与圆有关的分类讨论题(含答案)

合集下载

2020中考数学冲刺练习-第06讲 分类讨论性问题--含解析

2020中考数学冲刺练习-第06讲 分类讨论性问题--含解析

2020数学中考冲刺专项练习【难点突破】着眼思路,方法点拨, 疑难突破;1.分类讨论是重要的数学思想,也是一种重要的解题策略,很多数学问题很难从整体上去解决,若将其划分为所包含的各个局部问题,就可以逐个予以解决.分类讨论在解题策略上就是分而治之各个击破.2.一般分类讨论的几种情况:(1)由分类定义的概念必须引起的讨论;(2)计算化简法则或定理、原理的限制,必须引起的讨论;(3)相对位置不确定,必须分类讨论;(4)含有多种不定因素,且直接影响完整结论的取得,必须分类讨论.3.分类讨论要根据引发讨论的原因,确定讨论的对象及分类的方法,分类时要做到不遗漏、不重复,善于观察,善于根据事物的特性与规律,把握分类标准,正确分类.应用分类讨论思想解决问题,必须保证分类科学、统一、不重复、不遗漏,并力求最简.运用分类的思想,通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答.分类讨论应当遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清层次应逐级进行,不越级讨论,其中最重要的一条是“不漏不重”.分类讨论的基本方法是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对各个分类逐步进行讨论,分层进行,获取阶段性结果;最后进行归纳小结,综合得出结论.【名师原创】原创检测,关注素养,提炼主题;【原创1】阅读下列解方程的过程,并完成(1)、(2)小题的解答.解方程:|x﹣2|=3解:当x﹣2<0,即x<2时,原方程可化为:﹣(x﹣2)=3,解得x=﹣1;当x﹣2≥0,即x≥2时,原方程可化为:x﹣2=3,解得x=5;综上所述,方程|x﹣2|=3的解为x=﹣1或x=5.(1)解方程:|2x+1|=5.(2)解方程:|2x+3|﹣|x﹣1|=1.【原创2】已知点P 为线段CB 上方一点,CA ⊥CB ,PA ⊥PB ,且PA =PB ,PM ⊥BC 于M ,若CA =1,PM =4.求CB 的长是 .此题分以下两种情况:①如图1,过P 作PN ⊥CA 于N ,∵PA ⊥PB ,∴∠APB =90°,∵∠NPM =90°,∴∠NPA =∠BPM , 在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N =∠BMP ∠NPA =∠BPM PA =PB,∴△PMB ≌△PNA ,∴PM =PN =4=CM ,BM =AN =3,∴BC =7; ②如图2,过P 作PN⊥CA 于N ,∵PA⊥PB, ∴∠APB=90°,∵∠NPM=90°, ∴∠NPA=∠BPM,在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N=∠BMP ∠NPA=∠BPM PA =PB ,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=5,可得BC=9.学!科网综上所述,CB=7或9【原创3】如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q 从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A. B. C. D.【原创4】如图所示,在平面直角坐标系中,一次函数 y=kx+b的图像和正比例函数y=3x相交于点A(1,m),且与y轴的交点为C为(0,5),在一次函数y=kx+b图像上存在点B,点B到x轴的的距离为6.(1)求A点的坐标和一次函数的解析式;(2)求△AOB的面积.分析:(1)因为点A的坐标在正比例函数上,利用正比例函数关系求得m的值,又根据一次函数经过点C (0,5),则列二元一次方程组可以解得k、b的值,从而得到一次函数的解析式;(2)点B 到x 轴的的距离为6. 故存有这样的B 点有两种情况,一种在x 轴的上方,一种在x 轴的下方,故连接OB 之后分别得到如图2所示的两种情况,根据三角形面积公式计算即可得到答案.(2)∵一次函数的解析式为y=-2x+5,故与x 轴的交点为(52,0),则OD=52, 第一种情况:当点B 在x 轴上方时,点B 到x 轴的的距离为6.则点B 在第二象限,如图所示,三角形AOB 的面积=三角形OBD 的面积-三角形OAD 的面积, 即AOB S V =15622⨯⨯-15322⨯⨯=154.第二种情况:当点B 在x 轴下方时,点B 到x 轴的的距离为6,则点B 在第四象限,如图所示,三角形AOB 的面积=三角形OBD 的面积+三角形OAD 的面积, 即AOB S V =15622⨯⨯+15322⨯⨯=454.故△AOB 的面积为154或454. 【原创5】如图所示,平面直角坐标中一边长为4的等边△AOB ,抛物线L 经过点A 、O 、B 三点。

与圆有关的分类讨论思想例谈

与圆有关的分类讨论思想例谈

龙源期刊网
与圆有关的分类讨论思想例谈
作者:王鹏程
来源:《语数外学习·中旬》2013年第01期
分类讨论,就是当对问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准进行分类,然后对每一类对象分别进行研究得出每一类的结论,最后综合结果得到整个问题的解答。

在中考中,有关圆的涉及“分类讨论”的问题十分常见,因为这类题不仅考查了学生的数学基本知识与基本方法,而且考查了学生思维的深刻性。

本文结合近年来中考中出现的一些试题谈一谈分类讨论思想在有关圆的问题中的应用。

一、根据点的位置分类讨论
例1 在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是().
A.当a<5时,点B在⊙A内
B.当1<a<5时,点B在⊙A内
C.当a<1时,点B在⊙A外
D.当a>5时,点B在⊙A外
解析:弦AB所对的圆周角的顶点可以在AB所对的优弧上,也可以在AB所对的劣弧上,故本题应分优弧上的圆周角和劣弧上的圆周角两种情况进行讨论。

中考数学圆的综合综合题汇编附答案

中考数学圆的综合综合题汇编附答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.(1)求证:∠ACE=∠DCE;(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;(3)若AC=4,23CDF COE S S ∆∆=,求CF 的长.【答案】(1)证明见解析,(2)60°;(3)433【解析】 【分析】(1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°; (3)易证12COE CAES S=,由于23CDF COES S=,所以CDF CAES S =13,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案. 【详解】(1)∵OC =OE ,∴∠OEC =∠OCE .∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G .∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°. ∵OE ∥BC ,∴∠AEO =∠AGC =60°. ∵OA =OE ,∴∠EAO =∠AEO =60°.(3)∵O 是AC 中点,∴12COE CAESS =. 23CDF COES S=,∴CDF CAES S=13. ∵AC 是直径,∴∠AEC =∠FDC =90°. ∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴CF CA =33,∴CF =33CA =433.【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.3.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.【答案】(1)证明见解析;(2)见解析;(3)92 DE=.【解析】【分析】(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB=22AD BD+=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD.如图1,设∠BDC=α,∠ADC=β,则∠CAB=∠BDC=α,∵点C为弧ABD中点,∴AC=CD,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;(2)∵CH⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18,∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与△ABC 重叠部分的面积为S .①试求S 关于t 的函数表达式;②以点C 为圆心,12t 为半径作⊙C ,当⊙C 与GH 所在的直线相切时,求此时S 的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.5.已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.【答案】(1)证明见解析;(2)PA=PB+PC.理由见解析;(3)若∠BAC=120°时,(2)3 PA=PB+PC.【解析】试题分析:(1)如图①,连接PC.根据“内接四边形的对角互补的性质”即可证得结论;(2)如图②,通过作辅助线BC、PE、CE(连接BC,延长BP至E,使PE=PC,连接CE)构建等边△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC;(3)如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.利用全等三角形△ABP≌△AQP(SAS)的对应边相等推知AB=AQ,PB=PG,将PA、PB、PC的数量关系转化到△APC中来求即可.试题解析:(1)如图①,连接PC.∵△ACQ是由△ABP绕点A逆时针旋转得到的,∴∠ABP=∠ACQ.由图①知,点A、B、P、C四点共圆,∴∠ACP+∠ABP=180°(圆内接四边形的对角互补),∴∠ACP+∠ACQ=180°(等量代换);(2)PA=PB+PC.理由如下:如图②,连接BC,延长BP至E,使PE=PC,连接CE.∵弦AB=弦AC,∠BAC=60°,∴△ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°(圆内接四边形的对角互补),∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,∵PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=∠ECP=∠EPC=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP(等量代换),在△BEC和△APC中,CE PCBCE ACPAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△APC(SAS),∴BE=PA,∴PA=BE=PB+PC;(3)若∠BAC=120°时,(23.理由如下:如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.∵∠BAC=120°,∠BAC+∠BPC=180°,∴∠BPC=60°.∵弦AB=弦AC,∴∠APB=∠APQ=30°.在△ABP和△AQP中,PB PQAPB APQAP AP=⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△AQP(SAS),∴AB=AQ,PB=PQ(全等三角形的对应边相等),∴AQ=AC(等量代换).在等腰△AQC中,QG=CG.在Rt△APG中,∠APG=30°,则AP=2AG,PG=3AG,∴PB+PC=PG ﹣QG+PG+CG=PG﹣QG+PG+QG=2PG=23AG,∴3PA=23AG,即3PA=PB+PC.【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.6.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .【解析】试题分析:(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE;(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.试题解析:(1)证明:如图,∵PB切⊙O于点B,∴∠PBD=∠A,∵PF平分∠APB,∴∠APE=∠BPD,∴△PBD∽△PAE,∴PB:PA=BD:AE,∴PA•BD=PB•AE;(2)证明:如图,∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.又∵∠PBD=∠A,∠EPA=∠BPD,∴∠BED=∠BDE.∴BE=BD.∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),∴AE+BD=k,∴AE+BD=AE+BE=AB=k,即⊙O直径为常数k.(3)∵PB切⊙O于B点,AB为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA,又∵PA•BD=PB•AE,∴BD=AE,∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).∴AE•BD=2,即AE2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2.在Rt△PBE中,tan∠BPF===2﹣,∵∠FPA=∠BPF,∴tan∠FPA=2﹣.【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.7.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)【答案】(1)3π;(2)27π;(3)3.【解析】试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I 所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.8.如图,AB 是O 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF 为CD 的垂直平分线,得CF=DF ,∠CDF=∠DCF ,由∠CDO=∠OCD ,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD ⊥DF ,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB 为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB ,FB=OB= OC =2,在直角三角形OCE 中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF 是⊙O 的切线∴∠OCF=90°∴∠OCD+∠DCF=90°∵直径AB ⊥弦CD∴CE=ED,即OF为CD的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD⊥DF∴DF是⊙O的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3sin COEOC2∠==∴CF3=∴CD=2 CF23=【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.9.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若tan∠CAF=12,求12SS的值.【答案】(1)48°(2)证明见解析(3)3 4【解析】【分析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得CD PB PD==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=34x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(2)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴CD PB=,∵AD是⊙O的直径,AD⊥PC,∴CD PD=,∴CD PB PD==,∴∠BAD=2∠DAC,∵∠COF=2∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF=12=CF AF,∴AF=2x ,∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=2x﹣a,Rt△COF中,CO2=CF2+OF2,∴(2x﹣a)2=x2+a2,a=34 x,∴OF=AG=34 x,∵OA=OB,OG⊥AB,∴AB=2AG=32x,∴1213··3 22 1·24·2AB OG x xSS x xCF AF===.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:CD PB PD==;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.10.已知AB ,CD 都是O 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)837+【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=,D E 90∠∠∴+=,2D 2E 180∠∠∴+=,AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=.()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR 和ODG 中,A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,AOR ∴≌ODG ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===,AF//OC//BT ∴,OA OB =,CT CF 3m ∴==,ET m ∴=, CD 为直径,CBD CND 90CBE ∠∠∠∴===,E 90EBT CBT ∠∠∠∴=-=,tan E tan CBT ∠∠∴=,BT CT ET BT∴=,BT 3m m BT∴=,BT ∴=负根已经舍弃),tan E ∠∴== E 60∠∴=,CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,H E 60∠∠∴==,MON 2HCN 60∠∠∴==,OM ON =,OMN ∴是等边三角形,MN ON ∴=,QM OB OM ==,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN 中,CN 48==,在Rt CHN 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH 中,1KH HN 2==NK 24==,在Rt NMK 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.。

