不等关系课件
不等关系与不等式ppt优秀课件
不等关系与不等式ppt课件
6>5
班主任只给我发了5个苹果,你比我多哎!
对于两个具体实数我们可以直接
比较大小,如果给我们两个式子,
又如何比较大小呢?
思考
作者编号:32001
新课讲授
如何刻画实数a,b的大小关系?
形
作者编号:32001
数
新课讲授
(二)不等式的大小比较
作差:与0比较
特殊值
限定范围
作商:与1比较
作者编号:32001
E
D
B
新课讲授
例1.某钢铁厂要把长度为4 000 mm的钢管截成500 mm和600 mm两种,按照生产
的要求,600 mm钢管的数量不能超过500 mm钢管的3倍.试写出满足上述所有
不等关系的不等式.
[分析] 应先设出相应变量,找出其中的不等关系,即①两种钢管的总长
度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数
C.M<N
作者编号:32001
B.M=N
D.与x有关
当堂检测
3.比较 2 + 2 + 1与2( + − 1)的大小.
[解析] x2+y2+1-2(x+y-1)
=x2-2x+1+y2-2y+2
=(x-1)2+(y-1)2+1>0,
∴x2+y2+1>2(x+y-1).
作者编号:32001
当堂检测
量的3倍;③两种钢管的数量都不能为负.于是可列不等式组表示上述不
等关系.
解:设截得500mm的钢管x根,截得600mm的钢管y根,依题意,
500 + 600 ≤ 4000
5 + 6 ≤ 40
不等关系与不等式_优质PPT课件
[解]解法一 : 设f 2 mf 1 nf 1(m, n为待定系数),
则4a 2b m a b n a b,
即4a 2b m n a n m b,
于是得
mn4 n m 2
,
解得
m
n
3 ,
1
f 2 3f 1 f 1.
又Q 1≤f 1≤2, 2≤f 1≤4,
5≤3f 1 f 1≤10,
25
【典例4】 设f(x)=ax2+bx,1≤f(-1)≤2, 2≤f(1)≤4,求f(-2)的取值范围. [分析] 利用f(-1)与f(1)表示出a,b,然后再代入f(-2)的表
达式中,从而用f(-1)与f(1)表示f(-2),最后运用已知条件 确定f(-2)的取值范围.此题还可用线性规划求解.
1
2 n.
n1 n
39
[方法与技巧] 作商法需要注意商式分母必须为正,一般 地,比较指数式的大小用作商法较简单(如a,b>0时,比较 aa•bb与ba•ab的大小).本题用作差法也比较简单,同学们不 妨一试.
glg12
a
,
35
又0 x 1, 0 x2 1 0 1 x2 1;
又0 1 x 1 x 0 1 x 1, 1 x
所以lg 1 x2
1 x
1
0, lg 1
x
0,
lg 2a
0,
可得 loga 1 x 2 loga 1 x 2 0,
即 loga 1 x loga 1 x .
视x,y∈N*.
17
类型二
不等式性质的应用
解题准备:不等式的性质就其逻辑关系而言,可分为推出关系 (充分条件)和等价关系(充要条件)两类,同向可加性和同向 可乘性可推广到两个或两个以上的不等式,同向可乘时,应 注意a>b>0,c>d>0.深刻理解不等式的性质时,把握其逻辑 关系,才能正确应用不等式性质解决有关不等式的问题.
