.( 7, 2)
C.( 2,﹣ 7)
D.(﹣ 7,﹣ 2)
三、解答题(本大共 9 个小题,共 70 分)
15.计算:(
-
1) ﹣2﹣ 12020﹣( 2
π﹣ 3.14)
0+
√?? -??.
16.如图,在矩形 ABCD 中, F 是 CD 的中点,连接 AF 交 BC 延长线于点 E.求证: BC = EC.

A . 30
B. 30π
C. 150π
D. 150
10.一正多边形的每个外角都是 30°,则这个多边形是(

A .正方形
B.正六边形
C .正八边形
D .正十二边形
11.下图是由 6 个大小相同பைடு நூலகம்小正方体组成的几何体,它的左视图是(

A.
B.
C.
D.
12.某校九年级模拟考试中, 2 班的五名学生的数学成绩如下:
7.下列所述图形中,既是轴对称图形又是中心对称图形的是(

A .等腰三角形

2020年数学中考第一次模拟试卷带答案

2020年数学中考第一次模拟试卷带答案

2020年数学中考第一次模拟试卷带答案一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0) 2.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动,记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--4.如图,⊙O的半径为5,AB为弦,点C为»AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C.53D.535.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米6.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°7.如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A.3 B.3C.2D.68.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样9.如图,菱形ABCD的对角线相交于点O,若AC=8,BD=6,则菱形的周长为()A .40B .30C .28D .2010.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1) 11.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .5 12.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.16.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.17.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.18.若a ,b 互为相反数,则22a b ab +=________.19.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表: 中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.(问题背景)如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =60°,试探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使GD =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 . (探索延伸)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是边AB 上一点,当∠DCE =45°,BE =2时,则DE 的长为 .23.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 24.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C 地,再下坡到B 地.若打通穿山隧道,建成直达A ,B 两地的公路,可以缩短从A 地到B 地的路程.已知:从A 到C 坡面的坡度1:3i =,从B 到C 坡面的坡角45CBA ∠=︒,42BC =公里.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.01)(2 1.414,3 1.732≈)25.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A 、B 的坐标代入得: 122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.B解析:B【解析】【分析】①点P 在AB 上时,点D 到AP 的距离为AD 的长度,②点P 在BC 上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y 与x 的关系式,从而得解.【详解】①点P 在AB 上时,0≤x≤3,点D 到AP 的距离为AD 的长度,是定值4;②点P 在BC 上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴AB DE =AP AD AB AP DE AD=,即34x y =, ∴y=12x , 纵观各选项,只有B 选项图形符合,故选B .3.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 4.D解析:D【解析】【分析】连接OC 、OA ,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可.【详解】连接OC 、OA ,∵∠ABC=30°,∴∠AOC=60°,∵AB 为弦,点C 为»AB 的中点,∴OC ⊥AB ,在Rt △OAE 中,53 ∴AB=53,故选D .【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°. 5.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.B解析:B【解析】【分析】由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB∥CD,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE平分∠BAC,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.7.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,==∴故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 8.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选C.考点:列代数式.9.D解析:D【解析】【分析】根据菱形对角线互相垂直平分的性质,可以求得BO =OD ,AO =OC ,在Rt △AOB 中,根据勾股定理可以求得AB 的长,即可求出菱形ABCD 的周长.【详解】∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,BO =OD =3,AO =OC =4,AC ⊥BD ,∴AB ==5, ∴菱形的周长为4×5=20. 故选D .【点睛】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB 的长是解题的关键. 10.D解析:D【解析】【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D11.D解析:D【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0,解得a =5.故选D .12.A解析:A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD1=13.故选A.考点: 1.旋转;2.勾股定理.二、填空题13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,则扇形的弧长是:1206180π⋅=4π,所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π,解得:r=2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.14.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.2000【解析】【分析】设这种商品的进价是x 元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x 元由题意得(1+40)x×08=2240解得:x =2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x 元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x 元,由题意得,(1+40%)x×0.8=2240, 解得:x =2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.17.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k .18.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab += ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.19.10【解析】【分析】试题分析:把(a ﹣4)和(a ﹣2)看成一个整体利用完全平方公式求解【详解】(a ﹣4)2+(a ﹣2)2=(a ﹣4)2+(a ﹣2)2-2(a ﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2)=解析:10【解析】【分析】试题分析:把(a ﹣4)和(a ﹣2)看成一个整体,利用完全平方公式求解.【详解】(a ﹣4)2+(a ﹣2)2=(a ﹣4)2+(a ﹣2)2-2(a ﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2) =[(a ﹣4)-(a ﹣2)]2+2(a ﹣4)(a ﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a 2±2ab+b 2求解,整体思想的运用使运算更加简便. 20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.【问题背景】:EF=BE+FD;【探索延伸】:结论EF=BE+DF仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【详解】[问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.23.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 24.(1)隧道打通后从A 到B 的总路程是(434)公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =,∴4CD BD ==.在Rt ACD ∆中, ∵3CD i AD==, ∴343AD CD == ∴()434AB =公里.答:隧道打通后从A 到B 的总路程是()434公里.(2)在Rt ACD ∆中, ∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=, ∴842AC CB +=+ ∵434AB =, ∴842434 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD =∠BCE ,利用SAS 即可证明△ADC ≌△BEC ;(2)由△ADC ≌△BEC 可得∠ADC =∠E =90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC ⊥DM ,∴∠ECD =90°,∴∠ACB =∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD =∠BCE ,∵CD =CE ,CA =CB ,∴△ADC ≌△BEC (SAS ).(2)由(1)得△ADC ≌△BEC ,∵EC ⊥BE ,∴∠ADC =∠E =90°,∴AD ⊥DM ,∵EC ⊥DM ,∴AD ∥EC .【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。

2020年中考数学一模试卷(带答案)

2020年中考数学一模试卷(带答案)

2020年中考数学一模试卷(带答案)一、选择题1.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .42.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .15 B .14C .15 D .4173.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .94.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .255.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分 B .85分C .90分D .80分和90分6.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣17.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙B .甲和丁C .乙和丙D .乙和丁8.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm10.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10B.12C.16D.18二、填空题13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.14.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.15.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.16.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】的大小,即可得到结果. 【详解】46 6.25<<Q ,2 2.5∴<<,的点距离最近的整数点所表示的数是2, 故选:B . 【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.A解析:A 【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB , 故选A3.A解析:A 【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解. 【详解】∵E 是AC 中点, ∵EF ∥BC ,交AB 于点F , ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形ABCD 的周长是4×6=24, 故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.4.B解析:B 【解析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.D解析:D 【解析】 【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解. 【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分. 故选D . 【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.6.B解析:B 【解析】 【分析】 由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果. 【详解】 解:A=11111x x ++-=111xx x +-g =21x x -故选B. 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.8.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.9.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222(65)(5)10x+++=,x=(负值已舍),故选A解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:Q直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠Q,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.11.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.17.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=218.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩ 【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩ 【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩,∴y1=﹣23x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=13,∴y2=13(x﹣6)2+1=13x2﹣4x+13.∴y1﹣y2=﹣23x+7﹣(13x2﹣4x+13)=﹣13x2+103x﹣6=﹣13(x﹣5)2+73.∵﹣13<0,∴当x=5时,y1﹣y2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣13x2+103x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 24.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.25.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)10π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C29010π⋅⋅10π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.。

