2023年数字电子技术复习知识点
数字电子技术》经典复习
《数字电子技术》复习一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 、格雷码之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD解:(37.25)10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD2.逻辑门电路:(1)基本概念1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。
2)TTL 门电路典型高电平为3.6 V ,典型低电平为0.3 V 。
3)OC 门和OD 门具有线与功能。
4)三态门电路的特点、逻辑功能和应用。
高阻态、高电平、低电平。
5)门电路参数:噪声容限V NH 或V NL 、扇出系数N o 、平均传输时间t pd 。
要求:掌握八种逻辑门电路的逻辑功能;掌握OC 门和OD 门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。
举例2:画出下列电路的输出波形。
解:由逻辑图写出表达式为:C B A C B A Y ++=+=,则输出Y 见上。
3.基本逻辑运算的特点:与 运 算:见零为零,全1为1;或 运 算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非 运 算:零 变 1, 1 变 零;要求:熟练应用上述逻辑运算。
4. 数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
数字电子技术基础知识总结
数字电子技术基础知识总结一、模拟电路与数字电路的定义及特点:模拟电路(电子电路)模拟信号处理模拟信号的电子电路。
“模拟”二字主要指电压(或电流)对于真实信号成比例的再现。
其主要特点是:1.函数的取值为无限多个;2.当图像信息和声音信息改变时, 信号的波形也改变, 即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3、初级模拟电路主要解决两个大的方面: 1放大、2信号源。
4.模拟信号具有连续性。
数字电路(进行算术运算和逻辑运算的电路)数字信号用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路, 或数字系统。
由于它具有逻辑运算和逻辑处理功能, 所以又称数字逻辑电路。
其主要特点是:1.同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础, 使用二进制数字信号, 既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等), 因此极其适合于运算、比较、存储、传输、控制、决策等应用。
2.实现简单, 系统可靠以二进制作为基础的数字逻辑电路, 可靠性较强。
电源电压的小的波动对其没有影响, 温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。
3.集成度高, 功能实现容易集成度高, 体积小, 功耗低是数字电路突出的优点之一。
电路的设计、维修、维护灵活方便, 随着集成电路技术的高速发展, 数字逻辑电路的集成度越来越高, 集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。
电路的设计组成只需采用一些标准的集成电路块单元连接而成。
对于非标准的特殊电路还可以使用可编程序逻辑阵列电路, 通过编程的方法实现任意的逻辑功能。
二、模拟电路与数字电路之间的区别模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。
《数字电子技术》知识点(2024)
引言:数字电子技术是一门研究数字信号处理和数字电子系统的学科,广泛应用于电子通信、计算机、医疗设备等领域。
本文将详细介绍《数字电子技术》的知识点,帮助读者全面了解该学科的核心概念和应用。
概述:一、时钟信号及其应用:1.时钟信号的作用和意义;2.时钟信号的基本特性;3.时钟信号频率和周期的计算方法;4.时钟信号的传输和分配方式;5.时钟信号的应用案例与实际问题分析。
二、布尔代数与逻辑电路设计:1.布尔代数的基本概念和运算规则;2.布尔函数的表示和简化方法;3.组合逻辑电路的设计方法与步骤;4.布尔函数与卡诺图的应用;5.组合逻辑电路的实际应用案例和优化技巧。