高一数学人必修课件不等关系与不等式
在数轴上,不等式可以用一个开区间、闭区间或半开半闭区间来表示。例如,不等式$x>2$在数轴上表示为 $(2,+infty)$;不等式$x≤3$在数轴上表示为$(-infty,3]$。
02
一元一次不等式与一元一次不等式 组
一元一次不等式解法
移项法
将不等式中的常数项移到不等式 的另一边,使不等式变为标准形
线性规划问题求解方法
图解法
通过绘制约束条件所表示的直线或平面区域,以及目标函 数所表示的直线,在可行域内寻找最优解的方法。适用于 决策变量较少的情况。
单纯形法
一种通过迭代逐步改进可行解的方法,每次迭代选择一个 非基变量进入基,同时保持其他变量不变,使得目标函数 值得到改进。适用于决策变量较多的情况。
传递性
如果$a>b$且$b>c$,那么$a>c$。
不等式的性质及其运算规则
可加性
如果$a>b$,$c>d$,那么$a+c>b+d$。
可乘性
如果$a>b>0$,$c>d>0$,那么$ac>bd$。
不等式的性质及其运算规则
加法与减法
不等式两边同时加上(或减去)同一 个数或整式,不等号方向不变。
乘法与除法
一元二次不等式解法
01
02
03
配方法
将一元二次不等式化为完 全平方的形式,然后利用 平方根的性质进行求解。
公式法
利用求根公式直接求解一 元二次不等式。
因式分解法
将一元二次不等式因式分 解,然后利用不等式的性 质进行求解。
判别式在解一元二次不等式中的应用
判别式定义
判别式Δ=b²-4ac,用于判断一元二次方程实数根的个数。
高二数学必修5不等关系与不等式ppt课件.ppt
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
下课啦!!
Class is over, Thank you for your cooperation,goodbye
感谢各位领导的指导, 请多提宝贵意见!
定符号 确定大小
∴bm b 0∴bm b
am a
am a
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
回顾反思
(1)解决实际问题的常规步骤
实际问题
抽象、概括 刻画
数学问题
(2)本堂课建立的模型主要是
不等关系
,不等式的 证明方法 (作差法)
这个数学问题怎么解决?
分析:起初糖水的浓度为 b ,加入 m 克糖后的糖 a
水浓度为 b m ,只要证明 b m b 即可,怎么
am
am a
证呢?
这是一个不等式的证明问题
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
请大家欣赏下面的照片,说说你的感受?
横看成岭侧成峰,远近高低各不同
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
一.问题情境
实际生活中
长短
大小
轻重 高矮
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
《不等关系》课件
总结
定不等(不等于)的关系,包 括大于、小于、大于等于、小于等于、不等于等。
应用
掌握不等关系能够帮助开发者编写更加复杂的程序,并进行更加复杂的数据分析。
重要性
理解不等关系有利于掌握程序的逻辑性,避免因数据关系而出现程序BUG。
不等关系PPT课件
了解不等关系,掌握编程中应用技巧。
什么是不等关系
定义
不等关系指两个数据之间的关系不是相等(等于)的关系,而是不等(不等于)的关系。
范例
包括大于、小于、大于等于、小于等于、不等于等。
提醒
理解不等关系有助于理解Python的复杂逻辑。
大于和小于
大于
用符号">"表示。例如:5 > 3
小于
用符号"<"表示。例如:3 < 5
应用
数轴上的点也可以用大于小于描 述,如x > 3。
大于等于和小于等于
1 大于等于
2 小于等于
3 几何意义
用符号">="表示。例如: 5 >= 5
用符号"<="表示。例如: 3 <= 5
不等式可以用来描述数值 的大小关系,从而表示数 量关系、大小关系等几何 意义。
2
循环语句
使用while和for循环,根据不等关系执行不同的次数。例如:for i in range(1,10): print(i)。
3
逻辑运算
使用逻辑运算符(and、or、not)结合不等关系,判断多个条件的复杂情况。 例如:if x >= 10 and x < 20: print("x在10到20之间")。
2.1《不等关系》 课件 (共16张PPT)
l
为__2_π____,要使圆的面积不小于100 cm2,就是 _π___2l_π__2 _≥_1_0_0__.
新知探究
2.如图,用两根长度均为l cm 的绳子分别围成一个正方形和一 个圆.
(3)当l =8时,正方形和圆的面积哪个大? l =12呢? 分析:(3)当l =8时,正方形的面积为__4_c_m__2_,
2.如图,用两根长度均为l cm 的绳子分别围成一个正方形和一 个圆.
(4)你能得到什么猜想?改变l的取值,再试一试.