2020年中考第一次模拟考试《数学卷》附答案解析

2020年中考第一次模拟考试《数学卷》附答案解析

中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、选择题1.2019-的倒数是( ) A. 2019-B. 12019-C.12019D. 20192.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A. B. C. D.3.我国倡导的“一带一路”将促进中国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( ) A. 84410⨯B. 84.410⨯C. 94.410⨯D. 104.410⨯4.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( ) A. 43-B.83C. 83-D.435.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 坐标为( )A. ()2,3-B. ()2,3--C. (2,3)-D. (3,2)--6.下列运算正确的是( ) A. 347a a a +=B. 47(2)8a a =C. 824a a a ÷=D. 34722a a a ⋅=7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A. 众数是5B. 中位数是5C. 平均数是6D. 方差是3.68.如图,已知AB 是⊙O 的直径,BC 是弦,∠ABC=30°,过圆心O 作OD⊥BC,垂足为E ,交弧BC 于点D ,连接DC ,则∠DCB 的度数为()A. 30°B. 45°C. 50°D. 60°9.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( ) A. y=﹣5(x+1)2﹣1B. y=﹣5(x ﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x ﹣1)2+310.如图,在平行四边形ABCD 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,2EF =,则BC 长为( )A. 8B. 9C. 10D. 1211.如图,二次函数2y ax bx c=++的图象过点()3,0A ,对称轴为直线1x =,给出以下结论:①0abc <;②240b ac ->;③2a b c ax bx c ++≥++:④若22121,(2,())M x y N x y ++、为函数图象上的两点,则12y y <.其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④12.如图,AB 为半圆O 直径,C 是半圆上一点,且∠COA=60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是( )A. S 1<S 2<S 3B. S 2<S 1<S 3C. S 1<S 3<S 2D. S 3<S 2<S 1二、填空题13.分解因式:3249x xy -= __________.14.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____ 15.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____.16.用一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长20m ,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m 2.17.如图,小玲家在某24层楼的顶楼,对面新建了一幢28米高的图书馆,小玲在楼顶A 处看图书馆楼顶B 处和楼底C 处的俯角分别是45,60︒︒∘,则两楼之间的距离是__________米.18.如图,把Rt ABC V 绕点A 逆时针旋转44︒,得到Rt A B C '''V 点C 恰好落边AB 上,连接BB ',则BB C ''∠=__________.三、解答题19.(1)计算201()(20)|32|2sin 602π︒----+(2)先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足2220x x --= 20.据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l 所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l 中关注“反腐”类问题的网民所占百分比x 的值,并将图2中的不完整的条形统计图补充完整; (2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率. 21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?22.如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,O,,A M N 为顶点的四边形为平行四边形,求点M 的坐标.23.如图,ABC V 中,AB AC = ,以AB 为直径的O e 交BC 边于点D ,连接AD ,过D 作AC 的垂线,交AC 边于点E ,交AB 边的延长线于点F . (1)求证:EF 是O e 的切线;(2)若30F ∠=︒,3BF =,求劣弧AD 的长.24.如图,已知一个三角形纸片ACB ,其中90ACB ∠=︒,86AC BC E F ==,,、分别是AC AB 、边上的点,连接EF .(1)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF4S EDF =△,求ED 的长;P.试(2)如图,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF CA判断四边形AEMF的形状,并证明你的结论.25.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G 的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.答案与解析一、选择题1.2019-的倒数是( ) A. 2019-B. 12019-C.12019D. 2019【答案】B 【解析】 【分析】直接利用倒数的定义进而得出答案. 【详解】∵2019-×(12019-)=1, ∴2019-的倒数12019-. 故选B.【点睛】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A. B. C. D.【答案】C 【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可. 详解:从左边看竖直叠放2个正方形. 故选C .点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.我国倡导的“一带一路”将促进中国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( ) A. 84410⨯ B. 84.410⨯C. 94.410⨯D. 104.410⨯【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】解:将4400000000用科学记数法表示为:4.4×109. 故选:C .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( ) A. 43-B. 83C. 83-D.43【答案】D 【解析】【详解】解:∵1x 、2x 是一元二次方程2362x x =-的两根,∴1223x x +=-,122x x =-, ∴1122x x x x -+=24(2)33---=.故选D .考点:根与系数的关系.5.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( ) A. ()2,3- B. ()2,3--C. (2,3)-D. (3,2)--【答案】B 【解析】 【分析】根据中心对称的性质解决问题即可. 【详解】由题意A ,B 关于O 中心对称, ∵A (2,3), ∴B (-2,-3), 故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.下列运算正确的是( ) A. 347a a a += B. 47(2)8a a =C. 824a a a ÷=D. 34722a a a ⋅=【答案】D 【解析】 【分析】根据同底数幂的乘法,可判断A ,根据积的乘方,可判断B ,根据同底数幂的除法,可判断C ,根据单项式乘单项式,可判断D .【详解】A 、不是同底数幂的乘法指数不能相减,故A 错误; B 、积的乘方等于乘方的积,故B 错误;C 、同底数幂的除法底数不变指数相减,故C 错误;D 、单项式乘单项式系数乘系数同底数的幂相乘,故D 正确; 故选:D .【点睛】此题考查同底数幂的除法,熟记法则并根据法则计算是解题关键.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A. 众数是5 B. 中位数是5C. 平均数是6D. 方差是3.6【答案】D 【解析】 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确; B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确; C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.8.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC,垂足为E,交弧BC于点D,连接DC,则∠DCB的度数为( )A. 30°B. 45°C. 50°D. 60°【答案】A【解析】【分析】根据已知条件“过圆心O作OD⊥BC交弧BC于点D、,∠ABC=30°”、及直角三角形OBE的两个锐角互余求得∠BOE=60°;然后根据同弧BD所对的圆周角∠DCB是所对的圆心角∠DOB的一半,求得∠DCB的度数.【详解】解:如图,∵OD⊥BC,∠ABC=30°,∴在直角三角形OBE中,∠BOE=60°(直角三角形的两个锐角互余);又∵∠DCB=12∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DCB=30°;故选A.【点睛】本题主要考查了圆周角定理,圆心角、弧、弦的关系.解此类题目要注意将圆的问题转化成三角形的问题再进行计算.9.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A. y=﹣5(x+1)2﹣1B. y=﹣5(x ﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x ﹣1)2+3 【答案】A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x 2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度, 所得到的抛物线为:y=-5(x+1)2-1.故选A .点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.10.如图,在平行四边形ABCD 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,2EF =,则BC 长为( )A. 8B. 9C. 10D. 12【答案】C【解析】 试题解析:∵四边形ABCD 是平行四边形, ∴AD BC P .又BF 、CE 分别是ABC ∠和DCB ∠的角平分线.∴ABF FBC ∠=∠,DCE ECB ∠=∠.又AD BC ∥,∴AFB FBC ABF ∠=∠=∠,ABF V 是等腰三角形,即6AF AB ==.同理可证CED V 是等腰三角形.∴6DE DC AB ===.又∵2EF =,∴4AE FD ==.∴42410AD AE EF FD =++=++=.∴10BC =.11.如图,二次函数2y ax bx c =++的图象过点()3,0A ,对称轴为直线1x =,给出以下结论:①0abc <;②240b ac ->;③2a b c ax bx c ++≥++:④若22121,(2,())M x y N x y ++、为函数图象上的两点,则12y y <.其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④【答案】B【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,a <0;∵抛物线的对称轴为直线x=-2b a=1>0, ∴b >0;∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,故①正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,故②正确;∵抛物线的对称轴是x=1,与x 轴的一个交点是(3,0),∴抛物线与x 轴的另个交点是(-1,0),∴当x=1时,y 最大,即a+b+c≥ax 2+bx+c ,故③正确;∵B (x 2+1,y 1)、C (x 2+2,y 2)在对称轴右侧,x 2+1<x 2+2,∴y 1>y 2,故④错误;【点睛】此题考查抛物线与x 轴的交点,熟知二次函数的图象与系数的关系、x 轴上点的坐标特点等知识是解题的关键.12.如图,AB 为半圆O 的直径,C 是半圆上一点,且∠COA=60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是( )A. S 1<S 2<S 3B. S 2<S 1<S 3C. S 1<S 3<S 2D. S 3<S 2<S 1【答案】B【解析】解:作OD ⊥BC 交BC 与点D ,∵∠COA=60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =260360R π=26R π.S 扇形BOC =221203603R R ππ=.在三角形OCD 中,∠OCD =30°,∴OD =2R,CD =32R ,BC 3R ,∴S △OBC =234R ,S 弓形=22334R R π-=(23312R π-,(2224333126R R R ππ->>∴S 2<S 1<S 3.故选B .二、填空题13.分解因式:3249x xy -= __________.【答案】x(2x+3y)(2x-3y)【解析】【分析】原式提取x,再利用平方差公式分解即可.【详解】解:原式=x(4x2-9y2)=x(2x+3y)(2x-3y),故答案为:x(2x+3y)(2x-3y)【点睛】此题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.14.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____【答案】8个【解析】【分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.15.已知a、b满足(a﹣1)2=0,则a+b=_____.【答案】﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键. 16.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.【答案】112.5 【解析】【分析】设矩形的长为xm,则宽为302x-m,根据矩形的面积公式得出函数解析式,继而将其配方成顶点式,由x的取值范围结合函数性质可得最值.【详解】设矩形的长为xm,则宽为302x-m,菜园的面积S=x•302x-=-12x2+15x=-12(x-15)2+2252,(0<x≤20).∵当x<15时,S随x的增大而增大,∴当x=15时,S最大值=2252m2,故答案为2252.【点睛】本题主要考查二次函数的实际应用,根据题意列出函数解析式是解题的根本,由自变量x的取值范围结合二次函数的性质求函数解析式是解题的关键.17.如图,小玲家在某24层楼的顶楼,对面新建了一幢28米高的图书馆,小玲在楼顶A处看图书馆楼顶B 处和楼底C处的俯角分别是45,60︒︒∘,则两楼之间的距离是__________米.【答案】143)【解析】【分析】如图,延长CB交AM于点E,设AE=x.通过解Rt△ABE、Rt△ACE分别求得BE、CE的长度,然后结合图形中相关线段的和差关系列出关于x的方程,通过解方程求得x的值;【详解】如图,延长CB交AM于点E,设AE=x.由题意知,在Rt △ABE 中,∠EAB=45°,∴BE=AE=x .在Rt △ACE 中,∠EAC=60°,∴CE=3x , ∵CE-BE=28,∴3x-x=28,解得x=31-=14(3+1)(米),∴两楼间的距离约为14(3+1)米;故答案为:14(3+1).【点睛】此题考查解直角三角形的应用-仰角俯角问题.解题关键在于作辅助线.18.如图,把Rt ABC V 绕点A 逆时针旋转44︒,得到Rt A B C '''V 点C 恰好落在边AB 上,连接BB ',则BB C ''∠=__________.【答案】22°【解析】【分析】根据旋转性质可得AB=AB′,∠BAB′=44°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【详解】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°-∠BAB′)=12(180°-44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°-∠ABB′=90°-68°=22°.故答案为:22°.【点睛】此题考查旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键. 三、解答题19.(1)计算201()(20)|2|2sin 602π︒---+ (2)先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足2220x x --=【答案】(1)3-24(2)21x x +,12. 【解析】【分析】(1)先分别根据0指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再根据x 满足x 2-2x-2=0得出x 2的表达式,代入原式进行计算即可.【详解】解:(1)原式=1344(2)原式=()22212)(211()1x x x x x x x x --+-÷++ =()2(2111()21)x x x x x x -+⨯+- =21x x +, ∵x 满足x 2-2x-2=0,∴x 2=2x+2,∴原式=()1=1221x x ++. 【点睛】此题考查分式的化简求值,实数的运算,熟知分式混合运算的法则, 0指数幂、绝对值的性质及特殊角的三角函数值是解题的关键.20.据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l 所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l 中关注“反腐”类问题的网民所占百分比x 的值,并将图2中的不完整的条形统计图补充完整;(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.【答案】(1)x =20,补图见解析;(2)110. 【解析】【分析】(1)根据单位“1”,求出反腐占的百分比,得到x 的值;根据环保人数除以占的百分比得到总人数,求出教育与反腐及其他的人数,补全条形统计图即可;(2)画出树状图列出所有等可能结果,找到一次所选代表恰好是甲和乙的结果数,再利用概率公式求解可得.【详解】(1)1﹣15%﹣30%﹣25%﹣10%=20%,所以x =20,总人数为:140÷10%=1400(人) 关注教育问题网民的人数1400×25%=350(人), 关注反腐问题网民的人数1400×20%=280(人), 关注其它问题网民的人数1400×15%=210(人),如图2,补全条形统计图,(2)画树状图如下:由树状图可知共有20种等可能结果,其中一次所选代表恰好是甲和乙的有2种结果, 所以一次所选代表恰好是甲和乙的概率为212010. 【点睛】本题考查了条形统计图,扇形统计图及列表法与树状图法,解题的关键是读懂题意,从统计图上获得信息数据来解决问题.21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解. (2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x 元/件,则乙种玩具进价(40﹣x )元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,,解得20≤y <24.因为y 是整数,甲种玩具的件数少于乙种玩具的件数,∴y 取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.22.如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0k y x x=>的图象交于(),4B a .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0k y x x =>的图象于点N ,若,O,,A M N 为顶点的四边形为平行四边形,求点M 的坐标.【答案】(1)1y x =+.()80y x x =>;(2)M 的坐标为(222,22-或()23,232. 【解析】 分析:(1)根据一次函数y=x+b 的图象经过点A (-2,0),可以求得b 的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M 的坐标,注意点M 的横坐标大于0.详解:(1)Q 一次函数的图象经过点()2,0A -,20b ∴-+=,2b ∴=,2y x ∴=+.Q 一次函数与反比例函数()0k y x x =>交于(),4B a . 24a ∴+=,2a ∴=,()2,4B ∴,()80y x x∴=>. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,以A ,O ,M ,N 为顶点的四边形为平行四边形.即:()822m m--=且0m >,解得:22m =或232m =+(负值已舍), M ∴的坐标为()222,22-或()23,232+.点睛:本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.23.如图,ABC V 中,AB AC = ,以AB 为直径的O e 交BC 边于点D ,连接AD ,过D 作AC 的垂线,交AC 边于点E ,交AB 边的延长线于点F .(1)求证:EF 是O e 的切线;(2)若30F ∠=︒,3BF =,求劣弧AD 的长.【答案】(1)见解析;(2)2π.【解析】【分析】(1)根据圆周角定理求出AD ⊥BC ,得出AD 平分∠BAC ,即可推出OD ∥AC ,推出OD ⊥EF ,根据切线的判定推出即可.(2)由OD ⊥DF 得∠ODF=90°,利用含30度的直角三角形三边的关系OF=2OD ,即OB+3=2OD ,可解得OD=3,再计算出∠AOD=90°+∠F=120°,然后根据弧长公式求解.【详解】证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴劣弧AD的长度=1203180g g=2π.【点睛】此题考查切线性质与判断,弧长公式,解题关键在于掌握圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.如图,已知一个三角形纸片ACB ,其中90ACB ∠=︒,86AC BC E F ==,,、分别是AC AB 、边上的点,连接EF .(1)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF 4S EDF =△,求ED 的长;(2)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF CA P .试判断四边形AEMF 的形状,并证明你的结论.【答案】(1)5(2)菱形,见解析;【解析】【分析】(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF =S △DEF ,则易得S △ABC =5S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到两个三角形面积比和AB ,AE 的关系,再利用勾股定理求出AB 即可得到AE 的长;(2)连结AM 交EF 于点O ,利用平行线的性质证明AE=EM=MF=AF ,即可判断四边形AEMF 为菱形;【详解】解:(1)∵△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF ,∵S 四边形ECBF =4S △EDF ,∴S △ABC =5S △AEF ,在Rt △ABC 中,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠EAF=∠BAC ,∴Rt△AEF∽Rt△ABC,∴2 AEFABCSAES AB⎛⎫= ⎪⎝⎭VV,即21105AE⎛⎫=⎪⎝⎭,∴AE=25,由折叠知,DE=AE=25(2)连结AM交EF于点O,如图2,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形.【点睛】此题考查相似三角形的判定与性质,折叠的性质,菱形的判定,解题关键在于灵活构建相似三角形.25.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G 的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【答案】(1)y=﹣x2+2x+3;(2)存在,G(1,0);(3)2.【解析】【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E′,连接E′F交对称轴于G,此时EG+FG的值最小,先求E′F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式,过N作NH⊥x轴于H,交AB于Q,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6)(1<m<3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【详解】(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小.∵E(0,3),∴E'(2,3),设EF的解析式为y=k′x+b′,把F(0,﹣3),E'(2,3)分别代入,得332bk b''-=+'=⎧⎨⎩,解得33kb=⎧⎨=-''⎩,所以E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0);(3)如图2.设AB的解析式为y=k″x+b″,把A(1,4),B(3,0)分别代入,得403k b k b ''''''''=+⎧⎨=+⎩,解得26k b ''''=-⎧⎨=⎩, 所以AB 的解析式为:y =﹣2x+6,过N 作NH ⊥x 轴于H ,交AB 于Q ,设N(m ,﹣m 2+2m+3),则Q(m ,﹣2m+6),(1<m <3),∴NQ =(﹣m 2+2m+3)﹣(﹣2m+6)=﹣m 2+4m ﹣3,∵AD ∥NH ,∴∠DAB =∠NQM ,∵∠ADB =∠QMN =90°,∴△QMN ∽△ADB , ∴QN AB MN BD =,∴2m 4m 325MN -+-=, ∴MN 55=-(m ﹣2)255+. 55-Q <0, ∴当m =2时,MN 有最大值;过N 作NG ⊥y 轴于G ,∵∠GPN =∠ABD ,∠NGP =∠ADB =90°,∴△NGP ∽△ADB , ∴PG BD 21NG AD 42===,∴PG 12=NG 12=m , ∴OP =OG ﹣PG =﹣m 2+2m+312-m =﹣m 232+m+3, ∴S △PON 12=OP•GN 12=(﹣m 232+m+3)•m , 当m =2时,S △PON 12=⨯2(﹣4+3+3)=2.【点睛】本题考查是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.。

