2007年普通高等学校招生全国统一考试(江西卷)数学(理科)
2007年普通高等学校招生全国统一考试理科数学卷(江西)
2007年普通高等学校招生全国统一考试理科数学卷(江西)学校:___________姓名:___________班级:___________考号:___________一、单选题1.化简2)1(42i i++的结果是A .2+iB .-2+iC .2-iD .-2-i 2.1lim 231--→x x x xA .等于0B .等于lC .等于3D .不存在3.若3)4tan(=-απ,则cot α等于A .-2B .21-C .21D .2 4.已知(x +33x )n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于 A .4 B .5 C .6 D .75.若0<x <2π,则下列命题中正确的是A .sin x <x π3B .sin x >x π3 C .sin x <224x π D .sin x >224x π 6.若集合012|),{(},2,1,0{≥+-==y x y x N M 且M y x y x ∈≤--,,012},则N 中元素的个数为A .9B .6C .4D .27.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误的命题是A .点H 是△A 1BD 的垂心B .AH 垂直平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 19.设椭圆)0(12222>>b a b y a x =+的离心率为e =21,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能10.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为( ) A .19 B .112 C .115 D .11811.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为A .-B .0C .D .5 12.设12ln )(:2++++=mx x x e x f p x 在(0,+∞)内单调递增,5:-≥m q ,则p是q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.设函数y =4+log 2(x -1)(x ≥3),则其反函数的定义域为 .14.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=91,则a 36= . 15.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若n m ==,,则m +n 的值为 .16.设有一组圆)(2)3()1(:*422N k k k y k x C k ∈=-++-.下列四个命题:A .存在一条定直线与所有的圆均相切B .存在一条定直线与所有的圆均相交C .存在一条定直线与所有的圆均不.相交D .所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三、解答题17.(本小题满分12分)已知函数⎪⎩⎪⎨⎧≤++=-)1(2)0(1)(2<<<x c k c x cx x f c x 在区间(0,1)内连续,且89)(2=c f .(1)求实数k 和c 的值;(2)解不等式182)(+>x f18.(本小题满分12分)如图,函数的图象与y 轴交于点(0,),且在该点处切线的斜率为一2.(1)求θ和ω的值;(2)已知点A(,0),点P是该函数图象上一点,点Q(x0,y0)是P A的中点,当y0=,x0∈[,π]时,求x0的值.19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6,0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.20.(本小题满分12分)右图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠A l B l C1=90°,AA l=4,BB l=2,CC l=3.(1)设点O是AB的中点,证明:OC∥平面A1B1C1;(2)求二面角B—AC—A1的大小;(3)求此几何体的体积.21.(本小题满分12分)设动点P到点A(-l,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1=,使得d1d2 sin2θ=λ.(1)证明:动点P的轨迹C为双曲线,并求出C的方程;(2)过点B作直线交双曲线C的右支于M、N两点,试确定λ的范围,使OM·ON=0,其中点O为坐标原点.22.(本小题满分14分)设正整数数列{a n }满足:a 2=4,且对于任何 n ∈N *,有n n n n a n n a a a 1211111211++-++++<<. (1)求a 1,a 3;(2)求数列{ a n }的通项a n .参考答案1.C【解析】略2.B【解析】略3.A【解析】略4.C【解析】略5.D【解析】略6.C【解析】略7.D【详解】因为三棱锥A-A1BD是正三棱锥,故顶点A在底面的射影是底面的中心,A正确;平面A1BD∥平面CB1D1,而AH垂直于平面A1BD,所以AH垂直于平面CB1D1,B正确;根据对称性知C正确,故选D.8.A【解析】略9.A【解析】略10.B【分析】先求出将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的情况,再求出若不考虑限制它落地时向上的点数情况,前者除以后者即可.【详解】∵骰子连续抛掷三次,它落地时向上的点数依次成等差数列∴落地时向上的点数若不同,则为1,2,3或1,3,5,或2,3,4或2,4,6或3,4,5共有6×2=12种情况, 也可全相同,有6种情况∴共有18种情况若不考虑限制,有36=216 落地时向上的点数依次成等差数列的概率为18121612= 故选:B.【点睛】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式m P n=求得概率 11.B【解析】试题分析:根据导数的定义,曲线在的切线的斜率为,因为函数()f x 是上以5为周期的可导偶函数,所以因为()f x 是上的偶函数,所以必有,故曲线y=f(x)在x=5处的切线的斜率为0 考点:导数的定义,导数的几何意义,周期函数的性质,定义在R 上的偶函数的性质12.B【解析】略13.[5)+,∞【解析】略14.4【解析】略15.2【解析】略16.B,D17.(1)1k =,12c = (2)()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭【解析】解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续, 所以215224f k -⎛⎫=+= ⎪⎝⎭,即1k =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >+得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.(1)θ=π6,ω=2(2)x 0=2π3或x 0=3π4. 【解析】解:(1)将x =0,y =√3代入函数y =2cos(ωx +θ)得cosθ=√32, 因为0≤θ≤π2,所以θ=π6.又因为y ′=−2ωsin(ωx +θ),y ′|x=0=−2,θ=π6,所以ω=2, 因此y =2cos(2x +π6).(2)因为点A(π2,0),Q(x 0,y 0)是PA 的中点,y 0=√32, 所以点P 的坐标为(2x 0−π2,√3).又因为点P 在y =2cos(2x +π6)的图象上,所以cos(4x 0−5π6)=√32. 因为π2≤x 0≤π,所以7π6≤4x 0−5π6≤19π6, 从而得4x 0−5π6=11π6或4x 0−5π6=13π6. 即x 0=2π3或x 0=3π4.19.(1))()()()(321321321A A A p A A A A A A P E P ⋅⋅+⋅⋅+⋅⋅=0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=(2)()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=【解析】解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A ,(1)设E 表示第一次烧制后恰好有一件合格,则 )()()()(321321321A A A p A A A A A A P E P ⋅⋅+⋅⋅+⋅⋅=0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =,所以~(30.3)B ξ,,故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则 ()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=, 2(1)3(10.3)0.30.441P ξ==⨯-⨯=,2(2)30.30.70.189P ξ==⨯⨯=,3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=.20.(1)OC ∥平面A 1B 1C 1(2) 二面角的大小为30∘(3)【解析】(1)证明:作OD ∥AA 1交A 1B 1于D ,连C 1D .则OD ∥BB 1∥CC 1.因为O 是AB 的中点,所以OD =12(AA 1+BB 1)=3=CC 1.则ODC 1C 是平行四边形,因此有OC ∥C 1D .C 1D ⊂平面C 1D ⊂且OC ⊄平面C 1D ⊂,则OC ⊄面C 1D ⊂.(2)如图,过O 作截面BA 2C 2∥面C 1D ⊂,分别交AA 1,AA 1于A 2,A 2.作BH ⊥A 2C 2于B ,连CH .因为A 1B 1C 1面A 1B 1C 1,所以CC 1⊥BH ,则BH ⊥平面AA 1.又因为AB =√5,AB =√5,AC =√3⇒AB 2=BC 2+AC 2.所以BC ⊥AC ,根据三垂线定理知BC ⊥AC ,所以∠BCH 就是所求二面角的平面角. 因为BH =√22,所以sin∠BCH =BH BC =12,故∠BCH =30∘, 即:所求二面角的大小为30∘.(3)因为BH =√22,所以所求几何体体积为.解法二:(1)如图,以B 1为原点建立空间直角坐标系,则∠BCH ,A(0,1,4),∠BCH ,因为O 是AB 的中点,所以BH =√22, OC ⃗⃗⃗⃗⃗ =(1,−12,0). 易知,n ⃗ =(0,0,1)是平面C 1D ⊂的一个法向量.因为n ⃗ =(0,0,1),OC ⊄平面C 1D ⊂,所以OC ⊄平面C 1D ⊂.(2)AB⃗⃗⃗⃗⃗ =(0,−1,−2),BC ⃗⃗⃗⃗⃗ =(1,0,1), 设m ⃗⃗ =(x ,y ,z)是平面ABC 的一个法向量,则则得:{−y −2z =0x +z =0 取x =−z =1,m ⃗⃗ =(1,2,−1).显然,l=(1,1,0)为平面C(1,0,3)的一个法向量. 则,结合图形可知所求二面角为锐角.所以二面角BC⃗⃗⃗⃗⃗ =(1,0,1)的大小是30∘. (3)同解法一. 21.(1)动点P 的轨迹C 为双曲线,方程为:2211x y λλ-=-(223λ<<23λ< 【解析】解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线. 方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-. 由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦, 所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--. 因为0=⋅ON OM ,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.由①②知,1223λ<≤. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,.①当121x x ==时,221101MB λλλλλ=-=⇒+-=-, 因为01λ<<,所以12λ=;②当12x x ≠时,002222212111111y x k y x y x MN ⋅-=⇒⎪⎪⎩⎪⎪⎨⎧=--=--λλλλλλ. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x x λλ=-=+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-. 于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<,23λ<<23λ<. 22.(1)11a =,39a =(2)对任意n ∈*N ,2n a n =【解析】解:(1)据条件得1111112(1)2n n n n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+, 解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明. 1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++- 因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤.故21(1)k a k +=+,即1n k =+时,2n a n =成立.由1,2知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明. 1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数,则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③ 又由②右式,22221(1)21(1)1k k k k k k k k a k k+++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥, 所以4321221(1)11k k k ka k k k k k +++=+--+-+≥.又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥④ 据③④21(1)k a k +=+,即1n k =+时,2n a n =成立.由1,2知,对任意n ∈*N ,2n a n =.。
2007年理科数学试卷及答案-全国1