分析:(4)我们可以猜想,用长度均为 l cm 的
两根绳子分别围成一个正方形和一个圆,无论 l取何 值,圆的面积总大于正方形的面积,即_π__2_lπ__2_>__4l__2 _.
x + 2≤5 2
课堂小结
1.这节课我学到的知识是什么? 2.本节课所学知识中容易出错的地方 是什么?
布置作业 教材第38~39页习题2.1第1,2,3题.
(3)x与17的和比它的5倍小; x+17<5x (4)两数的平方和不小于这两数积的2倍.
x2+y2≥2xy
补充练习
用适当的符号表示下列关系:
(1)a的绝对值是非负数; |a|≥0 (2)y的一半比-3大,比5小; -3 < 1 y < 5
2 (3)m的5倍与2的差不大于6; 5m-2≤6 (4) x除以2 的商加上2,至多为5.
(2)如果要使圆的面积不小于100 cm2 ,那么绳 长l应满足怎样的关系式?
(3)当l =8时,正方形和圆的面积哪个大? l =12 呢?
(4)你能得到什么猜想?改变l的取值,再试一试.
新知探究
北师大版八年级下册 第二单元 2.1 不等关系 课件 (共26张PPT)
如果要使正方形的面积不大于25cm2,那么绳长 ℓ 应满足怎样的关系式?
要使正方形的面积不大于25cm2,就是
l 4
2
≤25
即
l2 16
≤25
2、 如图,用一根长度为 ℓ cm 的绳子,围成一个圆.
如果要使圆的面积不小于100cm2,那么绳长 ℓ 应满足怎样的关系式?
要使圆的面积不小于100cm2,就是
(1)分析题意,找出问题中的各种量; (2)弄清各种量之间的数量关系; (3)用代数式表示各种量; (4)用适当的不等号将具有不等关系的量连接起来.
练习1:限速40km/h的路标,指示司机在前方路 段行驶时,应使汽车的速度v不超过40km/h; 不等词为__不__超__过__,写成不等式就是:__v___4_0__.
3
4x≤7
2
解: 安排x人种甲种蔬菜,那么有(10-x)人种乙种蔬菜, 则0.5×3x+0.8×2×(10-x)≥15.6.
随堂练习
3 (中考·乐山)如图,A,B两点在数轴上表示的数
分别为a,b,下列式子成立的是( C )
A.ab>0
B.a+b<0
C.(b-1)(a+1)>0
D.(b-1)(a-1)>0
讲授新课
练习2:有将销售,凡一次性消费金额a不低于60元
的顾客,可凭收银条参加抽奖活动;
不等词为_不__低__于__,写成不等式是:_a____6_0_.
练习3:某品牌酸奶的质量检查规定,酸奶中脂肪的 含量m应不少于2.5%,蛋白质的含量n应不少于2.3%; 不等词为__不__少__于____, 用不等式组来表示:___mn___2_2._.35_%%___.
课堂小结课堂小结
1、定义:用不等号(<、>、≤、≥、≠) 连接表示不等关系的式子叫不等式.
不等关系(课件ppt)
新知讲解
议一议:观察由上述问题得到的关系式:
l2 l2 ,
4 16
a b c 160,
6 3x 30
它们有什么共同特点?
一般地,用符号“<”(或“≤”),“>”(或“≥”)连 接的式子叫做不等式.
温馨提示:a+2≠a-2也是不等式
新知讲解
第一类----明显的不等关系
(1)分析题意,找出问题中的各种量; (2)弄清各种量之间的数量关系; (3)用代数式表示各种量; (4)用适当的不等号将具有不等关系的量连接起来.
板书设计
课题:2.1不等关系
1、不等式: 2、列不等式的步骤:
解:
当l
=
12
时,S正方形
122
16
9(cm2 ), S圆形
122
4
11.5(cm2 )
∵9< 11.5 ∴当l = 12 时,还是圆的面积大.
新知讲解
无论l 取何值,圆
的面积总大于正方形
思考:如图,用两根长度均为l cm的绳的子面分积别.围成一个正方形
和一个圆.
改变l 的取值
再试一试.你能得 到什么猜想?
③x=3; ⑥y+2≥x+1.