2020年中考数学第一次模拟试卷(及答案)

2020年中考数学第一次模拟试卷(及答案)

2020年中考数学第一次模拟试卷(及答案)一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0) 2.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .23.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .4.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是26.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )A .7分B .8分C .9分D .10分 7.下列运算正确的是( ) A .23a a a += B .()2236a a = C .623a a a ÷=D .34a a a ⋅= 8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩9.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A .3B .23C .32D .610.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.17.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.若a b =2,则222a b a ab--的值为________. 20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.24.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.25.修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地到B地的路程.已知:从A到C坡面的坡度1:3i=,从B到C坡面的坡角45CBA∠=︒,42BC=公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.012 1.414≈3 1.732)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b , 把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.A解析:A【解析】试题分析:A .﹣2<﹣1,故正确;B .0>﹣1,故本选项错误;C .1>﹣1,故本选项错误;D .2>﹣1,故本选项错误;故选A .考点:有理数大小比较.3.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.4.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.5.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.6.B解析:B【解析】【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8,故选B.【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.7.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.8.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.9.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴==故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 10.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 11.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,则扇形的弧长是:1206180π⋅=4π,所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π,解得:r=2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.14.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.17.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△AP M是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.三、解答题21.()14,4;()23150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下: 中位数 众数 随机抽取的50人的社会实践活动成绩(单位:分)4 4 2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)(-8,0)(2)k=-19225 (3)(﹣1,3)或(0,2)或(0,6)或(2,6) 【解析】【分析】(1)解方程求出OB 的长,解直角三角形求出OA 即可解决问题;(2)求出直线DE 、AB 的解析式,构建方程组求出点C 坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB 的长是方程x 2﹣2x ﹣8=0的解,∴OB=4,在Rt △AOB 中,tan ∠BAO=12OB OA =, ∴OA =8,∴A (﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P 坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.23.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.24.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,剟剟. 当1017a 剟时, (ⅰ)当10a =时,10010801200b ⨯+„,∴52b „, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+„,∴54b „, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a …时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a <„时,(ⅰ)当9a =时,100980601200b ⨯++„,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++„,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.25.(1)隧道打通后从A 到B 的总路程是(434)+公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =, ∴4CD BD ==.在Rt ACD ∆中,∵1:3CD i AD==, ∴343AD CD ==,∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842AC CB +=+∵434AB =,∴842434 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.。

2020年数学中考第一次模拟试卷含答案

2020年数学中考第一次模拟试卷含答案

2020年数学中考第一次模拟试卷含答案一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0) 2.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )A .12B .4C .3D .63.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( )A .27B .9C .﹣7D .﹣16 4.下列各式中能用完全平方公式进行因式分解的是( ) A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9 5.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 6.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B .C .D .7.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .188.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.59.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 10.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1) 11.下列计算错误的是( )A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5 D .﹣1.58÷(﹣1.5)7=﹣1.5 12.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )A .8%B .9%C .10%D .11%二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.15.已知62x =+,那么222x x -的值是_____. 16.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.17.若a ,b 互为相反数,则22a b ab +=________.18.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).19.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)22.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明23.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表 组别海选成绩x A 组50≤x <60B 组60≤x <70C 组70≤x <80D 组 80≤x <90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?25.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P(52,0),故选D.本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.2.D解析:D【解析】分析:设点A的坐标为(m,km),则根据矩形的面积与性质得出矩形中心的纵坐标为2km,求出中心的横坐标为m+6mk,根据中心在反比例函数y=kx上,可得出结果.详解:设点A的坐标为(m,km),∵矩形ABCD的面积为12,∴121212m BCkAB km===,∴矩形ABCD的对称中心的坐标为(m+6mk,2km),∵对称中心在反比例函数上,∴(m+6mk)×2km=k,解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A 、x 2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B 、x 2+2x ﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C 、x 2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D 、x 2﹣6x+9=(x ﹣3)2,故选项正确.故选D .5.C解析:C【解析】【分析】分别计算出各项的结果,再进行判断即可.【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.6.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D7.B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.8.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.9.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.10.A解析:A【解析】【分析】把点(3,1)代入直线y=kx﹣2,得出k值,然后逐个点代入,找出满足条件的答案.把点(3,1)代入直线y=kx﹣2,得1=3k﹣2,解得k=1,∴y=x﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.11.D解析:D【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故选D.点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.C解析:C【解析】【分析】设月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x,根据题意得:240000(1+x)2=290400,解得:x1=0.1=10%,x2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 14.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 15.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】将所给等式变形为x =【详解】∵x =,∴x -=∴(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.16.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k .17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.1【解析】试题分析:在Rt△CBD 中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD 中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt △CBD 中,知道了斜边,求60°角的对边,可以用正弦值进行解答. 试题解析:在Rt △CBD 中,.55(米). ∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题. 19.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.人民英雄纪念碑MN 的高度约为36.5米.【解析】【分析】在Rt△MED 中,由∠MDE=45°知ME =DE ,据此设ME =DE =x ,则EC =x+15,在Rt△MEC 中,由ME =EC•tan∠MCE 知x≈0.7(x+15),解之求得x 的值,根据MN =ME+EN 可得答案.【详解】由题意得四边形ABDC 、ACEN 是矩形,∴EN=AC =1.5,AB =CD =15,在Rt△MED 中,∠MED=90°,∠MDE=45°,∴ME=DE ,设ME =DE =x ,则EC =x+15,在Rt△MEC 中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN 的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.22.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.(2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=12AD BC =Q ,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.23.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B 组抽查的人数除以总人数,即可求出a ;用360乘以C 组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D 的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B 组人数所占的百分比是×100%=15%;C 组扇形的圆心角θ的度数为360×=72° (3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