人教备战中考数学压轴题专题圆的综合的经典综合题含答案

人教备战中考数学压轴题专题圆的综合的经典综合题含答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.【解析】试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.试题解析:(1)连接FE,∵E(8,0),F(0 , 6),G(4,8),∴根据勾股定理,得FG=,EG=,FE=10.∵,即.∴△FEG是直角三角形,且∠FGE=90 °.(2)作图如下:P(7,7),PH是分割线.考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.2.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(235 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.3.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.4.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B(0,-2),点D 在劣弧OA上,连结BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.【答案】(1)M的半径r2;(2)证明见解析;(3)点E的坐标为(2632).【解析】试题分析:根据点A和点B的坐标得出OA和OB的长度,根据Rt△AOB的勾股定理得出AB的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD,然后结合已知条件得出角平分线;根据角平分线得出△ABE≌△HBE,从而得出2,从而求出OH 的长度,即点E的纵坐标,根据Rt△AOB的三角函数得出∠ABO的度数,从而得出∠CBO 的度数,然后根据Rt△HBE得出HE的长度,即点E的横坐标.试题解析:(1)∵点A6,0),点B为(02)∴62∴根据Rt△AOB的勾股定理可得:2∴M的半径r=122.(2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=263=∴点E 的坐标为(26,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.5.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF 3【答案】(1)详见解析;(2633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC,如图,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCA+∠ACO=90º,∵AB是⊙O的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC;(2)连接OE,如图,∵△ACB中,∠ACB=90º,∠CAB=2∠B,∴∠B=30º,∠CAB=60º,∴△OCA是等边三角形,∵CD⊥AB,∴∠ACD+∠CAD=∠CAD+∠ABC=90º,∴∠ACD=∠B=30º,∵PC∥AE,∴∠PCA=∠CAE=30º,∴FC=FA,同理,CF=FM,∴AM=2CF=23,Rt△ACM中,易得AC=23×3=3=OC,∵∠B=∠CAE=30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG⊥AB交AB于G点,如图所示,∵OA=OB,∴MO⊥AB,∴MO=3∵△CDO≌△EDO(AAS),∴332∴1332ABM S AB MO ∆=⨯=, 同样,易求934AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形=93363333424ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.6.如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连接AD .已知∠CAD =∠B .(1)求证:AD 是⊙O 的切线;(2)若CD =2,AC =4,BD =6,求⊙O 的半径.【答案】(1)详见解析;(2)35. 【解析】【分析】 (1)解答时先根据角的大小关系得到∠1=∠3,根据直角三角形中角的大小关系得出OD ⊥AD ,从而证明AD 为圆O 的切线;(2)根据直角三角形勾股定理和两三角形相似可以得出结果【详解】(1)证明:连接OD ,∵OB =OD ,∴∠3=∠B ,∵∠B =∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)过点O作OF⊥BC,垂足为F,∵OF⊥BD∴DF=BF=12BD=3∵AC=4,CD=2,∠ACD=90°∴AD=22AC CD=25∵∠CAD=∠B,∠OFB=∠ACD=90°∴△BFO∽△ACD∴BFAC = OB AD即34=25∴OB=352∴⊙O的半径为352.【点睛】此题重点考查学生对直线与圆的位置关系,圆的半径的求解,掌握勾股定理,两三角形相似的判定条件是解题的关键7.(问题情境)如图1,点E是平行四边形ABCD的边AD上一点,连接BE、CE.求证:BCE 1S2=S平行四边形ABCD.(说明:S表示面积)请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD的边AD为直径作⊙O,⊙O与BC边相切于点H,与BD相交于点M.若AD=6,BD=y,AM=x,试求y与x之间的函数关系式.(探究应用2)如图3,在图1的基础上,点F在CD上,连接AF、BF,AF与CE相交于点G,若AF=CE,求证:BG平分∠AGC.(迁移拓展)如图4,平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中点,F在BC上,且BF:FC=2:1,过D分别作DG⊥AF于G,DH⊥CE于H,请直接写出DG:DH的值.【答案】【问题情境】见解析;【探究应用1】18yx=;【探究应用2】见解析;【迁移【解析】【分析】(1)作EF⊥BC于F,则S△BCE=12BC×EF,S平行四边形ABCD=BC×EF,即可得出结论;(2)连接OH,由切线的性质得出OH⊥BC,OH=12AD=3,求出平行四边形ABCD的面积=AD×OH=18,由圆周角定理得出AM⊥BD,得出△ABD的面积=12BD×AM=12平行四边形的面积=9,即可得出结果;(3)作BM⊥AF于M,BN⊥CE于N,同图1得:△ABF的面积=△BCE的面积=12平行四边形ABCD的面积,得出12AF×BM=12CE×BN,证出BM=BN,即可得出BG平分∠AGC.(4)作AP⊥BC于P,EQ⊥BC于Q,由平行四边形的性质得出∠ABP=60°,得出∠BAP=30°,设AB=4x,则BC=3x,由直角三角形的性质得出BP=12AB=2x,BQ=12BE,AP=BP=,由已知得出BE=2x,BF=2x,得出BQ=x,EQ x,PF=4x,QF=3x,QC=4x,由勾股定理求出AF=x,CE,连接DF、DE,由三角形的面积关系得出AF×DG=CE×DH,即可得出结果.【详解】(1)证明:作EF⊥BC于F,如图1所示:则S△BCE=12BC×EF,S平行四边形ABCD=BC×EF,∴12BCE ABCD S S =.(2)解:连接OH ,如图2所示:∵⊙O 与BC 边相切于点H , ∴OH ⊥BC ,OH =12AD =3, ∴平行四边形ABCD 的面积=AD×OH =6×3=18,∵AD 是⊙O 的直径,∴∠AMD =90°,∴AM ⊥BD ,∴△ABD 的面积=12BD×AM =12平行四边形的面积=9, 即12xy =9, ∴y 与x 之间的函数关系式y =18x ; (3)证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示:同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积, ∴12AF×BM =12CE×BN , ∵AF =CE ,∴BM =BN ,∴BG 平分∠AGC . (4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示:∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,∴∠ABP =60°,∴∠BAP =30°,设AB =4x ,则BC =3x ,∴BP =12AB =2x ,BQ =12BE ,AP BP =, ∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1,∴BE =2x ,BF =2x ,∴BQ =x , ∴EQ,PF =4x ,QF =3x ,QC =4x ,由勾股定理得:AF =x ,CE , 连接DF 、DE ,则△CDE 的面积=△ADF 的面积=12平行四边形ABCD 的面积,∴AF×DG =CE×DH ,∴DG :DH =CE :AF =19x :27x 19:27=.【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.8.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB .(1)d (点O ,AB )= ;(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)222)224r ≤≤;(3)25252t -<<-或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解; (3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB =22442+=22; (2)如图,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB,则OE=22,OB=OA=4,∵⊙O 与线段AB 的“非常距离”为0,∴224r ≤≤;(3)当⊙T 在△ABC 左侧时,如图,当⊙T 与BC 相切时,d=0,BC=2236+=35,过点C 作CE ⊥y 轴,过点T 作TF ⊥BC,则△TFH ∽△BEC,∴TF TH BE BC=, 即2=635TH , ∴TH=5,∵HO ∥CE,∴△BHO ∽△BEC,∴HO=2,此时T(-5-2,0);当d=2时,如图,同理可得,此时T (252--);∵0<d <2,∴25252t --<<--;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8; 综上,25252t --<<--或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.9.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG .①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.【答案】(1)见解析;(2)①结论:∠GFA =2∠ABC .理由见解析;②PE 3. 【解析】【分析】 (1)证明∠OFA =∠BAC ,由∠EAO +∠EOA =90°,推出∠OFA +∠AOE =90°,推出∠FAO =90°即可解决问题.(2)①结论:∠GFA =2∠ABC .连接FC .由FC =FG =FA ,以F 为圆心FC 为半径作⊙F .因为AG AG =,推出∠GFA =2∠ACG ,再证明∠ACG =∠ABC .②图2﹣1中,连接AG ,作FH ⊥AG 于H .想办法证明∠GFA =120°,求出EF ,OF ,OG 即可解决问题.【详解】(1)证明:连接OC .∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 222213AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD ,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为35; (2)相似,理由见解析, 如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(65)2解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.。

小专题(十六) 圆中的分类讨论(多解问题)

小专题(十六) 圆中的分类讨论(多解问题)

小专题(十六) 圆中的分类讨论(多解问题)一、由于点与圆的位置关系的多样性引起的不唯一性方法归纳:点与圆有三种位置关系:点在圆内、点在圆上、点在圆外,但圆上的点具有唯一性.所以,只考虑点在圆内和点在圆外两种情况.【例1】 已知点A 到⊙O 的最近距离和最远距离分别是3 cm 和9 cm ,求⊙O 的半径.1.点A 到圆的最近距离是a ,最远距离是b ,则该圆的直径是__________.二、由于圆的对称性引起的不唯一性方法归纳:平行弦位于圆心O 的同侧时,平行弦之间的距离等于弦心距之差;平行弦位于圆心O 的异侧时,平行弦之间的距离等于弦心距之和.【例2】 已知,⊙O 的直径是10 cm ,弦AB ∥CD ,AB =6 cm ,CD =8 cm ,求AB 与CD 之间的距离.2.如图,⊙O 的半径为17 cm ,弦AB ∥CD ,AB =30 cm ,CD =16 cm ,圆心O 位于AB ,CD 的上方,则AB 和CD 的距离为________.3.在半径为5 cm 的⊙O 中,如果弦CD =8 cm ,直径AB ⊥CD ,垂足为E ,那么AE 的长为________.4.如图,已知PA ,PB 是⊙O 的切线,A ,B 分别为切点,C 为⊙O 上不与A ,B 重合的另一点,若∠ACB =120°,则∠APB =________.5.在半径为1的⊙O 中,弦AB =2,AC =3,那么∠BAC =________.三、由于一弦对二弧而引起的不唯一性方法归纳:一弧对一圆心角和一圆周角,但一弦却对一圆心角和二圆周角,且同弦所对两圆周角互补.【例3】 弦AB 的长等于半径,则AB 所对的圆周角等于多少度?6.⊙O 为△ABC 的外接圆,∠BOC =100°,则∠A =________.四、由于动点问题而引发的直线与圆位置关系的不唯一性方法归纳:由于动点的移动而导致的图形整体运动,要抓住在图形变化时几种特殊静态位置的关键要素.从而分类型以静态位置的条件达到解题的目的.【例4】 如图,P 为正比例函数y =32x 图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y).求⊙P 与直线x =2相切时点P 的坐标.7.(无锡期中)如图,已知直角梯形ABCD 中,AD ∥BC ,∠B =90°,AB =8 cm ,AD =24 cm ,BC =26 cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向点D 以1 cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以3 cm/s 的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t s ,问:(1)t 为何值时,P ,Q 两点之间的距离为10 cm?(2)t 分别为何值时,直线PQ 与⊙O 相切?相离?相交?参考答案【例1】(1)如图1,当点A 在⊙O 内时,R =3+9=12(cm),所以⊙O 的半径是6 cm.(2)如图2,当点A 在⊙O 外时,R =9-3=6(cm),所以⊙O 的半径是3 cm.综上所述,⊙O 的半径是6 cm 或3 cm. 1.b -a 或b +a【例2】图1 图2如图1,当平行两弦位于圆心O 的同侧时.连接OB ,OD ,过点O 作OE ⊥CD ,OE 的延长线交AB 于F. ∵AB ∥CD ,OE ⊥CD ,∴OF ⊥AB.∵OE ⊥CD ,∴DE =12CD =4 cm.在Rt △OED 中,OE =OD 2-ED 2=52-42=3.同理在△OFB 中,OF =4. ∴EF =OF -OE =4-3=1;如图2,当平行两弦位于圆心O 的异侧时,EF =OE +OF =7.综上所述,AB 与CD 之间的距离是7 cm 或1 cm.2.7 cm3.2 cm 或8 cm4.60°5.75°或15°【例3】(1)当圆周角所对的弧是劣弧时,如图所示:连接OA ,OB ,AC ,BC ,得到△AOB 是等边三角形∴∠AOB =60°.∴∠ACB =12∠AOB =30°. (2)当圆周角所对的弧是优弧时,如图所示:易得∠AC′B =150°.综上所述,弦AB 所对的圆周角等于30°或150°. 6.50°或130°【例4】 过P 作直线x =2的垂线,垂足为A ,当点P 在直线x =2右侧时,AP =x -2=3,∴x =5.∴P(5,152).当点P 在x =2的左侧时,PA =2-x =3,x =-1, ∴P(-1,-32).∴当⊙P 与直线x =2相切时,P 点坐标为(5,152)或(-1,-32). 7.(1)AP =t ,BQ =26-3t.如图1:作PE ⊥BC 于E ,QE =26-4t.由勾股定理,得(26-4t)2+64=100,解得t =5或8.(2)当PQ 与⊙O 相切时,如图2,由相切,得PQ =AP +BQ =26-2t ,BE =26-4t ,PE =8,(26-4t)2+64=(26-2t)2,解得t =8或23.即t =8或23时,直线PQ 与⊙O 相切;当26÷3=263,当t =263时运动停止,0≤t <23或8<t ≤263,直线PQ 与⊙O 相交;23<t <8,直线PQ 与⊙O 相离.。

人教中考数学与圆的综合有关的压轴题含答案解析

人教中考数学与圆的综合有关的压轴题含答案解析

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F . (1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212【解析】试题分析:(1)连接OB ,利用已知条件和切线的性质证明; (2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠. ∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD . (2)由(1)可得sin ∠C = ∠DBA=25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO . ∴BD CDBO EO= ∴252EO =.∵OE ∥BD ,CO =OD , ∴CF =FB . ∴122OF BD ==. ∴212EF OE OF =-=2.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若sin ∠ABE=33,CD=2,求⊙O 的半径.【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 的半径为32. 【解析】分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;(2)连接EF ,方法1:∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠= ∴23DCBD sin CBD∠==在Rt △AEB 中,∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,==∴=, 由勾股定理求得6BE =在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=-()(),∴r =32, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为32.点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.3.如图,O 是△ABC 的内心,BO 的延长线和△ABC 的外接圆相交于D ,连结DC 、DA 、OA 、OC ,四边形OADC 为平行四边形. (1)求证:△BOC ≌△CDA . (2)若AB =2,求阴影部分的面积.【答案】(1)证明见解析;(2433π-. 【解析】分析: (1)根据内心性质得∠1=∠2,∠3=∠4,则AD=CD ,于是可判断四边形OADC 为菱形,则BD 垂直平分AC ,∠4=∠5=∠6,易得OA=OC ,∠2=∠3,所以OB=OC ,可判断点O 为△ABC 的外心,则可判断△ABC 为等边三角形,所以∠AOB=∠BOC=∠AOC=120°,BC=AC ,再根据平行四边形的性质得∠ADC=∠AOC=120°,AD=OC ,CD=OA=OB ,则根据“SAS”证明△BOC ≌△CDA ;(2)作OH ⊥AB 于H ,如图,根据等腰三角形的性质和三角形内角和定理得到∠BOH=30°,根据垂径定理得到BH=AH=12AB=1,再利用含30度的直角三角形三边的关系得到OH=33BH=33,OB=2OH=233,然后根据三角形面积公式和扇形面积公式,利用S 阴影部分=S 扇形AOB-S △AOB 进行计算即可. 详解:(1)证明:∵O 是△ABC 的内心,∴∠2=∠3,∠5=∠6, ∵∠1=∠2,∴∠1=∠3, 由AD ∥CO ,AD =CO ,∴∠4=∠6, ∴△BOC ≌△CDA (AAS )(2)由(1)得,BC =AC ,∠3=∠4=∠6, ∴∠ABC =∠ACB ∴AB =AC∴△ABC 是等边三角形 ∴O 是△ABC 的内心也是外心 ∴OA =OB =OC设E 为BD 与AC 的交点,BE 垂直平分AC . 在Rt △OCE 中,CE=12AC=12AB=1,∠OCE=30°, ∴23∵∠AOC=120°, ∴=AOBAOB S S S -阴影扇=2120231323602π-⨯ =433π- 点睛: 本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了等边三角形的判定与性质和扇形面积的计算.4.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.5.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.6.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

初中数学专题“分类讨论”专题练习(含答案)

初中数学专题“分类讨论”专题练习(含答案)

“分类讨论”专题练习1.已知AB 是圆的直径,AC 是弦,AB =2,AC =2,弦AD =1,则∠CAD = .2. 若(x 2-x -1)x +2=1,则x =___________.3. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( ) A.2a b+ B.2a b- C.2a b +或2a b- D. a+b 或a-b5.同一平面上的四个点,过每两点画一直线,则直线的条数是( ) A.1 B.4 C.6 D.1或4或66. 若||3,||2,,( )a b a b a b ==>+=且则A .5或-1B .-5或1C .5或1D .-5或-1 7.已知抛物线y =ax 2+bx +c 经过点(1,2).(1)若a =1,抛物线顶点为A ,它与x 轴交于两点B 、C ,且△ABC 为等边三角形,求b 的值.(2)若abc =4,且a ≥b ≥c ,求|a |+|b |+|c |的最小值.8.长宽都为整数的矩形,可以分成边长都为整数的小正方形。