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10ba b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:A1B1A1D 1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分) 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分) 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC = ∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<;(Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭.3A π⎛⎫<+< ⎪⎝⎭, 所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元). (19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==,SA =AO =1SO =,SD =.SAB △的面积112S AB == 连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = , 解得h =A设SD 与平面SAB 所成角为α,则sin 11h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(0CB =,0SA CB = ,所以SA BC ⊥. (Ⅱ)取AB 中点E ,0E ⎫⎪⎪⎝⎭,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.cos 11OG DS OG DSα==,sin 11β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥.(当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾.综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 21221)32k BD x x k +=-==+ ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =+11)(n n a a +=-.所以,数列{n a是首项为21的等比数列,1)n n a -=,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2,112b a ==,所以11b a ≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<- 当1n k =+时,13423k k k b b b ++-=+k =(3023k k b b --=>+,又1323k b <=-+,所以1(32)2)23k k k b b b +---=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年高考理科数学试题及参考答案(江西卷)
A.人
B.环境
C.健康 D.护理
( ) 11.根据护理工作专业性质划分不包括
A.专业性
B.半专业性
C.非专业性 D.依赖性护理功能
( ) 12.护理工作根据场所不同的划分不包括
A.医院护理 B.社会护理
C 护理教育
D 家庭访视
( ) 13.当护士每日为病人做肢体功能锻炼,她扮演的角色为
A.管理者及协调者 B.促进康复者
疾,护士的心理素质体现了
A.良好的人生观及职业动机 B.敏锐的观察力及感知能力
C.精确的记忆力
D.良好的个性心理素质
( ) 16.护理的基本任务不包括
A.维护健康 B.预防疾病 C.减轻病痛 D.正确的诊断
第二章
()
17.吗啡给自体带来暂时的舒适,是健康的哪一种体现
A 身心健康 B.社会适应良好 C.道德健康 D.成瘾,从根本上破坏人的健康
A.1858 年 B.1859 年
C.1860 年 D.1856 年
( ) 5.国际护士节为每年的
A.5 月 10 日 B.5 月 12 日 C.10 月 1 日 D.10 月 12 日
( ) 6.我国从哪年开始参加南丁格尔奖评选活动
A.22%
A.1980 B.1973 C.1983 D.1985
C.青春期
D.中年期
( ) 30.成长与发展规律语言发展最快时段
A.2 岁 B.7 岁
C.3—5 岁 D.6 岁
( ) 31.人格结构不包括
A.本我 B 自我 C.超我 D.自卫
( ) 32.青春期发展障碍是
A.病人翻身 B.皮肤按摩
C.活动肢体 D.严格执行灭菌操作
( ) 27.安全的需要不包括
2007年普通高等学校招生全国统一考试江西卷
2007年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}01M =,,{}012345I =,,,,,,则I M ð为( ) A.{}01,B.{}2345,,,C.{}02345,,,,D.{}12345,,,,2.函数5tan(21)y x =+的最小正周期为( ) A.π4B.π2C.πD.2π3.函数1()lg4xf x x -=-的定义域为( ) A.(14),B.[14),C.(1)(4)-∞+∞,,D.(1](4)-∞+∞,, 4.若tan 3α=,4tan 3β=,则tan()αβ-等于( )A.3-B.13-C.3D.135.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为( )A.2- B.1- C.1 D.26.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3647.连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )A.1-B.32C.1+D.32+8.若π02x <<,则下列命题正确的是( ) A.2sin πx x < B.2sin πx x > C.3sin πx x <D.3sin πx x >9.四面体ABCD 的外接球球心在CD 上,且2CD =,AD =在外接球面上两点A B ,间的球面距离是( ) A.π6B.π3C.2π3D.5π610.设32:()21p f x x x mx =+++在()-∞+∞,内单调递增,4:3q m ≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >> C.324h h h >>D.241h h h >>12.设椭圆22221(0)x y a b a b+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=上 B.必在圆222x y +=外 C.必在圆222x y +=内D.以上三种情形都有可能2007年普通高等学校招生全国统一考试(江西卷)文科数学 第II 卷注意事项:第II 卷2页,须要黑色墨水签字笔在答题卡上书写作答,若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,则AB AC =.14.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.15.已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(31),,则函数1()y f x -=的图象必经过点.16.如图,正方体1AC 的棱长为1,过点作平面1A BD 的垂线,垂足为点H .有下列四个命题A.点H 是1A BD △的垂心 B.AH 垂直平面11CB DC.二面角111C B D C --D.点H 到平面1111A B C D 的距离为34其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)111B已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求AB 与平面11AAC C 所成的角的大小; (3)求此几何体的体积. 21.(本小题满分12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n nn T a a a a =-+--.1122.(本小题满分14分)设动点P 到点1(10)F -,和2(10)F ,的距离分别为1d 和2d ,122F PF θ=∠,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于A B ,两点.问:是否存在λ,使1FAB △是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.2007年普通高等学校招生全国统一考试(江西文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得, 当102x <<时,解得142x <<, 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =2cos()y x ωθ=+中得cos 2θ=, 因为π02θ≤≤,所以π6θ=.由已知πT =,且0ω>,得2π2π2T πω===. (2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,0y =所以点P的坐标为0π22x ⎛-⎝. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 462x ⎛⎫-= ⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥, 因为O 是AB 的中点,12CA所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥,1C D ⊂平面111C B A ,且OC ⊄平面111C B A则OC ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AAC C ,则BH ⊥面11AAC C .连结AH ,则BAH ∠就是AB 与面11AAC C 所成的角.因为2BH =,AB =sin BH BAH AB ==∠ AB 与面11AAC C所成的角为BAH =∠ (3)因为BH =,所以222213B AA C C AA C C V S BH -=.1121(12)23222=+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体的体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,,1102OC ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量.由0OC n =且OC ⊄平面111A B C 知OC ∥平面111A B C .1x(2)设AB 与面11AAC C 所成的角为θ. 求得1(004)A A =,,,11(110)AC =-,,. 设()m x y z =,,是平面11AAC C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得00z x y =⎧⎨-=⎩, 取1x y ==得:(110)m =,,. 又因为(012)AB =--,, 所以,cos m <,m AB AB m AB>==-sin θ=所以AB 与面11AAC C 所成的角为. (3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n nT -=-+-+-,…………① 2234212112342123333333n n n n nT --=-+-++-,…………② +①②得:2232124111121333333n n n nT -=-+-+--211231313n n -=-+ 22333843n nn --=所以22223924163n n nnT +--=.22.解:(1)在12PF F △中,122FF =22221212121242cos2()4sin d d d d d d d d θθ=+-=-+212()44d d λ-=-12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F为焦点,实轴长2a =的双曲线.方程为2211x y λλ-=-. (2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则12343421323422πsin 4d d a d d a d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩①②③④⑤ 由②与③得22d a =,则1343421)d a d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=(8)2λλ--=,(01)λ=,故存在1217λ-=满足题设条件. 方法二:(1)设1AF B △为等腰直角三角形,依题设可得21212212122πsin π81cos 4πsin 24AF AF AF AF BF BF BF BF λλλλ⎧⎧===⎪⎪⎪⎪-⇒⎨⎨⎪⎪=⎪=⎪⎩⎩所以12121πsin 1)24AF FS AF AF λ==△,121212BF F S BF BF λ==△.则1(2AF B S λ=△.①由1212221AFF BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==.则122211(222AF B S AB d ==△.②由①②得2(22d λ=.③根据双曲线定义122BF BF a -==可得,1)d =. 平方得:221)4(1)d λ=-.④ 由③④消去d 可解得,(01)λ=, 故存在1217λ-=满足题设条件.。
2007年全国各地高考数学试卷及答案(37套)word--完整版
2007年普通高等学校招生全国统一考试数学卷(四川.文)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.理)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.文)含答案
2007年普通高等学校招生全国统一考试数学卷(浙江.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.文)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.文)含答案
2007年普通高等学校招生全国统一考试数学卷(山东.理)含答案
2007年全国各地高考数学试卷及答案(37套)--完整版
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.文)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
宁夏和海南都是新课标教材,使用的是同一套数学题。
பைடு நூலகம் 四川省蓬安中学校 张万建 整理 zwjozwj@
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.理) 含答案
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.文) 含答案
2007年普通高等学校招生全国统一考试数学卷(江苏卷不分文理)含答案
注:使用全国卷Ⅰ的省份:河北 河南 山西 广西 ;
使用全国卷Ⅱ的省份:吉林 黑龙江 云南 贵州 新疆 青海 甘肃 内蒙 西藏
(Word版)2007年(江西)高考理科数学真题试卷
17.已知函数 在区间 内连续,且 .