三、时序逻辑电路设计:1.时序逻辑电路的基本概念和分类;2.时序逻辑电路的设计流程与方法;3.触发器的基本原理和类型;4.计数器的设计原理和应用;5.时序逻辑电路设计中的常见问题与解决方法。
四、存储器与存储器系统:1.存储器的分类和特点;2.存储器的组织和访问方式;3.随机存储器(RAM)和只读存储器(ROM)的工作原理;4.存储器系统的层次结构和优化;5.存储器故障和容错技术。
五、全加器和多路选择器:1.全加器的定义和基本原理;2.全加器的设计与实现方法;3.多路选择器的定义和应用场景;4.多路选择器的实现和多路选择器的扩展;5.全加器和多路选择器在计算机系统中的应用举例。
总结:通过本文的详细阐述,读者对《数字电子技术》知识点(二)有了更加全面的了解。
时钟信号及其应用、布尔代数与逻辑电路设计、时序逻辑电路设计、存储器与存储器系统以及全加器和多路选择器等知识点,都是数字电子技术的核心内容。
有了对这些知识点的深入了解,读者将能够更好地应用于实际工作中,并为数字电子技术的发展做出贡献。
数字电子技术复习资料
数字电子技术复习资料数字电子技术复习资料数字电子技术是现代电子技术中的重要分支,它以数字信号的处理和传输为核心,广泛应用于计算机、通信、控制等领域。
本文将为大家提供一份数字电子技术的复习资料,希望能够帮助大家系统地回顾和巩固相关知识。
一、数字电路基础知识数字电路是数字电子技术的基础,了解数字电路的基本概念和特点对于深入理解数字电子技术至关重要。
1. 逻辑门:逻辑门是数字电路的基本构建单元,常见的逻辑门包括与门、或门、非门等。
它们通过逻辑运算实现不同的功能,如与门实现与运算,或门实现或运算。
2. 布尔代数:布尔代数是描述逻辑运算的数学工具,它通过与、或、非等逻辑运算符号表示逻辑关系。
深入理解布尔代数的基本原理和运算规则,对于设计和分析数字电路至关重要。
3. 真值表:真值表是逻辑函数的一种表示形式,它列出了逻辑函数在不同输入组合下的输出值。
通过真值表可以直观地了解逻辑函数的逻辑关系。
二、组合逻辑电路组合逻辑电路是一种由逻辑门构成的数字电路,它的输出仅依赖于当前的输入。
了解组合逻辑电路的基本原理和设计方法,对于理解和设计复杂的数字电路至关重要。
1. 真值表和逻辑函数:通过真值表可以得到逻辑函数的表达式,通过逻辑函数可以设计出对应的组合逻辑电路。
2. 卡诺图:卡诺图是一种用于简化逻辑函数的工具,通过画出逻辑函数的卡诺图,可以直观地找出逻辑函数的最简表达式。
3. 编码器和解码器:编码器和解码器是常用的组合逻辑电路。
编码器将多个输入信号转换为较少的输出信号,解码器则将较少的输入信号转换为多个输出信号。
三、时序逻辑电路时序逻辑电路是一种在组合逻辑电路的基础上加入了时钟信号的数字电路,它的输出不仅依赖于当前的输入,还依赖于过去的输入。
了解时序逻辑电路的基本原理和设计方法,对于理解和设计时序电路至关重要。
1. 触发器:触发器是时序逻辑电路的基本构建单元,它可以存储和传输信息。
常见的触发器包括RS触发器、D触发器、JK触发器等。
数字电子技术基础知识
1 数字电子技术基础知识1.1 学习要求(1)了解数字电路的特点以及数制和编码的概念。
(2)掌握逻辑代数的基本运算法则、基本公式、基本定理和化简方法。
(3)能够熟练地运用真值表、逻辑表达式、波形图和逻辑图表示逻辑函数,并会利用卡诺图化简逻辑函数。
1.2 学习指导本章重点:(1)逻辑函数各种表示方法之间的相互转换。
(2)逻辑函数的化简及变换。
本章难点:(1)逻辑函数各种表示方法之间的相互转换。
(2)逻辑函数的化简及变换。
本章考点:(1)逻辑函数各种表示方法之间的相互转换。
(2)逻辑函数的化简及变换。
1.2.1 数字电路概述1.数字信号与数字电路在数值上和时间上均连续的信号称为模拟信号,对模拟信号进行传输、处理的电子线路称为模拟电路。
在数值上和时间上均不连续的信号称为数字信号,对数字信号进行传输、处理的电子线路称为数字电路。
数字电路的特点:(1)输入和输出信号均为脉冲信号,一般高电平用1表示,低电平用0表示。
(2)电子元件工作在开关状态,即要么饱和,要么截止。
(3)研究的目标是输入与输出之间的逻辑关系,而不是大小和相位关系。
(4)研究的工具是逻辑代数和二进制计数法。
2.数制及其转换(1)数制基数和权:一种数制所具有的数码个数称为该数制的基数,该数制的数中不同位置上数码的单位数值称为该数制的位权或权。
十进制:基数为10,采用的10个数码为0~9,进位规则为“逢十进一”,从个位起各位的权分别为100、101、102、…10n -1。