2020年中考数学一诊模拟检测试题(含答案)

2020年中考数学一诊模拟检测试题(含答案)

2020年中考数学一诊模拟检测试题一、选择题(共36分,在每个小题给出的四个选项中,只有一个符合题目要求.)1、下列等式成立的是()A.2+=2B.(a 2b3)2=a4b6C.(2a2+a)÷a=2a D.5x2y﹣2x2y=32.如图为正方体的一种平面展开图,各面都标有数字,则数字为﹣2的面与其对面上的数字之积是()A.﹣12 B.0 C.﹣8 D.﹣103、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见4、关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A. k>-1B. k≥-1C. k≠0D. k>-1且k≠05、实数,2π,tan45°,,cos60°,sin45°,中无理数的个数有()个.A.2 B.3 C.4 D.56、如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B②=③=,使△ADE与△ACB一定相似()A.①②B.②C.①③D.①②③7、如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A. 1B.C.D.8、对于反比例函数y= ,下列说法不正确的起()A. 点(-2,-1)在它的图象上B. 它的图象在第一、三象限C. 当x>0时,y随x的增大而增大D. 当x<0时,y随x的增大而减小9、如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.1410、关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4 B.k<4 C.k>﹣4且k≠4 D.k<4且k≠﹣411、二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4 B.当b=﹣4时,顶点的坐标为(2,﹣8)C.当x=﹣1时,b>﹣5 D.当x>3时,y随x的增大而增大12、如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题(共20分)13、关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不相等的实数解;③无论m取何值,方程都有一个负数解.其中正确的是________(填序号).14、某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为分.15、阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=.16、如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为.(填一般式)三、解答题(共64分)17、已知2+ 是方程x2-4x+c=0的一个根,求方程的另一个根及c的值.18、先化简,再求值:,其中a2﹣4a+2=019、仙桃是我市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)20项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.21、如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A 的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.22、如图,一次函数y=x﹣3的图象与反比例函数y═(k≠0)的图象交于点A与点B(a,﹣4).(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB 于点C,连接OC,若△POC的面积为3,求出点P的坐标.23、如图,顶点为P(3,3)的二次函数图象与x轴交于点A(6,0),点B在该图象上,OB交其对称轴l于点M,点M、N关于点P对称,连接BN、ON.(1)求该二次函数的关系式.(2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:①连接OP,当OP=MN时,请判断△NOB的形状,并求出此时点B的坐标.②求证:∠BNM=∠ONM.24、在平面直角坐标系中,BC∥OA,BC=3,OA=6,AB=3(1)直接写出点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2BE,直线DE交x轴于点F,求直线DE的解析式;(3)在(2)的条件下,点M是直线DE上的一点,在x轴上方是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案一、选择题(共36分,在每个小题给出的四个选项中,只有一个符合题目要求.)1、下列等式成立的是( B )A.2+=2B.(a 2b3)2=a4b6C.(2a2+a)÷a=2a D.5x2y﹣2x2y=32.如图为正方体的一种平面展开图,各面都标有数字,则数字为﹣2的面与其对面上的数字之积是( A )A.﹣12 B.0 C.﹣8 D.﹣103、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( C )A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见4、关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A. k>-1B. k≥-1C. k≠0D. k>-1且k≠0【答案】D【考点】一元二次方程根的判别式及应用【解析】【解答】∵一元二次方程kx2+2x-1=0有两个不相等的实数根∴Δ=b2-4ac=22-4·k·(-1)=4+4k>0∴k>-1∵k为二次项系数∴k≠0∴k的取值范围是k>-1且k≠0故答案为:D【分析】由一元二次方程有两个不相等的实数根,可得一元二次方程根的判别式Δ>0,求得k>-1;再由一元二次方程的定义可得一元二次方程二次项系数k≠0,即可得到k的取值范围。

2020年数学中考第一次模拟试题含答案

2020年数学中考第一次模拟试题含答案

2020年数学中考第一次模拟试题含答案一、选择题1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)2.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<33.在△ABC中(2cosA-2)2+|1-tanB|=0,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形4.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个5.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.6.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米8.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣59.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()A.B.C.D.10.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.11.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:212.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.23π﹣3B.13π3C.43π﹣3D.43π3二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.16.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.18.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)20.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.三、解答题21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 23.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .24.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=(),善于思考的小明进行了以下探索: 设(2a b 2m 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2+=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 25.如图,BD 是△ABC 的角平分线,过点D 作DE∥BC 交AB 于点E ,DF∥AB 交BC 于点F .(1)求证:四边形BEDF 为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13 , ∴13AD BG =, ∵BG =12,∴AD =BC =4,∵AD ∥BG ,∴△OAD ∽△OBG ,∴13OA OB = ∴0A 14OA 3=+解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.2.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.3.D解析:D【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A、∠B 的度数,根据直角三角形的判定,可得答案.【详解】解:由()2+|1-tanB|=0,得,1-tanB=0.解得∠A=45°,∠B=45°,则△ABC一定是等腰直角三角形,故选:D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.6.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.7.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.9.C解析:C【解析】【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C.【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.11.A解析:A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.详解:当y=7.5时,7.5=4x﹣12x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣1 2 x2=﹣12(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.12.C解析:C【解析】分析:连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 菱形ABCO ﹣S 扇形AOC 可得答案. 详解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1, 在Rt △COD 中利用勾股定理可知:22213-=,3 ∵sin ∠COD= 3CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2×33 S 扇形AOC =2120243603ππ⨯⨯=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=4233π-,故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12 a•b(a、b是两条对角线的长度);扇形的面积=2360n rπ,有一定的难度.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:415.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.16.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x =4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N =100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A =∠F AB ,根据等腰三角形的判定与性质,可得∠DAF =∠DF A ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DF A =∠F AB .在Rt △BCF 中,由勾股定理,得BC =,∴AD =BC =DF =5,∴∠DAF =∠DF A ,∴∠DAF =∠F AB ,即AF 平分∠DAB .【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF =∠DF A 是解题关键.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.25.(1)见解析【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形;(2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°, ∴∠ABC=60°,∵BD 平分∠ABC , ∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.。