例如一个边长2⨯4的矩形:可以分成三种情况: (1)(2)一个长宽为3⨯6的矩形,可以怎样分成小正方形,请画出你的不同分法。

9.已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.分成两个正方形,面积分别为4,4分成8个正方形,面积每个都是1分成5个正方形,1个面积为4,4个面积是110.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A C ,在坐标轴上,60cm OA =,80cm OC =.动点P 从点O 出发,以5cm/s 的速度沿x 轴匀速向点C 运动,到达点C 即停止.设点P 运动的时间为s t . (1)过点P 作对角线OB 的垂线,垂足为点T .求PT 的长y 与时间t 的函数关系式,并写出自变量t 的取值范围;(2)在点P 运动过程中,当点O 关于直线AP 的对称点O '恰好落在对角线OB 上时,求此时直线AP 的函数解析式; (3)探索:以A P T ,,三点为顶点的APT △的面积能否达到矩形OABC 面积的14?请说明理由.答案:1. 15°或105°2. 2、-1、0、-23. 腰长6底边9或腰长8底边54.C5.D6.C7. 解:⑴由题意,a +b +c =2, ∵a =1,∴b +c =1 抛物线顶点为A (-b 2,c -b 24)设B (x 1,0),C (x 2,0),∵x 1+x 2=-b ,x 1x 2=c ,△=b 2-4c >0 ∴|BC|=| x 1-x 2|=| x 1-x 2|2=(x 1+x 2)2-4 x 1x 2=b 2-4c ∵△ABC 为等边三角形,∴b 24 -c = 32b 2-4c即b 2-4c =23·b 2-4c ,∵b 2-4c >0,∴b 2-4c =2 3∵c =1-b , ∴b 2+4b -16=0, b =-2±2 5 所求b 值为-2±2 5⑵∵a ≥b ≥c ,若a <0,则b <0,c <0,a +b +c <0,与a +b +c =2矛盾. ∴a >0. ∵b +c =2-a ,bc =4a∴b 、c 是一元二次方程x 2-(2-a )x +4a =0的两实根.∴△=(2-a )2-4×4a≥0,∴a 3-4a 2+4a -16≥0, 即(a 2+4)(a -4)≥0,故a ≥4. ∵abc >0,∴a 、b 、c 为全大于0或一正二负.①若a 、b 、c 均大于0,∵a ≥4,与a +b +c =2矛盾; ②若a 、b 、c 为一正二负,则a >0,b <0,c <0, 则|a |+|b |+|c |=a -b -c =a -(2-a )=2a -2, ∵ a ≥4,故2a -2≥6当a =4,b =c =-1时,满足题设条件且使不等式等号成立. 故|a |+|b |+|c |的最小值为6. 8.分7种情况画图9.解:(1)由()332)1(+⋅=⋅-m m ,得m =-,因此k =(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =,BC =因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,故不符题意.当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则1AF ,12AD m =,由点(1A --,,得点11(1)D m --,.因此()()32323111=+-+-m m ,解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.此时的长度不等,故四边形ADBC 是梯形.如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH mm =>,则2DH =,由点(10)C -,,得点22(1)D m -+, 因此()323122=⋅+-m m .解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形.如图3,当过点C 作AB 同理可得,点(2D --,,四边形ABCD 是梯形. 综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:6D ⎛ ⎝⎭或(1D 或(2D --,. 图1图2 图310.解:(1)在矩形OABC 中,60OA =,80OC =,100OB AC ∴===PT OB ⊥,Rt Rt OPT OBC ∴△∽△. PT OP BC OB ∴=,即560100PT t=,3y PT t ∴== 当点P 运动到C 点时即停止运动,此时t 的最大值为80165=.所以,t 的取值范围是016t ≤≤.(2)当O 点关于直线AP 的对称点O '恰好在对角线OB 上时,A T P ,,三点应在一条直线上(如答图2).AP OB ∴⊥,12∠=∠. Rt Rt AOP OCB ∴△∽△,OP AOCB OC∴=. 45OP ∴=.∴点P 的坐标为(450),设直线AP 的函数解析式为y kx b =+.将点(060)A ,和点(450)P ,代入解析式,得60045.a b k b =+⎧⎨=+⎩,解这个方程组,得4360.k b ⎧=-⎪⎨⎪=⎩, ∴此时直线AP 的函数解析式是4603y x =-+.(3)由(2)知,当4595t ==时,A T P ,,三点在一条直线上,此时点A T P ,, 不构成三角形.故分两种情况:(i )当09t <<时,点T 位于AOP △的内部(如答图3).过A 点作AE OB ⊥,垂足为点E ,由AO AB OB AE =可得48AE =.APT AOP ATO OTP S S S S ∴=--△△△△211160544843654222t t t t t t =⨯⨯-⨯⨯-⨯⨯=-+. 若14APT OABC S S =△矩形,则应有26541200t t -+=,即292000t t -+=.此时,2(9)412000--⨯⨯<,所以该方程无实数根.所以,当09t <<时,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.(答图2)(答图1)(ii )当916t <≤时,点T 位于AOP △的外部.(如答图4)此时2654APT ATO OTP AOP S S S S t t =+-=-△△△△.若14APT OABC S S =△矩形,则应有26541200t t -=,即292000t t --=.解这个方程,得192t +=,2902t -=<(舍去).由于288162525>=,991722t +∴=>=.而此时916t <≤,所以92t +=也不符合题意,故舍去. 所以,当916t <≤时,以A P T ,,为顶点的APT △的面积也不能达到矩形OABC 面积的14. 综上所述,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.。

有关圆的分类讨论问题

有关圆的分类讨论问题

有关圆的分类讨论问题
题型一点与圆的位置关系
例1 已知点P到⊙O的最近距离为3㎝,最远距离为9㎝,求⊙O 的半径。

例2、从不在⊙O上的一点A作一条直线与圆相交于B、C点,且A B·AC=64,OA=10,求⊙O的半径。

题型二弦与圆心的位置关系
例3、在半径为20㎝的圆中,有一弦长为16㎝,求它所对的弓形的高。

例4、在半径为1的⊙O中,弦AB、AC 分别是3和2,求∠BAC 的度数。

例5、⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.
题型三圆内接多边形的形状
例6、等腰三角形ABC内接于半径为10的圆内,其底BC的长为16,
求三角形ABC的面积。

例7、已知梯形ABCD 内接于⊙O ,AB ∥CD ,⊙O 的半径为4,AB=6,CD=2,求梯形ABCD 的面积。

题型四 弦所对的圆周角
例8 在⊙O 中,有一条弦AB 长等于半径R ,则此弦AB 所对的圆周角度数为多少?
例9.弦AB 是圆内接正三角形的一边,C 是圆上一点,已知弧AC 度数
为600,求∠BAC 。

分类讨论题(含答案)

分类讨论题(含答案)

分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

中考数学专题复习:分类讨论题

中考数学专题复习:分类讨论题

中考数学专题复习:分类讨论题中考数学专题复:分类讨论题直线型分类讨论直线型分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题。

这些问题中,等腰三角形顶角度数和三角形高的长度是重要的考点。

例如,对于一个等腰三角形,如果其中一个角度数为50°,则需要分类讨论这个角是顶角还是底角。

如果这个角是顶角,则可以通过求解另外两个角的度数得到顶角的度数;如果这个角是底角,则可以通过计算底角的度数来得到顶角的度数。

因此,顶角可能是50°或80°。

同样地,在解决三角形高的问题时,也需要分类讨论。

例如,如果一个三角形的底边和斜边长度已知,需要求解这个三角形的高的长度,则需要分类讨论这个高是否在三角形内部。

如果高在三角形内部,则可以利用勾股定理和相似三角形的性质求解高的长度;如果高在三角形外部,则可以利用平移和相似三角形的性质求解高的长度。

圆形分类讨论圆形分类讨论主要是解决圆的有关问题。

由于圆是轴对称图形和中心对称图形,因此在解决圆的问题时,需要注意分类讨论,以避免漏解。

例如,对于一个直角三角形,如果以直角为圆心画圆,则这个圆与斜边只有一个公共点。

这个问题可以分类讨论,分别考虑圆与斜边相切和圆与斜边相交的情况,从而得到圆的半径的取值范围。

函数方程分类讨论函数方程分类讨论主要是解决复杂的函数方程和方程组的问题。

在解决这些问题时,需要注意分类讨论,以避免遗漏解或得到错误的解。

例如,对于一个函数方程,如果该方程在某个区间内有多个解,则需要分类讨论这些解的性质,例如它们是否为连续函数、是否为单调函数等等。

从而可以得到方程的解的取值范围。

总之,分类讨论是解决数学问题的重要方法之一,尤其适用于复杂的问题。

在进行分类讨论时,需要认真分析问题,将问题分成若干个互不重叠的情况,并对每种情况进行单独的讨论和求解。

本题涉及到函数的分类讨论和解析式的求解,同时也需要注意特殊点的情况。

专题14 圆中的两解及多解问题分类讨论思想)归类集训-2023年中考数学二轮复习核心考点拓展训练

专题14 圆中的两解及多解问题分类讨论思想)归类集训-2023年中考数学二轮复习核心考点拓展训练

专题14 圆中的两解及多解问题(分类讨论思想)归类集训(解析版)类型一讨论弦上某点或端点的位置1.在半径为10的⊙O中,弦AB的长为16,点P在弦AB上,且OP的长为8,AP长为 .思路引领:作OC⊥AB于点C,根据垂径定理求出OC的长,根据勾股定理求出PC的长,分当点P在线段AC上和当点P在线段BC上两种情况计算即可.解:作OC⊥AB于点C,∴AC=12AB=8,由勾股定理得,OC=OA2―AC2=6,∴PC=OP2―OC2=27,当点P在线段AC上时,AP=AC﹣PC=8﹣27,当点P在线段BC上时,AP=8+27,故答案为:8﹣27或8+27.总结提升:本题考查的是垂径定理的应用和勾股定理的应用,正确作出辅助线构造直角三角形、运用分情况讨论思想是解题的关键.2.(2021•无棣县模拟)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )A.25cm B.43cm C.25cm或45cm D.23cm或43cm思路引领:分两种情况,根据题意画出图形,先根据垂径定理求出AM的长,连接OA,由勾股定理求出OM的长,进而可得出结论.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4(cm),OD=OC=5(cm),当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM=OA2―AM2=52―42=3(cm),∴CM=OC+OM=5+3=8(cm),∴AC=AM2+CM2=42+82=45(cm);当C点位置如图2所示时,同理可得:OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC=AM2+CM2=42+22=25(cm);综上所述,AC的长为45cm或25cm,故选:C.总结提升:本题考查的是垂径定理和勾股定理等知识,根据题意画出图形,利用垂径定理和勾股定理求解是解答此题的关键.3.(2020•黑龙江)在半径为5的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP = .思路引领:如图1,作OE⊥AB于E,OF⊥CD于F,连接OD、OB,如图,根据垂径定理得到AE=BE=12AB=2,DF=CF=12CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到PA=PC=1,根据三角形面积公式求得即可.解:作OE⊥AB于E,OF⊥CD于F,连接OD、OB,则AE=BE=12AB=2,DF=CF=12CD=2,如图1,在Rt△OBE中,∵OB=5,BE=2,∴OE=OB2―BE2=1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴PA=PC=1,∴S△APC=12×1×1=12;如图2,同理:S△APC=12×3×3=92;如图3,同理:S△APC=12×1×3=32;故答案为:12或32或92.总结提升:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.类型二圆心在两弦之间或者两弦之外4.(2021•商河县校级模拟)一下水管道的截面如图所示.已知排水管的直径为100cm,下雨前水面宽为60cm.一场大雨过后,水面宽为80cm,求水面上升多少?思路引领:分两种情形分别求解即可解决问题.解:作半径OD⊥AB交AB于C,连接OB,如图所示,由垂径定理得:BC=12AB=30cm,在Rt△OBC中,OC=502―302=40cm,当水位上升到圆心以下,水面宽80cm时,则OC′=502―402=30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.总结提升:本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.5.(1)半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于 ;(2)在半径为1的⊙O中,弦AB,AC的长分别为3和2,则∠BAC的度数是 ;(3)已知圆内接△ABC中.AB=AC,圆心O到BC的距离为3cm,圆的半径为7cm,求腰长AB.思路引领:(1)根据垂径定理求得AD的长,再根据三角形函数可得到∠AOD的度数,再根据圆周角定理得到∠ACB的度数,根据圆内接四边形的对角互补即可求得∠AEB的度数;(2)连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可;(3)可根据勾股定理先求得BD的值,再根据勾股定理可求得AB的值.注意:圆心在内接三角形内时,AD=10cm;圆心在内接三角形外时,AD=4cm.解:(1)如图1,过O作OD⊥AB,则AD=12AB=12×3=32.∵OA=1,∴sin∠AOD=ADOA=32,∠AOD=60°.∵∠AOD=12∠AOB=60°,∠ACB=12∠AOB,∴∠ACB=∠AOD=60°.又∵四边形AEBC是圆内接四边形,∴∠AEB=180°﹣∠ACB=180°﹣60°=120°.故这条弦所对的圆周角的度数等于60°或120度.故答案为:60°或120度.(2)解:有两种情况:①如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=32,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图3所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=22,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°,故答案为:75°或15°;(3)分圆心在内接三角形内和在内接三角形外两种情况讨论,如图4,假若∠A是锐角,△ABC是锐角三角形,连接OB,作AD⊥BC于D,连接OD,∵AB=AC,∴AD是BC的中垂线,∴OD也是BC的中垂线,∴A、O、D三点共线,∵OD=3cm,OB=7cm,∴AD=10cm,∴BD=OB2―OD2=210cm,∵OD⊥BC,∴BD=CD,∵AB=AC,∴AD⊥BC,∴AB=AD2+BD2=235cm;如图5,若∠A是钝角,则△ABC是钝角三角形,和图4解法一样,只是AD=7﹣3=4cm,∴AB=AD2+BD2=214cm,综上可得腰长AB=235cm或214cm.总结提升:本题主要考查了垂径定理和勾股定理,注意分圆心在内接三角形内和在内接三角形外两种情况讨论,解题的关键是根据题意作出图形,求出符合条件的所有情况.类型三讨论点在优弧上或劣弧上6.(2022秋•双城区期末)已知⊙O的半径为2,弦AB的长为23,则弦AB的中点到这条弦所对的弧的中点的距离为 .思路引领:由垂径定理得出AC,再由勾股定理得出OC,从而得出CD和CE的长.解:如图,∵C是弦AB的中点,AB=23,∴OC⊥AB,AC=12AB=3,∴AD=BD,AE=BE,在Rt△AOC中,OC=22―(3)2=1,∴CD=2﹣1=1cm,CE=2+1=3.故答案为:1或3.总结提升:本题考查了垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.8.(2021秋•凉州区校级期末)如图,AB、AC分别与⊙O相切于点B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是 .思路引领:此题分为两种情况,如图p点的位置有两个,所以∠BPC可能是锐角,也有可能是钝角,分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点.(1)当∠BPC为锐角,也就是∠BP1C时,根据AB,AC与⊙O相切,结合已知条件,在△ABC中,即可得出圆心角∠COB的度数,根据同弧所对的圆周角为圆心角的一半,即可得出∠BP1C的度数;(2)如果当∠BPC为钝角,也就是∠BP2C时,根据⊙O的内接四边形的性质,即可得出∠BP2C的度数.解:分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点,(1)当∠BPC为锐角,也就是∠BP1C时:∵AB,AC与⊙O相切于点B,C两点∴OC⊥AC,OB⊥AB,∵∠A=50°,∴在△ABC中,∠COB=130°,∵在⊙O中,∠BP1C为圆周角,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°故答案为:65°或115°.总结提升:本题考查圆的切线性质,在解题过程中还要注意对圆的内接四边形、圆周角、圆心角的有关性质的综合应用.类型四弦所对的圆周角7.(2018秋•泗阳县期中)若圆的一条弦把圆分成度数的比为1:3的两条弧,则该弦所对的圆周角等于 .思路引领:圆的一条弦把圆分成度数之比为1:3的两条弧,则所分的劣弧的度数是90°,当圆周角的顶点在优弧上时,这条弦所对的圆周角等于45°,当这条弦所对的圆周角的顶点在劣弧上时,这条弦所对的圆周角等于135°.解:如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;①当所求的圆周角顶点位于D点时,这条弦所对的圆周角∠ADB=12∠AOB=45°;②当所求的圆周角顶点位于C点时,这条弦所对的圆周角∠ACB=180°﹣∠ADB=135°.故答案为:45°,135°.总结提升:本题考查的是圆心角、弧、弦的关系及圆周角定理,在解答此类问题时要注意是在“同圆或等圆中”才适用,这是此类问题的易错点.9.(2020秋•溧阳市期末)已知△ABC是半径为2的圆内接三角形,若BC=23,则∠A的度数为( )A.30°B.60°C.120°D.60°或120°思路引领:首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23,∴BD=4,∴CD=BD2―BC2=2,∴CD=12 BD,∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°﹣∠A=120°,∴∠A的度数为:60°或120°.故选:D.总结提升:此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.类型五讨论圆内接三角形的形状10.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB 于点D.若△OBD是直角三角形,则弦BC的长为 .思路引领:如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=2OB=52.解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD =32OB =532,∴BC =AB =53,如图2,当∠DOB =90°,∴∠BOC =90°,∴△BOC 是等腰直角三角形,∴BC =2OB =52,综上所述:若△OBD 是直角三角形,则弦BC 的长为53或52,故答案为:53或52.点睛:本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.101.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,求BC 边上的高.思路引领:从圆心向BC 引垂线,交点为D ,则根据垂径定理和勾股定理可求出,OD 的长,再根据圆心在三角形内部和外部两种情况讨论.解:连接AO 并延长交BC 于D 点,∵AB =AC ,∴AB =AC ,根据垂径定理得AD ⊥BC ,则BD =4,根据勾股定理得OD =3①圆心在三角形内部时,三角形底边BC 上的高=5+3=8;②圆心在三角形外部时,三角形底边BC 上的高=5﹣3=2.所以BC 边上的高是8或2.总结提升:本题综合考查了垂径定理和勾股定理在圆中的应用,因三角形与圆心的位置不明确,注意分情况讨论.类型六讨论点与圆的位置关系12.(2020•南通模拟)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为 .思路引领:点P可能在圆内,也可能在圆外;当点P在圆内时,直径为最大距离与最小距离的和;当点P在圆外时,直径为最大距离与最小距离的差;再分别计算半径.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时,圆的直径为a+b,因而半径为a+b 2;当此点在圆外时,圆的直径是a﹣b,因而半径是a―b 2;故答案为:a+b2或a―b2.总结提升:本题考查了点与圆的位置关系,培养学生分类的思想及对点P到圆上最大距离、最小距离的认识.13.已知点P到⊙O的最长距离为6cm,最短距离为2cm.试求⊙O的半径长.思路引领:分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可解:①当P在⊙O外时,如图,∵P当⊙O的最长距离是为6cm,最短距离为2cm,∴PB=6cm,PA=2cm,∴AB=4cm,∴⊙O的半径为2cm';当P在⊙O内时,,此时AB=8cm,⊙O的半径为4cm.即⊙O的半径长为2cm或4cm.解题秘籍:本题考查了点和圆的位置关系,分类讨论是解此题的关键.类型七讨论直线与圆的位置关系14.(2021•崇明区二模)已知同一平面内有⊙O和点A与点B,如果⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,那么直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切思路引领:根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外.点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.总结提升:本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.15.(2021秋•信都区校级月考)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r为半径的圆与边AB所在直线相离,则r的取值范围为 ;若⊙C与AB边只有一个公共点,则r的取值范围为 .思路引领:如图,作CH⊥AB于H.利用勾股定理求出AB,再利用面积法求出CH即可判断.解:如图,作CH⊥AB于H.在Rt△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB=AC2+BC2=62+82=10,∵S△ABC=12•AC•BC=12•AB•CH,∴CH=24 5,∵以点C为圆心,r为半径的圆与边AB所在直线相离,∴r的取值范围为r<24 5,∵⊙C与AB边只有一个公共点,∴r的取值范围为6<r≤8或r=24 5,故答案为:r<245,6<r≤8或r=245.总结提升:本题考查直线与圆的位置关系,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(衢州中考)如图,已知直线l的解析式是y=43x﹣4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l 相切时,则该圆运动的时间为( )A.3秒或6秒B.6秒C.3秒D.6秒或16秒思路引领:由y=43x﹣4可以求出与x轴、y轴的交点A(3,0)、B(0,﹣4)坐标,再根据勾股定理可得AB=5,当C在B上方,根据直线与圆相切时知道C到AB的距离等于1.5,然后利用三角函数可得到CB,最后即可得到C运动的距离和运动的时间;同理当C在B下方,利用题意的方法也可以求出C 运动的距离和运动的时间.解:如图,∵x=0时,y=﹣4,y=0时,x=3,∴A(3,0)、B(0,﹣4),∴AB=5,当C在B上方,直线与圆相切时,连接CD,则C到AB的距离等于1.5,∴CB=1.5÷sin∠ABC=1.5×53=2.5;∴C运动的距离为:1.5+(4﹣2.5)=3,运动的时间为:3÷0.5=6;同理当C在B下方,直线与圆相切时,连接CD,则C运动的距离为:1.5+(4+2.5)=8,运动的时间为:8÷0.5=16.故选:D.总结提升:此题首先注意分类讨论,利用了切线的性质和三角函数等知识解决问题.17.(2018•浦东新区二模)已知l1∥l2,l1、l2之间的距离是3cm,圆心O到直线l1的距离是1cm,如果圆O 与直线l1、l2有三个公共点,那么圆O的半径为 cm.思路引领:根据题意可以画出相应的图形,从而可以解答本题.解:如下图所示,设圆的半径为r如图一所示,r﹣1=3,得r=4,如图二所示,r+1=3,得r=2,故答案为:2或4.总结提升:本题考查直线和圆的位置关系,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.18.(2021秋•新荣区月考)综合与实践问题情境:数学活动课上,老师出示了一个直角三角板和量角器,把量角器的中心O 点放置在AC 的中点上,DE 与直角边AC 重合,如图1所示,∠C =90°,BC =6,AC =8,OD =3,量角器交AB 于点G ,F ,现将量角器DE 绕点C 旋转,如图2所示.(1)点C 到边AB 的距离为 245 .(2)在旋转过程中,求点O 到AB 距离的最小值.(3)若半圆O 与Rt △ABC 的直角边相切,设切点为K ,求BK 的长.思路引领:(1)如图1,过点C 作CH ⊥AB 于点H ,利用勾股定理求得AB ,再利用AB •CH =AC •BC ,即可求得答案.(2)当CD ⊥AB 时,点O 到AB 的距离最小,再由OH =CH ﹣OC ,即可求得答案.(3)分两种情况:①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,运用勾股定理即可求得答案;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,运用勾股定理求得CK ,再利用勾股定理即可求得BK .解:(1)如图1,过点C 作CH ⊥AB 于点H ,∵∠ACB =90°,BC =6,AC =8,∴AB =AC 2+BC 2=62+82=10,∵CH ⊥AB ,∴AB •CH =AC •BC ,∴CH =AC ⋅BC AB=6×810=245,即点C 到边AB 的距离为245,故答案为:245.(2)∵O 为AC 的中点,∴OC =12AC =12×8=4,当CD ⊥AB 时,点O 到AB 的距离最小,∴OH =CH ﹣OC =245―4=45,∴点O 到AB 距离的最小值为45.(3)①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,∴BK =BC ﹣CK =6―7;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,在Rt △BCK 中,BK =BC 2+CK 2=62+(7)2=43;综上所述,BK 的长为7或43.解题秘籍:本题是几何综合题,考查了圆的性质,切线的性质,旋转变换的性质,勾股定理,三角形面积,解题关键是熟练掌握旋转变换的性质等相关知识,运用分类讨论思想解决问题.。