(1)求实数 和 的值;
(2)解不等式 .
18.如图,函数 的图象与 轴交于点 ,且在该点处切线的斜率为 .
(1)求 和 的值;
(2)已知点 ,点 是该函数图象上一点,点 是 的中点,当 , 时,求 的值.
(1)证明:动点 的轨迹 为双曲线,并求出 的方程;
(2)过点 作直线交双曲线 的右支于 、 两点,试确定 的范围,使 ,其中点 为坐标原点.
22.设正整数数列 满足: ,且对于任何 ,有 .
(1)求 , ;
(2)求数列 的通项 .
2007年普通高等学校招生全国统一考试(江西卷)
理科数学
第Ⅰ卷
参考公式:
如果事件 、 互斥,那么
如果事件 、 相互独立,那么
如果事件 在一次试验中发生的概率是 ,那么 次独立重复试验中恰好发生 次的概率
球的表面积公式 其中 表示球的半径:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.化简 的结果是()
A. B. C. D.
2. ()
A.等于0B.等于1C.等于3D.不存在
3.若 ,则 等于()
A. B. C. D.2
4.已知 展开式中,各项系数的和与其各项二项式系数的和之比为64,则 等于()
A.4B.5C.6D.7
5.若 ,则下列命题中正确的是()
A. B. C. D.
6.若集合 , ,则 中元素的个数为()
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为 ,求随机变量 的期望.
20.如图是一个直三棱柱(以 为底面)被一平面所截得到的几何体,截面为 .已知 , , , , .
2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国2
2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB .C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞,,D .(2)(1)-∞-+∞,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( )A B C D 8.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3B .2C .1D .129.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( )A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )A B CD 12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 . 15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.AEBCFSD20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B 二、填空题 13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 18.解:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥. 又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A =,所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角AE BCFSDH G Mtan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF =,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.3cos 3MD EA MD EA MD EA<>==,. 所以二面角A EF D --的大小为arccos3. 20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即 2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得222(2)x x y -+=+,即 222x y -=. (2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩, 由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=,所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32nn a a a -<.即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。
2007年普通高等学校招生全国统一考试(全国卷I)数学(理科)试卷参考答案
2007年普通高等学校招生全国统一考试(全国卷I )数学(理科)试卷参考答案一、选择题: 1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D9.B10.D11.C12.A二、填空题: 13.3614.3()xx ∈R15.1316.三、解答题: 17.解:(Ⅰ)由a=2bsinA ,根据正弦定理得sinA=2sinBsinA ,所以1sin 2B =, 由ABC △为锐角三角形得π6B =。
(Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭。
由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=。
2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭。
3A π⎛⎫<+< ⎪⎝⎭所以,cosA+sinC的取值范围为322⎛⎫⎪ ⎪⎝⎭,。
18.解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”。
知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=。
(Ⅱ)η的可能取值为200元,250元,300元。
(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=。
η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯=240(元)。
19.解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD 。
因为SA=SB ,所以AO=BO ,又45ABC=∠,故AOB △为等腰直角三角形,AO BO⊥, 由三垂线定理,得SA BC ⊥。
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i 1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直 B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11), B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4A B1B1A1D1C C D(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答)(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .(16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .数学试卷(理科)2007-7-25二.请把填空题答案写在下面相应位置处:13. 14 15. 16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin ab A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.(18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB ==(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分)设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.DBCS(21)(本小题满分12分) 已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题: (13)36(14)3()x x ∈R(15)13(16)三、解答题:(17)解:(Ⅰ)由2s i n a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =.(Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=.2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元. (200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=. η的分布列为2000.4E η=⨯+240=(元).(19)解法一:(Ⅰ)作SO B C ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥,故SA AD ⊥,由AD BC ==,SA =AO =1SO =,SD =.SAB △的面积112S AB ==连结DB ,得DAB △的面积21sin1352S AB AD ==设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得 121133h S SO S = ,解得h = 设SD 与平面SAB 所成角为α,则sin 11h SD α===. 所以,直线SD 与平面SBC 所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,0)A ,,(0B ,(0C ,(001)S ,,(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,, 连结SE ,取SE 中点G ,连结OG ,1442G ⎛ ⎝,,1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直. 所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. cos 11OG DS OG DSα==,sin 11β=A所以,直线SD 与平面SAB所成的角为arcsin 11.(20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20x x g x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则 2122632k x x k +=-+,21223632k x x k -=+12BD x x =-== ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥.当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625.(22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+12)k k b +2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+43n n b a -<≤,123n =,,,….。