2020中考第一次模拟测试《数学卷》含答案解析

2020中考第一次模拟测试《数学卷》含答案解析

中考数学仿真模拟测试题一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的.1.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.2.下列几何体中,其三视图的三个视图完全相同的是()A. B. C. D.3.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位长度,得到点C.若=,则a的值为().OC OBA. 3-B. 2-C. 1-D. 24.一个多边形的每个内角均为120°,则这个多边形是()A. 四边形B. 五边形C. 六边形D. 七边形5.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为()A.9.5×104亿千米 B. 95×104亿千米C. 3.8×105亿千米 D. 3.8×104亿千米6.如果a﹣b32b a a a a b⎛⎫-⋅ ⎪+⎝⎭的值为()A. 33 C. 3 D. 37.已知1O e,2O e,3O e是等圆,ABP△内接于1O e,点C,E分别在2O e,3O e上.如图,e于点D,连接CD;①以C为圆心,AP长为半径作弧交2Oe于点F,连接EF;②以E为圆心,BP长为半径作弧交3O下面有四个结论:+=①CD EF AB②»»»CD EF AB +=③231CO D EO F AO B ∠+∠=∠ ④23CDO EFO P ∠+∠=∠ 所有正确结论的序号是( ).A. ①②③④B. ①②③C. ②④D. ②③④8.改革开放40年以来,城乡居民生活水平持续快速提升.居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出.下图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图:说明:在统计学中,同比..是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比..是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误..的是( ). A. 2017年第二季度环比有所提高 B. 2017年第四季度环比有所下降C. 2018年第一季度同比有所提高D. 2017和2018年支出最高的都是第三季度二、填空题(本题共16分,每小题2分)9.若代数式14x -有意义,则实数x 的取值范围是____. 10.用一组, a b 的值说明命题“对于非零实数, a b ,若a b <,则11a b>”是错误的,这组值可以是a =______,b =_____.11.如图所示的网格是正方形网格,则BAC DAE ∠-∠=__________︒(点A ,B ,C ,D ,E 是网格线交点).12.如图,四边形ABCD 是平行四边形,经过点A ,C ,D 的O e 与BC 交于点E ,连接AE ,若72D ∠=︒,则BAE ∠=______°.13.如图,已知正方形OABC 的三个顶点坐标分别为A (2,0),B (2,2),C (0,2),若反比例函数(0)ky k x=>的图象与正方形OABC 的边有交点,请写出一个符合条件的k 值__________.14.下表是某班同学随机投掷一枚硬币的试验结果. 抛掷次数n50 100 150 200 250 300 350 400 450 500 “正面向上”次数m 2252 68 101 116 147 160 187 214238 “正面向上”频率mn0.44 0.520.450.510.460.490.460.470.480.48下面有三个推断:①表中没有出现“正面向上”的频率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48; ③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;其中合理的是__________(填写序号).15.某班对思想品德、历史、地理三门课程的选考情况进行调研,数据如下:科目思想品德历史地理选考人数(人)20 13 18其中思想品德、历史两门课程都选了的有3人,历史、地理两门课程都选了的有4人,则该班选了思想品德而没有选历史的有__________人;该班至少..有学生__________人.16.某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A型保温杯的优势是_____.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:21(7)324602sinπ-⎛⎫-+︒⎪⎝⎭.18.解不等式组:32431.22x xx+<⎧⎪⎨-≥⎪⎩,19.已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0(1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k的取值范围.20.如图,在ABC V 中,AB AC =,点D 是BC 边的中点,连接AD ,分别过点A ,C 作AE BC ∥,CE AD P 交于点E ,连接DE ,交AC 于点O .(1)求证:四边形ADCE 是矩形; (2)若10AB =,4sin 5COE ∠=,求CE 的长.21.体育李老师为了解九年级女生体质健康的变化情况,本学期从九年级全体90名女生中随机抽取15名女生进行体质测试,并调取该15名女生上学期的体质测试成绩进行对比,李老师对两次数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .两次测试成绩(百分制)的频数分布直方图如下(数据分组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤);b .上学期测试成绩在8090x ≤<的是:80 81 83 84 84 88c .两个学期测试成绩的平均数、中位数、众数如下:学期 平均数 中位数众数 上学期 82.9 n84 本学期 838686根据以上信息,回答下列问题: (1)表中n 的值是______;(2)体育李老师计划根据本学期统计数据安排80分以下(不含80分)的同学参加体质加强训练项目,则九年级约有______名女生参加此项目;(3)分析这15名女生从上学期到本学期体质健康变化的总体情况.(从两个方面进行分析)22.某次数学竞赛中有5道选择题,每题1分,每道题在A 、B 、C 三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分: 第一题 第二题 第三题 第四题 第五题 得分 甲 C C AB B4 乙 CC BBC3 丙 B C C B B2 丁 BCCBA(1)则甲同学错的是第 题; (2)丁同学的得分是 ;(3)如果有一个同学得了1分,他的答案可能是 (写出一种即可). 23.如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象经过点A ,作AC ⊥x 轴于点C . (1)求k 的值;(2)直线AB :()0y ax b a =+>图象经过点A 交x 轴于点B .横、纵坐标都是整数的点叫做整点.线段AB ,AC ,BC 围成的区域(不含边界)为W .①直线AB 经过()0,1时,直接写出区域W 内的整点个数; ②若区域W 内恰有1个整点,结合函数图象,求a 的取值范围.24.如图,在Rt △ABC 中,∠C = 90°,点O 是斜边AB 上一定点,到点O 的距离等于OB 的所有点组成图形W ,图形W 与AB ,BC 分别交于点D ,E ,连接AE ,DE ,∠AED =∠B .(1)判断图形W 与AE 所在直线的公共点个数,并证明. (2)若4BC =,1tan 2B =,求OB . 25.如图,点P 是»AB 上一动点,连接AP ,作∠APC =45°,交弦AB 于点C .AB =6cm .小元根据学习函数的经验,分别对线段AP ,PC ,AC 的长度进行了测量. 下面是小元的探究过程,请补充完整:(1)下表是点P 是»AB 上的不同位置,画图、测量,得到线段AP ,PC ,AC 长度的几组值,如下表: AP /cm 0 1.00 2.00 3.00 4.00 5.00 6.00 PC /cm 0 1.21 2.092.69 m 2.82 0 AC /cm 00.871.572.202.833.616.00①经测量m 的值是 (保留一位小数). ②在AP ,PC ,AC 的长度这三个量中,确定______的长度是自变量,______的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数图象;(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为cm(保留一位小数).26.在平面直角坐标系xOy中,抛物线y=a2x-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接P A,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠P AC 的度数;②直接写出P A、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.28.在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N 可以重合)使得PM QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点(0,3)A ,()2,3B ;①设点O 与线段AB 上一点的距离为d ,则d 的最小值是 ,最大值是 ; ②在13,02P ⎛⎫⎪⎝⎭,2(1,4)P ,3(3,0)P -这三个点中,与点O 是线段AB 的一对平衡点的是 ; (2)如图2,已知O e 的半径为1,点D 的坐标为(5,0).若点(,2)E x 在第一象限,且点D 与点E 是O e 的一对平衡点,求x 的取值范围;(3)如图3,已知点(3,0)H -,以点O 为圆心,OH 长为半径画弧交x 的正半轴于点K .点(,)C a b (其中0b ≥)是坐标平面内一个动点,且5OC =,C e 是以点C 为圆心,半径为2的圆,若HK 上的任意两个点都是C e 的一对平衡点,直接写出b 的取值范围.答案与解析一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的.1.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选C.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列几何体中,其三视图的三个视图完全相同的是()A. B. C. D.【答案】D【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、圆柱的俯视图与主视图和左视图不同,错误;B、圆锥的俯视图与主视图和左视图不同,错误;C、三棱锥的俯视图与主视图和左视图不同,错误;D、球的三视图完全相同,都是圆,正确;故选D .【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3.在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ). A. 3- B. 2-C. 1-D. 2【答案】B 【解析】 【分析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【详解】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1. 因为CO =BO ,所以|a -1| =3, 解得a =-2或4, ∵a <0, ∴a =-2. 故选B .【点睛】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键. 4.一个多边形的每个内角均为120°,则这个多边形是( ) A. 四边形 B. 五边形C. 六边形D. 七边形【答案】C 【解析】由题意得,180°(n -2)=120°n ⨯, 解得n =6.故选C.5.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为( ) A. 9.5×104亿千米 B. 95×104亿千米 C. 3.8×105亿千米 D. 3.8×104亿千米 【答案】C【解析】 【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】解:95000×4=380000 380000亿千米=3.8×105亿千米. 故选C .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.6.如果a ﹣b 2b aa a ab ⎛⎫-⋅ ⎪+⎝⎭的值为( )A. C. 3D. 【答案】A 【解析】 【分析】先化简分式,然后将a ﹣b =代入计算即可.【详解】解:原式=22b a aa a b⋅-+ =()()a b a b a a a b-+-⋅+=﹣(a ﹣b ),∵a ﹣b, 故选A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.7.已知1O e ,2O e ,3O e 是等圆,ABP △内接于1O e ,点C ,E 分别在2O e ,3O e 上.如图, ①以C 为圆心,AP 长为半径作弧交2O e 于点D ,连接CD ; ②以E 为圆心,BP 长为半径作弧交3O e 于点F ,连接EF ; 下面有四个结论: ①CD EF AB +=②»»»CD EF AB +=③231CO D EO F AO B ∠+∠=∠ ④23CDO EFO P ∠+∠=∠ 所有正确结论的序号是( ).A. ①②③④B. ①②③C. ②④D. ②③④【答案】D 【解析】 【分析】根据圆心角、弧、弦的关系,圆周角定理即可得到结论. 【详解】解:由题意得,AP =CD ,BP =EF , ∵AP +BP >AB , ∴CD +EF >AB ; ∵⊙O 1,⊙O 2,⊙O 3是等圆,∴ »»AP CD=, »»BP EF =, ∵ »»»AP BP AB +=, ∴»»»CD EF AB +=;∴∠CO 2D =∠AO 1P ,∠EO 3F =∠BO 1P , ∵∠AO 1P +∠BO 1P =∠AO 1P , ∴∠CO 2D +∠EO 3F =∠AO 1B ;∵∠CDO 2=∠APO 1,∠BPO 1=∠EFO 3, ∵∠P =∠APO 1+∠BPO 1, ∴∠CDO 2+∠EFO 3=∠P , ∴正确结论的序号是②③④, 故选D .【点睛】本题考查了三角形的外接圆与外心,圆心角、弧、弦的关系, 圆周角定理,熟练掌握圆心角、弧、弦的关系是解题的关键.8.改革开放40年以来,城乡居民生活水平持续快速提升.居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出.下图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图:说明:在统计学中,同比..是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比..是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误..的是().A. 2017年第二季度环比有所提高B. 2017年第四季度环比有所下降C. 2018年第一季度同比有所提高D. 2017和2018年支出最高的都是第三季度【答案】C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】解:2017年第二季度支出948元,第一季度支出859元,所以2017年第二季度环比有所提高,故A正确;2017年第四季度支出997元,第三季度支出1113元,所以2017年第四季度环比有所下降,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所下降,故C错误;2018年第三季度支出1134元在2018年全年最高,2017年第三季度支出1113元在2017年全年最高,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义,能够从统计图中获取数据,按要求对比数据是解题的关键.二、填空题(本题共16分,每小题2分)9.若代数式14x -有意义,则实数x 的取值范围是____. 【答案】4x ≠ 【解析】 【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可. 【详解】因为分式有意义的条件是分母不能等于0, 所以40x -≠, 所以4x ≠. 故答案为: 4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件. 10.用一组, a b 的值说明命题“对于非零实数, a b ,若a b <,则11a b>”是错误的,这组值可以是a =______,b =_____.【答案】 (1). 1a =- (2). 1b = 【解析】 【分析】通过a 取-1,b 取1可说明命题“若a <b ,则11a b >”是错误的. 【详解】当a=-1,b=1时,满足a <b ,但11a b<.故答案为-1,1.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.如图所示的网格是正方形网格,则BAC DAE ∠-∠=__________︒(点A ,B ,C ,D ,E 是网格线交点).【答案】45 【解析】连接CG 、AG ,根据勾股定理的逆定理可得∠CAG =90°,从而知△CAG 是等腰直角三角形,根据平行线的性质和三角形全等,可知,∠BAC -∠DAE =∠ACG ,即可得解. 【详解】解:如图,连接CG 、AG ,由勾股定理得:AC 2=AG 2=12+22=5,CG 2=12+32=10, ∴AC 2+AG 2=CG 2, ∴∠CAG =90°,∴△CAG 是等腰直角三角形, ∴∠ACG =45°, ∵CF ∥AB , ∴∠ACF =∠BAC , 在△CFG 和△ADE 中,∵CF =AD , ∠CFG =∠ADE =90°, FG =DE, ∴△CFG ≌△ADE (SAS ), ∴∠FCG =∠DAE ,∴∠BAC -∠DAE =∠ACF -∠FCG =∠ACG =45°, 故答案为:45.【点睛】本题考查了勾股定理的逆定理,勾股定理,三角形的全等的性质, 等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.12.如图,四边形ABCD 是平行四边形,经过点A ,C ,D 的O e 与BC 交于点E ,连接AE ,若72D ∠=︒,则BAE ∠=______°.【答案】36°【分析】根据平行四边形的性质得到∠DCB=(180°-∠D )=108°,根据圆内接四边形的性质得到∠AEB=∠D=72°,由平行线的性质即可得到结论.【详解】∵四边形ABCD 是平行四边形,∠D=72° ∴∠DCB=(180°−∠D)=108° ∵四边形AECD 是圆内接四边形∴∠AEB=∠D=72∘,∠DAE=180∘−∠DCB=72° ∴∠BAE=180°-72°-72°=36° 故答案为:36°.【点睛】本题主要考察平行四边形的性质,解题关键是根据圆内接四边形的性质得到∠AEB=∠D. 13.如图,已知正方形OABC 的三个顶点坐标分别为A (2,0),B (2,2),C (0,2),若反比例函数(0)ky k x=>的图象与正方形OABC 的边有交点,请写出一个符合条件的k 值__________.【答案】1(满足条件的k 值的范围是0<k ≤4) 【解析】 【分析】反比例函数上一点 向x 、y 轴分别作垂线,分别交于y 轴和x 轴,则围成的矩形的面积为|k|,据此进一步求解即可.【详解】∵反比例函数图像与正方形有交点, ∴当交于B 点时,此时围成的矩形面积最大且为4, ∴|k|最大为4, ∵在第一象限, ∴k 为正数,即0<k ≤4, ∴k 的取值可以为:1.故答案为:1(满足条件的k 值的范围是0<k ≤4).【点睛】本题主要考查了反比例函数中比例系数的相关运用,熟练掌握相关概念是解题关键.14.下表是某班同学随机投掷一枚硬币的试验结果.下面有三个推断:①表中没有出现“正面向上”的频率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;其中合理的是__________(填写序号).【答案】③【解析】【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性, 可以估计“正面向上”的概率是0.5,据此进行判断即可.【详解】解:①随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性, 可以估计“正面向上”的概率是0.5,故错误;②这些次试验投掷次数的最大值是500, 此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48,错误;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生,正确; 故答案为:③.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时, 事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小, 根据这个频率稳定性定理,可以用频率的集中趋势来估计概率.15.某班对思想品德、历史、地理三门课程的选考情况进行调研,数据如下:其中思想品德、历史两门课程都选了的有3人,历史、地理两门课程都选了的有4人,则该班选了思想品德而没有选历史的有__________人;该班至少..有学生__________人. 【答案】 (1). 17 (2). 30 【解析】 【分析】根据思想品德、历史两门课程都选了的有3人可知该班选了思想品德而没有选历史的有17人;然后根据选了地理没有选历史的14个人全部同时选了思想品德时,总人数最少可得答案. 【详解】解:∵思想品德、历史两门课程都选了的有3人, ∴选了思想品德而没有选历史的有20-3=17人, ∵历史、地理两门课程都选了的有4人,∴当选了地理没有选历史的14个人全部同时选了思想品德时,总人数最少, 此时总人数为:20+13-3=30人, 故答案为:17,30.【点睛】本题主要考查了学生的推理计算能力,正确理清逻辑关系是解题的关键.16.某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A 型保温杯的优势是_____.【答案】便携性 【解析】 【分析】从点图的分布可以看到在便携性中,综合质量名次好于保温性;【详解】解:从分布的情况可以看到便携性的综合名次好于保温性,故答案为便携性;【点睛】本题考查用样本估计总体;能够从图中综合对比出样本的优劣是解题的关键.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:21(24602sinπ-⎛⎫-+︒ ⎪⎝⎭.【答案】5+【解析】【分析】先根据一个数的负指数幂等于正指数幂的倒数,一个不等于零的数的零指数幂为1,一个数的绝对值是非负数,特殊角三角函数值sin60°【详解】解:原式41242=-+-⨯5=5=【点睛】本题考查实数的混合运算;特殊角三角函数值.18.解不等式组:32431.22x xx+<⎧⎪⎨-≥⎪⎩,【答案】5x≥.【解析】【分析】求出两不等式的解集,根据:“同大取大”确定不等式组解集. 【详解】解不等式①,342x x-<-,2x-<-,2x>.解不等式②,23x-≥,5x ≥ .∴不等式组的解集为5x ≥.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 19.已知关于x 的一元二次方程x 2+(k ﹣1)x +k ﹣2=0 (1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k 的取值范围. 【答案】(1)见解析;(2)k <2. 【解析】 【分析】(1)先求出△的值,再根据△的意义即可得到结论;(2)利用求根公式求得x =,然后根据方程有一根为正数列出关于k 的不等式并解答.【详解】(1)△=(k ﹣1)2﹣4(k ﹣2)=k 2﹣2k +1﹣4k +8=(k ﹣3)2 ∵(k ﹣3)2≥0, ∴方程总有两个实数根.(2)∵x =,∴x 1=﹣1,x 2=2﹣k . ∵方程有一个根为正数, ∴2﹣k >0, k <2.【点睛】考查了根的判别式.体现了数学转化思想,属于中档题目.20.如图,在ABC V 中,AB AC =,点D 是BC 边的中点,连接AD ,分别过点A ,C 作AE BC ∥,CE AD P 交于点E ,连接DE ,交AC 于点O .(1)求证:四边形ADCE 是矩形; (2)若10AB =,4sin 5COE ∠=,求CE 的长.【答案】(1)见解析;(2)25CE = 【解析】 【分析】(1)根据等腰三角形的性质得到AD ⊥BC 于点D ,根据矩形的判定定理即可得到结论; (2)过点E 作EF ⊥AC 于F ,解直角三角形即可得到结论. 【详解】(1)证明:∵AB AC =,点D 是BC 边的中点, ∴AD BC ⊥于点D , ∵AE BC ∥,CE AD P , ∴四边形ADCE 是平行四边形, ∴平行四边形ADCE 是矩形, (2)解:过点E 作EF AC ⊥于F ,∵10AB =, ∴10AC =,∵对角线AC ,DE 交于点O , ∴10DE AC ==, ∴5OE =, ∵4sin 5COE ∠=, ∴4EF =, ∴3OF =, ∵5OE OC ==, ∴2CF =, ∴25CE =【点睛】本题考查了矩形的判定与性质,解直角三角形, 平行四边形的判定,熟记特殊四边形的判定与性质是解题的关键.21.体育李老师为了解九年级女生体质健康的变化情况,本学期从九年级全体90名女生中随机抽取15名女生进行体质测试,并调取该15名女生上学期的体质测试成绩进行对比,李老师对两次数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .两次测试成绩(百分制)的频数分布直方图如下(数据分组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤);b .上学期测试成绩在8090x ≤<的是:80 81 83 84 84 88c .两个学期测试成绩的平均数、中位数、众数如下:学期 平均数 中位数众数 上学期 82.9 n84 本学期 838686根据以上信息,回答下列问题: (1)表中n 的值是______;(2)体育李老师计划根据本学期统计数据安排80分以下(不含80分)的同学参加体质加强训练项目,则九年级约有______名女生参加此项目;(3)分析这15名女生从上学期到本学期体质健康变化的总体情况.(从两个方面进行分析) 【答案】(1)83;(2)18;(3)见解析. 【解析】 【分析】(1)根据所给数据计数按中位数的概念解答;(2)九年级女生总人数乘以样本中80分以下(不含80分)的同学占九年级女生人数的比例即可得;(3)从平均数、中位数以及众数的角度分析,即可得到从上学期到本学期体质健康变化的总体情况..【详解】解:(1)上学期测试成绩的中位数是83,故答案为83,(2)参加体质加强训练项目=90×315=18(人)(3)理由为两学期学生的平均数基本相同,而本学期的中位数以及众数均高于上学期,说明从上学期到本学期体质健康变好一些.【点睛】本题考查了概率公式,中位数,众数,数据的描述,正确的理解题意是解题的关键.22.某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:(1)则甲同学错的是第题;(2)丁同学的得分是;(3)如果有一个同学得了1分,他的答案可能是(写出一种即可).【答案】(1)5;(2)3;(3)A【解析】【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2) 分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论.(3)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意, 当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C 正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以此种情况不符合题意, 当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A 是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分, 针对于丁来看,第1,3题错了,做对了3道,得分3分, 故答案为5;(2)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意, 当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C 正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以,此种情况不符合题意, 当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A 是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分, 针对于丁来看,第1,3题错了,做对了3道,得分3分, 故答案为3;(3)由(1)知,五道题的正确选项分别是:CCABA, 如果有一个同学得了1分,那么,只选对1道, 即:他的答。