2.5.2圆与圆的位置关系(解析版)

2.5.2圆与圆的位置关系(解析版)

2.5.2圆与圆的位置关系一、圆和圆的位置关系1.圆与圆的五种位置关系的定义 两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离. 两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点. 两圆相交:两个圆有两个公共点时,叫做这两圆相交. 两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点. 两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系: 设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则: 两圆外离d>r1+r2 两圆外切d=r1+r2 两圆相交r1-r2<d<r1+r2(r1≥r2) 两圆内切d=r1-r2(r1>r2) 两圆内含d<r1-r2(r1>r2)要点: (1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交; (2) 内切、外切统称为相切,唯一的公共点叫作切点; (3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.A .2种B .3种C .4种D .5种【答案】A 【解析】由图形可以看出,有两种位置关系,相交和内切.故选A.题型2:根据圆与圆的位置关系求半径4.已知1O e 与2O e 相切,若1O e 的半径为3cm ,127cm O O =,,则2O e 的半径为( )A .4cm 或12cmB .10cm 或6cmC .4cm 或10cmD .6cm 或12cm【答案】C【分析】根据圆与圆的位置关系,内切时()2121d r r r r =->,外切时12d r r =+,计算即可.【解析】解:两圆内切时,2O e 的半径7310=+=(cm),外切时,2O e 的半径734=-=(cm),∴2O e 的半径为4cm 或10cm .故选:C .【点睛】本题考查了圆与圆的位置关系,熟练掌握知识点是解题的关键.5.如果两圆有两个交点,且圆心距为13,那么此两圆的半径可能为( )A .1、10B .5、8C .25、40D .20、30【答案】D【分析】先由两圆有两个交点得到两圆相交,然后根据半径与圆心距之间的关系求解即可.【解析】∵两圆有两个交点,∴两圆相交,∵圆心距为13∴两圆的半径之差小于13,半径之和大于13.A .1101113+=<,故不符合题意;B .5813+=,故不符合题意;【点睛】此题重点考查圆与圆的位置关系、线段的垂直平分线的性质、勾股定理以及数形结合与分类讨论数学思想的运用等知识与方法,正确地作出所需要的辅助线是解题的关键.9.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距A.0<d<3B.0<d<7C.3<d<7A.45°B.30°【答案】B【分析】连接O1O2,AO2,O1B,可得【解析】解:连接O1O2,AO2,O∵O 1B = O 1A∴112112O AB O BA AO O Ð=Ð=Ð ∵⊙O 1和⊙O 2是等圆,∴AO 1=O 1O 2=AO 2,∴△AO O 是等边三角形,【点睛】本题考查了相交两圆的性质以及等边三角形的判定与性质,得出21AO O D 是等边三角形是解题的关键.题型5:分类讨论13.已知圆1O 、圆2O 的半径不相等,圆1O 的半径长为5,若圆2O 上的点A 满足15AO =,则圆1O 与圆2O 的位置关系是( )A .相交或相切B .相切或相离C .相交或内含D .相切或内含【答案】A【分析】根据圆与圆的位置关系,分类讨论.【解析】解:如图所示:当两圆外切时,切点A 能满足15AO =,当两圆相交时,交点A 能满足15AO =,当两圆内切时,切点A 能满足15AO =,当两圆相离时,圆2O 上的点A 不能满足15AO =,所以,两圆相交或相切,故选:A .【点睛】本题考查了由数量关系来判断两圆位置关系的方法.14.如图,长方形ABCD 中,4AB =,2AD =,圆B 半径为1,圆A 与圆B 外切,则点C 、D 与圆A 的位置关系是( )A .点C 在圆A 外,点D 在圆C .点C 在圆A 上,点D 在圆【答案】A 【分析】先根据两圆外切求出圆A 的半径,连接【解析】解:∵4AB =,圆B 半径为【点睛】本题考查了点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.15.如图,1O e ,2O e 的圆心 1O ,128cm O O =.1O e 以 1cm /s 的速度沿直线A .外切B .相交C .内切D .内含【答案】D 【分析】先求出7s 后,两圆的圆心距为1cm ,结合两圆的半径差即可得到答案.【解析】解:∵1O e 的半径为 2cm ,2O e 的半径为 3cm ,128cm O O =.1O e 以 1cm /s 的速度沿直线 l 向右运动,7s 后停止运动.∴7s 后,两圆的圆心距为1cm ,此时两圆的半径差为321cm -=,∴此时两圆内切,∴在此过程中,1O e 与 2O e 没有出现的位置关系是:内含,故选D .【点睛】本题主要考查圆与圆的位置关系,掌握d R r =+,则两圆外切,d R r =-,则两圆外切,是关键.题型6:圆的位置关系综合16.如图,∠MON =30°,p 是∠MON 的角平分线,PQ 平行ON 交OM 于点Q ,以P 为圆心半径为4的圆ON 相切,如果以Q 为圆心半径为r 的圆与P Q 相交,那么r 的取值范围是( )A .4<r <12B .2<r <12C .4<r <8D .r >4【答案】A 【分析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,得到四边形ABPQ 是矩形,QA=PB=4,根据∠MON =30°求出OQ=2QA=8,根据平行线的性质及角平分线的性质得到PQ=8,再分内切与外切两种求出半径r ,即可得到两圆相交时的半径r 的取值范围.【解析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,∵PQ ∥ON ,∴PQ ⊥PB ,∴∠QAB=∠QPB=∠PBA=90°,∴四边形ABPQ 是矩形,∴QA=PB=4,∵∠MON =30°,∴OQ=2QA=8,∵OP 平分∠MON ,PQ ∥ON ,∴∠QOP=∠PON=∠QPO ,∴PQ=OQ=8,当以Q 为圆心半径为r 的圆与P Q 相外切时,r=8-4=4,当以Q 为圆心半径为r 的圆与P Q 相内切时,r=8+4=12,∴以Q 为圆心半径为r 的圆与P Q 相交,4<r<12,故选:A.【点睛】此题考查角平分线的性质,平行线的性质,矩形的判定及性质,两圆相切的性质.17.如图,在Rt ABC V 中,90C Ð=°,4AC =,7BC =,点D 在边BC 上,3CD =,A e 的半径长为3,D e 与A e 相交,且点B 在D e 外,那么D e 的半径长r 可能是( )A .1r =B .3r =C .=5r D .7r =【答案】B 【分析】连接AD 交A e 于E ,根据勾股定理求出AD 的长,从而求出DE DB 、的长,再根据相交两圆的位置关系得出r 的范围即可.【解析】解:连接AD 交A e 于E ,如图1,在Rt ACD V 中,由勾股定理得:则532DE AD AE =-=-=,73BC CD ==Q ,,734BD \=-=,\D e A eA .142r <<B .52r <<【答案】C【分析】过点O 作OE AD ^,勾股定理求得11,OE AB OF AD ==,根据题意,画出相应的图形,即可求解.当圆O 与CD 相切时,过点O 作OF CD ^于点F ,如图所示,则162OF AD ==则1325622r =+=∴O e 与直线AD 相交、与直线CD 相离,且D e 与O e 内切时,作AD⊥BC,以A为圆心,以AD为半径画圆一、单选题1.如果两圆的半径长分别为5和3,圆心距为8,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切【答案】D【分析】根据两圆半径的和与圆心距,即可确定两圆位置关系.【解析】解:∵两圆的半径长分别为5和3,圆心距为8,538+=,∴两圆外切,故选:D .【点睛】本题考查了圆与圆的位置关系,解题的关键是掌握:外离,则d R r >+;外切,则d R r =+;相交,则R r d R r -<<+;内切,则d R r =-;内含,则d R r <-.2.两圆的半径分别为2和3,圆心距为7,则这两个圆的位置关系为( )A .外离B .外切C .相交D .内切【答案】A【分析】本题直接告诉了两圆的半径及圆心距,根据它们数量关系与两圆位置关系的对应情况便可直接得出答案.【解析】解:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离.故选A .【点睛】本题主要考查了圆与圆的位置关系,解题的关键在于能够准确掌握相关知识进行求解.3.已知直径分别为6和10的两圆没有公共点,那么这两个圆的圆心距的取值范围是( )A .d >2B .d >8C .d >8或0≤d <2D .2≤d <8【答案】C【分析】分两种情况讨论:当两圆外离时,两圆没有公共点时,当两圆内含时,两圆没有公共点时,从而可得答案.【解析】解:Q 直径分别为6和10的两圆没有公共点,\ 两圆的半径分别为3和5,当两圆外离时,两圆没有公共点时,8,d >当两圆内含时,两圆没有公共点时,02,d £<综上:所以两圆没有公共点时,8d >或0 2.d £<故选C【点睛】本题考查的是两圆的位置关系,熟练的运用两圆外离与内含的定义解题是解本题的关键.4.已知点()4,0A ,()0,3B ,如果⊙A 的半径为2,⊙B 的半径为7,那么⊙A 与⊙B 的位置关系( )【点睛】本题考查了两圆外切的条件,两圆相交的条件,等腰直角三角形的性质和对称性,熟练掌握两圆D .当⊙1O 与⊙2O 没有公共点时,1202O O <≤.【答案】D【分析】根据圆与圆位置关系的性质,对各个选项逐个分析,即可得到答案.【解析】当1224O O <<时,⊙1O 与⊙2O 相交,有两个公共点,故选项A 描述正确;当⊙1O 与⊙2O 有两个公共点时,1224O O <<,故选项B 描述正确;当1202O O <≤时,⊙1O 与⊙2O 没有公共点,故选项C 描述正确;当⊙1O 与⊙2O 没有公共点时,1202O O <≤或124O O >,故选项D 描述错误;故选:D .【点睛】本题考查了圆与圆位置关系的知识;解题的关键是熟练掌握圆与圆位置关系的性质,从而完成求解.9.如图,矩形ABCD 中,AB=4,BC=6,以A 、D 为圆心,半径分别为2和1画圆,E 、F 分别是⊙A 、⊙D 上的一动点,P 是BC 上的一动点,则PE+PF 的最小值是( )A .5B .6C .7D .8【答案】C 【分析】以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD′交BC 于P ,交⊙A 、⊙D′于E 、F′,连接PD ,交⊙D 于F ,EF′就是PE+PF 最小值;根据勾股定理求得AD′的长,即可求得PE+PF 最小值.【解析】解:如图,以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD’交BC 于P ,则EF′就是PE+PF最小值;∵矩形ABCD中,AB=4,BC=6,圆A的半径为2,圆D的半径为1,∴A′D′=BC=6,AA′=2AB=8,AE=2,D′F′=DF=1,∴AD′=10,EF′=10-2-1=7∴PE+PF=PF′+PE=EF′=7,故选C.【点睛】本题考查了轴对称-最短路线问题,勾股定理的应用等,作出对称图形是解答本题的关键.10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1C.2D.+1【答案】A【解析】试题分析:利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.解:如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,∴OO′=×2=.由题意可知,∠ACB=∠ABC=∠AOD=30°,∴∠ACB=∠AO′D,∴点C在半径为1的⊙O′上运动.由图可知,OC长度的取值范围是:﹣1≤OC≤+1.故选A.考点:相交两圆的性质;轴对称的性质.二、填空题当1O e 位于2O e 外部,且P ,1O ,2O 位于同一条直线上时,如图所示,min 121523r O O PO =-=-=.故答案为:37r ££.【点睛】本题主要考查圆与圆的位置关系,能采用数形结合的方法和分类讨论的思想分析问题是解题的关键.16.在矩形ABCD 中,5AB =,8AD =,点E 在边AD 上,3AE =图),点F 在边BC 上,以点F 为圆心、CF 为半径作F e .如果F e【答案】4116【分析】连接EF ,作FH 股定理得到()(235r r +=-【解析】解:连接EF ,作BQe过点A,且7AB=,由函数图象可知,当即不等式①的解集为同理可得:不等式②【点睛】此题主要考查了相交两圆的性质以及勾股定理,熟练利用正三角形以及正方形的性质是解题关键.20.已知A e ,B e ,C e 【答案】A e 的半径为2厘米,(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 【答案】(1)22111422a ax x p p p -+11求:(1)弦AC的长度;(2)四边形ACO1O2的面积.【答案】(1)8(2)21(2)解:在2Rt AO E △中,由勾股定理得:∴1212426O O O E O E =+=+=∴1111831222O AC S AC O D ==´´=g △,S ∴四边形ACO 1O 2的面积为:S S +(1)如图1所示,已知,点()02A ,,点()32B ,.①在点()()()123011141P P P -,,,,,中,是线段AB 的“对称平衡点”的是___________②线段AB 上是否存在线段AB 的“对称平衡点”?若存在,请求出符合要求的 “对称平衡点若不存在,请说明理由;(2)如图2,以点()02A ,为圆心,1为半径作A e .坐标系内的点C 满足2AC =,再以点作C e ,若C e 上存在A e 的“对称平衡点”,直接写出C 点纵坐标C y 的取值范围.【答案】(1)①1P ,3P ;②不存在,理由见解析(2)02c y ££∴线段AB的“对称平衡点”的是1P,故答案为:1P,3P;②不存在设P为线段AB上任意一点,则它与线段££,PA PB33点P关于x轴的对称点为P¢,它到线段,是线段AB上的任意两点,即若M N∵()()0,2,0,0A O ∴02c y ££【点睛】本题考查了对称平衡点.两圆的位置关系,点与圆的位置关系等知识,解题的关键是理解题意,学会取特殊点特殊位置解决问题.。