2007年高考真题试卷全国卷Ⅰ数学理科参考答案
2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积211122S ABSA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. 22cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n=2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤, 也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年高考数学江西理科(详细解答)
2007年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.化简224(1)ii ++的结果是( ) A.2i + B.2i -+ C.2i - D.2i --2.321lim1x x xx →--( )A.等于0B.等于1C.等于3D.不存在3.若πtan 34α⎛⎫-=⎪⎝⎭,则cot α等于( ) A.2- B.12- C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4 B.5 C.6 D.75.若π02x <<,则下列命题中正确的是( )A.3sin πx x < B.3sin πx x > C.224sin πx x < D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( )A.9 B.6 C.4 D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A B D 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.A H 垂直平面11C B D C.A H 的延长线经过点1C D.直线A H 和1B B 所成角为458.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)xya b a b+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能10.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( )A.15-B.0C.15D.512.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第II 卷注意事项:第II 卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试卷题上作答,答案无效. 二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数24log (1)(3)y x x =+-≥,则其反函数的定义域为 .11B14.已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a =.15.如图,在A B C △中,点O 是B C 的中点,过点O 的直线分别交直线A B ,A C 于不同的两点M N ,,若A B m A M = ,AC n AN =,则m n +的值为 . 16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题:A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是.(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数21(0)()2(1)x ccx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值; (2)解不等式()18f x >+.18.(本小题满分12分)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-.(1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是P A的中点,当02y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13C C =.(1)设点O 是A B 的中点,证明:O C ∥平面111A B C ; (2)求二面角1B AC A --的大小;C(3)求此几何体的体积. 21.(本小题满分12分) 设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2A P B θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0,其中点O 为坐标原点. 22.(本小题满分14分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+.(1)求1a ,3a ;(3)求数列{}n a 的通项n a .y2007年普通高等学校招生全国统一考试(江西卷)理科数学参考答案1.化简224(1)i i ++=2422i i i+=-,选C 。
2007年江西省高考数学试卷(理科)及解析
2007年江西省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)化简的结果是()A.2+i B.﹣2+i C.2﹣i D.﹣2﹣i2.(5分)()A.等于0 B.等于1 C.等于3 D.不存在3.(5分)若,则cotα等于()A.﹣2 B.C.D.24.(5分)已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4 B.5 C.6 D.75.(5分)若,则下列命题中正确的是()A.B.C.D.6.(5分)若集合M={0,1,2},N={(x,y)|x﹣2y+1≥0且x﹣2y﹣1≤0,x,y∈M},则N中元素的个数为()A.9 B.6 C.4 D.27.(5分)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°8.(5分)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1,h2,h3,h4,则它们的大小关系正确的是()A.h2>h1>h4B.h1>h2>h3C.h3>h2>h4D.h2>h4>h19.(5分)设椭圆=1(a>0,b>0)的离心率e=,右焦点F(c,0),方程ax2+bx﹣c=0的两个根分别为x1,x2,则点P(x1,x2)在()A.圆x2+y2=2内B.圆x2+y2=2上C.圆x2+y2=2外D.以上三种情况都有可能10.(5分)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()A.B.C.D.11.(5分)设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.B.0 C.D.512.(5分)设p:f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥﹣5,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题(共4小题,每小题4分,满分16分)13.(4分)设函数y=4+log2(x﹣1)(x≥3),则其反函数的定义域为.14.(4分)已知数列{a n}对于任意p,q∈N*,有a p+a q=a p+q,若,则a36=.15.(4分)如图,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,若=m,=n,则m+n的值为.16.(4分)设有一组圆C k:(x﹣k+1)2+(y﹣3k)2=2k4(k∈N*).下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是(写出所有真命题的代号).三、解答题(共6小题,满分74分)17.(12分)已知函数f(x)=满足f(c2)=.(1)求常数c的值;(2)解不等式f(x)>.18.(12分)如图,函数的图象与y轴交于点,且在该点处切线的斜率为﹣2.(1)求θ和ω的值;(2)已知点,点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当,时,求x0的值.19.(12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.20.(12分)如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.(1)设点O是AB的中点,证明:OC∥平面A1B1C1;(2)求二面角B﹣AC﹣A1的大小;(3)求此几何体的体积.21.(12分)设动点P到点A(﹣1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.(1)证明:动点P的轨迹C为双曲线,并求出C的方程;(2)过点B作直线双曲线C的右支于M,N两点,试确定λ的范围,使,其中点O为坐标原点.22.(14分)设正整数数列{a n}满足:a2=4,且对于任何n∈N*,有2+;(1)求a1,a3;(2)求数列{a n}的通项a n.2007年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•江西)化简的结果是()A.2+i B.﹣2+i C.2﹣i D.﹣2﹣i【分析】先化简分母,然后分子、分母同乘分母的共轭复数,化为a+bi(a、b ∈R).【解答】解:=,故选C2.(5分)(2007•江西)()A.等于0 B.等于1 C.等于3 D.不存在【分析】先化简再代入即可.【解答】解:=,故选B.3.(5分)(2007•江西)若,则cotα等于()A.﹣2 B.C.D.2【分析】用两角差的正切公式变形,整理,得到关于tanα的一元一次方程,解方程,得到正切值,根据正切和余切之间的关系,求出余切值.【解答】解:由得,∴cotα=﹣2,故选A4.(5分)(2007•江西)已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4 B.5 C.6 D.7【分析】本题对于二项式系数的和可以通过赋值令x=1来求解,而各项二项式系数之和由二项式系数公式可知为2n,最后通过比值关系为64即可求出n的值是6.【解答】解:展开式中,令x=1可得各项系数的和为(1+3)n=4n又由二项式系数公式得各项二项式系数的和为2n,所以=64,从而得2n=64,所以n=6所以选C5.(5分)(2007•江西)若,则下列命题中正确的是()A.B.C.D.【分析】用特殊值法,取x=可排除B、C,取x=可排除A【解答】解:取x=可排除B、C,取x=可排除A,故选D.6.(5分)(2007•江西)若集合M={0,1,2},N={(x,y)|x﹣2y+1≥0且x﹣2y﹣1≤0,x,y∈M},则N中元素的个数为()A.9 B.6 C.4 D.2【分析】本题主要考查集合中元素的个数,要用线性规划求出符合条件的整点,在可行域中找整点,要先找出关键点然后挨个列举【解答】解:画出集合N所表示的可行域,知满足条件的N中的点只有(0,0)、(1,0)、(1,1)和(2,1)四点,故选C7.(5分)(2007•江西)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°【分析】如上图,正方体的体对角线AC1有以下性质:①AC1⊥平面A1BD,AC1⊥平面CB1D1;②AC1被平面A1BD与平面CB1D1三等分;③AC1=AB等.(注:对正方体要视为一种基本图形来看待.)