二进制:基数为2,只有0和1两个数码,进位规则为“逢二进一”,从个位起各位的权分别为20、21、22、…2n -1。
16进制:基数为16,采用的16个数码为0~9、A~F ,进位规则为“逢十六进一”,从个位起各位的权分别为160、161、162、…16n -1。
(2)数制之间的转换其他进制转换为十进制:采用多项式求和法,即将其他进制的数根据基数和权展开为多项式,求出该多项式的和,即得相应的十进制数。
数字电子技术基础知识点总结
第四章 触发器
基本要求 1.熟练掌握各类触发器的逻辑功能(功能表、特性方 程、状态转换图、驱动表)。 2. 熟练掌握各种不同结构的触发器的触发特点,并能 够熟练画出工作波形。 3.熟悉触发器的主要参数。 4.熟悉各类触发器间的相互转换。 5.了解各类触发器的结构和工作原理。
1 写出图示各电路的状态方程。
组合逻辑电路的设计
根据实际逻辑问题,求出所要求逻辑功能的最简单逻辑电路。 一、组合逻辑电路的设计步骤
1、逻辑抽象(约定):根据实际逻辑问题的因果关系确 定输入、输出变量,并定义逻辑状态的含义; 2、根据逻辑描述列出真值表; 3、由真值表写出逻辑表达式; 4、根据器件的类型,简化和变换逻辑表达式 5、 画出逻辑图。
(1) (54)D =(0101,0100)8421 =(1011,0100)2421
(2) (87.15)D =(1000,0111.0001,0101)8421 =(1110,1101.0001,1011)2421
(3) (239.03)D =(0010,0011,1001.0000,0011)8421 =(0010,0011,1111.0000,0011)2421
3.列出状态转换表或画出状态图和波形图;
4.确定电路的逻辑功能.
设计同步时序逻辑电路的一般步骤
同步时序电路的设计过程
由给定的逻 辑功能建立 原始状态图 和原始状态 表
状态 化简
状态 分配
选择 触发 器类 型
确定 激励方程组
和 输出方程组
画出 逻辑图 并检查 自启动 能力
(1)根据给定的逻辑功能建立原始状态图和原始状态表 ①明确电路的输入条件和相应的输出要求,分别确定输入变量 和输出变量的数目和符号。 ②找出所有可能的状态和状态转换之间的关系。 ③根据原始状态图建立原始状态表。
数电知识点总结
数电知识点总结数字电子技术(简称数电)是电子信息类专业的一门重要基础课程,它主要研究数字信号的传输、处理和存储。
下面为大家总结一些关键的数电知识点。
一、数制与码制数制是指用一组固定的数字和一套统一的规则来表示数的方法。
常见的数制有十进制、二进制、八进制和十六进制。
十进制是我们日常生活中最常用的数制,它由 0、1、2、3、4、5、6、7、8、9 这十个数字组成,遵循“逢十进一”的原则。
二进制则只有 0 和 1 两个数字,其运算规则简单,是数字电路中最常用的数制,遵循“逢二进一”。
八进制由0、1、2、3、4、5、6、7 这八个数字组成,“逢八进一”。
十六进制由 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F 这十六个数字和字母组成,“逢十六进一”。
码制是指用不同的代码来表示不同的信息。
常见的码制有BCD 码、格雷码等。
BCD 码用四位二进制数来表示一位十进制数,有 8421 BCD 码、5421 BCD 码等。
格雷码的特点是相邻两个编码之间只有一位发生变化,这在数字电路中可以减少错误的产生。
二、逻辑代数基础逻辑代数是数字电路分析和设计的数学工具。
基本逻辑运算包括与、或、非三种。
与运算表示只有当所有输入都为 1 时,输出才为 1;或运算表示只要有一个输入为 1,输出就为 1;非运算则是输入为 1 时输出为 0,输入为 0 时输出为 1。
逻辑代数的基本定律有交换律、结合律、分配律、反演律和吸收律等。
这些定律在逻辑函数的化简和变换中经常用到。
逻辑函数的表示方法有真值表、逻辑表达式、逻辑图、卡诺图等。
真值表是将输入变量的所有可能取值组合及其对应的输出值列成的表格;逻辑表达式是用逻辑运算符将输入变量连接起来表示输出的式子;逻辑图是用逻辑门符号表示逻辑函数的电路图;卡诺图则是用于化简逻辑函数的一种图形工具。
三、门电路门电路是实现基本逻辑运算的电子电路。
常见的门电路有与门、或门、非门、与非门、或非门、异或门和同或门等。
数字电子技术各章知识要点