部编数学九年级上册专题07圆易错题(解析版)含答案

部编数学九年级上册专题07圆易错题(解析版)含答案

r=6-42=1r=6+42=5点P 到圆上一点的最大距离是6cm ,最小距离是4cm ,圆的半径是___专题07 圆易错题圆,期末必考。

圆与其它不同是,圆中隐含条件多,圆的题解不出,往往不是由于条件不够,更多的是由于条件太多,而我们由于对模型运用不够熟练,基础知识掌握不牢造成的。

本专题精选期末圆的易错试题,并配以详细的解答,为你复习迎考助力!圆中易错两种情况1.平行弦间距2.点到圆上点的距离最大与最小:3.弦对圆周角:4.相切的上下左右EF=OE-OF=4-3=1EF=OE+OF=4+3=7AB ∥CD,AB=10,CD=8,圆的半径是5,则AB 与CD 之间的距离是____所以:∠P 2=60°,∠P 1=120°3.可得:BE=3,OB=2易证:∠1=60°,∠AOB =120°1.画出示意图。

2.作OE ⊥AB ,垂足为E 。

在半径是2的⊙O 中,弦AB=23,则AB 所对的圆周角_____.1一.选择题1.如图,△ABC 与△ACD 中,AD =AC =DC =BAC :∠B :∠ACB =1:2:3,则△ABC 的外心与△ACD 的内心之间的距离为( )A .2BC .D .3试题分析:如图,过点D 作DG ⊥AC 于点G ,并延长交AB 于点F ,得△ABC 的外心,过点A 作AE 平分∠DAC 交DG 于点E ,则点E 为△ACD 的内心,证明△ACD 和△AEF 是等边三角形,从而可以解答.答案详解:解:如图,过点D 作DG ⊥AC 于点G ,并延长交AB 于点F ,△ACD 中,AD =AC =DC =∴△ACD 是等边三角形,点G 为AC 中点,过点A 作AE 平分∠DAC 交DG 于点E ,则点E 为△ACD 的内心,∠EAC =30°,∵△ABC 中,∠BAC :∠B :∠ACB =1:2:3,∴∠BAC =30°,∠B =60°,∠ACB =90°,∴BC ∥EF ,∠EAF =∠EAC +∠BAC =60°,简记:上切下切左切右切线段直线分类讨论实战训练∴∠AFE=∠B=60°,∵AG=CG,∴点F为AB中点,即点F为△ABC的外心,∴△AEF是等边三角形,∵AC=∴在Rt△ABC中,AB=4,∴EF=AF=2.则△ABC的外心与△ACD的内心之间的距离为2.所以选:A.2.如图,Rt△ABC中,AB⊥BC,AB=4,BC=3,P是平面上的一个点,连换AP,BP,已知∠P 始终为直角,则线段CP长的最大值为( )A.6B C+2D.5试题分析:首先证明点P在以AB为直径的⊙O上,连接OC,并延长CO与交⊙O于点P,此时PC最大,利用勾股定理求出OC即可解决问题.答案详解:解:∵∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC,并延长CO与交⊙O于点P,此时PC最大,在Rt△BCO中,∵∠OBC=90°,BC=3,OB=2,∴OC=∴PC=OC+OP=+2,∴PC+2.所以选:C.3.给出下列结论:①有一个角是100°的两个等腰三角形相似.②三角形的内切圆和外接圆是同心圆.③圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.④等腰梯形既是轴对称图形,又是中心对称图形.⑤平分弦的直径垂直于弦,并且平分弦所对的两弧.⑥过直线外一点有且只有一条直线平行于已知直线.其中正确命题有( )个.A.2个B.3个C.4个D.5个试题分析:根据圆相关知识点进行判断即可.答案详解:解:①、因为100°是钝角,所以只能是等腰三角形的顶角,则根据三角形的内角和定理,知它们的底角也对应相等,根据两角对应相等的两个三角形是相似三角形,则两个等腰三角形相似,故正确;②、三角形的内切圆的圆心是三条角平分线的交点,外接圆的圆心是三条垂直平分线的交点,只有等边三角形的内心和外心才重合,故错误;③、应当是圆心到直线的距离而不是圆心到直线上一点的距离恰好等于圆的半径,注意两者的说法区别:前者是点到直线的距离,后者是两个点之间的距离,故错误;④、等腰梯形不是中心对称图形,故错误;⑤、平分弦中的弦不能是直径,因为任意的两条直径都是互相平分,故错误;⑥、本题是平行公理,故正确.因此正确的结论是①⑥.所以选:A.4.如图,△ABC和△AMN都是等边三角形,点M是△ABC的外心,那么MN:BC的值为( )A.23B.3C.14D.49试题分析:延长AM交BC于点D,连接BM,根据△ABC是等边三角形可知AD⊥BC,设MD=x,则BM=AM=2x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.答案详解:解:如图,延长AM交BC于点D,连接BM,∵△ABC是等边三角形,点M是△ABC的外心,∴AD⊥BC,∠ABM=∠BAM=30°,AM=BM,设MD=x,则BM=AM=2x,∴AD=3x,BD,∴AB=2BD=,∵△ABC和△AMN都是等边三角形,∴AB=BC=,AM=MN=2x,∴MN:BC=2x:=所以选:B.5.如图,在平面直角坐标系中,以M(2,3)为圆心,AB为直径的圆与x轴相切,与y轴交于A,C两点,则AC的长为( )A.4B.C.D.6试题分析:设⊙M与x轴相切于点D,连接MD,过点M作ME⊥AC,垂足为E,根据垂径定理可得AC=2AE,再利用切线的性质可得∠MDO=90°,然后根据点M的坐标可得ME=2,MA=MD=3,最后在Rt△AEM中,利用勾股定理进行计算即可解答.答案详解:解:设⊙M与x轴相切于点D,连接MD,过点M作ME⊥AC,垂足为E,∴AC =2AE ,∵⊙M 与x 轴相切于点D ,∴∠MDO =90°,∵M (2,3),∴ME =2,MD =3,∴MA =MD =3,在Rt △AEM 中,AE ==∴AC =2AE =所以选:B .6.如图,AB 是⊙O 的弦,PO ⊥OA 交AB 于点P ,过点B 的切线交OP 的延长线于点C ,若⊙O 的OP =1,则BC 的长为( )A .2BC .52D 试题分析:根据切线的性质可得∠OBC =90°,从而可得∠OBA +∠ABC =90°,再根据垂直定义可得∠POA =90°,从而可得∠A +∠APO =90°,然后利用等腰三角形的性质,以及等角的余角相等,对顶角相等可得∠ABC =∠BPC ,从而可得BC =CP ,最后在Rt △OBC 中,利用勾股定理进行计算即可解答.答案详解:解:∵BC 与⊙O 相切于点B ,∴∠OBC =90°,∴∠OBA +∠ABC =90°,∵PO⊥OA,∴∠POA=90°,∴∠A+∠APO=90°,∵OA=OB,∴∠A=∠OBA,∴∠ABC=∠APO,∵∠APO=∠BPC,∴∠ABC=∠BPC,∴BC=CP,设BC=CP=x,在Rt△OBC中,OB2+BC2=OC2,2+x2=(x+1)2,∴BC=2,所以选:A.7.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC、AD.若∠BAC=28°,则∠D的度数是( )A.56°B.58°C.60°D.62°试题分析:连接BC,根据直径所对的圆周角是直角可得∠ACB=90°,从而利用直角三角形的两个锐角互余可得∠B=62°,然后利用同弧所对的圆周角相等即可解答.答案详解:解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=28°,∴∠B=90°﹣∠BAC=62°,∴∠B=∠D=62°,所以选:D.8.如图,AB是⊙O的直径,CD是⊙O的弦,连接BD、BC,若∠ABD=56°,则∠BCD的度数为( )A.34°B.56°C.68°D.102°试题分析:连接AD,根据AB是直径可知∠ADB=90°=∠DAB+∠ABD,即可求出∠DAB,根据圆周角定的推论可得∠DAB=∠BCD,则问题得解.答案详解:解:连接AD,如图:∵AB是⊙O的直径,∴∠ADB=90°=∠DAB+∠ABD,又∵∠DAB=∠BCD,∠ABD=56°,∴∠DAB=90°﹣∠ABD=90°﹣56°=34°,∴∠BCD=34°.所以选:A.9.如图,线段AB是⊙O的直径,点C在圆上,∠AOC=60°,点P是线段AB延长线上的一点,连结PC,则∠APC的度数不可能是( )A.30°B.25°C.10°D.5°试题分析:连接CB,根据一条弧所对的圆周角等于它所对的圆心角的一半,求出∠ABC的度数,再利用三角形的外角即可解答.答案详解:解:连接CB,∵∠AOC=60°,∴∠ABC=12∠AOC=30°,∵∠ABC是△PBC的一个外角,∴∠ABC>∠APC,∴∠APC的度数不可能是30°,所以选:A.10.下列语句:①长度相等的弧是等弧;②过平面内三点可以作一个圆;③平分弦的直径垂直于弦;④90°的圆周角所对的弦是直径;⑤等弦对等弧.其中正确的个数是( )A.1个B.2个C.3个D.4个试题分析:根据等弧的概念、确定圆的条件、垂径定理的推论、圆周角定理判断即可.答案详解:解:①长度相等的弧不一定是等弧,本小题说法错误;②过平面内不在同一直线上的三点可以作一个圆,本小题说法错误;③平分弦(不是直径)的直径垂直于弦,本小题说法错误;④90°的圆周角所对的弦是直径,本小题说法正确;⑤在同圆或等圆中,等弦所对的劣等弧,所对的优弧是等弧,本小题说法错误;所以选:A.11.如图,点A,B,C,D都在圆上,线段AC与BD交于点M,MB=MD,当点B,D,M保持不变,点A在圆上自点B向点D运动的过程中(点A不与点B,点D重合),那么线段MA与MC 的乘积( )A.不变B.先变大,后变小C.变大D.先变小,后变大试题分析:根据相交弦定理直接解答即可.答案详解:解:∵点A,B,C,D都在圆上,∴MB•MD=AM•MC,∵MB=MD,当点B,D,M保持不变,∴MB•MD为定值,∴AM•MC为定值.所以选:A.二.填空题(共28小题)12.如图,半圆O的直径DE=12cm,在Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,当圆心O运动到点B时停止,点D、E始终在直线BC上.设运动时间为t(s),运动开始时,半圆O在△ABC的左侧,OC=8cm.当t= 1s,4s,7s,16s 时,Rt△ABC的一边所在直线与半圆O所在的圆相切.试题分析:分4种情况讨论:①当圆心O运动到点E与点C重合是时;②当圆心O运动到AC 右侧与AC相切时;③过C点作CF⊥AB,交AB于F点,当半圆O与△ABC的边AB相切时,圆心O到AB的距离等于6cm,且圆心O又在直线BC上,即当O点运动到C点时,半圆O与△ABC的边AB相切,此时点O运动了8cm,所求运动时间为t=4.答案详解:解:①当圆心O运动到点E与点C重合是时,∵AC⊥OE,OC=OE=6cm,此时AC与半圆O所在的圆相切,点O运动了2cm,所求运动时间为t=2÷2=1(s);②当圆心O运动到AC右侧与AC相切时,此时OC=6cm,点O运动的距离为8+6=14(cm),所求运动时间为t=14÷2=7(s);③如图1,过C点作CF⊥AB,交AB于F点;∵∠ABC=30°,BC=12cm,∴FO=6cm;当半圆O与△ABC的边AB相切时,∵圆心O到AB的距离等于6cm,且圆心O又在直线BC上,∴O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切;此时点O运动了8cm,所求运动时间为t=8÷2=4(s),当点O运动到B点的右侧,且OB=12cm时,如图2,过点O作OQ⊥直线AB,垂足为Q.在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ与半圆O所在的圆相切.此时点O运动了32cm.所求运动时间为:t=32÷2=16s,综上可知当t的值为1s或4s或7秒或16s时,Rt△ABC的一边所在直线与半圆O所在的圆相切.所以答案是:1s,4s,7s,16s.13.已知点M (2.0),⊙M 的半径为1,OA 切⊙M 于点A ,点P 为⊙M 上的动点,当P 的坐标为 (1,0),(3,0)(32,2) 时,△POA 是等腰三角形.试题分析:根据题意画出图形分三种情况讨论:当点P 在x 轴上,PA =PO =1,OA =OP ″=3,当点P 是切点时,AO =AP = 答案详解:解:如图,当P 的坐标为(1,0),(3,0),(32,2)时,△POA 是等腰三角形.理由如下:连接AM ,∵M (2.0),⊙M 的半径为1,∴OM =2,AM =PM =1,∴OP =1,∵OA 切⊙M 于点A ,∴∠MAO =90°,∴∠AOM =30°,∴∠AMO =60°,∴PA =AM =PM =1,∴OP =PA =1,∴P (1,0);当OA =OP ′时,连接AP ′交x 轴于点H ,∵OA 切⊙M 于点A ,∴OP ′切⊙M 于点P ′,∴∠P ′OM =∠AOM =30°,∴∠AOP ′=60°,∴△AOP ′是等边三角形,∴AP ′=OA ==∴OH ==32,P ′H =12AP ′∴P ′(32,2);∵MA =MP ″,∠AMO =60°,∴∠MAP ″=∠MP ″A =30°,∴∠AOP ″=∠MP ″A =30°,∴OA =OP ″,∴P ″(3,0).综上所述:当P 的坐标为(1,0),(3,0),(32,2)时,△POA 是等腰三角形.所以答案是:(1,0),(3,0),(32,2).14.已知三角形ABC 是锐角三角形,其中∠A =30°,BC =4,设BC 边上的高为h ,则h 的取值范围是 试题分析:做出三角形的外接圆,根据h ≤AO +OP 求解即可.答案详解:解:如图1,作△ABC 的外接圆⊙O ,连接OA ,OB ,OC ,过O 作OP ⊥BC ,∵∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∵BC=4,∴OA=BC=4,PO=∴h≤AO+OP=如图2,A1B⊥BC,A2C⊥BC,则A1B=∵三角形ABC是锐角三角形,∴点A在A1A2之间,∴h的取值范围是:h≤所以答案是:h≤15.如图,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是边AB上的动点,Q是边BC上的动点,且∠CPQ=90°,则线段CQ的取值范围是 203≤CQ≤12 .试题分析:根据直径所对的圆周角是直角,则分析以CQ为直径的圆和斜边AB的公共点的情况:一是半圆和AB相切;二是半圆和AB相交.首先求得相切时CQ的值,即可进一步求得相交时CQ的范围.答案详解:解:∵Rt△ABC中,AC=5,BC=12,∠ACB=90°,∴AB=13,①当半圆O与AB相切时,如图,连接OP,则OP⊥AB,且AC=AP=5,∴PB=AB﹣AP=13﹣5=8;设CO=x,则OP=x,OB=12﹣x;在Rt△OPB中,OB2=OP2+OB2,即(12﹣x)2=x2+82,解之得x=10 3,∴CQ=2x=20 3;即当CQ=203且点P运动到切点的位置时,△CPQ为直角三角形.②当203<CQ≤12时,半圆O与直线AB有两个交点,当点P运动到这两个交点的位置时,△CPQ为直角三角形③当0<CQ<203时,半圆O与直线AB相离,即点P在AB边上运动时,均在半圆O外,∠CPQ<90°,此时△CPQ不可能为直角三角形.∴当203≤CQ≤12时,△CPQ可能为直角三角形.所以答案是:203≤CQ ≤12.16.如图,点O 为△ABC 的外接圆圆心,点E 为圆上一点,BC 、OE 互相平分,CF ⊥AE 于F ,连接DF .若OE =DF =1,则△ABC试题分析:由BC 、OE 互相平分可证明四边形BECO 为平行四边形,由OC =OB 可得BECO 为菱形,可得∠BOD =60°,∠BAE =∠EAC =30°,CF ⊥AE 于F ,可证△AGC 为等边三角形,F 为中点,则由中位线性质可得BG =2DF .在Rt △BHC 中利用勾股定理可求GH ,进而得到AB 、AC ,得到△ABC 的周长.答案详解:解:延长CF 交AB 于点G ,过C 作CH ⊥AB 于H ,连BO .∵BC 、OE 互相平分,∴四边形BECO 为平行四边形,∵OB =OC ,∴四边形BECO 为菱形,∴BE =EC ,∵OE =∴Rt △BOD 中,tan ∠OBD =OD BD =∴∠OBD =30°,∴∠BOD =60°,∴∠BAE =∠EAC =30°,∵CF ⊥AE ,∴F为GC中点,△AGC为等边三角形,∴BG=2DF=2,在Rt△BCH中,BH2+HC2=BC2,∴(2+GH)2+)2=62,解得GH GH∴AG=AC=﹣1∴△ABC的周长为所以答案是:17.如图,D为△ABC的内心,点E在AC上,且AD⊥DE,若DE=2,AD=CE=3,则AB的长43 .试题分析:延长ED交AB于点F,连接BD,将线段AB分为AF和BF两部分,分别计算:先证明△ADE≌△ADF,利用勾股定理得AE的长度,即为AF的长度,再证明△BFD∽△DEC,利用相似,列比例式求得BF,两者相加即可.答案详解:解:如图,延长ED交AB于点F,连接BD,∵AD⊥DE∴∠ADE=∠ADF=90°∵D为△ABC的内心∴∠DAE=∠DAF∵AD=AD∴△ADE≌△ADF(ASA)∵AE=AF,DE=DF=2∴AE∴AF∵∠ABC+∠ACB+∠BAC=180°∴∠ADC=180°﹣(∠DAC+∠DCA)=180°−12(∠BAC+∠ACB)=180°−12(180°﹣∠ABC)=90°+12∠ABC=90°+∠ABD=90°+∠CBD=90°+∠CDE∴∠ABD=∠CBD=∠CDE ∵△ADE≌△ADF∠AFD=∠AED∴∠BFD=∠DEC∴△BFD∽△DEC∴BFDE=DFCE∴BF2=23∴BF=4 3∴AB=AF+BF 4 34318.如图,在△ABC中,∠BAC=30°,∠ACB=60°,BC=1,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A',连结A'C,A'P.点P到达点B 时,线段A'P扫过的面积为 43π−试题分析:依据轴对称的性质,即可得到AC =A 'C ,进而得出点A '的运动轨迹为以C 为圆心,AC 长为半径的一段圆弧;再根据扇形面积的计算公式,即可得到线段A 'P 扫过的面积.答案详解:解:∵△ABC 中,∠BAC =30°,∠ACB =60°,BC =1,∴∠ABC =90°,AC =2BC =2,AB =如图①所示,点A 关于直线CP 的对称点为A ',∴AC =A 'C ,∴点A '的运动轨迹为以C 为圆心,AC 长为半径的一段圆弧,当点P 与点B 重合时,线段A 'P 扫过的区域为弓形,如图②,∠APA '=180°,∠ACA '=120°,∴线段A 'P 扫过的面积为120π×22360−12××1=43π−所以答案是:43π−19.点M 是半径为5的⊙O 内一点,且OM =4,在过M 所有⊙O 的弦中,弦长为整数的弦的条数为 8 .试题分析:先求出过M 所有⊙O 的弦的取值范围,再取整数解.答案详解:解:过点M 作AB ⊥OM 于M ,连接OA ,因为OM =4,半径为5,所以AM =3,所以AB =3×2=6,所以过点M 的最长弦为5×2=10,最短弦为6,在6和10之间的整数有7,8,9,由于左右对称,弦的条数有6条,加上AB 和OM ,共8条.20.AB=AC=AD,∠CAB=100°,则∠BDC= 50°或130° .