【解答】解:因为三棱锥A﹣A1BD是正三棱锥,所以顶点A在底面的射影H是底面中心,所以选项A正确;易证面A1BD∥面CB1D1,而AH垂直平面A1BD,所以AH垂直平面CB1D1,所以选项B正确;连接正方体的体对角线AC1,则它在各面上的射影分别垂直于BD、A1B、A1D等,所以AC1⊥平面A1BD,则直线A1C与AH重合,所以选项C正确;故选D.8.(5分)(2007•江西)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1,h2,h3,h4,则它们的大小关系正确的是()A.h2>h1>h4B.h1>h2>h3C.h3>h2>h4D.h2>h4>h1【分析】可根据几何体的图形特征,结合题目,选择答案.【解答】解:观察图形可知体积减少一半后剩余酒的高度最高为h2,最低为h4,故选A9.(5分)(2007•江西)设椭圆=1(a>0,b>0)的离心率e=,右焦点F(c,0),方程ax2+bx﹣c=0的两个根分别为x1,x2,则点P(x1,x2)在()A.圆x2+y2=2内B.圆x2+y2=2上C.圆x2+y2=2外D.以上三种情况都有可能【分析】先根据x1+x2=﹣,x1x2=﹣表示出x12+x22,再由e==得到a与c的关系,从而可表示出b与c的关系,然后代入到x12+x22的关系式中可得到x12+x22的范围,从而可确定答案.【解答】解:∵x1+x2=﹣,x1x2=﹣x12+x22=(x1+x2)2﹣2x1x2=e==∴a=2cb2=a2﹣c2=3c2所以x12+x22=<2所以在圆内故选A.10.(5分)(2007•江西)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()A.B.C.D.【分析】将一骰子扔一次有6种不同的结果,则将一骰子连续抛掷三次有63个结果,这样做出了所有的事件数,而符合条件的为等差数列有三类:公差为0的有6个;公差为1或﹣1的有8个;公差为2或﹣2的有4个,共有18个成等差数列的,根据古典概型公式得到结果.【解答】解:∵一骰子连续抛掷三次得到的数列共有63个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或﹣1的有8个;(3)公差为2或﹣2的有4个,∴共有18个成等差数列的概率为,故选B11.(5分)(2007•江西)设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.B.0 C.D.5【分析】偶函数的图象关于y轴对称,x=0为极值点,f(x)是R上以5为周期,x=5也是极值点,极值点处导数为零【解答】解:∵f(x)是R上可导偶函数,∴f(x)的图象关于y轴对称,∴f(x)在x=0处取得极值,即f′(0)=0,又∵f(x)的周期为5,∴f′(5)=0,即曲线y=f(x)在x=5处的切线的斜率0,故选项为B12.(5分)(2007•江西)设p:f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥﹣5,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】首先求出函数的导数,然后根据导数与函数单调性的关系求出m的范围.【解答】解:由题意得f′(x)=e x++4x+m,∵f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,∴f′(x)≥0,即e x++4x+m≥0在定义域内恒成立,由于+4x≥4,当且仅当=4x,即x=时等号成立,故对任意的x∈(0,+∞),必有e x++4x>5∴m≥﹣e x﹣﹣4x不能得出m≥﹣5但当m≥﹣5时,必有e x++4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2007•江西)设函数y=4+log2(x﹣1)(x≥3),则其反函数的定义域为[5,+∞).【分析】欲求反函数的定义域,可不求出反函数,通过反函数的定义域即为原函数的值域求解即可.【解答】解:反函数的定义域即为原函数的值域,由x≥3得x﹣1≥2,所以log2(x﹣1)≥1,所以y≥5,反函数的定义域为[5,+∞),填[5,+∞).14.(4分)(2007•江西)已知数列{a n}对于任意p,q∈N*,有a p+a q=a p+q,若,则a36=4.【分析】由题设知,按递推公式先求出a2,再导出a4,然后求出a8,再导出a16,进而求出a32,由此可求出a36.【解答】解:由题意得,.故答案为4.15.(4分)(2007•江西)如图,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,若=m,=n,则m+n的值为2.【分析】三点共线时,以任意点为起点,这三点为终点的三向量,其中一向量可用另外两向量线性表示,其系数和为一.【解答】解:=()=+,∵M、O、N三点共线,∴+=1,∴m+n=2.故答案:216.(4分)(2007•江西)设有一组圆C k:(x﹣k+1)2+(y﹣3k)2=2k4(k∈N*).下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是②④(写出所有真命题的代号).【分析】根据圆的方程找出圆心坐标,发现满足条件的所有圆的圆心在一条直线上,所以这条直线与所有的圆都相交,②正确;根据图象可知这些圆互相内含,不存在一条定直线与所有的圆均相切,不存在一条定直线与所有的圆均不相交,所以①③错;利用反证法,假设经过原点,将(0,0)代入圆的方程,因为左边为奇数,右边为偶数,故不存在k使上式成立,假设错误,则圆不经过原点,④正确.【解答】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.故答案为:②④三、解答题(共6小题,满分74分)17.(12分)(2007•江西)已知函数f(x)=满足f(c2)=.(1)求常数c的值;(2)解不等式f(x)>.【分析】(1)先判定c2的大小,从而断定代入哪一个解析式,建立等量关系,解之即可;(2)根据分段函数的分类标准进行分类讨论,分别在每一段上求解不等式,注意解集与前提求交集,最后将两种情形求并集即可.【解答】解(1)依题意0<c<1,∴c2<c,∵f(c2)=,c=(2)由(1)得f(x)=由f(x)>得当0<x<时,∴当时,,∴综上所述:∴f(x)>的解集为{x|}18.(12分)(2007•江西)如图,函数的图象与y轴交于点,且在该点处切线的斜率为﹣2.(1)求θ和ω的值;(2)已知点,点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当,时,求x0的值.【分析】(1)根据(0,)以及θ的范围,求θ,利用导数和斜率的关系求ω的值;(2)利用点,点Q(x0,y0)求出P,点P是该函数图象上一点,代入表达式,利用,,求x0的值.【解答】解:(1)将x=0,代入函数y=2cos(ωx+θ)得,因为,所以.又因为y'=﹣2ωsin(ωx+θ),y'|x=0=﹣2,,所以ω=2,因此.(2)因为点,Q(x0,y0)是PA的中点,,所以点P的坐标为.又因为点P在的图象上,所以.因为,所以,从而得或.即或.19.(12分)(2007•江西)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.【分析】对于(1)求第一次烧制后恰有一件产品合格的概率,故分为只有甲合格,只有乙合格,只有丙合格,3种情况,根据相互独立事件的概率乘法公式分别求出3种情况的概率,相加即可得到答案.对于(2)求经过两次烧制后,合格工艺品的个数ξ的期望.根据已知很容易可以求得每件工艺品经过两次烧制后合格的概率均为p=0.3,因为概率相同,可以把它们看成3次重复试验发生k次的概率,然后根据二项分布期望公式直接求得.【解答】解:分别记甲、乙、丙经第一次烧制后合格为事件A1,A2,A3,(1)设E表示第一次烧制后恰好有一件合格,则=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.(2):因为容易求得每件工艺品经过两次烧制后合格的概率均为p=0.3,所以ξ~B(3,0.3),故Eξ=np=3×0.3=0.9.20.(12分)(2007•江西)如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.(1)设点O是AB的中点,证明:OC∥平面A1B1C1;(2)求二面角B﹣AC﹣A1的大小;(3)求此几何体的体积.【分析】(1)由题意及图形,利用直三棱柱的特点,因为O为中点连接OD,由题意利用借助线面垂直的判定定理证明OC∥平面A1B1C1;(2)由题意利用三垂线定理找到二面角的平面角,在三角形中进行求解二面角的大小;(3)由题意及图形利用体积分割的方法,把不规则的几何体分割成两个规则的几何体,利用相应的体积公式进行求解.【解答】(1)证明:作OD∥AA1交A1B1于D,连C1D.则OD∥BB1∥CC1.因为O是AB的中点,所以OD=.则ODC1C是平行四边形,因此有OC∥C1D.C1D⊂平面C1B1A1且OC⊄平面C1B1A1,则OC∥面A1B1C1.(2)如图,过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2.作BH⊥A2C2于H,连CH.因为CC1⊥面BA2C2,所以CC1⊥BH,则BH⊥平面A1C.又因为AB=,BC=,AC=.所以BC⊥AC,根据三垂线定理知CH⊥AC,所以∠BCH就是所求二面角的平面角.因为BH=,所以sin∠BCH=,故∠BCH=30°,即:所求二面角的大小为30°.(3)因为BH=,所以=.=•2=1.所求几何体体积为=.21.(12分)(2007•江西)设动点P到点A(﹣1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.(1)证明:动点P的轨迹C为双曲线,并求出C的方程;(2)过点B作直线双曲线C的右支于M,N两点,试确定λ的范围,使,其中点O为坐标原点.【分析】(1)首先利用余弦定理写出d1和d2的等量关系式,然后把它变形为(d1﹣d2)2=*的形式,即|d1﹣d2|=*的形式,此时满足双曲线的定义,则问题得证,最后由双曲线的标准方程形式即可写出其方程.(2)首先根据直线MN是否垂直于x轴进行讨论,若直线MN垂直于x轴,则直线方程为x=1,又=0可得M、N的坐标,代入双曲线方程即得λ的值;若直线MN不垂直于x轴,则设其点斜式方程,并与双曲线方程联立方程组,可消y得x的一元二次方程,再由根与系数的关系用k与λ的代数式表示出x1+x2和x1x2,进而由=0及x1+x2>0,x1x2>0通过整理消去k得到λ的不等式,此时解不等式即可,最后把两种情况综合之.【解答】(1)证明:在△PAB中,|AB|=2,即22=d12+d22﹣2d1d2cos2θ,4=(d1﹣d2)2+4d1d2sin2θ,即(常数),所以点P的轨迹C是以A,B为焦点,实轴长的双曲线.又b2=1﹣(1﹣λ),所以C的方程为:.(2)解:设M(x1,y1),N(x2,y2)①当MN垂直于x轴时,MN的方程为x=1,M(1,1),N(1,﹣1)在双曲线上.即,因为0<λ<1,所以.②当MN不垂直于x轴时,设MN的方程为y=k(x﹣1).由得:[λ﹣(1﹣λ)k2]x2+2(1﹣λ)k2x﹣(1﹣λ)(k2+λ)=0,由题意知:[λ﹣(1﹣λ)k2]≠0,所以,.于是:.因为,且M,N在双曲线右支上,所以.由①②知,λ的取值范围是:.22.(14分)(2007•江西)设正整数数列{a n}满足:a2=4,且对于任何n∈N*,有2+;(1)求a1,a3;(2)求数列{a n}的通项a n.【分析】(1)令n=1,根据2+可得到,再由a1为正整数可得到a1的值,当n=2时同样根据2+可得到2+进而可得到a3的范围,最后根据数列{a n}是正整数数列求出a3的值.(2)先根据a1=1,a2=4,a3=9可猜想a n=n2,再用数学归纳法证明.【解答】解:(1)据条件得2+①当n=1时,由,即有2+<,解得.因为a1为正整数,故a1=1.当n=2时,由2+,解得8<a3<10,所以a3=9.(2)由a1=1,a2=4,a3=9,猜想:a n=n2.下面用数学归纳法证明.①当n=1,2时,由(1)知a n=n2均成立;②假设n=k(k≥2)成立,则a k=k2,则n=k+1时由(1)得2+∴,即∴因为k≥2时,(k3+1)﹣(k+1)2=k(k+1)(k﹣2)≥0,所以.k﹣1≥1,所以.又a k+1∈N*,所以(k+1)2≤a k+1≤(k+1)2.故a k=(k+1)2,即n=k+1时,a n=n2成立.由1°,2°知,对任意n∈N*,+1a n=n2.。