2020年数学中考第一次模拟试卷附答案

2020年数学中考第一次模拟试卷附答案

2020年数学中考第一次模拟试卷附答案一、选择题1.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <32.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .23.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°4.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A 10B 5C .22D .35.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=6.下列计算正确的是( )A .a 2•a=a 2B .a 6÷a 2=a 3C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q8.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)9.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( )A .110oB .115oC .125oD .130o10.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 11.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .3 12.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.15.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C 落在该反比例函数图象上,则n 的值为___.16.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 17.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.2x =600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E .(1)求证:直线CD 是⊙O 的切线.(2)求证:CD BE AD DE ⋅=⋅.24.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表 组别海选成绩x A 组50≤x <60B 组 60≤x <70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?25.如图1,菱形ABCD中,120ABC∠=︒,P是对角线BD上的一点,点E在AD的延长线上,且PA PE=,PE交CD于F,连接CE.(1)证明:ADP CDP△≌△;(2)判断CEP△的形状,并说明理由.(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接..写出线段AP与线段CE的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.2.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22=22.OA OB故选C.3.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.4.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB22=++=()22;211路径二:AB22().21110=++=<,∴蚂蚁爬行的最短路程为22.∵2210故选C.【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.5.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 6.C解析:C【解析】【分析】根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.【详解】A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=-a2b,符合题意;D、原式=-278a,不符合题意,故选C.【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.7.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.8.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.9.A解析:A【解析】【分析】依据AB//CD ,EFC 40∠=o ,即可得到BAF 40∠=o ,BAE 140∠=o ,再根据AG 平分BAF ∠,可得BAG 70∠=o ,进而得出GAF 7040110∠=+=o o o .【详解】解:AB//CD Q ,EFC 40∠=o ,BAF 40∠∴=o ,BAE 140∠∴=o ,又AG Q 平分BAF ∠,BAG 70∠∴=o ,GAF 7040110∠∴=+=o o o ,故选:A .【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.10.D解析:D【解析】【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确.故选D .11.B解析:B【解析】【分析】【详解】过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF=12BC , ∴△PEF ∽△PBC ,且相似比为1:2,∴S △PEF :S △PBC =1:4,S △PEF =3,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =12S S +=12.故选B .12.B解析:B 【解析】 【分析】根据4.84<5<5.29,可得答案. 【详解】 ∵4.84<5<5.29, ∴5, ∴5, 故选B . 【点睛】5是解题关键.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比解析:【解析】 【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果. 【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=.故答案为8. 【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.15.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.16.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.18.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题21.无22.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x×1.5=45005x-,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论. 【详解】解:证明:(1)连接OD , ∵AD 平分BAC ∠, ∴CAD BAD ∠=∠, ∵OA OD =, ∴BAD ADO =∠∠, ∴CAD ADO ∠=∠, ∴AC OD ∥, ∵CD AC ⊥, ∴CD OD ⊥,∴直线CD 是⊙O 的切线; (2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径, ∴90ABE BDE ︒∠=∠=, ∵CD AC ⊥, ∴90C BDE ︒∠=∠=, ∵CAD BAE DBE ∠=∠=∠, ∴ACD BDE ∆∆∽,∴CD ADDE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.24.(1)答案见解析;(2)a=15,72°;(3)700人. 【解析】试题分析:(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B 组抽查的人数除以总人数,即可求出a ;用360乘以C 组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案. 试题解析:(1)D 的人数是:200﹣10﹣30﹣40﹣70=50(人), 补图如下:(2)B 组人数所占的百分比是×100%=15%;C 组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人. 考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图 25.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)2CE =.【解析】 【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明; (2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答; 【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠, 在ADP ∆和CDP ∆AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩, ∴()ADP CDP SAS ∆≅∆. (2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =, ∵PA PE =,∴DAP DEP ∠=∠, ∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠, 即60CPF EDF ∠=∠=︒, 又∵PA PE =,AP CP =; ∴PE PC =, ∴CEP ∆是等边三角形. (3)2CE AP =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°, 在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,, ∴△PDA ≌△PDC , ∴PA=PC ,∠3=∠1, ∵PA=PE , ∴∠2=∠3, ∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC , ∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形. ∴2PC 2AP .【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