试题分析:分两种情况,当点D在优弧BDC上时,当点D′在劣弧BC上时,然后利用圆周角定理进行计算即可解答.答案详解:解:如图:∵AB=AC=AD,∴点B、C、D在以点A为圆心,以AB长为半径的圆上,当点D在优弧BDC上时,∵∠CAB=100°,∴∠BDC=12∠BAC=50°,当点D′在劣弧BC上时,∵四边形BDCD′是圆内接四边形,∴∠BD′C=180°﹣∠BDC=130°,综上所述:∠BDC=50°或130°,所以答案是:50°或130°.21.如图,AB是⊙O的弦,AB=P是优弧APB上的动点,∠P=45°,连接PA,PB,AC是△ABP的中线.(1)若∠CAB=∠P,则AC= 2 ;(2)AC试题分析:(1)作BH⊥AC,根据△BAC∽△BPA,求出BC=2,再证明H和C重合即可得到答案;(2)确定点C的运动轨迹,轨迹点圆关系找到AC的最大值就是AC'长,再计算求解.答案详解:解:如图1,过点B作BH⊥AC于点H,∵∠B=∠B,∠CAB=∠P,∴△BAC∽△BPA,∴BABP=BCBA,∴BA2=BC•BP,∵AC是△ABP的中线,∴BP=2BC,∴(2=BC•2BC,∴BC=2,在Rt△ABH中,∠CAB=∠P=45°,AB=∴BH=AH=2,又∵BC=2,∴点H和点C重合,∴AC=AH=2.所以答案是:2;(2)如图2,∵点P的运动轨迹是圆,∴点C的运动轨迹是OB为直径的圆,∴当AC'经过圆心O'时最大.∵∠P=45°,∴∠AOB=90°,又∵AB=∴AO=BO=2,OO'=1,∴AO'=∵O'C'=1,∴AC'=1+∴AC的最大值为1+所以答案是:1+22.如图,已知点A(3,0)、B(﹣1,0)点Q是y轴上一点,当∠AQB=135°时点Q的坐标是 试题分析:分两种情况:①如图,当Q在y轴的负半轴上时,作辅助线,构建全等三角形和等腰直角三角形,证明△QEC≌△CFB,设CE=a,根据三角函数列方程可解答;②同理Q在y轴的正半轴上时,根据对称得出点Q的坐标.答案详解:解:分两种情况:①如图,当Q在y轴的负半轴上时,过点B作BC⊥AQ,交AQ的延长线于C,过点C作EF⊥y 轴于E,过点B作BF⊥EF于F,∵∠AQB=135°,∴∠CQB=45°,∵∠BCQ=90°,∴△BCQ是等腰直角三角形,∴CQ=CB,∵∠BCF+∠ECQ=∠ECQ+∠CQE=90°,∴∠BCF=∠CQE,∵∠F=∠CEQ=90°,∴△QEC≌△CFB(AAS),∴EQ=CF,CE=BF,设CE=a,则CF=EQ=3﹣a,BF=CE=a,∴OQ=a﹣(3﹣a)=2a﹣3,∵∠AQO=∠CQE,∴tan∠AQO=tan∠CQE,即AOOQ =CE EQ,∴12a−3=a3−a,解得:a1a2=,当a=OQ=2a﹣32,∴Q(0,2;②当Q在y轴的正半轴上时,同理可得Q(02).综上,点Q的坐标为(0,202).所以答案是:(0,202).23.已知等腰△ABC的外心是O,AB=AC,∠BOC=100°,则∠ABC= 25°或65° .试题分析:画出相应图形,分△ABC为锐角三角形和钝角三角形2种情况解答即可.答案详解:解:(1)圆心O在△ABC外部,在优弧BC上任选一点D,连接BD,CD.∴∠BDC=12∠BOC=50°,∴∠BAC=180°﹣∠BDC=130°;∵AB=AC,∴∠ABC=(180°﹣∠BAC)÷2=25°;(2)圆心O在△ABC内部.∠BAC=12∠BOC=50°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)÷2=65°;所以答案是25°或65°.24.已知⊙O中,两弦AB和CD相交于点P,若AP:PB=2:3,CP=2cm,DP=12cm,则弦AB 的长为 10 cm.试题分析:根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算.答案详解:解:设AP=2x,由AP:PB=2:3得PB=3x,由相交弦定理得:PA•PB=PC•PD,∴2x•3x=2×12,x=2(舍去负值),∴AB=AP+PB=5x=10cm.25.在△ABC中,AB=6,AC=8,高AD=4.8,设能完全覆盖△ABC的圆的半径为r,则r的最小值为 5或4 .试题分析:分类讨论:当AD在△ABC内部,利用勾股定理求法可得三角形第3边长,可得三角形的形状为直角三角形,完全覆盖△ABC的圆的最小半径为直角三角形斜边的一半;当AD在△ABC外部,即△ABC是钝角三角,以AC为直径的圆是能完全覆盖△ABC的最小圆.答案详解:解:(1)当AD在△ABC内部,如图:∵AB=6,AC=8,高AD=4.8,∴BD=3.6,CD=6.4,∴BC=10,∵62+82=102.∴△ABC是以BC为斜边的直角三角形,∴完全覆盖△ABC的圆的最小半径为10×12=5;(2)当AD在△ABC外部,即△ABC是钝角三角,∵以AC为直径的圆是能完全覆盖△ABC的最小圆,∴能完全覆盖△ABC的圆的半径R的最小值为8×12=4,所以答案是:5或4.26.已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣1,﹣3),C(3,﹣3)则△ABC外接试题分析:三角形的外心是三边中垂线的交点,设△ABC的外心为M;由A、B、C的坐标知:AB、BC的垂直平分线正好经过(1,0),由此可得到M(1,0),由勾股定理即可求得⊙M的半径长.答案详解:解:设△ABC的外心为M,如图:∵A(﹣1,3),B(﹣1,﹣3),C(3,﹣3),∴AB、BC的垂直平分线过(1,0),故M(1,0);MA就是⊙M的半径长,由勾股定理得:MA即△ABC27.如图,AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=3,AB=4,BC=6,则△PDC的面积的最小值是 4 .试题分析:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,过P作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,可求得OH,过D作DM⊥BC于点M,可求得CD=EF=5,由切线长定理可知AE=EP,BF=PF,可得AE+BF=EF=5,可求得OG=2.5,可求得GH=2,又OP=2,且OPPQ=OGGH,可求得PQ=1.6,可求得△PCD的面积,可得出答案.答案详解:解:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,如图,过P作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,∴OH=12(AD+BC)=4.5,过D作DM⊥BC于点M,则DM=AB=4,MC=BC﹣AD=3,∴CD=EF=5,由切线长定理可知AE=EP,BF=PF,∴AE+BF=EF=5,∴OG=12(AE+BF)=2.5,∴GH=OH﹣OG=4.5﹣2.5=2,又∵OP=2,且OPPQ=OGGH,∴2PQ=2.52,∴PQ=1.6,∴S△PCD =12PQ•CD=12×1.6×5=4,所以答案是:4.28.如图,⊙O既是正△ABC的外接圆,又是正△DEF的内切圆,则内外两个正三角形的相似比是 12 .试题分析:过O作OM⊥AC于M,ON⊥EF于N,连接OC、OF,设OC=ON=R,根据等边三角形性质推出∠MCO =∠OFN =30°,求出OM 、OF 的值,根据勾股定理求出CM 、FN ,根据垂径定理求出AC 、EF 值,即可求出答案.答案详解:解:过O 作OM ⊥AC 于M ,ON ⊥EF 于N ,连接OC 、OF ,设OC =ON =R ,∵⊙O 既是正△ABC 的外接圆,又是正△DEF 的内切圆,∴∠MCO =∠OFN =30°,∵∠CMO =∠FNO =90°,∴OM =12R ,OF =2R ,由勾股定理得:CM ==2R ,由垂径定理得:AC =2CM =,同理EF =2NF =,即内外两个正三角形的相似比是AC :EF =1:2=12,所以答案是:12.29.如图,点C 在以O 为圆心的半圆内一点,直径AB =4,∠BCO =90°,∠OBC =30°,将△BOC 绕圆心逆时针旋转到使点C 的对应点C ′在半径OA 上,则边BC 扫过区域(图中阴影部分)面积为 π .(结果保留π)试题分析:根据直角三角形的性质求出OC 、BC ,根据扇形面积公式计算即可.答案详解:解:∵∠BCO =90°,∠OBC =30°,∴OC =12OB =1,BC则边BC 扫过区域的面积为:120π×22360+12××1−120π×12360−12××1=43π−13π−=π.所以答案是:π.30.如图,C 、D 是⊙O 上两点,位于直径AB 的两侧,设∠ABC =24°,则∠BDC = 66 °.试题分析:根据直径所对的圆周角是直角可得∠ACB =90°,然后利用直角三角形的两个锐角互余可得∠A =66°,从而利用同弧所对的圆周角相等即可解答.答案详解:解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =24°,∴∠A =90°﹣∠ABC =66°,∴∠BDC =∠A =66°,所以答案是:66.31.某园林单位要在一个绿化带内开挖一个△ABC 的工作面,使得∠ACB =60°,CD 是AB 边上的高,且CD =6,则△ABC 的面积最小值是试题分析:作△ABC 的外接圆⊙O ,连接OA 、OB 、OC ,作OE ⊥AB 于E ,设OA =OC =2x .根据圆周角和等腰三角形的性质得OE =12OA =x ,AE =,再由线段的不等关系可得最小值,最后根据三角形面积公式答案.答案详解:解:作△ABC 的外接圆⊙O ,连接OA 、OB 、OC ,作OE ⊥AB 于E ,设OA =OC =2x .∵∠AOB =2∠ACB ,∠ACB =60°,∴∠AOB =120°,∠ACB =60°,OA =OB =R ,OE ⊥AB ,∴AE =EB ,∠AOE =∠BOE =60°,∴OE =12OA =x ,AE =,∵OC +OE ≥CD ,CD =6,∴3x ≥6,∴x ≥2,∴x 的最小值为2.∵E 为AB 中点,∴AB =AE +BE =2AE =,∵AB 的最小值为∴S △ABC 的最小值=12CD ⋅AB =12×6×=所以答案是:32.如图,正方形ABCD 的边长为4,E 是AD 的中点,点P 是边AB 上的一个动点,连接PE ,以P为圆心,PE 的长为半径作⊙P .当⊙P 与正方形ABCD 的边相切时,则AP 的长为 32或试题分析:分⊙P 与BC 相切、⊙P 与DC 相切两种情况,根据切线的性质、勾股定理计算即可.答案详解:解:当⊙P 与BC 相切时,PE =PB =4﹣AP ,在Rt △PAE 中,AP 2+AE 2=PE 2,即AP 2+22=(4﹣AP )2,解得:AP =32,当⊙P 与DC 相切时,PE =4,则AP ==综上所述,当⊙P 与正方形ABCD 的边相切时,则AP 的长为32或所以答案是:32或33.如图,在扇形AOB 中,OA =2,点P 为AB 上一动点,过点P 作PC ⊥OA 于点C ,PD ⊥OB 于点D ,连接CD ,当CD 取得最大值时,扇形OAB 的周长为 4+π .试题分析:∠AOB =90°时,CD 最大,由求出扇形的周长即可.答案详解:解:由PC ⊥OA ,PD ⊥OB 可知,∠OCP +∠ODP =180°,∴O 、C 、P 、D 四点共圆,CD 为此圆直径时,CD 最大,∴当∠AOB =90°时,CD 最大,如图:此时扇形周长为2+2+90⋅π⋅2180=4+π.所以答案是:4+π.34.如图,圆内一条弦CD 与直径AB 相交成30°角,且分直径成1cm 和5cm 两部分,则这条弦的弦心距是 1cm .试题分析:首先过点O 作OF ⊥CD 于点F ,设弦CD 与直径AB 相交于点E ,由分直径成1cm 和5cm两部分,可求得直径,半径的长,继而求得OE的长,又由圆内一条弦CD与直径AB相交成30°角,即可求得这条弦的弦心距.答案详解:解:过点O作OF⊥CD于点F,设弦CD与直径AB相交于点E,∵分直径成1cm和5cm两部分,∴AB=6cm,∴OA=12AB=3cm,∴OE=OA﹣AE=2cm,∵∠OEF=30°,∴OF=12OE=1(cm).所以答案是:1cm.35.已知圆的两条平行弦分别长6dm和8dm,若这圆的半径是5dm,则两条平行弦之间的距离为 7dm 或1dm .试题分析:如图,AB∥CD,AB=6dm,CD=8dm,过O点作OE⊥AB于E,交CD于F点,连OA、OC,根据垂径定理得AE=BE=12AB=3,由于AB∥CD,EF⊥AB,则EF⊥CD,根据垂径定理得CF=FD=12CD=4,然后利用勾股定理可计算出OE=4,OF=3,再进行讨论:当圆心O在AB与CD之间时,AB与CD的距离=OE+OF;当圆心O不在AB与CD之间时,AB与CD 的距离=OE﹣OF.答案详解:解:如图,AB∥CD,AB=6dm,CD=8dm,过O点作OE⊥AB于E,交CD于F点,连OA、OC,∴AE=BE=12AB=3,∵AB∥CD,EF⊥AB,∴EF⊥CD,∴CF=FD=12CD=4,在Rt△OAE中,OA=5dmOE4,同理可得OF=3,当圆心O在AB与CD之间时,AB与CD的距离=OE+OF=4+3=7(dm);当圆心O不在AB与CD之间时,AB与CD的距离=OE﹣OF=4﹣3=1(dm).所以答案是7dm或1dm.36.如图,P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,若x、y都是整数,则这样的点共有 12 个.试题分析:因为P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,根据题意,x2+y2=25,若x、y都是整数,其实质就是求方程的整数解.答案详解:解:∵P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,即圆周上的任意一点到原点的距离为5,=5,即x2+y2=25,又∵x、y都是整数,∴方程的整数解分别是:x=0,y=5;x=3,y=4;x=4,y=3;x=5,y=0;x=﹣3,y=4;x=﹣4,y=3;x=﹣5,y=0;x=﹣3,y=﹣4;x=﹣4,y=﹣3;x=0,y=﹣5;x=3,y=﹣4;x=4,y=﹣3.共12对,所以点的坐标有12个.分别是:(0,5);(3,4);(4,3);(5,0);(﹣3,4);(﹣4,3);(﹣5,0);(﹣3,﹣4);(﹣4,﹣3);(0,﹣5);(3,﹣4);(4,﹣3).37.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于 60或120 °.试题分析:根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.答案详解:解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.所以答案是:60或120.38.圆中一条弦所对的圆心角为60°,那么它所对的圆周角度数为 30或150 度.试题分析:由圆周角定理知,弦所对的优弧上的圆周角是30°;由圆内接四边形的对角互补可知,弦所对劣弧上的圆周角=180°﹣30°=150°.因此弦所对的圆周角度数有两个.答案详解:解:如图,∠AOB=60°;则∠C=12∠AOB=30°;∵四边形ADBC是⊙O的内接四边形,∴∠D=180°﹣∠C=150°;因此弦AB所对的圆周角度数为30°或150°.39.一圆中两弦相交,一弦长为2a且被交点平分,另一弦被交点分成1:4两部分,则另一弦长为 5a2 .试题分析:设另一条弦被分成的两段长分别是x,4x,根据相交弦定理求解.圆内两条相交弦,被交点分成的线段的乘积相等.答案详解:解:设另一条弦被分成的两段长分别是x,4x.根据相交弦定理,得x•4x=a2,x=a 2.所以5x=52 a.三.解答题40.如图,CD为⊙O的直径,CD⊥AB,垂足为F,AO⊥BC,垂足为E,连接AC.(1)求∠B的度数;(2)若CE=O的半径.试题分析:(1)根据垂径定理求出BE=CE,根据线段垂直平分线性质求出AB=AC,同理得AC =BC,则△ABC是等边三角形,从而得结论;(2)求出∠BCD=30°和OE=4,根据直角三角形中含30°角的性质求出圆O的半径即可.答案详解:解:(1)如图,∵AO⊥BC,AO过O,∴CE=BE,∴AB=AC,同理得:AC=BC,∴AB=AC=BC∴△ABC是等边三角形∴∠B=60°;(2)∵△ABC是等边三角形,∴∠ACB=60°,∵AC=BC,CD⊥AB,∴∠BCD=30°,∵CE=在Rt△CEO中,OE=4,∴OC=2OE=8,即圆O的半径为8.41.如图,AB是⊙O的直径,点C,D是⊙O上的点,且OD∥BC,AC分别与BD,OD相交于点E,F.(1)求证:点D为AC的中点;(2)若DF=4,AC=16,求⊙O的直径.试题分析:(1)根据直径所对的圆周角是直角可得∠C=90°,从而利用平行线的性质可得∠OFA =∠C=90°,从而可得OF⊥AC,然后利用垂径定理即可解答;(2)利用垂径定理可得AF=12AC=8,然后在Rt△AFO中,利用勾股定理进行计算即可解答.答案详解:(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD∥BC,∴∠OFA=∠C=90°,∴OF⊥AC,∴AD=CD,∴点D为AC的中点;(2)解:∵OF⊥AC,∴AF=12AC=8,在Rt△AFO中,AO2=AF2+OF2,∴OA2=64+(OD﹣DF)2,∴OA2=64+(OA﹣4)2,∴OA=10,∴⊙O的直径为20.42.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC、AD.若∠BAC=35°,(1)求∠D的度数;(2)若∠ACD=65°,求∠CEB的度数.试题分析:(1)连接CB,根据直径所对的圆周角是直角可得∠ACB=90°,从而利用直角三角形的两个锐角互余可得∠ABC=55°,然后利用同弧所对的圆周角相等即可解答;(2)利用三角形的外角性质,进行计算即可解答.答案详解:解:(1)连接CB,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=35°,∴∠ABC=90°﹣∠BAC=55°,∴∠ABC=∠D=55°,∴∠D的度数为55°;(2)∵∠CEB是△ACE的一个外角,∴∠CEB=∠BAC+∠ACD=100°,∴∠CEB的度数为100°.43.如图,AB是⊙O的直径,点C为⊙O上一点,D为弧BC的中点,过D作DF⊥AB于点E,交⊙O于点F,交弦BC于点G,连接CD,BF.(1)求证:BC=DF.(2)若BC=8,BE=2,求⊙O的半径.试题分析:(1)根据AAS证明△CDB≌△DBF,可得结论;(2)先根据垂径定理可得DE=4,设⊙O的半径为r,利用勾股定理求解即可.答案详解:(1)证明:∵D是BC的中点,∴BD=CD,∵AB为⊙O的直径,DF⊥AB,∴BD=BF,∴BD=BF=CD,∴BF=CD=BD,∠DCB=∠BDF=∠CBD=∠F,∴△CDB≌△DBF(AAS),∴BC=DF;(2)解:如图,连接OD交BC于点M,∵AB为⊙O的直径,DF⊥AB,∴DE=EF,。