2007年高考理科数学试题及参考答案(江西卷)
个性化课程辅导教案授课时间:5月20日备课时间:5月15日年级科目:九年级数学课时:2小时学生姓名:郑钊旋教师姓名:朱林教学目标1.测试该生对初中数学掌握情况2.根据测试结果制定后面的教学计划难点重点初三数学总复习教学内容一:与学生交流,了解学生(兴趣,学习)二:测试(摸清学生的学习情况,制定相应的教学方案)一、填空题(每空2分,共40分)1、21-的相反数是;-2的倒数是;16的算术平方根是;-8的立方根是。
2、不等式组⎩⎨⎧-+284<>xx的解集是。
3、函数y=11-x自变量x的取值范围是。
4、直线y=3x-2一定过(0,-2)和(,0)两点。
5、样本5,4,3,2,1的方差是;标准差是;中位数是。
6、等腰三角形的一个角为︒30,则底角为。
7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为平方厘米。
8、如图PA切⊙O于点A,∠PAB=︒30,∠AOB= ,∠ACB= 。
9、如图PA切⊙O于A割线PBC过圆心,交⊙O于B、C,若PA=6;PB=3,则PC= ;⊙O的半径为。
10题图9题图ACDBA PBOC8题图COPBA11题图OP BA10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。
11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。
12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。
二、 选择题(每题4分,共20分)13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( ) A 、m <1 B 、0<m ≤1 C 、0≤m <1 D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简224(1)ii ++的结果是( )A.2i + B.2i -+ C.2i - D.2i --2.321lim 1x x x x →--( )A.等于0 B.等于1 C.等于3 D.不存在3.若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( )A.2-B.12-C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4B.5C.6D.75.若π02x <<,则下列命题中正确的是( ) A.3sin πx x < B.3sin πx x >C.224sin πx x <D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( ) A.9B.6C.4D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.AH 垂直平面11CB D C.AH 的延长线经过点1C D.直线AH 和1BB 所成角为458.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )111BA.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能10.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( )A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( )A.15-B.0C.15D.512.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第II 卷注意事项:第II 卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数24log (1)(3)y x x =+-≥,则其反函数的定义域为 .14.已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a =.15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题: A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是.(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数21(0)()2(1)x c cx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值;(2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-.(1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =. (1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积. 21.(本小题满分12分)设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0,其中点O 为坐标原点.22.(本小题满分14分) 设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+.(1)求1a ,3a ;(3)求数列{}n a 的通项n a .2007年普通高等学校招生全国统一考试(江西卷)y理科数学参考答案一、选择题 1.C 2.B 3.A 4.C 5.D 6.C 7.D 8.A9.A10.B11.B 12.B二、填空题 13.[5)+,∞ 14.4 15.2 16.B D ,三、解答题17.解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩ ≤在12x =处连续,所以215224f k -⎛⎫=+= ⎪⎝⎭,即1k =.(2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >+得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=, 因为02θπ≤≤,所以6θπ=.又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=, 因此2cos 26y x π⎛⎫=+ ⎪⎝⎭.(2)因为点02A π⎛⎫⎪⎝⎭,,00()Q x y ,是PA 的中点,0y =所以点P 的坐标为022x π⎛- ⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 46x π⎛⎫-= ⎪⎝⎭.因为02x ππ≤≤,所以075194666x πππ-≤≤,从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=. 19.解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A , (1)设E 表示第一次烧制后恰好有一件合格,则123123123()()()()P E P A A A P A A A P A A A =++ 0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =,所以~(30.3)B ξ,,故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=,2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=, 3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=. 20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥. 因为O 是AB 的中点,所以1111()32OD AA BB CC =+==.则1ODC C 是平行四边形,因此有1OC C D ∥.1C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH .11A 2因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1A C .又因为AB =BC =222AC AB BC AC ==+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.因为2BH =,所以1sin 2BH BCH BC ==∠,故30BCH =∠, 即:所求二面角的大小为30. (3)因为BH =222211121(12)233222B AAC C AA C C V S BH -==+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体体积为221112232B AA C C A B C A BC V V V --=+=.解法二:(1)如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,.易知,(001)n =,,是平面111A B C 的一个法向量. 因为0OC n =,OC ⊄平面111A B C ,所以OC ∥平面111A B C .1x(2)(012)AB =--,,,(101)BC =,,, 设()m x y z =,,是平面ABC 的一个法向量,则则0AB m =,0BC m =得:20y z x z --=⎧⎨+=⎩取1x z =-=,(121)m =-,,. 显然,(110)l =,,为平面11AAC C 的一个法向量.则cos 22m l m l m l===⨯,,结合图形可知所求二面角为锐角. 所以二面角1B AC A --的大小是30. (3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线.方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--.因为0OM ON =,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以λ=; ②当12x x ≠时,22110222211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⎨-⎪-=⎪-⎩. 又001MN BE y k k x ==-.所以2200(1)y x x λλλ-=-;由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x x λλ==+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-. 于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=-因为01x >,所以2(1)123λλ->-,又01λ<<,解得:1223λ<<.