2020年数学中考第一次模拟试卷(附答案)

2020年数学中考第一次模拟试卷(附答案)

2020年数学中考第一次模拟试卷(附答案)一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0) B .(1,0) C .(32,0) D .(52,0) 2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣3.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .154.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mxdx --=-⎰,则m =( )A .-2B .25-C .2D .255.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 6.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .87.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( ) A . B .C .D .8.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)9.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o10.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .3 11.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或012.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+ 二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.15.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .16.计算:2cos45°﹣(π+1)0111()42-=______.17.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 18.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x=在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.19.若a ,b 互为相反数,则22a b ab +=________. 20.计算:21(1)211x x x x ÷-+++=________.三、解答题21.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=V ,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.22.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩23.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图: 等级 成绩(s ) 频数(人数) A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.24.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?25.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.D解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.3.A解析:A 【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.4.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.D解析:D 【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D . 【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键6.B解析:B 【解析】 【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2, 解得,OA=4 ∴OD=OC-CD=3, ∵AO=OE,AD=DB, ∴BE=2OD=6 故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键7.C解析:C 【解析】 【分析】 【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h=≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.8.D解析:D 【解析】 【分析】 【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1). 故选:D9.B解析:B 【解析】 【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果. 【详解】AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=, DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o , 故选B . 【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.10.B解析:B 【解析】 【分析】 【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S+=12.故选B.11.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A.考点:由实际问题抽象出分式方程.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】解析:2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =OC BC ==.故答案为2. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 15.【解析】试题分析:连接OPOQ∵PQ 是⊙O 的切线∴OQ⊥PQ 根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB 时线段PQ 最短此时∵在Rt△AOB 中OA=OB=∴AB=OA=6∴OP=AB=3∴解析:【解析】试题分析:连接OP 、OQ ,∵PQ 是⊙O 的切线,∴OQ ⊥PQ .根据勾股定理知PQ 2=OP 2﹣OQ 2,∴当PO ⊥AB 时,线段PQ 最短.此时,∵在Rt △AOB 中,OA=OB=,∴AB=OA=6.∴OP=AB=3. ∴. 16.【解析】解:原式==故答案为: 322. 【解析】解:原式=2121222⨯-++322322. 17.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l ∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线225r h +=,∴S 侧=12×2πr×5=12×2π×3×5=15π, 故答案为15π. 【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 19.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab += ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.(1)213y x x 222=--;(2)D 的坐标为2⎛ ⎝⎭,2⎛ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫-⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5.∵AC 2+BC 2=25=AB 2,∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,∴△AD 1M 1∽△ACB.∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0),∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0),将B (4,0),C (0,﹣2)代入y =kx+c ,得:402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0),∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72.联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩ 或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2),(),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,设直线AC 的解析设为y =mx+n (m≠0),将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y x y x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点F 1的坐标为(45,﹣85 ); ②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .∵EC=EB ,EF 2⊥BC 于点F 2,∴点F 2为线段BC 的中点,∴点F 2的坐标为(2,﹣1);∵BC=,∴CF 2=12 BC,EF 2=12 CF 2=,F 2F 3=12 EF 2, ∴CF 3=4 . 设点F 3的坐标为(x ,12x ﹣2),∵CF3=554,点C的坐标为(0,﹣2),∴x2+[12x﹣2﹣(﹣2)]2=12516,解得:x1=﹣52(舍去),x2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣8 5),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.22.114, 2;x y =⎧⎨=⎩223,3. xy=⎧⎨=⎩【解析】【分析】先对x2-3xy+2y2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩ 解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.23.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144; (3)列表如下:a 1和b 1的有2种结果,∴恰好选取的是a1和b1的概率为21 126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.24.(1)0x=;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x-得()5321x+-=-解得0x=经检验,0x=是原分式方程的解.(2)设?为m,方程两边同时乘以()2x-得()321m x+-=-由于2x=是原分式方程的增根,所以把2x=代入上面的等式得()3221m+-=-1m=-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.(1)BC与⊙O相切,理由见解析;(2)①⊙O的半径为2.②S阴影=23π.【解析】【分析】(1)根据题意得:连接OD,先根据角平分线的性质,求得∠BAD=∠CAD,进而证得OD∥AC,然后证明OD⊥BC即可;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得结果.【详解】(1)相切.理由如下:如图,连接OD.∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠ODA=∠BAD,∴∠ODA=∠CAD,∴OD∥AC.又∠C=90°,∴OD⊥BC,∴BC与⊙O相切(2)①在Rt△ACB和Rt△ODB中,∵AC=3,∠B=30°,∴AB=6,OB=2OD.又OA=OD=r,∴OB=2r,∴2r+r=6,解得r=2,即⊙O的半径是2②由①得OD=2,则OB=4,BD=3S阴影=S△BDO-S扇形ODE=12×3×2-2602360π⨯=3-23π。