备战中考数学易错题精选-圆的综合练习题及答案解析

备战中考数学易错题精选-圆的综合练习题及答案解析

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,AC为直径,BD=BA,BE⊥DC交DC的延长线于点E(1) 求证:BE是⊙O的切线(2) 若EC=1,CD=3,求cos∠DBA【答案】(1)证明见解析;(2)∠DBA3 5【解析】分析:(1)连接OB,OD,根据线段垂直平分线的判定,证得BF为线段AD的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF是矩形,即∠EBF=90°,可得出结论.(2)根据中点的性质求出OF的长,进而得到BF、DE、OB、OD的长,然后根据等角的三角函数求解即可.详解:证明:(1) 连接BO并延长交AD于F,连接OD∵BD=BA,OA=OD∴BF为线段AD的垂直平分线∵AC为⊙O的直径∴∠ADC=90°∵BE⊥DC∴四边形BEDF为矩形∴∠EBF=90°∴BE是⊙O的切线(2) ∵O、F分别为AC、AD的中点∴OF=12CD=32∵BF=DE=1+3=4∴OB=OD=35422-=∴cos∠DBA=cos∠DOF=332552OFOD==点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.2.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2.∵EB=4,BF=2,∴EF=2242+=25.∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF.∵EF=25,∴DE=25×22=10.∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE=EBED,即GE•ED=AE•EB,∴10•GE=8,即GE=410,则GD=GE+ED=910.∴1191011092252S GD DF GD DE=⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.3.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.4.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P 的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB 、BC 两边都相切.根据角平分线的性质可知要作∠ABC 的角平分线,角平分线与AC 的交点就是点P 的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P 为所求作的圆.(2)∵∠ABC=60°,BP 平分∠ABC ,∴∠ABP=30°,∵ ∠A=90°,∴BP=2APRt △ABP 中,AB=3,由勾股定理可得:AP=3,∴S ⊙P =3π5.如图所示,AB 是半圆O 的直径,AC 是弦,点P 沿BA 方向,从点B 运动到点A ,速度为1cm/s ,若10AB cm ,点O 到AC 的距离为4cm .(1)求弦AC 的长;(2)问经过多长时间后,△APC 是等腰三角形.【答案】(1)AC=6;(2)t=4或5或145s 时,△APC 是等腰三角形;【解析】【分析】(1)过O作OD⊥AC于D,根据勾股定理求得AD的长,再利用垂径定理即可求得AC的长;(2)分AC=PC、AP=AC、AP=CP三种情况求t值即可.【详解】(1)如图1,过O作OD⊥AC于D,易知AO=5,OD=4,从而AD==3,∴AC=2AD=6;(2)设经过t秒△APC是等腰三角形,则AP=10﹣t①如图2,若AC=PC,过点C作CH⊥AB于H,∵∠A=∠A,∠AHC=∠ODA=90°,∴△AHC∽△ADO,∴AC:AH=OA:AD,即AC: =5:3,解得t=s,∴经过s后△APC是等腰三角形;②如图3,若AP=AC,由PB=x,AB=10,得到AP=10﹣x,又∵AC=6,则10﹣t=6,解得t=4s,∴经过4s后△APC是等腰三角形;③如图4,若AP=CP,P与O重合,则AP=BP=5,∴经过5s后△APC是等腰三角形.综上可知当t=4或5或s时,△APC是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC是等腰三角形时,点P的位置有三种情况.6.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC ∥BD .∴∠ABD =∠AOC =60°.∵AB 为⊙O 的直径,∴∠AEB =90°,∴△AEB 为直角三角形,∠EAB =30°.∴∠EAB =∠AEC .∴CE ∥OB ,又∵CO ∥EB∴四边形OBEC 为平行四边形.又∵OB =OC =4.∴四边形OBEC 是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.7.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P 与边BC 相切时,求P 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q 与P 相交于AC 边上的点G 时,求相交所得的公共弦的长. 【答案】(1)409;(2))25880010x x x y x -+=<<;(3)105- 【解析】【分析】 (1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,5tan∠()2284x+-2880x x-+25,则525,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5, EB=BDcosβ=(45-25x )×5=4-25x , ∴PD ∥BE ,∴EB PD =BF PF ,即:2248805x x x y x --+-=, 整理得:y=()25x x 8x 800x 103x 20-+<<+; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG=PQ ,即两个圆的半径相等,则两圆另外一个交点为D ,GD 为相交所得的公共弦,∵点Q 时弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA=90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG=EP=BD ,∴5设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=10-25,相交所得的公共弦的长为10-25.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.8.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.【答案】(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH 的长为3﹣1或3+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明. (3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°, ∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH+GH+CG =2AH+BC ,∴22AH =+,∴1AH =,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴22CH ,=+∴1CH =,∴)11AH AC CH =-==, 即:当∠PAB =45°时,AH11.【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.9.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB .∴2AD AC AC R= ∴R =2322AC AD =10.已知AB ,CD 都是O 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)37【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=,D E 90∠∠∴+=,2D 2E 180∠∠∴+=,AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=.()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR 和ODG 中,A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,AOR ∴≌ODG ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===,AF//OC//BT ∴,OA OB =,CT CF 3m ∴==,ET m ∴=, CD 为直径,CBD CND 90CBE ∠∠∠∴===,E 90EBT CBT ∠∠∠∴=-=,tan E tan CBT ∠∠∴=,BT CT ET BT∴=, BT 3m m BT∴=, BT 3m(∴=负根已经舍弃),3m tan E 3∠∴== E 60∠∴=,CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,H E 60∠∠∴==,MON 2HCN 60∠∠∴==,OM ON =,OMN ∴是等边三角形,MN ON ∴=,QM OB OM ==,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN 中,CN 48==,在Rt CHN 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH 中,1KH HN 2==NK 24==,在Rt NMK 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.。