数电课程各章重点 第一章 逻辑代数基础知识要点一、二进制、十进制、十六进制数之间的转换;二、逻辑代数的三种基本运算以及5种复合运算的图形符号、表达式和真值表:与、或、非 三、逻辑代数的基本公式和常用公式、基本规则逻辑代数的基本公式 逻辑代数常用公式:吸收律:A AB A =+消去律:B A B A A +=+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A •=+ B A AB B A B A +=+ 基本规则:反演规则和对偶规则 四、逻辑函数的三种表示方法及其互相转换逻辑函数的三种表示方法为:真值表、函数式、逻辑图 会从这三种中任一种推出其它二种五、逻辑函数的最小项表示法:最小项的性质; 六、逻辑函数的化简:要求按步骤解答1、 利用公式法对逻辑函数进行化简2、 利用卡诺图对逻辑函数化简3、 具有约束条件的逻辑函数化简 例1.1利用公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+C D B ++= )(D D A D =+ 例1.2 利用卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第二章 门电路知识要点一、三极管开、关状态1、饱和、截止条件:截止:T be V V <, 饱和:βCSBS B I I i =>2、反相器饱和、截止判断 二、基本门电路及其逻辑符号与门、或非门、非门、与非门、OC 门、三态门、异或; 传输门、OC/OD 门及三态门的应用 三、门电路的外特性1、输入端电阻特性:对TTL 门电路而言,输入端通过电阻接地或低电平时,由于输入电流流过该电阻,会在电阻上产生压降,当电阻大于开门电阻时,相当于逻辑高电平。
考试宝典
六.D/A及A/D
1.D/A基本概念,输出表达式 2.A/D基本概念,并联比较型,逐次渐近型,双 积分型A/D转换过程
EX1:分别用代数法和卡诺图法化简 函数:
F D AB BC AC ABC ABC D ABC D
二.基本逻辑门电路
1.二极管与门、或门 2.三极管非门 3.TTL与非门 4.OC门 5.三态门 6其它门,如异或门、与或非门
三.组合逻辑电路
1.分析方法 2.设计方法 3.编码器:二进制编码器、二-十进制编码器、 优先编 码器 4.译码器:二进制译码器(74LS138)表达式、字符显 示译码器(7448)应用 5.比较器:一位比较器、四位比较器(74LS85)应用 6.加法器:半加器、全加器表达式,74LS283应用 7.数据选择器:表达式,74LS153、74LS151、 CC4512应用
EX2:用二输入与非门实现 Y=(A⊕B)+C EX3:用数据选择器实现函数 L(A,B,C)=∑m(0,3,4,5)
EX4:分析图示电路是几进制计数器; 画出用反馈归零法实现同样进制的电路。
EX5:电路如图,R1=R2=71.5 KΩ , C=0.01µF,D为理想二极管。画出UC和 UO波形,计算UO的周期。
数字电子技术复习提纲
一. 数字逻辑基础
1.二-十-十六进制数互换 2.自然二进制码、8421BCD码、余三码、格雷 码编排规律 3.逻辑问题的四种描述方法:真值表、逻辑图、 逻辑函数式、卡诺图,四种描述方法之间互换 4.基本定理和常用定理 5.三个规则:代入、反演、对偶 6.JK、D 、 RS 、 T 、 T′触发器的功能描述 2.时序逻辑电路的分析方法 3.同步时序逻辑电路的设计 4.寄存器及移位寄存器:74LS194应用 5.计数器及集成计数器: 74LS160,161,290,390应用;熟练掌握反馈 归零法和反馈置数法
数字电子技术总复习
数字电子技术总复习一章复习要点•了解数字信号与模拟信号的区别;•了解数字信号,数字电路的特点;•熟悉一些常用术语或定义,如:二值数字逻辑、逻辑电平、占空比、脉冲波形、数字波形等;•熟悉二进制,十六进制,十进制等不同数制之间的关系及其相互转化规律;•了解数字系统中几种常见的BCD码;第二、四章复习要点•熟悉逻辑代数的基本规则和基本定律;•掌握逻辑函数的代数变换与化简法;•掌握卡诺图化简逻辑函数的基本方法;•掌握组合逻辑电路的分析的基本方法。
•掌握组合逻辑电路的设计的基本方法;•熟悉编码的定义,了解设计方法。
•熟悉译码器的定义,了解其功能。
•掌握集成电路译码器74138的应用。
•熟悉数据分配器的概念。
•掌握数据选择器的定义,集成电路数据选择器74151的应用。
•了解数值比较器的定义,了解功能及其集成电路数值比较器的应用。
•熟悉半加器和全加器、减法运算定义,了解逻辑功能及其附加控制端的功能。