D.6个
课堂练习
2.用不等式表示:
(1)x的3倍大于5; (2)y与2的差小于-1;
3x>5
y-2<-1
(3)x的2倍大于x; (4)y的 1 与3的差是负数;
2x>x
1
2
y 3
0
2
(5)a是正数;
(6)b不是正数
a>0
b≤0
拓展提高
对于不等式“5x+4y≤20”,我们可以这样解释: 香蕉每千克5元,苹果每千克4元,x kg香蕉与y kg苹果的总
《不等关系》课件
你还记得小孩玩的翘翘板吗?你想过它的 工作原理吗? 其实,翘翘板就是靠不断改变两端的重量 对比来工作的。
在古代,我们的祖先就懂得了翘翘板的工 作原理,根据这一原理设计出了一些简单机械, 并把它们用到了生活实践当中。
由此可见,“不相等”处处可见。从今天起, 我们开始学习一类新的数学知识:不等式。
如果要使正方形的面积不大于25cm2,那么 绳长ℓ 应满足怎样的关系式? 要使正方形的面积不大于25cm2,就是
l ≤ 25 4
2
即
l 2 ≤ 25 16
2、如图,用一根长 度为ℓ cm 的绳子, 围成一个圆。
如果要使圆的面积不小于100cm2,那么绳长 ℓ 应满足怎样的关系式?
要使圆的面积不小于25cm2,就是
请问:正方形和圆的面积哪个大?
s正方形
当ℓ =12cm时 l 2 122 l 2 122 36 9cm s圆 cm 16 16 4 4
∴圆的面积大
如图,用两根长度均为ℓ cm 的绳子, 分别围成一个正方形和圆。
请问:正方形和圆的面积哪个大?
我们可以猜想,用长度均为ℓ cm的两根绳子分别围成 一个正方形和圆,无论ℓ 取何值,圆的面积总大于正 方形的面积,即: 2 2
知识回顾 我们学过等式,请问什么叫等式? 用等号表示相等关系的式子叫等式。
我们知道相等关系的量可以利用等式来描述;同 比如,研究表明同学们每天睡觉的时间要不少于 9小时;体育考试中合格的分数要不低于60分。
时,现实生活中还存在许多反映不相等关系的量。
请同学们也举一些不相等关系的例子。
问题探究
1、如图,用一根长 度为ℓ cm 的绳子, 围成一个正方形。
l ≥ 100 2
不等关系和不等式PPT课件
练 习 : 比 较 2a
2
+3和 4a的 大 小 .
1 练习 2.已知 a R 且 a 1, 比较 1 a 与 1 a 的大小.
例3 比较大小
1.
1 3 2
和
b bm 2. 和 (a, b, m R ) a am
3、设 a 0 且
比较 log t 1 a 2
(×) a>b>0,c>d>0
性质1 a b b a (反身性) 性质2 a b , b c a c (传 递 性) 性质3 a b a c b c (可 加 性) 性质4 a b , c d a c b d 性质5 a b , c 0 ac bc (可 乘 性) a b , c 0 ac bc
n n
n n
性质8:若 a b 0, 则 a b (n N且n 1)
例题讲析
c c 例1:已知 a b 0, c 0. 求证: . a b
练习1 (1)已知
1 1 a b, ab 0.求证: . a b
(2)已知
a b 0, c d 0.求证ac bd.
性质3 如果a > b , 那么a + c > b + c .
可 加 性
性质4 如果a>b,且c>d,那么a+c>b+d.
性质5 如果a>b,且c>0,那么ac>bc; 如果a>b,且c<0,那么ac<bc.
可 乘 性
性质6 如果a>b>0,且c>d>0,那么ac>bd.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等关系课件
不等关系课件
不等关系课件
教学分析
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.
在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
三维目标
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
教学难点:准确比较两个代数式的大小.
课时安排:1课时
教学过程
导入新课
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
提出问题:
1.回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2.在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3.数轴上的任意两点与对应的两实数具有怎样的关系?
4.任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例3:若一个数是非负数,则这个数大于或等于零.
实例4:两点之间线段最短.
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t 表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质
含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b<0a
应用示例
例1(教材本节例1和例2)
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握。