圆的难题汇编及答案

圆的难题汇编及答案
圆的难题汇编及答案
一、选择题
1.如图, 是一块绿化带,将阴影部分修建为花圃.已知 , , ,阴影部分是 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为().
A. B.
C. D.
【答案】B
【解析】
【分析】
由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径= =1,求得直角三角形的面积和圆的面积,即可得到结论.
上所述,PD的最小值为
故选D.
【点睛】
本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
14.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是( )
A.48°B.42°C.34°D.24°
为 的中点,
由切线长定理得:
四边形 为正方形,
故选D.
【点睛】
本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.
5.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )
A.2 cmB.4 cmC.2 cm或4 cmD.2 cm或4 cm
A.1B. C. D.
【答案】D
【解析】
【分析】
根据三角形角平分线的交点是三角形的内心,得到 最小时, 为三角形 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.
【详解】
解: , 分别平分 和 ,交于 点,

初中分类讨论例题

初中分类讨论例题

初中分类讨论例题
1. 哎呀呀,比如在求等腰三角形的角度时,就可能要分类讨论啦!如果只知道顶角的大小,那底角是多少呢?这时候就得想想,是锐角等腰三角形呢,还是钝角等腰三角形呀,不同情况答案可不一样哟!
2. 嘿,再看看绝对值的问题吧!比如x-1=3,那 x 到底是多少呢?是 x-
1=3 还是-(x-1)=3 呢?这是不是就需要分类讨论一下呀,好好想想哦!3. 你们知道吗,还有那种已知两边长求三角形周长的题目呢!要是只给了两条边的长度,第三边到底是多长呢?会不会有多种可能性呀?哈哈,这就得认真分类讨论咯!比如两边分别是 3 和 5,第三边是小于 8 大于 2 哟,这里面就有好几种可能呢!
4. 哇塞,在讨论圆中的线段长度时也很有趣呀!圆里有好多条线呢,它们的关系可复杂啦!比如一条弦把圆分成两段弧,不同的位置会得到不同的答案呢,这能不分类讨论吗?
5. 呀,还有解方程时遇到含有参数的方程!那参数取不同的值,方程的解是不是就不一样啦?就像走不同的路会看到不同的风景一样呢!例如
x+2a=3x-6,这里的 a 可就得好好研究下呢!
6. 哈哈,在讨论函数图像与坐标轴交点的时候也会用到分类讨论呀!到底有几个交点呢?会不会有特殊情况呢?这就好像闯关游戏一样刺激呢!
7. 哇,甚至在讨论图形的位置关系时也离不开分类讨论哟!两个图形是相交呢,还是相切呢,或者是相离呢?这中间的变化可多啦,就如同多变的天气一样让人捉摸不透呢!
我觉得分类讨论真的很重要,可以让我们考虑问题更全面,不会漏掉任何一种可能的情况呀!。

例析与圆有关的分类讨论

例析与圆有关的分类讨论

龙源期刊网
例析与圆有关的分类讨论
作者:曹经富
来源:《数理化学习·初中版》2013年第09期
在近几年的各类考试中,分类讨论思想方法深受命题者的青睐与关注.分类讨论是根据数
学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想.它能训练人的思
维条理性和严密性.实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略,而圆作为初中阶段最核心最重要的内容,越来越被作为呈现知识、能力和思想的载体.为此,让我
们结合有关试题,一同的感受圆中的分类讨论思想,体验它的魅力.
一、与圆有关的点
点评:解决动态问题的关键是动中化静,整体地把握两圆之间的位置与相关数量之间关系相互转化,寻找出变量关系式,抓住运动变化过程中暂时静止的某一瞬间,运用数学分类讨论思想进行操作与分析,便会发现解题的思路、方法.
[江西省安福县城关中学(343200)]。

例析分类讨论思想在圆中的应用

例析分类讨论思想在圆中的应用

例析分类讨论思想在圆中的应用由于圆既是轴对称图形,又是中心对称图形;既具有对称任意性,又具有旋转不变性,因此往往给解题带来一定的复杂性.为了避免在求解与圆有关的问题时出现漏解,本文将分类讨论思想在圆中的应用作相关归纳与分析,供同学们学习时参考.一、点与圆的位置关系不唯一性例1 已知点P 是⊙O 外一点,PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,点C 是⊙O 上的任意一点(不与A ,B 重合).若∠APB=50°,求∠ACB 的度数.分析 解题时若对点C 位置理解不透,容易出现漏解的情况,须注意针对分点C 在优 弧与劣弧两种情况分类讨论.解析 如图1,连结OA 、OB ,∵P A ,PB 是⊙O 的两条切线,∴∠PAO=∠PBO=90°.∵∠APB=50°。

∴在四边形PA OB 中,∠AOB=360°一∠PA O 一∠APB 一∠PBO=130°.①若点C 在优弧AB 上,则∠ACB=12∠ AOB=65°; ②若点C 在劣弧AB 上,则∠ACB=12×(360°-130 °)=115°. ∴∠ACB 的度数为65°或115°.变式 已知点P 是⊙O 外一点,PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,点C 是⊙O 上的任意一点(不与A ,B 重合).若∠APB=n °,求∠A CB 的度数.二、弦与弦的位置关系不唯一性例2 在半径为1的⊙O 中,弦BAC 的度数.分析 此题主要考查的是垂径定理和勾股定理,初学者多数只会做出一个解,要么求得15°,要么求得75°.实际上应全面考虑两弦与圆心的位置,分弦AB 与CD 在圆心O 的两侧与同侧两种情况讨论.解析 如图2,分别作O D ⊥AB ,O E ⊥A C ,垂足分别是D 、E .∵OD ⊥AB ,OE ⊥A C ,∴AD=BD=2,AE=BE ,∴cos ∠DAO=AD AOcos ∠AEO = AE AO =2,∴∠DA O=45°,∠AEO=30°.当AB 与CD 在圆心O 的两侧时,∠BA C=∠BAO+∠CAO=75°;当AB 与CD 在圆心O 的同侧时,∠BA C=∠BAO-∠CAO=15°,∴∠BAC 的度数为15°或75°.变式 如图3,已知AB 是⊙O 的直径,AB=2,弦在图中画出弦AD ,使AD=1,并求∠CAD 的度数.三、弦与它所对圆周角的不唯一性例3 圆的一条弦长等于它的半径,求这条弦所对的圆周角的度数.分析 多数学生只是求出30。

与圆的位置关系有关的分类讨论

与圆的位置关系有关的分类讨论

因 ,c坐为l, 此 的标 ( 点 t +
点 为 C, 时 P 上 D 所 以 , 此 c C,
OC = OPC S3  ̄ O 0 ,
) .
() 当 o P 与 D 2① C相 切 时 ( 图 2 , 如 )切

1 :3 . +t ×
解得 t :
一1 .
, ,

解得 t √ :9 3±6 - . d 6—1 因为 t √ :9 3—6 - d 6—1 0 所 以 , < ,
t +6 - :9 d 6—1 .
5 所 以 ,0 : 一5 解得 =7 5 . 1一 . .. 所 以o O 的半 径是 2 5c . m或 7 5c . m.
20 年第 7期 08
即( ) ( + (+

一 3 )
解 : o O 的半 径为 . 设
如图 5 o 大 圆 内切 , 小 圆外 切 , , O与 与
则 有 5 x:1 , +2 0 解得 :2 5 ..
如 图 6 o O 与 两个 圆都 内切 , , 与大 圆 内 切 , O :1 , 小 圆 内 切 , O 有 O 0一 与 有 O :
( 5 A)
)m. c
( )3 B 1
图 7
() C 9或 1 3
( ) 或 1 D5 3
() 写 出点 A、 之 间 的距 离 d c 与 1试 (m) 时 间 ts之 间 的 函数表 达 式 ; () () 2 问点 A 出发 后 多少 秒两 圆相切 ?
(0 8 山东 省威 海 市 中考题 ) 20 ,
t s之 间 的关 系 式 为 r +t t ) () :1 ( ≥0 .
t 的值 是 3 3 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的分类讨论题
一.选择题
1.如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,
用所得扇形围成圆锥的侧面,则圆锥的底面半径为()
A.B.1 C.1或3 D.
2.若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>
b),则此圆的半径为()
A. B.C.或D.a+b或a﹣b
3.已知⊙O的半径为5,AB是弦,P是直线AB上的一点,PB=3,AB=8,则tan∠OPA的值为()
A.3 B.C.或D.3或
二.填空题
4.如果圆中一条弦长与半径相等,那么此弦所对的圆周角的度数为______.
5.已知:⊙O的直径为14cm,弦AB=10cm,点P为AB上一点,OP=5cm,则AP的长为______cm.
6.⊙O的半径OA=2,弦AB、AC的长分别为一元二次方程x2﹣(2+2)x+4=0的两个根,则∠BAC的度数为______.
7.已知点P是半径为2的⊙O外一点,PA是⊙的切线,切点为A,且PA=2,在⊙O内作长为2的弦AB,连接PB,则PB的长为______.
8.若Rt△ABC的内一个内角为30°,它的外接圆○O的半径为2,OD⊥AC交AC于D,则OD=________
9、已知⊙O的半径为2cm,弦AB长为23cm,则弦的中点到这条弦所对弧的中点的距离为_______________cm。

10、已知:⊙O半径OA=1,弦AB、AC长分别为2、1则∠BAC=________________。

11、如图,直线AB、CD相交于点D,∠AOC=300,半径为1cm的⊙
P的圆心在直线OA上,且与点O的距离为6cm,如果⊙P以1cm/s的
速度沿由A向B的方向移动,那么____________秒钟后⊙P与直线CD
相切。

12、已知等腰⊿ABC内接于半径为5的⊙O中,如果底边BC的长为8,则BC边上的高为____________________。

13.已知△ABC内接与圆O,AB=AC=a,BC=b,AE切○O于点A,BC∥AE,在射线AE 上是否存在一点P,使得以A、P、C为顶点的三角形与△ABC相似?若
不存在,请说明理由;若存在,求出AP的长。

14、如图,形如量角器的半圆O的直径DE=12cm,形如三角板的⊿ABC中,∠ACB=90°,∠ABC=30°,BC=12cm。

半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上。

设运动时间为t (s),当t=0s时,半圆O在⊿ABC的左侧,OC=8cm。

(1)当t为何值时,⊿ABC的一边所在直线与半圆O所在的圆相切?
(2)当⊿ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与⊿ABC三边围成的区域有重叠部分,求重叠部分的面积。

参考答案与试题解析
一.选择题(共3小题)
1.(2001•黑龙江)如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为()
A.B.1 C.1或3 D.
【分析】利用勾股定理,弧长公式,圆的周长公式求解.
【解答】解:如图,分两种情况,
①设扇形S2做成圆锥的底面半径为R2,
由题意知:扇形S2的圆心角为270度,
则它的弧长==2πR2,R2=;
②设扇形S1做成圆锥的底面半径为R1,
由题意知:扇形S1的圆心角为90度,
则它的弧长==2πR1,R1=.
故选D.
【点评】本题利用了勾股定理,弧长公式,圆的周长公式求解.
2.(2005•资阳)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a >b),则此圆的半径为()
A. B.C.或D.a+b或a﹣b
【分析】搞清⊙O所在平面内一点P到⊙O上的点的最大距离、最小距离的差或和为⊙O的直径,即可求解.
【解答】解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时时,圆的直径是a+b,因而半径是;当此点在圆外时,圆的直径是a﹣b,因而半径是.则此圆的半径为或.
故选C.
【点评】注意到分两种情况进行讨论是解决本题的关键.
3.(2003•山西)已知⊙O的半径为5,AB是弦,P是直线AB上的一点,PB=3,AB=8,则tan∠OPA的值为()
A.3 B.C.或D.3或
【分析】点P是直线AB上的一点,则P可能在线段BE上,或BE的延长线上,因分两种情况进行讨论.
过O作AB的垂线,根据三角函数的定义就可以求解.
【解答】解:作OE⊥AB,则EB=8×=4.
∵PB=3,∴EP=4﹣3=1.
又⊙O的半径为5,∴OE==3.
当P在线段BE上时:tan∠OPA==3;
当P在线段EB的延长线上时:设P是P1,则tan∠OP1A=3÷(1+3+3)=.
故选D.
【点评】根据勾股定理和垂径定理求出直角三角形各边长,再根据三角函数的定义解答.
二.填空题(共4小题)
4.(2004•黑龙江)如果圆中一条弦长与半径相等,那么此弦所对的圆周角的度数为30°或150°.
【分析】弦长与半径相等,连接圆心和弦的端点,可得等边三角形,那么圆心角为60°,那么这条弦所对的优弧上的圆周角为30°,则劣弧上的圆周角为150°.
【解答】解:如图
若AB=OA=OB,则
∠AOB=60°
∴∠D=∠AOB=30°
∠C=180°﹣∠D=150°.
【点评】解决本题的关键是得到这条弦所对的圆心角的度数.本题需注意:在一个圆中,弦所对的圆周角是两个,它们互为补角.
5.(2005•哈尔滨)已知:⊙O的直径为14cm,弦AB=10cm,点P为AB上一点,OP=5cm,则AP的长为4或6cm.
【分析】点P的位置有两种情况,根据垂径定理和勾股定理求解.
【解答】解:连接OA,OB,作OE⊥AB,垂足为E.点P的位置有两种情况:
①当如图位置时,由垂径定理知,点E是AB的中点,AE=EB=AB=5,OA=7,
由勾股定理得,OE=2,PE=1,
∴AP=AE﹣PE=4cm;
②当点P在如图的点F位置时,可求得EF=1,所以AF=AE+EF=6cm.
故填4或6.
【点评】本题利用了垂径定理和勾股定理求解,注意点P的位置有两种情况.
6.(2005•辽宁)⊙O的半径OA=2,弦AB、AC的长分别为一元二次方程x2﹣(2+2)x+4=0的两个根,则∠BAC的度数为75°或15°.
【分析】先解一元二次方程,得AB、AC的长;再根据题中所给的条件,在直角三角形中解题.
【解答】解:x2﹣(2+2)x+4=0
方程可化为:(x﹣2)(x﹣2)=0
解得:x1=2,x2=2.
如图:(1)∵AC=,AD=4,
∴cos∠CAD==,
∴∠CAD=30°.
∵AB=2,AD=4,
∴cos∠BAD==,
∴∠BAD=45°.
则∠BAC=30°+45°=75°;
如图(2)
∠BAC=45°﹣30°=15°.
【点评】本题考查了一元二次方程的解法和圆、三角函数等相关问题,着重考查了基础知识的综合应用能力,是一道很好的题目.
7.(2005•黄冈)已知点P是半径为2的⊙O外一点,PA是⊙的切线,切点为A,且PA=2,在⊙O内作长为2的弦AB,连接PB,则PB的长为2或.
【分析】本题应分两种情况进行讨论:
(1)弦AB在⊙O的同旁,可以根据已知条件证明△POA≌△POB,然后即可求出PA;(2)弦AB在⊙O的两旁,此时可以根据已知条件证明PABO是平行四边形,然后利用平行四边形的性质和勾股定理即可求出PA.
【解答】解:连接OA,
(1)如图,当弦AB与PA在O的同旁时,
∵PA=AO=2,PA是⊙的切线,
∴∠AOP=45°,
∵OA=OB,
∴∠BOP=∠AOP=45°,
而OP=OP,
∴△POA≌△POB,
∴PB=PA=2;
(2)如图,当弦AB与PA在O的两旁,连接OA,OB,
∵PA是⊙O的切线,
∴OA⊥PA,
而PA=AO=2,
∴OP=2;
∵AB=2,
而OA=OB=2,
∴AO⊥BO,
∴PABO是平行四边形,
∴PB,AO互相平分;
设AO交PB与点C,
即OC=1,
∴BC=,
∴PB=2.
【点评】在解本题时应分情况进行讨论,解题过程中主要运用了切线的性质、勾股定理,全等三角形的性质与判定,平行四边形的性质与判定等知识,综合性比较强,对于学生分析问题的能力要求比较高.。

相关文档
最新文档