第三章复习要点•了解门电路的内部结构,加深器件外部特性的理解;•了解基本逻辑门电路的功能特性;•了解门电路、数字电路及系统的工作速度;•了解集成门电路的内部结构及其工作原理;•了解集成门电路的外部特性;•了解数字逻辑电路的正、负逻辑体制,了解其概念及相互关系;•熟悉逻辑电路的一般特性。
第五章复习要点•了解触发器的工作原理及其功能描述;•掌握各种触发器的功能表、特性方程、触发时刻(SR、JK、D触发器)和逻辑符号;•掌握触发器的转换。
第六章复习要点•熟练掌握同步时序逻辑电路的分析方法;•了解简单异步时序逻辑的分析方法;•了解简单同步时序逻辑电路的设计方法;•熟悉计数器、寄存器的概念;•熟练掌握集成计数器74161的应用。
第七章半导体存储器可编程逻辑器件以作业为重点1、了解存储器的基本原理。
2、了解存储器的基本结构。
3、了解可编程逻辑器件的原理结构。
第八章脉冲波形的产生与变换1、了解多谐、单稳态、施密特触发器的基本概念。
《数字电子技术》经典复习资料
《数字电子技术》复习一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 、格雷码之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD解:(37.25)10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD2.逻辑门电路:(1)基本概念1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。
2)TTL 门电路典型高电平为3.6 V ,典型低电平为0.3 V 。
3)OC 门和OD 门具有线与功能。
4)三态门电路的特点、逻辑功能和应用。
高阻态、高电平、低电平。
5)门电路参数:噪声容限V NH 或V NL 、扇出系数N o 、平均传输时间t pd 。
要求:掌握八种逻辑门电路的逻辑功能;掌握OC 门和OD 门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。
举例2:画出下列电路的输出波形。
解:由逻辑图写出表达式为:C B A C B A Y ++=+=,则输出Y 见上。
3.基本逻辑运算的特点:与 运 算:见零为零,全1为1;或 运 算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非 运 算:零 变 1, 1 变 零;要求:熟练应用上述逻辑运算。
4. 数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
数字电子技术基础总复习要点
数字电子技术基础总复习要点一、填空题第一章1、变化规律在时间上与数量上都就是离散就是信号称为数字信号。
2、变化规律在时间或数值上就是连续的信号称为模拟信号。
3、不同数制间的转换。
4、反码、补码的运算。
5、8421码中每一位的权就是固定不变的,它属于恒权代码。
6、格雷码的最大优点就在于它相邻两个代码之间只有一位发生变化。
第二章1、逻辑代数的基本运算有与、或、非三种。
2、只有决定事物结果的全部条件同时具备时,结果才发生。
这种因果关系称为逻辑与,或称逻辑相乘。
3、在决定事物结果的诸条件中只要有任何一个满足,结果就会发生。
这种因果关系称为逻辑或,也称逻辑相加。
4、只要条件具备了,结果便不会发生;而条件不具备时,结果一定发生。
这种因果关系称为逻辑非,也称逻辑求反。
5、逻辑代数的基本运算有重叠律、互补律、结合律、分配律、反演律、还原律等。
举例说明。
6、对偶表达式的书写。
7、逻辑该函数的表示方法有:真值表、逻辑函数式、逻辑图、波形图、卡诺图、硬件描述语言等。
8、在n变量逻辑函数中,若m为包含n个因子的乘积项,而且这n个变量均以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小项。
9、 n变量的最小项应有2n个。
10、最小项的重要性质有:①在输入变量的任何取值下必有一个最小项,而且仅有一个最小项的值为1;②全体最小项之与为1;③任意两个最小项的乘积为0;④具有相邻性的两个最小项之与可以合并成一项并消去一对因子。
11、若两个最小项只有一个因子不同,则称这两个最小项具有相邻性。
12、逻辑函数形式之间的变换。
(与或式—与非式—或非式--与或非式等)13、化简逻辑函数常用的方法有:公式化简法、卡诺图化简法、Q-M法等。
14、公式化简法经常使用的方法有:并项法、吸收法、消项法、消因子法、配项法等。