2020年数学中考第一次模拟试卷及答案

2020年数学中考第一次模拟试卷及答案

2020年数学中考第一次模拟试卷及答案一、选择题1.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .42.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动,记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .3.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( ) A .27B .9C .﹣7D .﹣164.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 5.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根6.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差7.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.22D.28.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°9.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩10.下列各曲线中表示y是x的函数的是()A.B.C.D.11.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=12.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+二、填空题13.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)17.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.18.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)19.3x x的取值范围是_____.20.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.三、解答题21.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.22.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)23.修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地i=,从B到C坡面的坡角到B地的路程.已知:从A到C坡面的坡度1:3∠=︒,4245CBABC=公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.012 1.414≈3 1.732)24.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】6的大小,即可得到结果.【详解】<<Q,46 6.25∴<<,26 2.56的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x 轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y =x 2−6x +m 得4+12+m =0,解得m =−16. 故选:D . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .5.A解析:A 【解析】 【分析】先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A . 【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.6.A解析:A 【解析】 【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数. 【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A . 【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.7.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB+=22.故选C.8.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.10.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.11.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE=.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.12.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.二、填空题13.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.14.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD==【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.17.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n 种可 解析:12. 【解析】【分析】 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作DF⊥CE于点F在△DCF中∵CD=4mDF:CF=1:3解析:2m.【解析】【分析】延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.【详解】延长AD交BC的延长线于点E,作DF⊥CE于点F.在△DCF中,∵CD=4m,DF:CF=1:,∴tan∠DCF=,∴∠DCF=30°,∠CDF=60°.∴DF=2(m),CF=2(m),在Rt△DEF中,因为∠DEF=50°,所以EF=≈1.67(m)∴BE=EF+FC+CB=1.67+2+5≈10.13(m),∴AB=BE•tan50°≈12.2(m),故答案为12.2m.【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.解:若式子3x 在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.20.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.三、解答题21.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.22.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN 的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.23.(1)隧道打通后从A 到B 的总路程是(434)+公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =,∴4CD BD ==.在Rt ACD ∆中,∵1:3CD i AD==, ∴343AD CD ==,∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842AC CB +=+.∵434AB =+,∴842434 2.73AC CB AB +-=+--≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.24.(1)见解析;(2)243.【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】 证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形;(2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-=∴菱形BFDE的面积=12×EF•BD=12×12×43=243.【点评】此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【文库独家】2020中考第一次模拟测试数学试卷参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-) 一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案. 1.下列几何体中,主视图相同的是( )A .②④B .②③C .①②D .①④2.下列计算正确的是( ) A .a 3+a 2=a 5 B .(3a -b )2=9a 2-b 2C .b a a b a 326=÷D .(-ab 3)2=a 2b 63.如图,已知BD ∥AC ,∠1=65°,∠A =40°,则∠2的大小是( ) A .40° B .50° C .75° D .95° 4、某校决定从两名男生和三名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .45 B .35 C .25 D .155. 用1张边长为a 的正方形纸片,4张边长分别为a 、b (b >a )的矩形纸片,4张边长为b 的正方形纸片,正好拼成一个大正方形(按原纸张进行无空隙、无重叠拼接),则拼成的大正方形边长为( ) A .a +b +2 ab B .2a +b C .2244b ab a ++ D .a +2b6.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 9,8,9,10,11,10这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是a ,那么(x 1-a )+(x 2-a )+…+(x n -a )=0D .一组数据的方差是这组数据与平均数的差的平方和 7.若04411422=+-++-b b a a ,则=++b a a 221( ) A .12 B .14.5 C .16 D .326+8.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与射线AC 相交于点D .当△ODA 是等边三角形时,这两个二次函数的最大值之和等于( )9.如图,已知第一象限内的点A 在反比例函数xy 1=上,第二象限的点B 在反比例函数xky =上,且OA ⊥OB ,33A sin =,则k 的值为( ) A .-3 B .-4 C .-22 D .21-10.阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n 为非负整数..时, 若21-n ≤x <21+n ,则《x 》=n . 例如:《0.67》=1,《2.49》=2,……. 给出下列关于《x 》的问题:①《2》=2;②《2x 》=2《x 》;③当m 为非负整数时,《x m 2+》=m +《2x 》; ④若《2x -1》=5, 则实数x 的取值范围是411≤x <413;⑤满足《x 》=x 23的非负实数x 有三个.其中正确结论的个数是( )A .1B .2C .3D .4二.认真填一填 (本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.某班随机抽取了8名男同学测量身高,得到数据如下(单位m ):1.72 , 1.80, 1.76, 1.77,1.70,1.66,1.72,1.79,则这组数据的:(1)中位数是 ;(2)众数是 .12.如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长 BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是 .13.把sin60°、cos60°、tan60°按从小到大顺序排列,用“<” 连接起来 .14. 将半径为4 cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为 cm.15.已知⊙P 的半径为1,圆心P 在抛物线342+-=x x y 上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .16.如图,在矩形ABCD 中,AB =2,AD =5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP =x ,当点E 落在线段AB 上,点F 落在线段AD 上时,x 的取值范围是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题6分)(1)先化简,再求值:2)2()1)(1(++-+a a a ,其中41=a . (2)化简xx x -+-2422.18.(本小题8分)2014年3月,某海域发生沉船事故.我海事救援部门用高频海洋探测仪进行海上搜救,分别在A 、B 两个探测点探测到C 处疑是沉船点.如图,已知A 、B 两点相距200米,探测线与海平面的夹角分别是30°和60°,试求点C 的垂直深度CD 是多少米.(精确到米,参考数据:41.12≈,73.13≈)19.(本小题8分)(1)在一次考试中,李老师从所教两个班全体参加考试的80名学生中随机抽取了20名学生的答题卷进行统计分析.其中某个单项选择题答题情况如下表(没有多选和不选):①根据表格补全扇形统计图(要标注角度和对应选项字母,所画扇形大致符合即可);②如果这个选择题满分是3分,正确的选项是D ,则估计全体学生该题的平均得分是多少?(2)将分别写有数字4、2、1、13的四张形状质地相同的卡片放入袋中,随机抽取一张,记下数字放回袋中,第二次再随机抽取一张,记下数字:①请用列表或画树状图方法(用其中一种),求出两次抽出卡片上的数字有多少种等可能结果; ②设第一次抽得的数字为x , 第二次抽得的数字为y ,并以此确定点P (x ,y ),求点P 落在双曲线xy 4=上的概率.如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,连结BE 交AC 于点F ,连结DF . (1)证明:△ABF ≌△ADF ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,又知∠EFD =∠BCD ,请问你能推出什么结论?(直接写出一个结论,要求结论中含有字母E )21.(本小题10分)为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升. 某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱的利润 y 1(百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401)200(51011x x x x y ,在乡镇销售平均每箱的利润y 2(百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151)300(62t t t y :(1)t 与x 的关系是 ;将y 2转换为以x 为自变量的函数,则y 2= ;(2)设春节期间售完冷冻鸡肉获得总利润W (百元),当在城市销售量x (箱)的范围是0<x ≤20时,求W 与x 的关系式;(总利润=在城市销售利润+在乡镇销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x 的值. 22.(本小题12分)如图,在一个边长为9cm 的正方形ABCD 中,点E 、M 分别是线段AC 、CD 上的动点,连结DE 并延长交正方形的边于点F ,过点M 作MN ⊥DF 于点H ,交AD 于点N .设点M 从点C 出发,以1cm/s 的速度沿CD 向点D 运动;点E 同时从点A 出发,以2cm/s 速度沿AC 向点C 运动,运动时间为t (t >0): (1)当点F 是AB 的三等分点时,求出对应的时间t ; (2)当点F 在AB 边上时,连结FN 、FM :①是否存在t 值,使FN =MN ?若存在,请求出此时t 的值;若不存在,请说明理由; ②是否存在t 值,使FN =FM ?若存在,请求出此时t 的值;若不存在,请说明理由.如图,点P 是直线:22-=x y 上的一点,过点P 作直线m ,使直线m 与抛物线2x y =有两个交点,设这两个交点为A 、B :(1)如果直线m 的解析式为2+=x y ,直接写出A 、B 的坐标;(2)如果已知P 点的坐标为(2, 2),点A 、B 满足PA =AB ,试求直线m 的解析式; (3)设直线与y 轴的交点为C ,如果已知∠AOB =90°且∠BPC =∠OCP ,求点P 的坐标.数学答卷二 、认真填一填 (本题有6个小题,每小题4分,共24分)11.___________ ___________ 12.___________ 13._____________________14.___________ 15. __________________ 16._____________________三、全面答一答 (本题有7个小题,共66分) 17.计算(6分,每小题3分)(1)先化简,再求值:2)2()1)(1(++-+a a a ,其中41=a .(2)化简x x x -+-242218.(8分)19.(8分)(1) (2) (3)20.(本小题10分)21.(本小题10分)(1)t与x的关系是;将y2转换为以x为自变量的函数,则y2=;(2)(3)22. (本小题12分)23.(本小题12分)参考答案一.选择题 ADCBD CBCDB二.填空题(本题有6个小题,每小题4分,共24分)11.1.74;1.72 12.1︰2 13.cos60°<sin60°<tan60° 14.328 15.)1,2(-、)1,22(±16.215-≤x ≤2 (说明:13题可以32321<<;15题,写出其中2个给3分;16题,有一个端值正确给1分) 三、解答题 17.(6分)(1)原式=+++-a a a 4122 4 --------1分; 合并得54+a ---------1分; 求得值为6--------1分(2)原式=242--x x ---------1分;分解因式得2)2)(2(--+x x x -------1分;结果=2+x --------------1分18.( 8分)解法一:由图形可得∠BCA =30°,∴CB =BA =200--------2分 ∴在Rt △CDB 中又含30°角,得DB =21CB =100 ----------2分 ∴由勾股定理DC ==22BD -CB 22100200-------------2分解得CD =1003,∴点C 的垂直深度CD 是173米.--------2分解法二:设CD =x ,在Rt △ACD 中,∴AD =3CD =3x ,在Rt △BCD 中,BD =33CD =33x由题意得,AD -BD =200,即3x ―33x =200,解得:)(1733100米≈⨯=x(同样给分)19.(8分)(1)①补全扇形图------------------------------------- 2分 ②平均分1.95分----------------------------------2分(2)①列表或树状图,得16种等可能结果-------2分②点P 落在x y 4=上的概率为163 -------------2分20.(10分)(1)∵AB =AD ,CB =CD ,CA 公共,∴△ABC ≌△ADC (SSS )-------------------------2分 ∴∠1=∠2,又AB =AD ,FA 公共,∴△ABF ≌△ADF (SAS )-----------------------------2分(2)证明:∵AB ∥CD ,∴∠1=∠3,-----------------------1分 又∵∠1=∠2,∴∠2=∠3,∴AD =CD ,------------------1分 ∵AB =AD ,CB =CD ∴AB=CB=CD=AD ,------------------1分∴四边形ABCD 是菱形;-----------------------------------------1分(3)BE ⊥CD 或∠BEC =∠BED =90°或△BEC ∽△DEF 或∠EFD =∠BAD ---------------2分 写出其中一个. 21.(10分)(1) x t -=60 ----------------------1分; ⎪⎩⎪⎨⎧≤<+<≤=)300(4151)6030(62x x x y -----------------------------2分 (2) 综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401)200(51011x x x x y 和(1)中 y 2 ,当对应的x 范围是0<x ≤20 时, 2405301)60)(4151()5101(2++=-+++=x x x x x x W ------------------------------------------------3分(3) 当20<x ≤30 时,2405.712011)60)(4151()5.7401(22++-=-+++-=x x x x x x W --------------2分W 顶点x =11450>30,∴W 在20<x ≤30随x 增大而增大,∴最大值x =30时取得------------1分∴W 最大=382.5(百元)---------------------------------------------------------------------------------------1分22.(12分) (1)∵AB ∥CD ,∴△AFE ∽△CDE ,-----------------------------------------------------1分 当点F 是边AB 三等分点时,则AF =3或AF =6 ,(i )AF =3时,∵EC AECD AF =,∴AE -29AE 93=,∴AE =429 ,∴49=t ------------2分 (ii )同理,AF =6,AE =5218,∴518=t ,-----------------------------------------------2分(2)设CM =t ,F 在边AB 上时,用t 表示线段AF 、ND 、AN : 由△AFE ∽△CDE ,∴tt 22929F -=A ,得AF=t t -99.------------------1分又易证△MND ∽△DFA ,∴ADMD AFND =, 解得ND =t .------------------1分∴AN =DM =9-t ,---------------------------------------------------------1分① 当FN =MN 时,则由AN =DM , ∴△FAN ≌△NDM ,--------------------------------------------1分∴AF =ND ,即tt-99=t ,得t=0,不合题意.∴此种情形不存在;----------------------------1分 ② 当FN =FM 时,由MN ⊥DF ,等腰三角形三线合一,得HN =HM =HD , ------------------1分∴△NDM 是等腰Rt △, DN =DM =MC , ∴M 为中点,∴t =29, -------------------------1分23.(12分)(1)A (2, 4)、B (-1,1)-------------------------------------2分(2)解法一:设法求出A 的坐标:设A (m, m 2)、B (a , b ), 过A 作x 轴垂线,过P 、B 作y 轴垂线,∵PA =AB ,∴△ABF ≌△APE ∴B 的横坐标a =2 m―2,纵坐标b =m 2―(2―m 2)=2 m 2―2 ∵点B 在抛物线上,b =a 2, ∴2 m 2―2=(2 m―2)2,解得m =1或m =3,∴得点A (1, 1)或A (3, 9)-------------2分∵P (2, 2),可得直线m 的解析式为:x y = 或127-=x y ------------------2分(各1分)(解法二:设B (a ,a 2),∵PA =AB ,∴A 是线段PB 的中点,∴A ()22,222++a a∵A 在抛物线上,∴=+222a 2)22(+a 解得∴a =0或4,∴B(0, 0)、B (4,16),两个点B 坐标(2分),解析式(2分),解法二比较简单)(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (1x ,21x ),B (2x ,22x ).过A 、B 分别作AE 、BF 垂直x 轴于E 、F ,∵∠AOB =90°,∴△AEO ∽△OFB ,∴BF OF OE AE =,222121x x x x -=,∴121-=⋅x x ----------------------------------1分∵A 、B 是b kx y +=与2x y =的交点,∴21,x x 是2x b kx =+的解,∴2422,1b k k x +±=由121-=⋅x x 解得:1=b ,∴D (0,1)---------1分∵∠BPC =∠OCP ,∴DP =DC =3,---------------------------------------1分 过P 作PG 垂直y 轴于G ,则:PG 2+GD 2=DP 2,∴设P (a , 2a ―2),有2223)122(=--+a a , -----------------------1分解得0=a (舍去)或512=a ,∴P )514,512(------------------------------2分。

相关文档
最新文档