由①②知1223λ<≤. 22.解:(1)据条件得1111112(1)2n n n n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭ ①当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+,解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =. 下面用数学归纳法证明.1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++-因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤. 故21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1,2知,对任意n ∈*N ,2n a n =. (2)方法二:由11a =,24a =,39a =,猜想:2n a n =. 下面用数学归纳法证明.1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③又由②右式,22221(1)21(1)1k k k k k k k k a k k +++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥,所以4321221(1)11k k k ka k k k k k +++=+--+-+≥.又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④ 据③④21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1,2知,对任意n ∈*N ,2n a n =.。
2007年高考理科数学试题及参考答案(江西卷)
昌平区2006—2007学年第二学期初三年级第二次练习物理试卷 (120分钟) 2007.6第Ⅰ卷 (机读卷 共36分)一、 下列各小题均有四个选项,其中只有一个选项符合题意.(共30分,每小题2分) 1.在国际单位制中,功的单位是A .牛顿(N )B .帕斯卡(Pa)C .焦耳(J)D .瓦特(W)2.“皮影戏”是我国的民间艺术,演员只要在屏幕和灯光之间抖动拴在道具“小人”身上的细线,屏幕上就能出现生动逼真的人物形象,并且与道具“小人”动作完全一致,可谓“形影不离”,其中应用的光学知识是 A .光的反射现象 B .光的折射现象 C .光的直线传播现象 D .光的漫反射现象3.下列几组物质中,均属于绝缘材料的是A .塑料、橡胶、陶瓷B .干木柴、陶瓷、海水C .玻璃、石墨、纯净水D .水银、玻璃、油4.关于凸透镜成像及其应用,以下说法正确的是A .景物在照相机内所成的像是实像B .通过放大镜看到的是物体所成的实像C .凸透镜成虚像时,像不一定比物大D .凸透镜成实像时,像一定比物大5.图2所示是“神舟六号”飞船胜利返航的照片.2005年,“神舟六号”飞船搭载大连特种粮研究所5个水稻品种共1.2万粒种子飞上太空.这些种子经过太空旅行后,质量和原来相比A .变大了B .变小了C .不变D .无法判断 6.如图3所示,下列做法中可以增大压强的是图1A B C D铁路的钢轨铺在枕木上 汽车的安全带做得较宽 拦河坝设计成上窄下宽 用刀切东西 图3图 2航天员顺利出舱7.下述各种现象中,属于通过热传递改变物体内能的是A .用锯条锯木头,锯条发烫B .冬天对着手呵气,手变暖C .擦划火柴,火柴头着火D .电流通过导体,导体会发热 8.下列做法符合安全用电原则的是A .发现有人触电,应直接把触电的人拉开B .发现有人触电,应迅速切断电源C .用电器着火时,先用泡沫灭火器灭火,再切断电源D .用电器着火时,先用水把火浇灭,再切断电源 9.下列对各种气象形成原因的叙述中正确的是 A .雾是地面的冰块升华而形成的 B .雪是雨水汽化而形成的C .石头上的霜是水滴凝固而形成的D .荷叶上的露珠是空气中的水蒸气液化而形成的 10.如图4所示,下列数据中最接近事实的是11.对磁场的有关概念,下列说法正确的是 A .磁感线是磁场中实际存在的曲线B .磁感线是从磁体的南极出来回到磁体的北极C .小磁针N 极在磁场中某点所受磁力的方向跟该点的磁场方向相反D .磁场的基本性质是它对放入其中的磁体产生磁力的作用12.把电阻R 1 =3Ω、R 2 = 6Ω接入同一电路,关于它们的总电阻(等效电阻)值,下列四个选项中,不可能...的是A .9ΩB .2ΩC .9Ω或2ΩD .4Ω13.图5是小明在运动场上看到的一些场景,他运用学过的物理知识进行分析,下列分析正确的是图4一只鸡蛋的质量是50gA 人步行的速度是5m /sB 热水器中洗澡水的温度是120℃C 家用台灯正常工作时的电流是1ADA .图甲中,小浩同学踢出去的足球在草地上滚动时慢慢停下来,是因为足球没有受到力的作用B .图乙所示,百米赛跑时,终点裁判员是用通过相同的路程比较所用的时间来确定运动员快慢的C .图丙中,小彦同学在单杠上静止不动时,他对单杠的拉力和他所受的重力是一对平衡力D .图丁中,小宁同学正在跳高,当他腾跃到最高点时,他具有的动能最大 14.如图6所示,电源两端的电压保持不变.当滑动变阻器的滑片P 向左移动时,电压表和电流表的示数变化情况是A .电流表A l 示数增大,电压表V 1示数减小B .电流表A l 示数减小,电压表V 1示数减小C .电流表A 2示数增大,电压表V 2示数减小D .电流表A 2示数增大,电压表V 2示数增大15.现有密度分别为ρ1和ρ2的两种液体,且ρ1<ρ2.在甲杯中盛满这两种液体,两种液体的质量各占一半;在乙杯中也盛满这两种液体,两种液体的体积各占一半.假设两种液体之间不发生混合现象,甲、乙两个杯子也完全相同.则 A .甲杯内液体的质量大 B .乙杯内液体的质量大 C .两杯内液体的质量一样大 D .无法确定二、下列各小题均有四个选项,其中符合题意的选项均多于一个.(共6分,每小题3分,全选对的得3分,选对但不全的得2分,有错选的不得分.) 16.下列关于声音的说法中正确的是A .“响鼓也要重锤敲”,说明声音是由振动产生的,且振幅越大响度越大B .“震耳欲聋”说明声音的音调高C .“隔墙有耳”,说明固体能传声D .“闻其声知其人”,说明可以根据音色来判断说话者 17.如图7所示,电源电压为12V 且保持不变,小灯泡L 的规格为“6V 3W”,滑动变阻器的最大阻值为12Ω,电流表的量程为0~3A .当开关S 1、S 2都断开时,小灯泡L 恰能正常发光.则下列说法正确的是 A .R 1的阻值为24ΩB .当开关S 1、S 2都断开时,在10min 内电流通过R 1所 产生的热量是1.8 ×103J图7图6 图5甲乙丙丁C .当开关S 1、S 2均闭合时,要使电流表能安全使用,变阻器接入电路的阻值不得小于6ΩD .当开关S 1、S 2均闭合时,R 2消耗的电功率的变化范围是12W ~24W第Ⅱ卷 (非机读卷 共64分)三、填空题(共14分,每空2分)18.当家庭电路中的用电器总功率增大时,电路中的总电流会 .(填“增大”或“减小”)19.坐在电影院的任何一个座位,都能看到银幕上的图像.这是因为光射到银幕上发生了 反射的缘故.(填“镜面”或“漫”)20.坐在行驶汽车中的乘客,若以路旁的树为参照物,他是 的.(“运动”或“静止”)21.用水来做汽车发动机的冷却剂是因为水具有较大的 .(填“比热”或“密度”) 22.一台电动机正常工作时线圈的电阻为2Ω,线圈中的电流为10A ,这台电动机工作10s ,线圈中产生的热量是 J .23.通过互联网发送电子邮件是以光速传播的.若光在光缆中传播速度为2×105km /s ,从中国东北的最东端的乌苏镇穿越太平洋到美国的夏威夷州,空中距离大约是5300km .电子邮件在光缆中从中国东北的最东端的乌苏镇发送到美国的夏威夷州大约需要 s .24.饮水机是一种常用的家用电器,其加热水槽部分工作原理电路如图8所示,其中S 是一个温控开关,R 1为电加热管,A 、B 为指示灯.当饮水机处于加热状态时,水被迅速加热,达到预定温度时,S 自动切换到另一位置,处于保温状态.若饮水机加热时加热管的功率为550W ,而保温时加热管的功率为88W ,电阻R 2的阻值为 Ω.(不考虑温度对阻值的影响,且不计指示灯的阻值).四、实验与探究题(共34分)25.按要求完成下列作图题.(每图1分,共4分)(1)在图9中,画出福娃挂件所受重力的示意图.(2)图10中,O 是杠杆的支点,画出力F 的力臂并用字母L 标明.图8 220VS BAR 2 R 1出水 口(3)在图11中,根据通电螺线管中的电流方向,标出静止在通电螺线管旁边的小磁针的N 极.(4)在图12中,根据入射光线和出射光线,在方框内填入一个适当类型的透镜. 26.读出下列各测量工具或仪器的示数.(每空1分,共5分)(1)图13中,木块A 的长度为 cm .(2)图14表示一支温度计的一部分,它的示数是 ℃. (3)图15中弹簧测力计的示数是 N . (4)图16中电阻箱的读数是 Ω.(5)图17所示电能表的示数为 kW·h .27.(1分)认真观察图18所示的实物连接图,在图19中选择与实物图相对应的电路图是( )图11图9图12图10图13图14图15图16图176 07 82图1828.(1分) 如图20所示,将载有条形磁铁的两辆小车同时由静止释放后,两小车迅速分离.此现象说明: . 29.(3分)在探究“凸透镜成像规律”的实验中,小明同学依次将点燃的蜡烛、凸透镜、光屏放在同一直线上A 、O 、B 的位置,在光屏上得到清晰的烛焰的像,如图21所示.(1)要使烛焰的像清晰地成在光屏的中央,可以调整:. (2)通过观察AO 与OB 的距离关系,可以判断出:此时所成的像是 的实像.(3)当把蜡烛放在凸透镜的焦点以内,小明应该怎么观察蜡烛的像?.30.(1分)图22所示四幅图中,能说明电动机工作原理的是( )31.(3分)如图23甲所示,小宇同学用水来冷却热牛奶,他将牛奶倒入玻璃杯,把盛有热牛奶的玻璃杯放在冷水中,经过一段时间后,小宇记录下牛奶和水的温度变化情况,并绘制了它们的温度随时间变化的图象,如图23乙所示.从图象中我们可以分析出:(1)B 图线是 的温度随时间变化的情况;(填“牛奶”或“水”)(2)水在热传递过程中, 热量(填“吸收”或“放出”),温度 .(填“升高”、“降低”或“不变”)ABCD图19图22A BC D图20SNSN图21ABO 图23时间甲乙32.(1分)下列关于图24所示图象的说法中,正确的是( )A .图甲表明同种物质的密度与质量成正比,与体积成反比B .图乙表示物体在AB 、BC 和CD 段做不同的匀速运动 C .图丙表示物体在EF 和FG 段做不同的匀速运动 D .图丁表示一段导体的电阻值随温度发生变化33.(3分)如图25是小刚同学做完“观察水的沸腾”实验后,根据记录作出的水的沸腾图像.从图像中可以看出,水的沸点是 ℃,当时的大气压 标准大气压(填“高于”、“低于”或“等于”),图像中第 min 水开始沸腾.34.(4分)现有两个没有标签的杯子,分别盛有清水和盐水,小明和探究小组的同学想利用压强计将它们区别开.(1)首先调节液体压强计:当压强计的金属盒在空气中时,U 形管两边的液面应当相平,而小明同学却观察到如图26(甲)所示的情景.出现这种情况的原因是:U 形管左支管液面上方的气压 大气压(填“大于”、“小于”或“等于”).(2)小明同学取下软管重新安装,调节好后,再做图26(乙)所示的检查.当用手指按压(不论轻压还是重压)橡皮膜时,发现U 形管两边液柱的高度几乎不变化.出现这种情况的原因是: .图24乙丙丁3甲1 2R 图25时间/min温度/℃图26甲乙丙丁金属盒及橡皮膜软管U 形管(3)压强计调节正常后,小明将金属盒先后浸入到两杯液体中,如图(丙)和(丁)所示.他发现图(丁)中U 形管两边的液柱高度差较大,于是认为图(丁)杯子中盛的是盐水.①你认为,小明的结论是 ;(填“可靠的”或“不可靠的”) ②简要说明理由: .35.