15、卡诺图化简法的步骤有:①将函数化为最小项之与的形式;②画出表示该逻辑函数的卡诺图;③找出可以合并的最小项;④选取化简后的乘积项。
数字电子技术》知识点
数字电子技术》知识点数字电子技术》知识点第1章数字逻辑基础本章主要介绍数字电路的基础知识,包括数字信号、模拟信号的定义,数字电路的分类,数制、编码及其转换,基本逻辑运算的特点,数字电路逻辑功能的几种表示方法及相互转换,逻辑代数运算的基本规则等内容。
1.数字信号、模拟信号的定义数字信号是离散的,只有两种状态,即高电平和低电平,而模拟信号是连续的,可以有无限种状态。
2.数字电路的分类数字电路分为组合逻辑电路和时序逻辑电路。
组合逻辑电路的输出只与输入有关,而时序逻辑电路的输出还与时间有关。
3.数制、编码及其转换我们需要熟练掌握在10进制、2进制、8进制、16进制、8421BCD之间进行相互转换的方法。
举例1:将(37.25)10转换为2进制、16进制、8421BCD码解:(37.25)10 = (.01)2 = (25.4)16 =(xxxxxxxx.xxxxxxxx)8421BCD4.基本逻辑运算的特点我们需要掌握与运算、或运算、与非运算、或非运算、异或运算、同或运算、非运算等基本逻辑运算的特点。
5.数字电路逻辑功能的几种表示方法及相互转换我们需要掌握真值表、逻辑表达式、卡诺图、逻辑图、波形图、状态图等几种表示方法,并能够相互转换。
6.逻辑代数运算的基本规则我们需要掌握反演规则和对偶规则,能够求逻辑函数的反函数和对偶函数。
反演规则是将逻辑表达式中的“·”换成“+”,“+”换成“·”,“”换成“1”,“1”换成“”,原变量换成反变量,反变量换成原变量,得到函数的反函数。
对偶规则是将逻辑表达式中的“·”换成“+”,“+”换成“·”,“”换成“1”,“1”换成“”,而变量保持不变,得到函数的对偶函数。
本章内容是数字电路的基础,是后续研究的重要基础。
需要认真掌握并应用于实际操作中。
7.逻辑函数化简逻辑函数化简有两种方法:公式法和图形法。
公式法是利用逻辑代数的基本公式、定理和规则来化简逻辑函数;图形法是将逻辑函数用卡诺图来表示,利用卡诺图来化简逻辑函数。
数字电子技术》知识点
《数字电子技术》知识点第1章数字逻辑基础1.数字信号、模拟信号的定义2.数字电路的分类3.数制、编码其及转换要求:能熟练在10进制、2进制、8进制、16进制、8421BCD之间进行相互转换。
举例1:()10= ( )2= ( )16= ( )8421BCD解:()10= 2= ( 16= 8421BCD4.基本逻辑运算的特点与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变1,1变零;要求:熟练应用上述逻辑运算。
5.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。
6.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y',Y'称为函Y 的对偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字电子技术》重要知识点汇总一、重要知识点总结和规定1.数制、编码其及转换:规定:能纯熟在10进制、2进制、8进制、16进制、8421BCD、格雷码之间进行互相转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD解:(37.25)10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD2.逻辑门电路:(1)基本概念1)数字电路中晶体管作为开关使用时,是指它的工作状态处在饱和状态和截止状态。
2)TTL门电路典型高电平为3.6 V,典型低电平为0.3 V。
3)OC门和OD门具有线与功能。
4)三态门电路的特点、逻辑功能和应用。
高阻态、高电平、低电平。
5)门电路参数:噪声容限V NH或V NL、扇出系数N o、平均传输时间t pd。
规定:掌握八种逻辑门电路的逻辑功能;掌握OC门和OD门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。
举例2:画出下列电路的输出波形。
解:由逻辑图写出表达式为:C=+=,则输出Y见上。
Y++BBAAC3.基本逻辑运算的特点:与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变 1, 1 变零;规定:纯熟应用上述逻辑运算。
4. 数字电路逻辑功能的几种表达方法及互相转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有也许取值组合及其相应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表达变量的所有也许取值组合的小方格所构成的图形。
④逻辑图:是由表达逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有也许取值组合的高、低电平及其相应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
规定:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的互相转换。
5.逻辑代数运算的基本规则① 反演规则:对于任何一个逻辑表达式Y ,假如将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y ,假如将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。
这个规则称为对偶规则。
规定:纯熟应用反演规则和对偶规则求逻辑函数的反函数和对偶函数。
举例3:求下列逻辑函数的反函数和对偶函数 解:反函数: ;对偶函数:6.逻辑函数化简规定:纯熟掌握逻辑函数的两种化简方法。
①公式法化简:逻辑函数的公式化简法就是运用逻辑代数的基本公式、定理和规则来化简逻辑函数。
举例4:用公式化简逻辑函数:C B BC A ABC Y ++=1解:E D C B A Y +=))((E D C B A Y +++=))((E D C B A Y +++='②图形化简:逻辑函数的图形化简法是将逻辑函数用卡诺图来表达,运用卡诺图来化简逻辑函数。
(重要适合于3个或4个变量的化简)举例5:用卡诺图化简逻辑函数:)6,4()7,3,2,0(),,(d m C B A Y ∑+∑= 解:画出卡诺图为则B C Y += 7.触发器及其特性方程1)触发器的的概念和特点:触发器是构成时序逻辑电路的基本逻辑单元。
其具有如下特点:①它有两个稳定的状态:0状态和1状态;②在不同的输入情况下,它可以被置成0状态或1状态,即两个稳态可以互相转换;③当输入信号消失后,所置成的状态可以保持不变。
具有记忆功能2)不同逻辑功能的触发器的特性方程为:RS 触发器:n n Q R S Q+=+1,约束条件为:RS =0,具有置0、置1、保持功能。
JK 触发器:n n n Q K Q J Q +=+1,具有置0、置1、保持、翻转功能。
D 触发器: D Q n =+1,具有置0、置1功能。
T 触发器: n n n Q T Q T Q +=+1,具有保持、翻转功能。
T ′触发器: n n Q Q =+1(计数工作状态),具有翻转功能。
规定:能根据触发器(重点是JK-FF 和D-FF )的特性方程纯熟地画出输出波形。
举例6:已知J,K-FF电路和其输入波形,试画出8.脉冲产生和整形电路1)施密特触发器是一种可以把输入波形整形成为适合于数字电路需要的矩形脉冲的电路。
规定:会根据输入波形画输出波形。
特点:具有滞回特性,有两个稳态,输出仅由输入决定,即在输入信号达成相应门限电压时触发翻转,没有记忆功能。
2)多谐振荡器是一种不需要输入信号控制,就能自动产生矩形脉冲的自激振荡电路。
特点:没有稳态,只有两个暂稳态,且两个暂稳态能自动转换。
3)单稳态触发器在输入负脉冲作用下,产生定期、延时脉冲信号,或对输入波形整形。
特点:①电路有一个稳态和一个暂稳态。
②在外来触发脉冲作用下,电路由稳态翻转到暂稳态。
③暂稳态是一个不能长期保持的状态,通过一段时间后,电路会自动返回到稳态。
规定:纯熟掌握555定期器构成的上述电路,并会求有关参数(脉宽、周期、频率)和画输出波形。
举例7:已知施密特电路具有逆时针的滞回特性,试画出输出波形。
解:9.A/D 和D/A 转换器1)A/D 和D/A 转换器概念:模数转换器:能将模拟信号转换为数字信号的电路称为模数转换器,简称A/D 转换器或ADC 。
由采样、保持、量化、编码四部分构成。
数模转换器:能将数字信号转换为模拟信号的电路称为数模转换器,简称D/A 转换器或DAC 。
由基准电压、变换网络、电子开关、反向求和构成。
ADC 和DAC 是沟通模拟电路和数字电路的桥梁,也可称之为两者之间的接口。
2)D/A 转换器的分辨率分辨率用输入二进制数的有效位数表达。