(5分)用“伏安法测电阻”的实验中,老师提供了以下器材:几节干电池做电源、3个已知阻值的电阻R L (5Ω、8Ω、12Ω各一只)、最大阻值为50Ω的滑动变阻器1个、被测电阻Rx ,开关2个,电压表和电流表各1只、导线若干.实验前老师启发同学们,为了使测定的电阻值更精确,采用多次测量取平均值的方法.甲、乙、丙、丁四个小组分别设计了以下可测电阻Rx 的四个方案(如图27),每个方案只变换一种元件或改变状态,且四个组的变化都不相同,并都顺利完成了实验.依据实验方案回答:(1)实验中测得下表所示数据,此数据是 小组测量的;(2)为达到多次测量电流和电压值的目的,乙小组在实验中操作时需要更换 ;(3)在丁小组实验过程中,闭合开关S 和S 1,电流表和电压表的示数如图28所示,则电阻Rx 两端电压是 V ,通过电阻Rx 的电流是 A ,电阻Rx 的阻值是 Ω.36.(3分)某校初三(1)班同学利用如图29所示的实验装置完成了“测滑轮组机械效率”实验,下表是六个小组的实验数据记录:图27乙电源AAAAVRx RxR LRx Rx SSS 1 图28图29(1)请你将表格中的空白处补充完整;(结果保留小数点后1位)(2)通过对表中各小组的实验数据进行分析比较,发现当动滑轮重相同,提起的钩码重也相同时,测出的滑轮机械效率却不同,究其原因不可能...是( )A .滑轮和轮与轴间的摩擦力大小不同B .测拉力时没有使测力计匀速上升C .测拉力时拉力的方向没有竖直向上D .钩码被提升的高度不同 (3)请你就如何提高滑轮组的机械效率提出自己的建议(要求写出1点): .五、简答与计算题(共16分)计算题解题要求:(1)写出依据的主要公式或变形公式;(2)代入数据;(3)凡有数字运算的题目,运算过程和结果都要写明单位.37.(3分)小华感冒咳嗽,妈妈给她买了“双黄连口服液”.粗心的小华将口服液盒内特制吸管弄丢了,只好拿来一根饮料吸管插入瓶中,结果她费了很大的劲才把药液“吸”上来.后来,她发现这两种吸管的形状不一样:饮料吸管外壁光滑,口服液吸管外壁有棱,两种吸管的截面形状如图30所示.请你运用所学过的物理知识解释为什么两种吸管“吸”药的效果不同.38.(3分)图31所示不锈钢水壶中盛有质量是0.5kg 的水,这些水温度从18℃升高到98℃,吸收了多少焦热量?[C 水=4.2×103J/(kg·℃)]图31料 物图3039.(5分)普通玻璃是由炽热的玻璃液体冷却后形成的,我们教室的窗户玻璃又是由大块的平板玻璃切割下来的.大型平板玻璃生产工艺是著名的玻璃生产商皮尔金顿受到油滴在水面均匀分布开来的启示,组织科研人员攻关而发明的“浮法平板玻璃”工艺流程.(g 取10N/kg )(1)该工艺关键是找到了能够浮起玻璃的一种溶液,你认为这种液体应该具备怎样的物理特性(说出一点).(2)若一块冷凝后的玻璃板长2m ,宽1.5m ,厚5mm ,密度为2.5×103kg/m 3,这块玻璃的质量有多少?(3)吊运玻璃一般用真空吸盘吊车,若当时大气压为1个标准大气压(1标准大气压的值可近似取105Pa),则吸盘的面积至少是多少才能吊起一块玻璃? (4)如图32所示,若用电动机提升这样一块玻璃,电动机对绳的拉力为250N ,玻璃上升的速度是20cm/s ,求吊车提升玻璃时的机械效率和功率.40.(5分)有一种超薄型电子地磅,其原理如图33所示.设电源两端电压U=6V 恒为定值,R 0为定值电阻,滑动变阻器的总电阻为R =50Ω、总长度为L =20cm ,滑动触头与托盘相连,开始时触头位于变阻器最上端A ,并能随轻弹簧一起上下滑动.已知滑动变阻器的电阻与其接入电路的长度成正比;当对地磅施加压力F 时,弹簧的长度会缩短l (弹簧发生弹性形变时,弹力的大小跟弹簧伸长或缩短的长度成正比) .滑片向下移动,电流表示数发生变化,电流表的使用范围是0~0.6A .下表是施加的压力F 与电流表示数变化的情况根据上述条件和表中数据,求:(1)此地磅的最大称量质量是多少?(g 取10N/kg ) (2)说明定值电阻R 0的作用,并计算R 0的值.电动机图32抽气机(3)当电流表的示数为0.24A时,地磅上所放物体的质量是多大?(4)由于图33电路中I与m之间不存在正比关系,造成刻度盘上的刻度不均匀,有同学建议将原理图改为图34所示,你认为这样改动好不好?请你通过计算分析并简要说明理由.(5)若改为图35所示的电路,可实现电压表的示数U l与地磅上所放物体质量m 成正比,因此,刻度是均匀的,请你写出此关系式.(若带入数据,可以不写单位).图33图34图3507昌平初三物理试卷(二)第11 页(共11 页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(江西卷)
数 学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷
考生注意:
1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答。
若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
参考公式:
如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B ) S =4πR 2
如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 V =
3
4
πR 3 n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k
(1一P )
k
n -
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.化简
2
)1(42i i
++的结果是
A .2+i
B .-2+i
C .2-i
D .-2-i
2.1
lim 2
31--→x x x x
A .等于0
B .等于l
C .等于3
D .不存在 3.若tan (
4
π
一α)=3,则cot α等于 A .-2 B .-2
1
C .
2
1
D .2 4.已知(x +3
3
x
)n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则
n 等于
A .4
B .5
C .6
D .7 5.若0<x <
2
π
,则下列命题中正确的是 A .sin x <x π
3
B .sin x >x π
3
C .sin x <22
4
x π D .sin x >
22
4
x π
6.若集合M ={0,l ,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为
A .9
B .6
C .4
D .2
7.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误..
的命题是
A .点H 是△A 1BD 的垂心
B .AH 垂直平面CB 1D 1
C .AH 的延长线经过点C 1
D .直线AH 和BB 1所成角为45°
8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是
A .h 2>h 1>h 4
B .h 1>h 2>h 3
C .h 3>h 2>h 4
D .h 2>h 4>h 1
9.设椭圆)0(122
22>>b a b
y a x =+的离心率为e =21,右焦点为F (c ,0),方程ax 2+bx
-c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2) A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2上
C .必在圆x 2+y 2=2外
D .以上三种情形都有可能
10.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为
A .9
1
B .12
1
C .151
D .
18
1 11.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为
A .-
5
1
B .0
C .
5
1
D .5
12.设p :f (x )=e x +ln x +2x 2+mx +l 在(0,+∞)内单调递增,q :m ≥-5,则p 是q 的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
第Ⅱ卷
注意事项:
二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上。
13.设函数y =4+log 2(x -1)(x ≥3),则其反函数的定义域为 。
14.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,若a 1=
9
1
,则a 36= 。
15.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同
的两点M 、N ,若AB
=m ,AC =n AN ,则m +n 的值为 。
16.设有一组圆C k :(x -k +1)2+(y -3k )2=2k 4 (k ∈N *)下列四个命题:
A .存在一条定直线与所有的圆均相切
B .存在一条定直线与所有的圆均相交
C .存在一条定直线与所有的圆均不.相交
D .所有的圆均不.
经过原点 其中真命题的代号是 .(写出所有真命题的代号)
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)
已知函数⎪⎩⎪
⎨⎧≤++=-)
1(2)
0(1
)(2
<<<x c k
c x cx x f c x
在区间(0,1)内连续,且8
9
)(2
=
c f 。
(1)求实数k 和c 的值; (2)解不等式18
2)(+>x f
18.(本小题满分12分)
如图,函数y =2cos (ωx +θ)(x ∈R ,0≤θ≤2
π
)的图象与y 轴交于点(0,3),且在该点处切线的斜率为一2。
(1)求θ和ω的值; (2)已知点A (2
π
,0),点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=2
3
,x 0∈[2π,π]时,求x 0的值。
19.(本小题满分12分)
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6, 0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75。
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望。
20.(本小题满分12分)
图是一个直三棱柱(以A 1B 1C 1为底面)被一平面所截得到的几何体,截面为ABC .已知A 1B 1=B 1C 1=l ,∠A l B l C 1=90°,AA l =4,BB l =2,CC l =3。
(1)设点O 是AB 的中点,证明:OC ∥平面A 1B 1C 1; (2)求二面角B —AC —A 1的大小; (3)求此几何体的体积。
21.(本小题满分12分)
设动点P 到点A (-l ,0)和B (1,0)的距离分别为d 1和d 2,∠APB =2θ,且存在常数λ(0<λ<1),使得d 1d 2 sin 2θ=λ。
(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;
(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点。
22.(本小题满分14分)
设正整数数列{a n }满足:a 2=4,且对于任何n ∈N *,有n n n n a n n a a a 121
111
1211++-
++++<<。
(1)求a 1,a 3;
(2)求数列{ a n }的通项a n 。