在分辨率为n 位的D/A 转换器中,输出电压能区分2n 个不同的输入二进制代码状态,能给出2n 个不同等级的输出模拟电压。
分辨率也可以用D/A 转换器的最小输出电压与最大输出电压的比值来表达。
举例8:10位D/A 转换器的分辨率为:3)A/D 转换器的分辨率A/D 转换器的分辨率用输出二进制数的位数表达,位数越多,误差越小,转换精度越高。
001.01023112110≈=-举例9:输入模拟电压的变化范围为0~5V,输出8位二进制数可以分辨的最小模拟电压为5V×2-8=20mV;而输出12位二进制数可以分辨的最小模拟电压为5V×2-12≈1.22mV。
10.常用组合和时序逻辑部件的作用和特点组合逻辑部件:编码器、译码器、数据选择器、数据分派器、半加器、全加器。
时序逻辑部件:计数器、寄存器。
规定:掌握编码器、译码器、数据选择器、数据分派器、半加器、全加器、计数器、寄存器的定义,功能和特点。
举例10:能对两个1位二进制数进行相加而求得和及进位的逻辑电路称为半加器。
二、典型题型总结及规定(一)分析题型1.组合逻辑电路分析:分析思绪:①由逻辑图写出输出逻辑表达式;②将逻辑表达式化简为最简与或表达式;③由最简与或表达式列出真值表;④分析真值表,说明电路逻辑功能。
规定:纯熟掌握由门电路和组合逻辑器件74LS138、74LS153、74LS151构成的各种组合逻辑电路的分析。
举例11:分析如图逻辑电路的逻辑功能。
解:①由逻辑图写出输出逻辑表达式②将逻辑表达式化简为最简与或表达式③由最简与或表达式列出真值表④分析真值表,说明电路逻辑功能当输入A 、B 、C 中有2个或3个为1时,输出Y 为1,否则输出Y 为0。
所以这个电路事实上是一种3人表决用的组合逻辑电路:只要有2票或3票批准,表决就通过。
2.时序逻辑电路分析:分析思绪:① 由电路图写出时钟方程、驱动方程和输出方程;② 将驱动方程代入触发器的特性方程,拟定电路状态方程;③分析计算状态方程,列出电路状态表; AC BC AB Y Y Y Y 321==CABC AB Y ++=④由电路状态表画出状态图或时序图;⑤分析状态图或时序图,说明电路逻辑功能。
规定:纯熟掌握同步时序电路,比如同步加法计数器、减法计数器、环形计数器、扭环形计数器的分析。
举例12:如图所示时序逻辑电路,试分析它的逻辑功能,验证是否能自启动,并画出状态转换图和时序图。
解:时钟方程为:CP0=CP1=CP激励方程为:⎪⎩⎪⎨⎧⎩⎨⎧====11101010K Q J K Q J n n 将激励方程代入J-K-FF 的特性方程可得状态方程为⎩⎨⎧=+==+=++n n n n n n n n n n Q Q Q K Q J Q Q Q Q K Q J Q 10111100001010 由状态方程做出状态转换表为:n Q 1n Q 0 11+n Q 10+n Q0 00 1 0 11 0 1 00 0 1 10 0则状态转换图和时序图为:可见电路具有自启动特性,这是一个三进制计数器。
(二)设计题型1.组合逻辑电路设计:设计思绪:①由电路功能描述列出真值表;②由真值表写出逻辑表达式或卡若图;③将表达式化简为最简与或表达式;④实现逻辑变换,画出逻辑电路图。
规定:纯熟掌握用常用门电路和组合逻辑器件74LS138、74LS153、74LS151设计实现各种组合逻辑电路。
举例13:某汽车驾驶员培训班进行结业考试,有三名评判员,其中A为主评判员,B和C为副评判员,在评判时按照服从多数原则通过,但主评判员认为合格也通过,试用与非门实现该逻辑电路。
(或用74138、74151、74153实现)解:由题意可作出真值表为:用卡诺图化简为A B C Y0 0 0 00 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1则输出逻辑表达式为BC A BC A Y =+= 用与非门实现逻辑电路图为:2.时序逻辑电路设计: 设计思绪:①由设计规定画出原始状态图或时序图; ②简化状态图,并分派状态;③选择触发器类型,求时钟方程、输出方程、驱动方程; ④画出逻辑电路图; ⑤检查电路能否自启动。
规定:纯熟掌握同步时序电路,比如同步加法计数器、减法计数器的设计实现。
举例14:设计一个按自然态序变化的7进制同步加法计数器,计数规则为逢七进1,产生一个进位输出。
解:①建立原始状态图:②简化状态图,并分派状态:已经是最简,已是二进制状态;③选择触发器类型,求时钟方程、输出方程、驱动方程:因需用3位二进制代码,选用3个CP下降沿触发的JK触发器,分别用FF0、FF1、FF2表达。